1 | // emacs edit mode for this file is -*- C++ -*- |
---|
2 | /**************************************** |
---|
3 | * Computer Algebra System SINGULAR * |
---|
4 | ****************************************/ |
---|
5 | /* |
---|
6 | * ABSTRACT: interface between Singular and factory |
---|
7 | */ |
---|
8 | |
---|
9 | //#define FACTORIZE2_DEBUG |
---|
10 | |
---|
11 | #include "misc/auxiliary.h" |
---|
12 | #include "clapsing.h" |
---|
13 | |
---|
14 | #include "factory/factory.h" |
---|
15 | |
---|
16 | #include "coeffs/numbers.h" |
---|
17 | #include "coeffs/coeffs.h" |
---|
18 | #include "coeffs/bigintmat.h" |
---|
19 | |
---|
20 | #include "monomials/ring.h" |
---|
21 | #include "simpleideals.h" |
---|
22 | #include "polys/flintconv.h" |
---|
23 | #include "polys/flint_mpoly.h" |
---|
24 | |
---|
25 | |
---|
26 | //#include "polys.h" |
---|
27 | #define TRANSEXT_PRIVATES |
---|
28 | |
---|
29 | #include "ext_fields/transext.h" |
---|
30 | |
---|
31 | |
---|
32 | #include "clapconv.h" |
---|
33 | |
---|
34 | #include "polys/monomials/p_polys.h" |
---|
35 | #include "polys/monomials/ring.h" |
---|
36 | #include "polys/simpleideals.h" |
---|
37 | #include "misc/intvec.h" |
---|
38 | #include "polys/matpol.h" |
---|
39 | #include "coeffs/bigintmat.h" |
---|
40 | |
---|
41 | |
---|
42 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
43 | |
---|
44 | poly singclap_gcd_r ( poly f, poly g, const ring r ) |
---|
45 | { |
---|
46 | poly res=NULL; |
---|
47 | |
---|
48 | assume(f!=NULL); |
---|
49 | assume(g!=NULL); |
---|
50 | |
---|
51 | if(pNext(f)==NULL) |
---|
52 | { |
---|
53 | return p_GcdMon(f,g,r); |
---|
54 | } |
---|
55 | else if(pNext(g)==NULL) |
---|
56 | { |
---|
57 | return p_GcdMon(g,f,r); |
---|
58 | } |
---|
59 | #ifdef HAVE_FLINT |
---|
60 | #if __FLINT_RELEASE >= 20503 |
---|
61 | if (rField_is_Zp(r) && (r->cf->ch>10)) |
---|
62 | { |
---|
63 | nmod_mpoly_ctx_t ctx; |
---|
64 | if (!convSingRFlintR(ctx,r)) |
---|
65 | { |
---|
66 | // leading coef. 1 |
---|
67 | return Flint_GCD_MP(f,pLength(f),g,pLength(g),ctx,r); |
---|
68 | } |
---|
69 | } |
---|
70 | else |
---|
71 | if (rField_is_Q(r)) |
---|
72 | { |
---|
73 | fmpq_mpoly_ctx_t ctx; |
---|
74 | if (!convSingRFlintR(ctx,r)) |
---|
75 | { |
---|
76 | // leading coef. positive, all coeffs in Z |
---|
77 | poly res=Flint_GCD_MP(f,pLength(f),g,pLength(g),ctx,r); |
---|
78 | res=p_Cleardenom(res,r); |
---|
79 | return res; |
---|
80 | } |
---|
81 | } |
---|
82 | #endif |
---|
83 | #endif |
---|
84 | Off(SW_RATIONAL); |
---|
85 | if (rField_is_Q(r) || rField_is_Zp(r) || rField_is_Z(r) |
---|
86 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
87 | { |
---|
88 | setCharacteristic( rChar(r) ); |
---|
89 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g, r ) ); |
---|
90 | res=convFactoryPSingP( gcd( F, G ) , r); |
---|
91 | if ( rField_is_Zp(r)) |
---|
92 | p_Norm(res,r); // leading coef. 1 |
---|
93 | else if (rField_is_Q(r) && (!n_GreaterZero(pGetCoeff(res),r->cf))) |
---|
94 | res = p_Neg(res,r); // leading coef. positive, all coeffs in Z |
---|
95 | } |
---|
96 | // and over Q(a) / Fp(a) |
---|
97 | else if ( r->cf->extRing!=NULL ) |
---|
98 | { |
---|
99 | if ( rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
100 | else setCharacteristic( rChar(r) ); |
---|
101 | if (r->cf->extRing->qideal!=NULL) |
---|
102 | { |
---|
103 | bool b1=isOn(SW_USE_QGCD); |
---|
104 | if ( rField_is_Q_a(r) ) On(SW_USE_QGCD); |
---|
105 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
106 | r->cf->extRing); |
---|
107 | Variable a=rootOf(mipo); |
---|
108 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
109 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
110 | res= convFactoryAPSingAP( gcd( F, G ),r ); |
---|
111 | prune (a); |
---|
112 | if (!b1) Off(SW_USE_QGCD); |
---|
113 | if ( rField_is_Zp_a(r)) p_Norm(res,r); // leading coef. 1 |
---|
114 | } |
---|
115 | else |
---|
116 | { |
---|
117 | convSingTrP(f,r); |
---|
118 | convSingTrP(g,r); |
---|
119 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
120 | res= convFactoryPSingTrP( gcd( F, G ),r ); |
---|
121 | } |
---|
122 | } |
---|
123 | else if (r->cf->convSingNFactoryN==ndConvSingNFactoryN) |
---|
124 | WerrorS( feNotImplemented ); |
---|
125 | else |
---|
126 | { // handle user type coeffs: |
---|
127 | setCharacteristic( rChar(r) ); |
---|
128 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g, r ) ); |
---|
129 | res=convFactoryPSingP( gcd( F, G ) , r); |
---|
130 | } |
---|
131 | Off(SW_RATIONAL); |
---|
132 | return res; |
---|
133 | } |
---|
134 | |
---|
135 | poly singclap_gcd_and_divide ( poly& f, poly& g, const ring r) |
---|
136 | { |
---|
137 | poly res=NULL; |
---|
138 | |
---|
139 | if (g == NULL) |
---|
140 | { |
---|
141 | res= f; |
---|
142 | f=p_One (r); |
---|
143 | return res; |
---|
144 | } |
---|
145 | if (f==NULL) |
---|
146 | { |
---|
147 | res= g; |
---|
148 | g=p_One (r); |
---|
149 | return res; |
---|
150 | } |
---|
151 | if (pNext(g)==NULL) |
---|
152 | { |
---|
153 | poly G=p_GcdMon(g,f,r); |
---|
154 | if (!n_IsOne(pGetCoeff(G),r->cf) |
---|
155 | || (!p_IsConstant(G,r))) |
---|
156 | { |
---|
157 | f=p_Div_mm(f,G,r); |
---|
158 | g=p_Div_mm(g,G,r); |
---|
159 | } |
---|
160 | return G; |
---|
161 | } |
---|
162 | else if (pNext(f)==NULL) |
---|
163 | { |
---|
164 | poly G=p_GcdMon(f,g,r); |
---|
165 | if (!n_IsOne(pGetCoeff(G),r->cf) |
---|
166 | || (!p_IsConstant(G,r))) |
---|
167 | { |
---|
168 | f=p_Div_mm(f,G,r); |
---|
169 | g=p_Div_mm(g,G,r); |
---|
170 | } |
---|
171 | return G; |
---|
172 | } |
---|
173 | |
---|
174 | Off(SW_RATIONAL); |
---|
175 | CanonicalForm F,G,GCD; |
---|
176 | if (rField_is_Q(r) || (rField_is_Zp(r)) |
---|
177 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
178 | { |
---|
179 | bool b1=isOn(SW_USE_EZGCD_P); |
---|
180 | setCharacteristic( rChar(r) ); |
---|
181 | F=convSingPFactoryP( f,r ); |
---|
182 | G=convSingPFactoryP( g,r ); |
---|
183 | GCD=gcd(F,G); |
---|
184 | if (!GCD.isOne()) |
---|
185 | { |
---|
186 | p_Delete(&f,r); |
---|
187 | p_Delete(&g,r); |
---|
188 | if (getCharacteristic() == 0) |
---|
189 | On (SW_RATIONAL); |
---|
190 | F /= GCD; |
---|
191 | G /= GCD; |
---|
192 | if (getCharacteristic() == 0) |
---|
193 | { |
---|
194 | CanonicalForm denF= bCommonDen (F); |
---|
195 | CanonicalForm denG= bCommonDen (G); |
---|
196 | G *= denG; |
---|
197 | F *= denF; |
---|
198 | Off (SW_RATIONAL); |
---|
199 | CanonicalForm gcddenFdenG= gcd (denG, denF); |
---|
200 | denG /= gcddenFdenG; |
---|
201 | denF /= gcddenFdenG; |
---|
202 | On (SW_RATIONAL); |
---|
203 | G *= denF; |
---|
204 | F *= denG; |
---|
205 | } |
---|
206 | f=convFactoryPSingP( F, r); |
---|
207 | g=convFactoryPSingP( G, r); |
---|
208 | } |
---|
209 | res=convFactoryPSingP( GCD , r); |
---|
210 | if (!b1) Off (SW_USE_EZGCD_P); |
---|
211 | } |
---|
212 | // and over Q(a) / Fp(a) |
---|
213 | else if ( r->cf->extRing ) |
---|
214 | { |
---|
215 | if ( rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
216 | else setCharacteristic( rChar(r) ); |
---|
217 | if (r->cf->extRing->qideal!=NULL) |
---|
218 | { |
---|
219 | bool b1=isOn(SW_USE_QGCD); |
---|
220 | if ( rField_is_Q_a(r) ) On(SW_USE_QGCD); |
---|
221 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
222 | r->cf->extRing); |
---|
223 | Variable a=rootOf(mipo); |
---|
224 | F=( convSingAPFactoryAP( f,a,r ) ); |
---|
225 | G=( convSingAPFactoryAP( g,a,r ) ); |
---|
226 | GCD=gcd(F,G); |
---|
227 | if (!GCD.isOne()) |
---|
228 | { |
---|
229 | p_Delete(&f,r); |
---|
230 | p_Delete(&g,r); |
---|
231 | if (getCharacteristic() == 0) |
---|
232 | On (SW_RATIONAL); |
---|
233 | F /= GCD; |
---|
234 | G /= GCD; |
---|
235 | if (getCharacteristic() == 0) |
---|
236 | { |
---|
237 | CanonicalForm denF= bCommonDen (F); |
---|
238 | CanonicalForm denG= bCommonDen (G); |
---|
239 | G *= denG; |
---|
240 | F *= denF; |
---|
241 | Off (SW_RATIONAL); |
---|
242 | CanonicalForm gcddenFdenG= gcd (denG, denF); |
---|
243 | denG /= gcddenFdenG; |
---|
244 | denF /= gcddenFdenG; |
---|
245 | On (SW_RATIONAL); |
---|
246 | G *= denF; |
---|
247 | F *= denG; |
---|
248 | } |
---|
249 | f= convFactoryAPSingAP( F,r ); |
---|
250 | g= convFactoryAPSingAP( G,r ); |
---|
251 | } |
---|
252 | res= convFactoryAPSingAP( GCD,r ); |
---|
253 | prune (a); |
---|
254 | if (!b1) Off(SW_USE_QGCD); |
---|
255 | } |
---|
256 | else |
---|
257 | { |
---|
258 | F=( convSingTrPFactoryP( f,r ) ); |
---|
259 | G=( convSingTrPFactoryP( g,r ) ); |
---|
260 | GCD=gcd(F,G); |
---|
261 | if (!GCD.isOne()) |
---|
262 | { |
---|
263 | p_Delete(&f,r); |
---|
264 | p_Delete(&g,r); |
---|
265 | if (getCharacteristic() == 0) |
---|
266 | On (SW_RATIONAL); |
---|
267 | F /= GCD; |
---|
268 | G /= GCD; |
---|
269 | if (getCharacteristic() == 0) |
---|
270 | { |
---|
271 | CanonicalForm denF= bCommonDen (F); |
---|
272 | CanonicalForm denG= bCommonDen (G); |
---|
273 | G *= denG; |
---|
274 | F *= denF; |
---|
275 | Off (SW_RATIONAL); |
---|
276 | CanonicalForm gcddenFdenG= gcd (denG, denF); |
---|
277 | denG /= gcddenFdenG; |
---|
278 | denF /= gcddenFdenG; |
---|
279 | On (SW_RATIONAL); |
---|
280 | G *= denF; |
---|
281 | F *= denG; |
---|
282 | } |
---|
283 | f= convFactoryPSingTrP( F,r ); |
---|
284 | g= convFactoryPSingTrP( G,r ); |
---|
285 | } |
---|
286 | res= convFactoryPSingTrP( GCD,r ); |
---|
287 | } |
---|
288 | } |
---|
289 | else |
---|
290 | WerrorS( feNotImplemented ); |
---|
291 | Off(SW_RATIONAL); |
---|
292 | return res; |
---|
293 | } |
---|
294 | |
---|
295 | /*2 find the maximal exponent of var(i) in poly p*/ |
---|
296 | int pGetExp_Var(poly p, int i, const ring r) |
---|
297 | { |
---|
298 | int m=0; |
---|
299 | int mm; |
---|
300 | while (p!=NULL) |
---|
301 | { |
---|
302 | mm=p_GetExp(p,i,r); |
---|
303 | if (mm>m) m=mm; |
---|
304 | pIter(p); |
---|
305 | } |
---|
306 | return m; |
---|
307 | } |
---|
308 | |
---|
309 | // destroys f,g,x |
---|
310 | poly singclap_resultant ( poly f, poly g , poly x, const ring r) |
---|
311 | { |
---|
312 | poly res=NULL; |
---|
313 | int i=p_IsPurePower(x, r); |
---|
314 | if (i==0) |
---|
315 | { |
---|
316 | WerrorS("3rd argument must be a ring variable"); |
---|
317 | goto resultant_returns_res; |
---|
318 | } |
---|
319 | if ((f==NULL) || (g==NULL)) |
---|
320 | goto resultant_returns_res; |
---|
321 | // for now there is only the possibility to handle polynomials over |
---|
322 | // Q and Fp ... |
---|
323 | if (rField_is_Zp(r) || rField_is_Q(r) |
---|
324 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
325 | { |
---|
326 | Variable X(i); |
---|
327 | setCharacteristic( rChar(r) ); |
---|
328 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r ) ); |
---|
329 | res=convFactoryPSingP( resultant( F, G, X),r ); |
---|
330 | Off(SW_RATIONAL); |
---|
331 | goto resultant_returns_res; |
---|
332 | } |
---|
333 | // and over Q(a) / Fp(a) |
---|
334 | else if (r->cf->extRing!=NULL) |
---|
335 | { |
---|
336 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
337 | else setCharacteristic( rChar(r) ); |
---|
338 | Variable X(i+rPar(r)); |
---|
339 | if (r->cf->extRing->qideal!=NULL) |
---|
340 | { |
---|
341 | //Variable X(i); |
---|
342 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
343 | r->cf->extRing); |
---|
344 | Variable a=rootOf(mipo); |
---|
345 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
346 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
347 | res= convFactoryAPSingAP( resultant( F, G, X ),r ); |
---|
348 | prune (a); |
---|
349 | } |
---|
350 | else |
---|
351 | { |
---|
352 | //Variable X(i+rPar(currRing)); |
---|
353 | number nf,ng; |
---|
354 | p_Cleardenom_n(f,r,nf);p_Cleardenom_n(g,r,ng); |
---|
355 | int ef,eg; |
---|
356 | ef=pGetExp_Var(f,i,r); |
---|
357 | eg=pGetExp_Var(g,i,r); |
---|
358 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
359 | res= convFactoryPSingTrP( resultant( F, G, X ),r ); |
---|
360 | if ((nf!=NULL)&&(!n_IsOne(nf,r->cf))) |
---|
361 | { |
---|
362 | number n=n_Invers(nf,r->cf); |
---|
363 | while(eg>0) |
---|
364 | { |
---|
365 | res=__p_Mult_nn(res,n,r); |
---|
366 | eg--; |
---|
367 | } |
---|
368 | n_Delete(&n,r->cf); |
---|
369 | } |
---|
370 | n_Delete(&nf,r->cf); |
---|
371 | if ((ng!=NULL)&&(!n_IsOne(ng,r->cf))) |
---|
372 | { |
---|
373 | number n=n_Invers(ng,r->cf); |
---|
374 | while(ef>0) |
---|
375 | { |
---|
376 | res=__p_Mult_nn(res,n,r); |
---|
377 | ef--; |
---|
378 | } |
---|
379 | n_Delete(&n,r->cf); |
---|
380 | } |
---|
381 | n_Delete(&ng,r->cf); |
---|
382 | } |
---|
383 | Off(SW_RATIONAL); |
---|
384 | goto resultant_returns_res; |
---|
385 | } |
---|
386 | else |
---|
387 | WerrorS( feNotImplemented ); |
---|
388 | resultant_returns_res: |
---|
389 | p_Delete(&f,r); |
---|
390 | p_Delete(&g,r); |
---|
391 | p_Delete(&x,r); |
---|
392 | return res; |
---|
393 | } |
---|
394 | //poly singclap_resultant ( poly f, poly g , poly x) |
---|
395 | //{ |
---|
396 | // int i=pVar(x); |
---|
397 | // if (i==0) |
---|
398 | // { |
---|
399 | // WerrorS("ringvar expected"); |
---|
400 | // return NULL; |
---|
401 | // } |
---|
402 | // ideal I=idInit(1,1); |
---|
403 | // |
---|
404 | // // get the coeffs von f wrt. x: |
---|
405 | // I->m[0]=pCopy(f); |
---|
406 | // matrix ffi=mpCoeffs(I,i); |
---|
407 | // ffi->rank=1; |
---|
408 | // ffi->ncols=ffi->nrows; |
---|
409 | // ffi->nrows=1; |
---|
410 | // ideal fi=(ideal)ffi; |
---|
411 | // |
---|
412 | // // get the coeffs von g wrt. x: |
---|
413 | // I->m[0]=pCopy(g); |
---|
414 | // matrix ggi=mpCoeffs(I,i); |
---|
415 | // ggi->rank=1; |
---|
416 | // ggi->ncols=ggi->nrows; |
---|
417 | // ggi->nrows=1; |
---|
418 | // ideal gi=(ideal)ggi; |
---|
419 | // |
---|
420 | // // contruct the matrix: |
---|
421 | // int fn=IDELEMS(fi); //= deg(f,x)+1 |
---|
422 | // int gn=IDELEMS(gi); //= deg(g,x)+1 |
---|
423 | // matrix m=mpNew(fn+gn-2,fn+gn-2); |
---|
424 | // if(m==NULL) |
---|
425 | // { |
---|
426 | // return NULL; |
---|
427 | // } |
---|
428 | // |
---|
429 | // // enter the coeffs into m: |
---|
430 | // int j; |
---|
431 | // for(i=0;i<gn-1;i++) |
---|
432 | // { |
---|
433 | // for(j=0;j<fn;j++) |
---|
434 | // { |
---|
435 | // MATELEM(m,i+1,fn-j+i)=pCopy(fi->m[j]); |
---|
436 | // } |
---|
437 | // } |
---|
438 | // for(i=0;i<fn-1;i++) |
---|
439 | // { |
---|
440 | // for(j=0;j<gn;j++) |
---|
441 | // { |
---|
442 | // MATELEM(m,gn+i,gn-j+i)=pCopy(gi->m[j]); |
---|
443 | // } |
---|
444 | // } |
---|
445 | // |
---|
446 | // poly r=mpDet(m); |
---|
447 | // |
---|
448 | // idDelete(&fi); |
---|
449 | // idDelete(&gi); |
---|
450 | // idDelete((ideal *)&m); |
---|
451 | // return r; |
---|
452 | //} |
---|
453 | |
---|
454 | BOOLEAN singclap_extgcd ( poly f, poly g, poly &res, poly &pa, poly &pb , const ring r) |
---|
455 | { |
---|
456 | // for now there is only the possibility to handle univariate |
---|
457 | // polynomials over |
---|
458 | // Q and Fp ... |
---|
459 | res=NULL;pa=NULL;pb=NULL; |
---|
460 | On(SW_SYMMETRIC_FF); |
---|
461 | if ( rField_is_Q(r) || rField_is_Zp(r) |
---|
462 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
463 | { |
---|
464 | setCharacteristic( rChar(r) ); |
---|
465 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r) ); |
---|
466 | CanonicalForm FpG=F+G; |
---|
467 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
468 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
469 | { |
---|
470 | Off(SW_RATIONAL); |
---|
471 | WerrorS("not univariate"); |
---|
472 | return TRUE; |
---|
473 | } |
---|
474 | CanonicalForm Fa,Gb; |
---|
475 | On(SW_RATIONAL); |
---|
476 | res=convFactoryPSingP( extgcd( F, G, Fa, Gb ),r ); |
---|
477 | pa=convFactoryPSingP(Fa,r); |
---|
478 | pb=convFactoryPSingP(Gb,r); |
---|
479 | Off(SW_RATIONAL); |
---|
480 | } |
---|
481 | // and over Q(a) / Fp(a) |
---|
482 | else if ( r->cf->extRing!=NULL ) |
---|
483 | { |
---|
484 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
485 | else setCharacteristic( rChar(r) ); |
---|
486 | CanonicalForm Fa,Gb; |
---|
487 | if (r->cf->extRing->qideal!=NULL) |
---|
488 | { |
---|
489 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
490 | r->cf->extRing); |
---|
491 | Variable a=rootOf(mipo); |
---|
492 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
493 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
494 | CanonicalForm FpG=F+G; |
---|
495 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
496 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
497 | { |
---|
498 | WerrorS("not univariate"); |
---|
499 | return TRUE; |
---|
500 | } |
---|
501 | res= convFactoryAPSingAP( extgcd( F, G, Fa, Gb ),r ); |
---|
502 | pa=convFactoryAPSingAP(Fa,r); |
---|
503 | pb=convFactoryAPSingAP(Gb,r); |
---|
504 | prune (a); |
---|
505 | } |
---|
506 | else |
---|
507 | { |
---|
508 | CanonicalForm F( convSingTrPFactoryP( f, r ) ), G( convSingTrPFactoryP( g, r ) ); |
---|
509 | CanonicalForm FpG=F+G; |
---|
510 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
511 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
512 | { |
---|
513 | Off(SW_RATIONAL); |
---|
514 | WerrorS("not univariate"); |
---|
515 | return TRUE; |
---|
516 | } |
---|
517 | res= convFactoryPSingTrP( extgcd( F, G, Fa, Gb ), r ); |
---|
518 | pa=convFactoryPSingTrP(Fa, r); |
---|
519 | pb=convFactoryPSingTrP(Gb, r); |
---|
520 | } |
---|
521 | Off(SW_RATIONAL); |
---|
522 | } |
---|
523 | else |
---|
524 | { |
---|
525 | WerrorS( feNotImplemented ); |
---|
526 | return TRUE; |
---|
527 | } |
---|
528 | #ifndef SING_NDEBUG |
---|
529 | // checking the result of extgcd: |
---|
530 | poly dummy; |
---|
531 | dummy=p_Sub(p_Add_q(pp_Mult_qq(f,pa,r),pp_Mult_qq(g,pb,r),r),p_Copy(res,r),r); |
---|
532 | if (dummy!=NULL) |
---|
533 | { |
---|
534 | PrintS("extgcd( ");p_Write(f,r);p_Write0(g,r);PrintS(" )\n"); |
---|
535 | PrintS("extgcd( ");p_Write(f,r);p_Write0(g,r);PrintS(" )\n"); |
---|
536 | p_Delete(&dummy,r); |
---|
537 | } |
---|
538 | #endif |
---|
539 | return FALSE; |
---|
540 | } |
---|
541 | |
---|
542 | poly singclap_pmult ( poly f, poly g, const ring r ) |
---|
543 | { |
---|
544 | poly res=NULL; |
---|
545 | On(SW_RATIONAL); |
---|
546 | if (rField_is_Zp(r) || rField_is_Q(r) || rField_is_Z(r) |
---|
547 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
548 | { |
---|
549 | if (rField_is_Z(r)) Off(SW_RATIONAL); |
---|
550 | setCharacteristic( rChar(r) ); |
---|
551 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r ) ); |
---|
552 | res = convFactoryPSingP( F * G,r ); |
---|
553 | } |
---|
554 | else if (r->cf->extRing!=NULL) |
---|
555 | { |
---|
556 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
557 | else setCharacteristic( rChar(r) ); |
---|
558 | if (r->cf->extRing->qideal!=NULL) |
---|
559 | { |
---|
560 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
561 | r->cf->extRing); |
---|
562 | Variable a=rootOf(mipo); |
---|
563 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
564 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
565 | res= convFactoryAPSingAP( F * G, r ); |
---|
566 | prune (a); |
---|
567 | } |
---|
568 | else |
---|
569 | { |
---|
570 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
571 | res= convFactoryPSingTrP( F * G,r ); |
---|
572 | } |
---|
573 | } |
---|
574 | #if 0 // not yet working |
---|
575 | else if (rField_is_GF()) |
---|
576 | { |
---|
577 | //Print("GF(%d^%d)\n",nfCharP,nfMinPoly[0]); |
---|
578 | setCharacteristic( nfCharP,nfMinPoly[0], currRing->parameter[0][0] ); |
---|
579 | CanonicalForm F( convSingGFFactoryGF( f ) ), G( convSingGFFactoryGF( g ) ); |
---|
580 | res = convFactoryGFSingGF( F * G ); |
---|
581 | } |
---|
582 | #endif |
---|
583 | else |
---|
584 | WerrorS( feNotImplemented ); |
---|
585 | Off(SW_RATIONAL); |
---|
586 | return res; |
---|
587 | } |
---|
588 | |
---|
589 | poly singclap_pdivide ( poly f, poly g, const ring r ) |
---|
590 | { |
---|
591 | poly res=NULL; |
---|
592 | |
---|
593 | #ifdef HAVE_FLINT |
---|
594 | #if __FLINT_RELEASE >= 20503 |
---|
595 | /* |
---|
596 | If the division is not exact, control will pass to factory where the |
---|
597 | polynomials can be divided using the ordering that factory chooses. |
---|
598 | */ |
---|
599 | if (rField_is_Zp(r)) |
---|
600 | { |
---|
601 | nmod_mpoly_ctx_t ctx; |
---|
602 | if (!convSingRFlintR(ctx,r)) |
---|
603 | { |
---|
604 | res = Flint_Divide_MP(f,pLength(f),g,pLength(g),ctx,r); |
---|
605 | if (res != NULL) |
---|
606 | return res; |
---|
607 | } |
---|
608 | } |
---|
609 | else |
---|
610 | if (rField_is_Q(r)) |
---|
611 | { |
---|
612 | fmpq_mpoly_ctx_t ctx; |
---|
613 | if (!convSingRFlintR(ctx,r)) |
---|
614 | { |
---|
615 | res = Flint_Divide_MP(f,pLength(f),g,pLength(g),ctx,r); |
---|
616 | if (res != NULL) |
---|
617 | return res; |
---|
618 | } |
---|
619 | } |
---|
620 | #endif |
---|
621 | #endif |
---|
622 | |
---|
623 | On(SW_RATIONAL); |
---|
624 | if (rField_is_Zp(r) || rField_is_Q(r) |
---|
625 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
626 | { |
---|
627 | setCharacteristic( rChar(r) ); |
---|
628 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r ) ); |
---|
629 | res = convFactoryPSingP( F / G,r ); |
---|
630 | } |
---|
631 | // div is not implemented for ZZ coeffs in factory |
---|
632 | else if (r->cf->extRing!=NULL) |
---|
633 | { |
---|
634 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
635 | else setCharacteristic( rChar(r) ); |
---|
636 | if (r->cf->extRing->qideal!=NULL) |
---|
637 | { |
---|
638 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
639 | r->cf->extRing); |
---|
640 | Variable a=rootOf(mipo); |
---|
641 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
642 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
643 | res= convFactoryAPSingAP( F / G, r ); |
---|
644 | prune (a); |
---|
645 | } |
---|
646 | else |
---|
647 | { |
---|
648 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
649 | res= convFactoryPSingTrP( F / G,r ); |
---|
650 | } |
---|
651 | } |
---|
652 | #if 0 // not yet working |
---|
653 | else if (rField_is_GF()) |
---|
654 | { |
---|
655 | //Print("GF(%d^%d)\n",nfCharP,nfMinPoly[0]); |
---|
656 | setCharacteristic( nfCharP,nfMinPoly[0], currRing->parameter[0][0] ); |
---|
657 | CanonicalForm F( convSingGFFactoryGF( f ) ), G( convSingGFFactoryGF( g ) ); |
---|
658 | res = convFactoryGFSingGF( F / G ); |
---|
659 | } |
---|
660 | #endif |
---|
661 | else |
---|
662 | WerrorS( feNotImplemented ); |
---|
663 | Off(SW_RATIONAL); |
---|
664 | return res; |
---|
665 | } |
---|
666 | |
---|
667 | poly singclap_pmod ( poly f, poly g, const ring r ) |
---|
668 | { |
---|
669 | poly res=NULL; |
---|
670 | On(SW_RATIONAL); |
---|
671 | if (rField_is_Zp(r) || rField_is_Q(r) |
---|
672 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
673 | { |
---|
674 | setCharacteristic( rChar(r) ); |
---|
675 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r ) ); |
---|
676 | CanonicalForm Q,R; |
---|
677 | divrem(F,G,Q,R); |
---|
678 | res = convFactoryPSingP(R,r); |
---|
679 | //res = convFactoryPSingP( F-(F/G)*G,r ); |
---|
680 | } |
---|
681 | // mod is not implemented for ZZ coeffs in factory |
---|
682 | else if (r->cf->extRing!=NULL) |
---|
683 | { |
---|
684 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
685 | else setCharacteristic( rChar(r) ); |
---|
686 | if (r->cf->extRing->qideal!=NULL) |
---|
687 | { |
---|
688 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
689 | r->cf->extRing); |
---|
690 | Variable a=rootOf(mipo); |
---|
691 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
692 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
693 | CanonicalForm Q,R; |
---|
694 | divrem(F,G,Q,R); |
---|
695 | res = convFactoryAPSingAP(R,r); |
---|
696 | //res= convFactoryAPSingAP( F-(F/G)*G, r ); |
---|
697 | prune (a); |
---|
698 | } |
---|
699 | else |
---|
700 | { |
---|
701 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
702 | CanonicalForm Q,R; |
---|
703 | divrem(F,G,Q,R); |
---|
704 | res = convFactoryPSingTrP(R,r); |
---|
705 | //res= convFactoryPSingTrP( F-(F/G)*G,r ); |
---|
706 | } |
---|
707 | } |
---|
708 | #if 0 // not yet working |
---|
709 | else if (rField_is_GF()) |
---|
710 | { |
---|
711 | //Print("GF(%d^%d)\n",nfCharP,nfMinPoly[0]); |
---|
712 | setCharacteristic( nfCharP,nfMinPoly[0], currRing->parameter[0][0] ); |
---|
713 | CanonicalForm F( convSingGFFactoryGF( f ) ), G( convSingGFFactoryGF( g ) ); |
---|
714 | res = convFactoryGFSingGF( F / G ); |
---|
715 | } |
---|
716 | #endif |
---|
717 | else |
---|
718 | WerrorS( feNotImplemented ); |
---|
719 | Off(SW_RATIONAL); |
---|
720 | return res; |
---|
721 | } |
---|
722 | |
---|
723 | #if 0 |
---|
724 | // unused |
---|
725 | void singclap_divide_content ( poly f, const ring r ) |
---|
726 | { |
---|
727 | if ( f==NULL ) |
---|
728 | { |
---|
729 | return; |
---|
730 | } |
---|
731 | else if ( pNext( f ) == NULL ) |
---|
732 | { |
---|
733 | p_SetCoeff( f, n_Init( 1, r->cf ), r ); |
---|
734 | return; |
---|
735 | } |
---|
736 | else |
---|
737 | { |
---|
738 | if ( rField_is_Q_a(r) ) |
---|
739 | setCharacteristic( 0 ); |
---|
740 | else if ( rField_is_Zp_a(r) ) |
---|
741 | setCharacteristic( -rChar(r) ); |
---|
742 | else |
---|
743 | return; /* not implemented*/ |
---|
744 | |
---|
745 | CFList L; |
---|
746 | CanonicalForm g, h; |
---|
747 | poly p = pNext(f); |
---|
748 | |
---|
749 | // first attemp: find 2 smallest g: |
---|
750 | |
---|
751 | number g1=pGetCoeff(f); |
---|
752 | number g2=pGetCoeff(p); // p==pNext(f); |
---|
753 | pIter(p); |
---|
754 | int sz1=n_Size(g1, r->cf); |
---|
755 | int sz2=n_Size(g2, r->cf); |
---|
756 | if (sz1>sz2) |
---|
757 | { |
---|
758 | number gg=g1; |
---|
759 | g1=g2; g2=gg; |
---|
760 | int sz=sz1; |
---|
761 | sz1=sz2; sz2=sz; |
---|
762 | } |
---|
763 | while (p!=NULL) |
---|
764 | { |
---|
765 | int n_sz=n_Size(pGetCoeff(p),r->cf); |
---|
766 | if (n_sz<sz1) |
---|
767 | { |
---|
768 | sz2=sz1; |
---|
769 | g2=g1; |
---|
770 | g1=pGetCoeff(p); |
---|
771 | sz1=n_sz; |
---|
772 | if (sz1<=3) break; |
---|
773 | } |
---|
774 | else if(n_sz<sz2) |
---|
775 | { |
---|
776 | sz2=n_sz; |
---|
777 | g2=pGetCoeff(p); |
---|
778 | sz2=n_sz; |
---|
779 | } |
---|
780 | pIter(p); |
---|
781 | } |
---|
782 | g = convSingPFactoryP( NUM(((fraction)g1)), r->cf->extRing ); |
---|
783 | g = gcd( g, convSingPFactoryP( NUM(((fraction)g2)) , r->cf->extRing)); |
---|
784 | |
---|
785 | // second run: gcd's |
---|
786 | |
---|
787 | p = f; |
---|
788 | while ( (p != NULL) && (g != 1) && ( g != 0)) |
---|
789 | { |
---|
790 | h = convSingPFactoryP( NUM(((fraction)pGetCoeff(p))), r->cf->extRing ); |
---|
791 | pIter( p ); |
---|
792 | |
---|
793 | g = gcd( g, h ); |
---|
794 | |
---|
795 | L.append( h ); |
---|
796 | } |
---|
797 | if (( g == 1 ) || (g == 0)) |
---|
798 | { |
---|
799 | // pTest(f); |
---|
800 | return; |
---|
801 | } |
---|
802 | else |
---|
803 | { |
---|
804 | CFListIterator i; |
---|
805 | for ( i = L, p = f; i.hasItem(); i++, p=pNext(p) ) |
---|
806 | { |
---|
807 | fraction c=(fraction)pGetCoeff(p); |
---|
808 | p_Delete(&(NUM(c)),r->cf->extRing); // 2nd arg used to be nacRing |
---|
809 | NUM(c)=convFactoryPSingP( i.getItem() / g, r->cf->extRing ); |
---|
810 | //nTest((number)c); |
---|
811 | //#ifdef LDEBUG |
---|
812 | //number cn=(number)c; |
---|
813 | //StringSetS(""); nWrite(nt); StringAppend(" ==> "); |
---|
814 | //nWrite(cn);PrintS(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s); |
---|
815 | //#endif |
---|
816 | } |
---|
817 | } |
---|
818 | // pTest(f); |
---|
819 | } |
---|
820 | } |
---|
821 | #endif |
---|
822 | |
---|
823 | BOOLEAN count_Factors(ideal I, intvec *v,int j, poly &f, poly fac, const ring r) |
---|
824 | { |
---|
825 | p_Test(f,r); |
---|
826 | p_Test(fac,r); |
---|
827 | int e=0; |
---|
828 | if (!p_IsConstantPoly(fac,r)) |
---|
829 | { |
---|
830 | #ifdef FACTORIZE2_DEBUG |
---|
831 | printf("start count_Factors(%d), Fdeg=%d, factor deg=%d\n",j,p_Totaldegree(f,r),p_Totaldegree(fac,r)); |
---|
832 | p_wrp(fac,r);PrintLn(); |
---|
833 | #endif |
---|
834 | On(SW_RATIONAL); |
---|
835 | CanonicalForm F, FAC,Q,R; |
---|
836 | Variable a; |
---|
837 | if (rField_is_Zp(r) || rField_is_Q(r) |
---|
838 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
839 | { |
---|
840 | F=convSingPFactoryP( f,r ); |
---|
841 | FAC=convSingPFactoryP( fac,r ); |
---|
842 | } |
---|
843 | else if (r->cf->extRing!=NULL) |
---|
844 | { |
---|
845 | if (r->cf->extRing->qideal!=NULL) |
---|
846 | { |
---|
847 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
848 | r->cf->extRing); |
---|
849 | a=rootOf(mipo); |
---|
850 | F=convSingAPFactoryAP( f,a,r ); |
---|
851 | FAC=convSingAPFactoryAP( fac,a,r ); |
---|
852 | } |
---|
853 | else |
---|
854 | { |
---|
855 | F=convSingTrPFactoryP( f,r ); |
---|
856 | FAC=convSingTrPFactoryP( fac,r ); |
---|
857 | } |
---|
858 | } |
---|
859 | else |
---|
860 | WerrorS( feNotImplemented ); |
---|
861 | |
---|
862 | poly q; |
---|
863 | loop |
---|
864 | { |
---|
865 | Q=F; |
---|
866 | Q/=FAC; |
---|
867 | R=Q; |
---|
868 | R*=FAC; |
---|
869 | R-=F; |
---|
870 | if (R.isZero()) |
---|
871 | { |
---|
872 | if (rField_is_Zp(r) || rField_is_Q(r) |
---|
873 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
874 | { |
---|
875 | q = convFactoryPSingP( Q,r ); |
---|
876 | } |
---|
877 | else if (r->cf->extRing!=NULL) |
---|
878 | { |
---|
879 | if (r->cf->extRing->qideal!=NULL) |
---|
880 | { |
---|
881 | q= convFactoryAPSingAP( Q,r ); |
---|
882 | } |
---|
883 | else |
---|
884 | { |
---|
885 | q= convFactoryPSingTrP( Q,r ); |
---|
886 | } |
---|
887 | } |
---|
888 | e++; p_Delete(&f,r); f=q; q=NULL; F=Q; |
---|
889 | } |
---|
890 | else |
---|
891 | { |
---|
892 | break; |
---|
893 | } |
---|
894 | } |
---|
895 | if (r->cf->extRing!=NULL) |
---|
896 | if (r->cf->extRing->qideal!=NULL) |
---|
897 | prune (a); |
---|
898 | if (e==0) |
---|
899 | { |
---|
900 | Off(SW_RATIONAL); |
---|
901 | return FALSE; |
---|
902 | } |
---|
903 | } |
---|
904 | else e=1; |
---|
905 | I->m[j]=fac; |
---|
906 | if (v!=NULL) (*v)[j]=e; |
---|
907 | Off(SW_RATIONAL); |
---|
908 | return TRUE; |
---|
909 | } |
---|
910 | |
---|
911 | VAR int singclap_factorize_retry; |
---|
912 | |
---|
913 | ideal singclap_factorize ( poly f, intvec ** v , int with_exps, const ring r) |
---|
914 | /* destroys f, sets *v */ |
---|
915 | { |
---|
916 | p_Test(f,r); |
---|
917 | #ifdef FACTORIZE2_DEBUG |
---|
918 | printf("singclap_factorize, degree %ld\n",p_Totaldegree(f,r)); |
---|
919 | #endif |
---|
920 | // with_exps: 3,1 return only true factors, no exponents |
---|
921 | // 2 return true factors and exponents |
---|
922 | // 0 return coeff, factors and exponents |
---|
923 | BOOLEAN save_errorreported=errorreported; |
---|
924 | |
---|
925 | ideal res=NULL; |
---|
926 | |
---|
927 | // handle factorize(0) ========================================= |
---|
928 | if (f==NULL) |
---|
929 | { |
---|
930 | res=idInit(1,1); |
---|
931 | if (with_exps!=1) |
---|
932 | { |
---|
933 | (*v)=new intvec(1); |
---|
934 | (**v)[0]=1; |
---|
935 | } |
---|
936 | return res; |
---|
937 | } |
---|
938 | // handle factorize(mon) ========================================= |
---|
939 | if (pNext(f)==NULL) |
---|
940 | { |
---|
941 | int i=0; |
---|
942 | int n=0; |
---|
943 | int e; |
---|
944 | for(i=rVar(r);i>0;i--) if(p_GetExp(f,i,r)!=0) n++; |
---|
945 | if (with_exps==0) n++; // with coeff |
---|
946 | res=idInit(si_max(n,1),1); |
---|
947 | switch(with_exps) |
---|
948 | { |
---|
949 | case 0: // with coef & exp. |
---|
950 | res->m[0]=p_NSet(n_Copy(pGetCoeff(f),r->cf),r); |
---|
951 | // no break |
---|
952 | case 2: // with exp. |
---|
953 | (*v)=new intvec(si_max(1,n)); |
---|
954 | (**v)[0]=1; |
---|
955 | // no break |
---|
956 | case 1: ; |
---|
957 | #ifdef TEST |
---|
958 | default: ; |
---|
959 | #endif |
---|
960 | } |
---|
961 | if (n==0) |
---|
962 | { |
---|
963 | if (res->m[0]==NULL) res->m[0]=p_One(r); |
---|
964 | // (**v)[0]=1; is already done |
---|
965 | } |
---|
966 | else |
---|
967 | { |
---|
968 | for(i=rVar(r);i>0;i--) |
---|
969 | { |
---|
970 | e=p_GetExp(f,i,r); |
---|
971 | if(e!=0) |
---|
972 | { |
---|
973 | n--; |
---|
974 | poly p=p_One(r); |
---|
975 | p_SetExp(p,i,1,r); |
---|
976 | p_Setm(p,r); |
---|
977 | res->m[n]=p; |
---|
978 | if (with_exps!=1) (**v)[n]=e; |
---|
979 | } |
---|
980 | } |
---|
981 | } |
---|
982 | p_Delete(&f,r); |
---|
983 | return res; |
---|
984 | } |
---|
985 | //PrintS("S:");p_Write(f,r);PrintLn(); |
---|
986 | // use factory/libfac in general ============================== |
---|
987 | Variable dummy(-1); prune(dummy); // remove all (tmp.) extensions |
---|
988 | Off(SW_RATIONAL); |
---|
989 | On(SW_SYMMETRIC_FF); |
---|
990 | CFFList L; |
---|
991 | number N=NULL; |
---|
992 | number NN=NULL; |
---|
993 | number old_lead_coeff=n_Copy(pGetCoeff(f), r->cf); |
---|
994 | |
---|
995 | Variable a; |
---|
996 | if (!rField_is_Zp(r) && !rField_is_Zp_a(r) && !rField_is_Z(r) |
---|
997 | && !(rField_is_Zn(r) && (r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) /* Q, Q(a) */ |
---|
998 | { |
---|
999 | //if (f!=NULL) // already tested at start of routine |
---|
1000 | { |
---|
1001 | number n0=n_Copy(pGetCoeff(f),r->cf); |
---|
1002 | if (with_exps==0) |
---|
1003 | N=n_Copy(n0,r->cf); |
---|
1004 | p_Cleardenom(f, r); |
---|
1005 | //after here f should not have a denominator!! |
---|
1006 | //PrintS("S:");p_Write(f,r);PrintLn(); |
---|
1007 | NN=n_Div(n0,pGetCoeff(f),r->cf); |
---|
1008 | n_Delete(&n0,r->cf); |
---|
1009 | if (with_exps==0) |
---|
1010 | { |
---|
1011 | n_Delete(&N,r->cf); |
---|
1012 | N=n_Copy(NN,r->cf); |
---|
1013 | } |
---|
1014 | } |
---|
1015 | } |
---|
1016 | else if (rField_is_Zp_a(r)) |
---|
1017 | { |
---|
1018 | //if (f!=NULL) // already tested at start of routine |
---|
1019 | if (singclap_factorize_retry==0) |
---|
1020 | { |
---|
1021 | number n0=n_Copy(pGetCoeff(f),r->cf); |
---|
1022 | if (with_exps==0) |
---|
1023 | N=n_Copy(n0,r->cf); |
---|
1024 | p_Norm(f,r); |
---|
1025 | p_Cleardenom(f, r); |
---|
1026 | NN=n_Div(n0,pGetCoeff(f),r->cf); |
---|
1027 | n_Delete(&n0,r->cf); |
---|
1028 | if (with_exps==0) |
---|
1029 | { |
---|
1030 | n_Delete(&N,r->cf); |
---|
1031 | N=n_Copy(NN,r->cf); |
---|
1032 | } |
---|
1033 | } |
---|
1034 | } |
---|
1035 | if ((rField_is_Q(r) || rField_is_Zp(r) || (rField_is_Z(r))) |
---|
1036 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
1037 | { |
---|
1038 | setCharacteristic( rChar(r) ); |
---|
1039 | CanonicalForm F( convSingPFactoryP( f,r ) ); |
---|
1040 | L = factorize( F ); |
---|
1041 | } |
---|
1042 | // and over Q(a) / Fp(a) |
---|
1043 | else if ((r->cf->extRing!=NULL) |
---|
1044 | &&(r->cf->extRing->cf->convSingNFactoryN!=ndConvSingNFactoryN)) |
---|
1045 | { |
---|
1046 | if (rField_is_Q_a (r)) setCharacteristic (0); |
---|
1047 | else setCharacteristic( rChar(r) ); |
---|
1048 | if (r->cf->extRing->qideal!=NULL) |
---|
1049 | { |
---|
1050 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
1051 | r->cf->extRing); |
---|
1052 | a=rootOf(mipo); |
---|
1053 | CanonicalForm F( convSingAPFactoryAP( f, a, r ) ); |
---|
1054 | if (rField_is_Zp_a(r)) |
---|
1055 | { |
---|
1056 | L = factorize( F, a ); |
---|
1057 | } |
---|
1058 | else |
---|
1059 | { |
---|
1060 | // over Q(a) |
---|
1061 | L= factorize (F, a); |
---|
1062 | } |
---|
1063 | prune(a); |
---|
1064 | } |
---|
1065 | else |
---|
1066 | { |
---|
1067 | CanonicalForm F( convSingTrPFactoryP( f,r ) ); |
---|
1068 | L = factorize( F ); |
---|
1069 | } |
---|
1070 | } |
---|
1071 | else |
---|
1072 | { |
---|
1073 | goto notImpl; |
---|
1074 | } |
---|
1075 | { |
---|
1076 | poly ff=p_Copy(f,r); // a copy for the retry stuff |
---|
1077 | // the first factor should be a constant |
---|
1078 | if ( ! L.getFirst().factor().inCoeffDomain() ) |
---|
1079 | L.insert(CFFactor(1,1)); |
---|
1080 | // convert into ideal |
---|
1081 | int n = L.length(); |
---|
1082 | if (n==0) n=1; |
---|
1083 | CFFListIterator J=L; |
---|
1084 | int j=0; |
---|
1085 | if (with_exps!=1) |
---|
1086 | { |
---|
1087 | if ((with_exps==2)&&(n>1)) |
---|
1088 | { |
---|
1089 | n--; |
---|
1090 | J++; |
---|
1091 | } |
---|
1092 | *v = new intvec( n ); |
---|
1093 | } |
---|
1094 | res = idInit( n ,1); |
---|
1095 | for ( ; J.hasItem(); J++, j++ ) |
---|
1096 | { |
---|
1097 | if (with_exps!=1) (**v)[j] = J.getItem().exp(); |
---|
1098 | if (rField_is_Zp(r) || rField_is_Q(r)|| rField_is_Z(r) |
---|
1099 | || (rField_is_Zn(r) && r->cf->convSingNFactoryN!=ndConvSingNFactoryN)) /* Q, Fp, Z */ |
---|
1100 | { |
---|
1101 | //count_Factors(res,*v,f, j, convFactoryPSingP( J.getItem().factor() ); |
---|
1102 | res->m[j] = convFactoryPSingP( J.getItem().factor(),r ); |
---|
1103 | } |
---|
1104 | #if 0 |
---|
1105 | else if (rField_is_GF()) |
---|
1106 | res->m[j] = convFactoryGFSingGF( J.getItem().factor() ); |
---|
1107 | #endif |
---|
1108 | else if (r->cf->extRing!=NULL) /* Q(a), Fp(a) */ |
---|
1109 | { |
---|
1110 | #ifndef SING_NDEBUG |
---|
1111 | intvec *w=NULL; |
---|
1112 | if (v!=NULL) w=*v; |
---|
1113 | #endif |
---|
1114 | if (r->cf->extRing->qideal==NULL) |
---|
1115 | { |
---|
1116 | #ifdef SING_NDEBUG |
---|
1117 | res->m[j]= convFactoryPSingTrP( J.getItem().factor(),r ); |
---|
1118 | #else |
---|
1119 | if(!count_Factors(res,w,j,ff,convFactoryPSingTrP( J.getItem().factor(),r ),r)) |
---|
1120 | { |
---|
1121 | if (w!=NULL) |
---|
1122 | (*w)[j]=1; |
---|
1123 | res->m[j]=p_One(r); |
---|
1124 | } |
---|
1125 | #endif |
---|
1126 | } |
---|
1127 | else |
---|
1128 | { |
---|
1129 | #ifdef SING_NDEBUG |
---|
1130 | res->m[j]= convFactoryAPSingAP( J.getItem().factor(),r ); |
---|
1131 | #else |
---|
1132 | if (!count_Factors(res,w,j,ff,convFactoryAPSingAP( J.getItem().factor(),r ),r)) |
---|
1133 | { |
---|
1134 | if (w!=NULL) |
---|
1135 | (*w)[j]=1; |
---|
1136 | res->m[j]=p_One(r); |
---|
1137 | } |
---|
1138 | #endif |
---|
1139 | } |
---|
1140 | } |
---|
1141 | } |
---|
1142 | if (r->cf->extRing!=NULL) |
---|
1143 | if (r->cf->extRing->qideal!=NULL) |
---|
1144 | prune (a); |
---|
1145 | #ifndef SING_NDEBUG |
---|
1146 | if ((r->cf->extRing!=NULL) && (!p_IsConstantPoly(ff,r))) |
---|
1147 | { |
---|
1148 | singclap_factorize_retry++; |
---|
1149 | if (singclap_factorize_retry<3) |
---|
1150 | { |
---|
1151 | int jj; |
---|
1152 | #ifdef FACTORIZE2_DEBUG |
---|
1153 | printf("factorize_retry\n"); |
---|
1154 | #endif |
---|
1155 | intvec *ww=NULL; |
---|
1156 | id_Test(res,r); |
---|
1157 | ideal h=singclap_factorize ( ff, &ww , with_exps, r ); |
---|
1158 | id_Test(h,r); |
---|
1159 | int l=(*v)->length(); |
---|
1160 | (*v)->resize(l+ww->length()); |
---|
1161 | for(jj=0;jj<ww->length();jj++) |
---|
1162 | (**v)[jj+l]=(*ww)[jj]; |
---|
1163 | delete ww; |
---|
1164 | ideal hh=idInit(IDELEMS(res)+IDELEMS(h),1); |
---|
1165 | for(jj=IDELEMS(res)-1;jj>=0;jj--) |
---|
1166 | { |
---|
1167 | hh->m[jj]=res->m[jj]; |
---|
1168 | res->m[jj]=NULL; |
---|
1169 | } |
---|
1170 | for(jj=IDELEMS(h)-1;jj>=0;jj--) |
---|
1171 | { |
---|
1172 | hh->m[jj+IDELEMS(res)]=h->m[jj]; |
---|
1173 | h->m[jj]=NULL; |
---|
1174 | } |
---|
1175 | id_Delete(&res,r); |
---|
1176 | id_Delete(&h,r); |
---|
1177 | res=hh; |
---|
1178 | id_Test(res,r); |
---|
1179 | ff=NULL; |
---|
1180 | } |
---|
1181 | else |
---|
1182 | { |
---|
1183 | WarnS("problem with factorize"); |
---|
1184 | #if 0 |
---|
1185 | pWrite(ff); |
---|
1186 | idShow(res); |
---|
1187 | #endif |
---|
1188 | id_Delete(&res,r); |
---|
1189 | res=idInit(2,1); |
---|
1190 | res->m[0]=p_One(r); |
---|
1191 | res->m[1]=ff; ff=NULL; |
---|
1192 | } |
---|
1193 | } |
---|
1194 | #endif |
---|
1195 | p_Delete(&ff,r); |
---|
1196 | if (N!=NULL) |
---|
1197 | { |
---|
1198 | __p_Mult_nn(res->m[0],N,r); |
---|
1199 | n_Delete(&N,r->cf); |
---|
1200 | N=NULL; |
---|
1201 | } |
---|
1202 | // delete constants |
---|
1203 | if (res!=NULL) |
---|
1204 | { |
---|
1205 | int i=IDELEMS(res)-1; |
---|
1206 | int j=0; |
---|
1207 | for(;i>=0;i--) |
---|
1208 | { |
---|
1209 | if ((res->m[i]!=NULL) |
---|
1210 | && (pNext(res->m[i])==NULL) |
---|
1211 | && (p_IsConstant(res->m[i],r))) |
---|
1212 | { |
---|
1213 | if (with_exps!=0) |
---|
1214 | { |
---|
1215 | p_Delete(&(res->m[i]),r); |
---|
1216 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1217 | (**v)[i]=0; |
---|
1218 | j++; |
---|
1219 | } |
---|
1220 | else if (i!=0) |
---|
1221 | { |
---|
1222 | while ((v!=NULL) && ((*v)!=NULL) && ((**v)[i]>1)) |
---|
1223 | { |
---|
1224 | res->m[0]=p_Mult_q(res->m[0],p_Copy(res->m[i],r),r); |
---|
1225 | (**v)[i]--; |
---|
1226 | } |
---|
1227 | res->m[0]=p_Mult_q(res->m[0],res->m[i],r); |
---|
1228 | res->m[i]=NULL; |
---|
1229 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1230 | (**v)[i]=1; |
---|
1231 | j++; |
---|
1232 | } |
---|
1233 | } |
---|
1234 | } |
---|
1235 | if (j>0) |
---|
1236 | { |
---|
1237 | idSkipZeroes(res); |
---|
1238 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1239 | { |
---|
1240 | intvec *w=*v; |
---|
1241 | int len=IDELEMS(res); |
---|
1242 | *v = new intvec( len ); |
---|
1243 | for (i=0,j=0;i<si_min(w->length(),len);i++) |
---|
1244 | { |
---|
1245 | if((*w)[i]!=0) |
---|
1246 | { |
---|
1247 | (**v)[j]=(*w)[i]; j++; |
---|
1248 | } |
---|
1249 | } |
---|
1250 | delete w; |
---|
1251 | } |
---|
1252 | } |
---|
1253 | if (res->m[0]==NULL) |
---|
1254 | { |
---|
1255 | res->m[0]=p_One(r); |
---|
1256 | } |
---|
1257 | } |
---|
1258 | } |
---|
1259 | if (rField_is_Q_a(r) && (r->cf->extRing->qideal!=NULL)) |
---|
1260 | { |
---|
1261 | int i=IDELEMS(res)-1; |
---|
1262 | int stop=1; |
---|
1263 | if (with_exps!=0) stop=0; |
---|
1264 | for(;i>=stop;i--) |
---|
1265 | { |
---|
1266 | p_Norm(res->m[i],r); |
---|
1267 | } |
---|
1268 | if (with_exps==0) p_SetCoeff(res->m[0],old_lead_coeff,r); |
---|
1269 | else n_Delete(&old_lead_coeff,r->cf); |
---|
1270 | } |
---|
1271 | else |
---|
1272 | n_Delete(&old_lead_coeff,r->cf); |
---|
1273 | errorreported=save_errorreported; |
---|
1274 | notImpl: |
---|
1275 | prune(a); |
---|
1276 | if (res==NULL) |
---|
1277 | WerrorS( feNotImplemented ); |
---|
1278 | if (NN!=NULL) |
---|
1279 | { |
---|
1280 | n_Delete(&NN,r->cf); |
---|
1281 | } |
---|
1282 | if (N!=NULL) |
---|
1283 | { |
---|
1284 | n_Delete(&N,r->cf); |
---|
1285 | } |
---|
1286 | if (f!=NULL) p_Delete(&f,r); |
---|
1287 | //PrintS("......S\n"); |
---|
1288 | return res; |
---|
1289 | } |
---|
1290 | |
---|
1291 | ideal singclap_sqrfree ( poly f, intvec ** v , int with_exps, const ring r) |
---|
1292 | { |
---|
1293 | p_Test(f,r); |
---|
1294 | #ifdef FACTORIZE2_DEBUG |
---|
1295 | printf("singclap_sqrfree, degree %d\n",pTotaldegree(f)); |
---|
1296 | #endif |
---|
1297 | // with_exps: 3,1 return only true factors, no exponents |
---|
1298 | // 2 return true factors and exponents |
---|
1299 | // 0 return coeff, factors and exponents |
---|
1300 | BOOLEAN save_errorreported=errorreported; |
---|
1301 | |
---|
1302 | ideal res=NULL; |
---|
1303 | |
---|
1304 | // handle factorize(0) ========================================= |
---|
1305 | if (f==NULL) |
---|
1306 | { |
---|
1307 | res=idInit(1,1); |
---|
1308 | if (with_exps!=1 && with_exps!=3) |
---|
1309 | { |
---|
1310 | (*v)=new intvec(1); |
---|
1311 | (**v)[0]=1; |
---|
1312 | } |
---|
1313 | return res; |
---|
1314 | } |
---|
1315 | // handle factorize(mon) ========================================= |
---|
1316 | if (pNext(f)==NULL) |
---|
1317 | { |
---|
1318 | int i=0; |
---|
1319 | int n=0; |
---|
1320 | int e; |
---|
1321 | for(i=rVar(r);i>0;i--) if(p_GetExp(f,i,r)!=0) n++; |
---|
1322 | if (with_exps==0 || with_exps==3) n++; // with coeff |
---|
1323 | res=idInit(si_max(n,1),1); |
---|
1324 | if(with_exps!=1) |
---|
1325 | { |
---|
1326 | (*v)=new intvec(si_max(1,n)); |
---|
1327 | (**v)[0]=1; |
---|
1328 | } |
---|
1329 | res->m[0]=p_NSet(n_Copy(pGetCoeff(f),r->cf),r); |
---|
1330 | if (n==0) |
---|
1331 | { |
---|
1332 | res->m[0]=p_One(r); |
---|
1333 | // (**v)[0]=1; is already done |
---|
1334 | } |
---|
1335 | else |
---|
1336 | { |
---|
1337 | for(i=rVar(r);i>0;i--) |
---|
1338 | { |
---|
1339 | e=p_GetExp(f,i,r); |
---|
1340 | if(e!=0) |
---|
1341 | { |
---|
1342 | n--; |
---|
1343 | poly p=p_One(r); |
---|
1344 | p_SetExp(p,i,1,r); |
---|
1345 | p_Setm(p,r); |
---|
1346 | res->m[n]=p; |
---|
1347 | if (with_exps!=1) (**v)[n]=e; |
---|
1348 | } |
---|
1349 | } |
---|
1350 | } |
---|
1351 | p_Delete(&f,r); |
---|
1352 | return res; |
---|
1353 | } |
---|
1354 | //PrintS("S:");pWrite(f);PrintLn(); |
---|
1355 | // use factory/libfac in general ============================== |
---|
1356 | Off(SW_RATIONAL); |
---|
1357 | On(SW_SYMMETRIC_FF); |
---|
1358 | CFFList L; |
---|
1359 | number N=NULL; |
---|
1360 | number NN=NULL; |
---|
1361 | number old_lead_coeff=n_Copy(pGetCoeff(f), r->cf); |
---|
1362 | Variable a; |
---|
1363 | |
---|
1364 | if (!rField_is_Zp(r) && !rField_is_Zp_a(r)) /* Q, Q(a) */ |
---|
1365 | { |
---|
1366 | //if (f!=NULL) // already tested at start of routine |
---|
1367 | number n0=n_Copy(pGetCoeff(f),r->cf); |
---|
1368 | if (with_exps==0 || with_exps==3) |
---|
1369 | N=n_Copy(n0,r->cf); |
---|
1370 | p_Cleardenom(f, r); |
---|
1371 | //after here f should not have a denominator!! |
---|
1372 | //PrintS("S:");p_Write(f,r);PrintLn(); |
---|
1373 | NN=n_Div(n0,pGetCoeff(f),r->cf); |
---|
1374 | n_Delete(&n0,r->cf); |
---|
1375 | if (with_exps==0 || with_exps==3) |
---|
1376 | { |
---|
1377 | n_Delete(&N,r->cf); |
---|
1378 | N=n_Copy(NN,r->cf); |
---|
1379 | } |
---|
1380 | } |
---|
1381 | else if (rField_is_Zp_a(r)) |
---|
1382 | { |
---|
1383 | //if (f!=NULL) // already tested at start of routine |
---|
1384 | if (singclap_factorize_retry==0) |
---|
1385 | { |
---|
1386 | number n0=n_Copy(pGetCoeff(f),r->cf); |
---|
1387 | if (with_exps==0 || with_exps==3) |
---|
1388 | N=n_Copy(n0,r->cf); |
---|
1389 | p_Norm(f,r); |
---|
1390 | p_Cleardenom(f, r); |
---|
1391 | NN=n_Div(n0,pGetCoeff(f),r->cf); |
---|
1392 | n_Delete(&n0,r->cf); |
---|
1393 | if (with_exps==0 || with_exps==3) |
---|
1394 | { |
---|
1395 | n_Delete(&N,r->cf); |
---|
1396 | N=n_Copy(NN,r->cf); |
---|
1397 | } |
---|
1398 | } |
---|
1399 | } |
---|
1400 | if (rField_is_Q(r) || rField_is_Zp(r) |
---|
1401 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
1402 | { |
---|
1403 | setCharacteristic( rChar(r) ); |
---|
1404 | CanonicalForm F( convSingPFactoryP( f,r ) ); |
---|
1405 | L = sqrFree( F ); |
---|
1406 | } |
---|
1407 | else if (r->cf->extRing!=NULL) |
---|
1408 | { |
---|
1409 | if (rField_is_Q_a (r)) setCharacteristic (0); |
---|
1410 | else setCharacteristic( rChar(r) ); |
---|
1411 | if (r->cf->extRing->qideal!=NULL) |
---|
1412 | { |
---|
1413 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
1414 | r->cf->extRing); |
---|
1415 | a=rootOf(mipo); |
---|
1416 | CanonicalForm F( convSingAPFactoryAP( f, a, r ) ); |
---|
1417 | L= sqrFree (F); |
---|
1418 | } |
---|
1419 | else |
---|
1420 | { |
---|
1421 | CanonicalForm F( convSingTrPFactoryP( f,r ) ); |
---|
1422 | L = sqrFree( F ); |
---|
1423 | } |
---|
1424 | } |
---|
1425 | #if 0 |
---|
1426 | else if (rField_is_GF()) |
---|
1427 | { |
---|
1428 | int c=rChar(r); |
---|
1429 | setCharacteristic( c, primepower(c) ); |
---|
1430 | CanonicalForm F( convSingGFFactoryGF( f ) ); |
---|
1431 | if (F.isUnivariate()) |
---|
1432 | { |
---|
1433 | L = factorize( F ); |
---|
1434 | } |
---|
1435 | else |
---|
1436 | { |
---|
1437 | goto notImpl; |
---|
1438 | } |
---|
1439 | } |
---|
1440 | #endif |
---|
1441 | else |
---|
1442 | { |
---|
1443 | goto notImpl; |
---|
1444 | } |
---|
1445 | { |
---|
1446 | // convert into ideal |
---|
1447 | int n = L.length(); |
---|
1448 | if (n==0) n=1; |
---|
1449 | CFFListIterator J=L; |
---|
1450 | int j=0; |
---|
1451 | if (with_exps!=1) |
---|
1452 | { |
---|
1453 | if ((with_exps==2)&&(n>1)) |
---|
1454 | { |
---|
1455 | n--; |
---|
1456 | J++; |
---|
1457 | } |
---|
1458 | *v = new intvec( n ); |
---|
1459 | } |
---|
1460 | else if (L.getFirst().factor().inCoeffDomain() && with_exps!=3) |
---|
1461 | { |
---|
1462 | n--; |
---|
1463 | J++; |
---|
1464 | } |
---|
1465 | res = idInit( n ,1); |
---|
1466 | for ( ; J.hasItem(); J++, j++ ) |
---|
1467 | { |
---|
1468 | if (with_exps!=1 && with_exps!=3) (**v)[j] = J.getItem().exp(); |
---|
1469 | if (rField_is_Zp(r) || rField_is_Q(r) |
---|
1470 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
1471 | res->m[j] = convFactoryPSingP( J.getItem().factor(),r ); |
---|
1472 | else if (r->cf->extRing!=NULL) /* Q(a), Fp(a) */ |
---|
1473 | { |
---|
1474 | if (r->cf->extRing->qideal==NULL) |
---|
1475 | res->m[j]=convFactoryPSingTrP( J.getItem().factor(),r ); |
---|
1476 | else |
---|
1477 | res->m[j]=convFactoryAPSingAP( J.getItem().factor(),r ); |
---|
1478 | } |
---|
1479 | } |
---|
1480 | if (res->m[0]==NULL) |
---|
1481 | { |
---|
1482 | res->m[0]=p_One(r); |
---|
1483 | } |
---|
1484 | if (N!=NULL) |
---|
1485 | { |
---|
1486 | __p_Mult_nn(res->m[0],N,r); |
---|
1487 | n_Delete(&N,r->cf); |
---|
1488 | N=NULL; |
---|
1489 | } |
---|
1490 | } |
---|
1491 | if (r->cf->extRing!=NULL) |
---|
1492 | if (r->cf->extRing->qideal!=NULL) |
---|
1493 | prune (a); |
---|
1494 | if (rField_is_Q_a(r) && (r->cf->extRing->qideal!=NULL)) |
---|
1495 | { |
---|
1496 | int i=IDELEMS(res)-1; |
---|
1497 | int stop=1; |
---|
1498 | if (with_exps!=0 || with_exps==3) stop=0; |
---|
1499 | for(;i>=stop;i--) |
---|
1500 | { |
---|
1501 | p_Norm(res->m[i],r); |
---|
1502 | } |
---|
1503 | if (with_exps==0 || with_exps==3) p_SetCoeff(res->m[0],old_lead_coeff,r); |
---|
1504 | else n_Delete(&old_lead_coeff,r->cf); |
---|
1505 | } |
---|
1506 | else |
---|
1507 | n_Delete(&old_lead_coeff,r->cf); |
---|
1508 | p_Delete(&f,r); |
---|
1509 | errorreported=save_errorreported; |
---|
1510 | notImpl: |
---|
1511 | if (res==NULL) |
---|
1512 | WerrorS( feNotImplemented ); |
---|
1513 | if (NN!=NULL) |
---|
1514 | { |
---|
1515 | n_Delete(&NN,r->cf); |
---|
1516 | } |
---|
1517 | if (N!=NULL) |
---|
1518 | { |
---|
1519 | n_Delete(&N,r->cf); |
---|
1520 | } |
---|
1521 | return res; |
---|
1522 | } |
---|
1523 | |
---|
1524 | matrix singclap_irrCharSeries ( ideal I, const ring r) |
---|
1525 | { |
---|
1526 | if (idIs0(I)) return mpNew(1,1); |
---|
1527 | |
---|
1528 | // for now there is only the possibility to handle polynomials over |
---|
1529 | // Q and Fp ... |
---|
1530 | matrix res=NULL; |
---|
1531 | int i; |
---|
1532 | Off(SW_RATIONAL); |
---|
1533 | On(SW_SYMMETRIC_FF); |
---|
1534 | CFList L; |
---|
1535 | ListCFList LL; |
---|
1536 | if (rField_is_Q(r) || rField_is_Zp(r) |
---|
1537 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
1538 | { |
---|
1539 | setCharacteristic( rChar(r) ); |
---|
1540 | for(i=0;i<IDELEMS(I);i++) |
---|
1541 | { |
---|
1542 | poly p=I->m[i]; |
---|
1543 | if (p!=NULL) |
---|
1544 | { |
---|
1545 | p=p_Copy(p,r); |
---|
1546 | p_Cleardenom(p, r); |
---|
1547 | L.append(convSingPFactoryP(p,r)); |
---|
1548 | p_Delete(&p,r); |
---|
1549 | } |
---|
1550 | } |
---|
1551 | } |
---|
1552 | // and over Q(a) / Fp(a) |
---|
1553 | else if (nCoeff_is_transExt (r->cf)) |
---|
1554 | { |
---|
1555 | setCharacteristic( rChar(r) ); |
---|
1556 | for(i=0;i<IDELEMS(I);i++) |
---|
1557 | { |
---|
1558 | poly p=I->m[i]; |
---|
1559 | if (p!=NULL) |
---|
1560 | { |
---|
1561 | p=p_Copy(p,r); |
---|
1562 | p_Cleardenom(p, r); |
---|
1563 | L.append(convSingTrPFactoryP(p,r)); |
---|
1564 | p_Delete(&p,r); |
---|
1565 | } |
---|
1566 | } |
---|
1567 | } |
---|
1568 | else |
---|
1569 | { |
---|
1570 | WerrorS( feNotImplemented ); |
---|
1571 | return res; |
---|
1572 | } |
---|
1573 | |
---|
1574 | // a very bad work-around --- FIX IT in libfac |
---|
1575 | // should be fixed as of 2001/6/27 |
---|
1576 | int tries=0; |
---|
1577 | int m,n; |
---|
1578 | ListIterator<CFList> LLi; |
---|
1579 | loop |
---|
1580 | { |
---|
1581 | LL=irrCharSeries(L); |
---|
1582 | m= LL.length(); // Anzahl Zeilen |
---|
1583 | n=0; |
---|
1584 | for ( LLi = LL; LLi.hasItem(); LLi++ ) |
---|
1585 | { |
---|
1586 | n = si_max(LLi.getItem().length(),n); |
---|
1587 | } |
---|
1588 | if ((m!=0) && (n!=0)) break; |
---|
1589 | tries++; |
---|
1590 | if (tries>=5) break; |
---|
1591 | } |
---|
1592 | if ((m==0) || (n==0)) |
---|
1593 | { |
---|
1594 | Warn("char_series returns %d x %d matrix from %d input polys (%d)", |
---|
1595 | m,n,IDELEMS(I)+1,LL.length()); |
---|
1596 | iiWriteMatrix((matrix)I,"I",2,r,0); |
---|
1597 | m=si_max(m,1); |
---|
1598 | n=si_max(n,1); |
---|
1599 | } |
---|
1600 | res=mpNew(m,n); |
---|
1601 | CFListIterator Li; |
---|
1602 | for ( m=1, LLi = LL; LLi.hasItem(); LLi++, m++ ) |
---|
1603 | { |
---|
1604 | for (n=1, Li = LLi.getItem(); Li.hasItem(); Li++, n++) |
---|
1605 | { |
---|
1606 | if (rField_is_Q(r) || rField_is_Zp(r) |
---|
1607 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
1608 | MATELEM(res,m,n)=convFactoryPSingP(Li.getItem(),r); |
---|
1609 | else |
---|
1610 | MATELEM(res,m,n)=convFactoryPSingTrP(Li.getItem(),r); |
---|
1611 | } |
---|
1612 | } |
---|
1613 | Off(SW_RATIONAL); |
---|
1614 | return res; |
---|
1615 | } |
---|
1616 | |
---|
1617 | char* singclap_neworder ( ideal I, const ring r) |
---|
1618 | { |
---|
1619 | int i; |
---|
1620 | Off(SW_RATIONAL); |
---|
1621 | On(SW_SYMMETRIC_FF); |
---|
1622 | CFList L; |
---|
1623 | if (rField_is_Q(r) || rField_is_Zp(r) |
---|
1624 | || (rField_is_Zn(r)&&(r->cf->convSingNFactoryN!=ndConvSingNFactoryN))) |
---|
1625 | { |
---|
1626 | setCharacteristic( rChar(r) ); |
---|
1627 | for(i=0;i<IDELEMS(I);i++) |
---|
1628 | { |
---|
1629 | poly p=I->m[i]; |
---|
1630 | if (p!=NULL) |
---|
1631 | { |
---|
1632 | p=p_Copy(p,r); |
---|
1633 | p_Cleardenom(p, r); |
---|
1634 | L.append(convSingPFactoryP(p,r)); |
---|
1635 | } |
---|
1636 | } |
---|
1637 | } |
---|
1638 | // and over Q(a) / Fp(a) |
---|
1639 | else if (nCoeff_is_transExt (r->cf)) |
---|
1640 | { |
---|
1641 | setCharacteristic( rChar(r) ); |
---|
1642 | for(i=0;i<IDELEMS(I);i++) |
---|
1643 | { |
---|
1644 | poly p=I->m[i]; |
---|
1645 | if (p!=NULL) |
---|
1646 | { |
---|
1647 | p=p_Copy(p,r); |
---|
1648 | p_Cleardenom(p, r); |
---|
1649 | L.append(convSingTrPFactoryP(p,r)); |
---|
1650 | } |
---|
1651 | } |
---|
1652 | } |
---|
1653 | else |
---|
1654 | { |
---|
1655 | WerrorS( feNotImplemented ); |
---|
1656 | return NULL; |
---|
1657 | } |
---|
1658 | |
---|
1659 | List<int> IL=neworderint(L); |
---|
1660 | ListIterator<int> Li; |
---|
1661 | StringSetS(""); |
---|
1662 | Li = IL; |
---|
1663 | int offs=rPar(r); |
---|
1664 | int* mark=(int*)omAlloc0((rVar(r)+offs)*sizeof(int)); |
---|
1665 | int cnt=rVar(r)+offs; |
---|
1666 | loop |
---|
1667 | { |
---|
1668 | if(! Li.hasItem()) break; |
---|
1669 | BOOLEAN done=TRUE; |
---|
1670 | i=Li.getItem()-1; |
---|
1671 | mark[i]=1; |
---|
1672 | if (i<offs) |
---|
1673 | { |
---|
1674 | done=FALSE; |
---|
1675 | //StringAppendS(r->parameter[i]); |
---|
1676 | } |
---|
1677 | else |
---|
1678 | { |
---|
1679 | StringAppendS(r->names[i-offs]); |
---|
1680 | } |
---|
1681 | Li++; |
---|
1682 | cnt--; |
---|
1683 | if(cnt==0) break; |
---|
1684 | if (done) StringAppendS(","); |
---|
1685 | } |
---|
1686 | for(i=0;i<rVar(r)+offs;i++) |
---|
1687 | { |
---|
1688 | BOOLEAN done=TRUE; |
---|
1689 | if(mark[i]==0) |
---|
1690 | { |
---|
1691 | if (i<offs) |
---|
1692 | { |
---|
1693 | done=FALSE; |
---|
1694 | //StringAppendS(r->parameter[i]); |
---|
1695 | } |
---|
1696 | else |
---|
1697 | { |
---|
1698 | StringAppendS(r->names[i-offs]); |
---|
1699 | } |
---|
1700 | cnt--; |
---|
1701 | if(cnt==0) break; |
---|
1702 | if (done) StringAppendS(","); |
---|
1703 | } |
---|
1704 | } |
---|
1705 | char * s=StringEndS(); |
---|
1706 | if (s[strlen(s)-1]==',') s[strlen(s)-1]='\0'; |
---|
1707 | return s; |
---|
1708 | } |
---|
1709 | |
---|
1710 | poly singclap_det( const matrix m, const ring s ) |
---|
1711 | { |
---|
1712 | int r=m->rows(); |
---|
1713 | if (r!=m->cols()) |
---|
1714 | { |
---|
1715 | Werror("det of %d x %d matrix",r,m->cols()); |
---|
1716 | return NULL; |
---|
1717 | } |
---|
1718 | poly res=NULL; |
---|
1719 | CFMatrix M(r,r); |
---|
1720 | int i,j; |
---|
1721 | for(i=r;i>0;i--) |
---|
1722 | { |
---|
1723 | for(j=r;j>0;j--) |
---|
1724 | { |
---|
1725 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j),s); |
---|
1726 | } |
---|
1727 | } |
---|
1728 | res= convFactoryPSingP( determinant(M,r),s ) ; |
---|
1729 | Off(SW_RATIONAL); |
---|
1730 | return res; |
---|
1731 | } |
---|
1732 | |
---|
1733 | int singclap_det_i( intvec * m, const ring /*r*/) |
---|
1734 | { |
---|
1735 | // assume( r == currRing ); // Anything else is not guaranted to work! |
---|
1736 | |
---|
1737 | setCharacteristic( 0 ); // ? |
---|
1738 | CFMatrix M(m->rows(),m->cols()); |
---|
1739 | int i,j; |
---|
1740 | for(i=m->rows();i>0;i--) |
---|
1741 | { |
---|
1742 | for(j=m->cols();j>0;j--) |
---|
1743 | { |
---|
1744 | M(i,j)=IMATELEM(*m,i,j); |
---|
1745 | } |
---|
1746 | } |
---|
1747 | int res= convFactoryISingI( determinant(M,m->rows()) ) ; |
---|
1748 | return res; |
---|
1749 | } |
---|
1750 | |
---|
1751 | number singclap_det_bi( bigintmat * m, const coeffs cf) |
---|
1752 | { |
---|
1753 | assume(m->basecoeffs()==cf); |
---|
1754 | CFMatrix M(m->rows(),m->cols()); |
---|
1755 | int i,j; |
---|
1756 | BOOLEAN setchar=TRUE; |
---|
1757 | for(i=m->rows();i>0;i--) |
---|
1758 | { |
---|
1759 | for(j=m->cols();j>0;j--) |
---|
1760 | { |
---|
1761 | M(i,j)=n_convSingNFactoryN(BIMATELEM(*m,i,j),setchar,cf); |
---|
1762 | setchar=FALSE; |
---|
1763 | } |
---|
1764 | } |
---|
1765 | number res=n_convFactoryNSingN( determinant(M,m->rows()),cf ) ; |
---|
1766 | return res; |
---|
1767 | } |
---|
1768 | |
---|
1769 | #ifdef HAVE_NTL |
---|
1770 | matrix singntl_HNF(matrix m, const ring s ) |
---|
1771 | { |
---|
1772 | int r=m->rows(); |
---|
1773 | if (r!=m->cols()) |
---|
1774 | { |
---|
1775 | Werror("HNF of %d x %d matrix",r,m->cols()); |
---|
1776 | return NULL; |
---|
1777 | } |
---|
1778 | |
---|
1779 | matrix res=mpNew(r,r); |
---|
1780 | |
---|
1781 | if (rField_is_Q(s)) |
---|
1782 | { |
---|
1783 | |
---|
1784 | CFMatrix M(r,r); |
---|
1785 | int i,j; |
---|
1786 | for(i=r;i>0;i--) |
---|
1787 | { |
---|
1788 | for(j=r;j>0;j--) |
---|
1789 | { |
---|
1790 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j),s ); |
---|
1791 | } |
---|
1792 | } |
---|
1793 | CFMatrix *MM=cf_HNF(M); |
---|
1794 | for(i=r;i>0;i--) |
---|
1795 | { |
---|
1796 | for(j=r;j>0;j--) |
---|
1797 | { |
---|
1798 | MATELEM(res,i,j)=convFactoryPSingP((*MM)(i,j),s); |
---|
1799 | } |
---|
1800 | } |
---|
1801 | delete MM; |
---|
1802 | } |
---|
1803 | return res; |
---|
1804 | } |
---|
1805 | |
---|
1806 | intvec* singntl_HNF(intvec* m) |
---|
1807 | { |
---|
1808 | int r=m->rows(); |
---|
1809 | if (r!=m->cols()) |
---|
1810 | { |
---|
1811 | Werror("HNF of %d x %d matrix",r,m->cols()); |
---|
1812 | return NULL; |
---|
1813 | } |
---|
1814 | setCharacteristic( 0 ); |
---|
1815 | CFMatrix M(r,r); |
---|
1816 | int i,j; |
---|
1817 | for(i=r;i>0;i--) |
---|
1818 | { |
---|
1819 | for(j=r;j>0;j--) |
---|
1820 | { |
---|
1821 | M(i,j)=IMATELEM(*m,i,j); |
---|
1822 | } |
---|
1823 | } |
---|
1824 | CFMatrix *MM=cf_HNF(M); |
---|
1825 | intvec *mm=ivCopy(m); |
---|
1826 | for(i=r;i>0;i--) |
---|
1827 | { |
---|
1828 | for(j=r;j>0;j--) |
---|
1829 | { |
---|
1830 | IMATELEM(*mm,i,j)=convFactoryISingI((*MM)(i,j)); |
---|
1831 | } |
---|
1832 | } |
---|
1833 | delete MM; |
---|
1834 | return mm; |
---|
1835 | } |
---|
1836 | |
---|
1837 | bigintmat* singntl_HNF(bigintmat* b) |
---|
1838 | { |
---|
1839 | int r=b->rows(); |
---|
1840 | if (r!=b->cols()) |
---|
1841 | { |
---|
1842 | Werror("HNF of %d x %d matrix",r,b->cols()); |
---|
1843 | return NULL; |
---|
1844 | } |
---|
1845 | setCharacteristic( 0 ); |
---|
1846 | CFMatrix M(r,r); |
---|
1847 | int i,j; |
---|
1848 | for(i=r;i>0;i--) |
---|
1849 | { |
---|
1850 | for(j=r;j>0;j--) |
---|
1851 | { |
---|
1852 | M(i,j)=n_convSingNFactoryN(BIMATELEM(*b,i,j),FALSE,b->basecoeffs()); |
---|
1853 | } |
---|
1854 | } |
---|
1855 | CFMatrix *MM=cf_HNF(M); |
---|
1856 | bigintmat *mm=bimCopy(b); |
---|
1857 | for(i=r;i>0;i--) |
---|
1858 | { |
---|
1859 | for(j=r;j>0;j--) |
---|
1860 | { |
---|
1861 | BIMATELEM(*mm,i,j)=n_convFactoryNSingN((*MM)(i,j),b->basecoeffs()); |
---|
1862 | } |
---|
1863 | } |
---|
1864 | delete MM; |
---|
1865 | return mm; |
---|
1866 | } |
---|
1867 | |
---|
1868 | matrix singntl_LLL(matrix m, const ring s ) |
---|
1869 | { |
---|
1870 | int r=m->rows(); |
---|
1871 | int c=m->cols(); |
---|
1872 | matrix res=mpNew(r,c); |
---|
1873 | if (rField_is_Q(s)) |
---|
1874 | { |
---|
1875 | CFMatrix M(r,c); |
---|
1876 | int i,j; |
---|
1877 | for(i=r;i>0;i--) |
---|
1878 | { |
---|
1879 | for(j=c;j>0;j--) |
---|
1880 | { |
---|
1881 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j),s); |
---|
1882 | } |
---|
1883 | } |
---|
1884 | CFMatrix *MM=cf_LLL(M); |
---|
1885 | for(i=r;i>0;i--) |
---|
1886 | { |
---|
1887 | for(j=c;j>0;j--) |
---|
1888 | { |
---|
1889 | MATELEM(res,i,j)=convFactoryPSingP((*MM)(i,j),s); |
---|
1890 | } |
---|
1891 | } |
---|
1892 | delete MM; |
---|
1893 | } |
---|
1894 | return res; |
---|
1895 | } |
---|
1896 | |
---|
1897 | intvec* singntl_LLL(intvec* m) |
---|
1898 | { |
---|
1899 | int r=m->rows(); |
---|
1900 | int c=m->cols(); |
---|
1901 | setCharacteristic( 0 ); |
---|
1902 | CFMatrix M(r,c); |
---|
1903 | int i,j; |
---|
1904 | for(i=r;i>0;i--) |
---|
1905 | { |
---|
1906 | for(j=c;j>0;j--) |
---|
1907 | { |
---|
1908 | M(i,j)=IMATELEM(*m,i,j); |
---|
1909 | } |
---|
1910 | } |
---|
1911 | CFMatrix *MM=cf_LLL(M); |
---|
1912 | intvec *mm=ivCopy(m); |
---|
1913 | for(i=r;i>0;i--) |
---|
1914 | { |
---|
1915 | for(j=c;j>0;j--) |
---|
1916 | { |
---|
1917 | IMATELEM(*mm,i,j)=convFactoryISingI((*MM)(i,j)); |
---|
1918 | } |
---|
1919 | } |
---|
1920 | delete MM; |
---|
1921 | return mm; |
---|
1922 | } |
---|
1923 | |
---|
1924 | ideal singclap_absFactorize ( poly f, ideal & mipos, intvec ** exps, int & numFactors, const ring r) |
---|
1925 | { |
---|
1926 | p_Test(f, r); |
---|
1927 | |
---|
1928 | ideal res=NULL; |
---|
1929 | |
---|
1930 | int offs = rPar(r); |
---|
1931 | if (f==NULL) |
---|
1932 | { |
---|
1933 | res= idInit (1, 1); |
---|
1934 | mipos= idInit (1, 1); |
---|
1935 | mipos->m[0]= convFactoryPSingTrP (Variable (offs), r); //overkill |
---|
1936 | (*exps)=new intvec (1); |
---|
1937 | (**exps)[0]= 1; |
---|
1938 | numFactors= 0; |
---|
1939 | return res; |
---|
1940 | } |
---|
1941 | CanonicalForm F( convSingTrPFactoryP( f, r) ); |
---|
1942 | |
---|
1943 | bool isRat= isOn (SW_RATIONAL); |
---|
1944 | if (!isRat) |
---|
1945 | On (SW_RATIONAL); |
---|
1946 | |
---|
1947 | CFAFList absFactors= absFactorize (F); |
---|
1948 | |
---|
1949 | int n= absFactors.length(); |
---|
1950 | *exps=new intvec (n); |
---|
1951 | |
---|
1952 | res= idInit (n, 1); |
---|
1953 | |
---|
1954 | mipos= idInit (n, 1); |
---|
1955 | |
---|
1956 | Variable x= Variable (offs); |
---|
1957 | Variable alpha; |
---|
1958 | int i= 0; |
---|
1959 | numFactors= 0; |
---|
1960 | int count; |
---|
1961 | CFAFListIterator iter= absFactors; |
---|
1962 | CanonicalForm lead= iter.getItem().factor(); |
---|
1963 | if (iter.getItem().factor().inCoeffDomain()) |
---|
1964 | { |
---|
1965 | i++; |
---|
1966 | iter++; |
---|
1967 | } |
---|
1968 | for (; iter.hasItem(); iter++, i++) |
---|
1969 | { |
---|
1970 | (**exps)[i]= iter.getItem().exp(); |
---|
1971 | alpha= iter.getItem().minpoly().mvar(); |
---|
1972 | if (iter.getItem().minpoly().isOne()) |
---|
1973 | lead /= power (bCommonDen (iter.getItem().factor()), iter.getItem().exp()); |
---|
1974 | else |
---|
1975 | lead /= power (power (bCommonDen (iter.getItem().factor()), degree (iter.getItem().minpoly())), iter.getItem().exp()); |
---|
1976 | res->m[i]= convFactoryPSingTrP (replacevar (iter.getItem().factor()*bCommonDen (iter.getItem().factor()), alpha, x), r); |
---|
1977 | if (iter.getItem().minpoly().isOne()) |
---|
1978 | { |
---|
1979 | count= iter.getItem().exp(); |
---|
1980 | mipos->m[i]= convFactoryPSingTrP (x,r); |
---|
1981 | } |
---|
1982 | else |
---|
1983 | { |
---|
1984 | count= iter.getItem().exp()*degree (iter.getItem().minpoly()); |
---|
1985 | mipos->m[i]= convFactoryPSingTrP (replacevar (iter.getItem().minpoly(), alpha, x), r); |
---|
1986 | } |
---|
1987 | if (!iter.getItem().minpoly().isOne()) |
---|
1988 | prune (alpha); |
---|
1989 | numFactors += count; |
---|
1990 | } |
---|
1991 | if (!isRat) |
---|
1992 | Off (SW_RATIONAL); |
---|
1993 | |
---|
1994 | (**exps)[0]= 1; |
---|
1995 | res->m[0]= convFactoryPSingTrP (lead, r); |
---|
1996 | mipos->m[0]= convFactoryPSingTrP (x, r); |
---|
1997 | return res; |
---|
1998 | } |
---|
1999 | |
---|
2000 | #else |
---|
2001 | matrix singntl_HNF(matrix m, const ring s ) |
---|
2002 | { |
---|
2003 | WerrorS("NTL missing"); |
---|
2004 | return NULL; |
---|
2005 | } |
---|
2006 | |
---|
2007 | intvec* singntl_HNF(intvec* m) |
---|
2008 | { |
---|
2009 | WerrorS("NTL missing"); |
---|
2010 | return NULL; |
---|
2011 | } |
---|
2012 | |
---|
2013 | matrix singntl_LLL(matrix m, const ring s ) |
---|
2014 | { |
---|
2015 | WerrorS("NTL missing"); |
---|
2016 | return NULL; |
---|
2017 | } |
---|
2018 | |
---|
2019 | intvec* singntl_LLL(intvec* m) |
---|
2020 | { |
---|
2021 | WerrorS("NTL missing"); |
---|
2022 | return NULL; |
---|
2023 | } |
---|
2024 | |
---|
2025 | ideal singclap_absFactorize ( poly f, ideal & mipos, intvec ** exps, int & numFactors, const ring r) |
---|
2026 | { |
---|
2027 | WerrorS("NTL missing"); |
---|
2028 | return NULL; |
---|
2029 | } |
---|
2030 | |
---|
2031 | #endif /* HAVE_NTL */ |
---|
2032 | |
---|