1 | // emacs edit mode for this file is -*- C++ -*- |
---|
2 | /**************************************** |
---|
3 | * Computer Algebra System SINGULAR * |
---|
4 | ****************************************/ |
---|
5 | /* |
---|
6 | * ABSTRACT: interface between Singular and factory |
---|
7 | */ |
---|
8 | |
---|
9 | //#define FACTORIZE2_DEBUG |
---|
10 | |
---|
11 | |
---|
12 | |
---|
13 | |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | #include <misc/auxiliary.h> |
---|
18 | #include "clapsing.h" |
---|
19 | |
---|
20 | #include <factory/factory.h> |
---|
21 | |
---|
22 | #include <omalloc/omalloc.h> |
---|
23 | #include <coeffs/numbers.h> |
---|
24 | #include <coeffs/coeffs.h> |
---|
25 | #include <coeffs/bigintmat.h> |
---|
26 | |
---|
27 | // #include <kernel/ffields.h> |
---|
28 | |
---|
29 | #include "monomials/ring.h" |
---|
30 | #include "simpleideals.h" |
---|
31 | |
---|
32 | |
---|
33 | //#include "polys.h" |
---|
34 | #define TRANSEXT_PRIVATES |
---|
35 | |
---|
36 | #include "ext_fields/transext.h" |
---|
37 | |
---|
38 | |
---|
39 | #include "clapconv.h" |
---|
40 | // #include <kernel/clapconv.h> |
---|
41 | |
---|
42 | #include <polys/monomials/p_polys.h> |
---|
43 | #include <polys/monomials/ring.h> |
---|
44 | #include <polys/simpleideals.h> |
---|
45 | #include <misc/intvec.h> |
---|
46 | #include <polys/matpol.h> |
---|
47 | #include <coeffs/bigintmat.h> |
---|
48 | |
---|
49 | |
---|
50 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
51 | |
---|
52 | poly singclap_gcd_r ( poly f, poly g, const ring r ) |
---|
53 | { |
---|
54 | poly res=NULL; |
---|
55 | |
---|
56 | assume(f!=NULL); |
---|
57 | assume(g!=NULL); |
---|
58 | |
---|
59 | if(pNext(f)==NULL && pNext(g)==NULL) |
---|
60 | { |
---|
61 | poly p=p_One(r); |
---|
62 | for(int i=rVar(r);i>0;i--) |
---|
63 | p_SetExp(p,i,si_min(p_GetExp(f,i,r),p_GetExp(g,i,r)),r); |
---|
64 | if (rField_is_Ring(r)) |
---|
65 | { |
---|
66 | number c = p_GetCoeff(f,r); |
---|
67 | number d = p_GetCoeff(g,r); |
---|
68 | p_SetCoeff(p,n_Gcd(c,d,r->cf),r); |
---|
69 | } |
---|
70 | p_Setm(p,r); |
---|
71 | return p; |
---|
72 | #if 0 |
---|
73 | else |
---|
74 | { |
---|
75 | poly h=g; |
---|
76 | for(int i=rVar(r);i>0;i--) |
---|
77 | p_SetExp(p,i,p_GetExp(f,i,r),r); |
---|
78 | while(h!=NULL) |
---|
79 | { |
---|
80 | for(int i=rVar(r);i>0;i--) |
---|
81 | p_SetExp(p,i,si_min(p_GetExp(p,i,r),p_GetExp(h,i,r)),r); |
---|
82 | pIter(h); |
---|
83 | } |
---|
84 | p_Setm(p,r); |
---|
85 | return p; |
---|
86 | } |
---|
87 | #endif |
---|
88 | } |
---|
89 | #if 0 |
---|
90 | else if (pNext(g)==NULL) |
---|
91 | { |
---|
92 | poly p=p_One(r); |
---|
93 | poly h=f; |
---|
94 | for(int i=rVar(r);i>0;i--) |
---|
95 | p_SetExp(p,i,p_GetExp(g,i,r),r); |
---|
96 | if (rField_is_Ring(r)) |
---|
97 | { |
---|
98 | number c = p_GetCoeff(f,r); |
---|
99 | number d = p_GetCoeff(g,r); |
---|
100 | p_SetCoeff(p,n_Gcd(c,d,r->cf),r); |
---|
101 | } |
---|
102 | while(h!=NULL) |
---|
103 | { |
---|
104 | for(int i=rVar(r);i>0;i--) |
---|
105 | p_SetExp(p,i,si_min(p_GetExp(p,i,r),p_GetExp(h,i,r)),r); |
---|
106 | pIter(h); |
---|
107 | } |
---|
108 | p_Setm(p,r); |
---|
109 | return p; |
---|
110 | } |
---|
111 | #endif |
---|
112 | |
---|
113 | Off(SW_RATIONAL); |
---|
114 | if (rField_is_Q(r) || rField_is_Zp(r) || rField_is_Ring_Z(r)) |
---|
115 | { |
---|
116 | setCharacteristic( rChar(r) ); |
---|
117 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g, r ) ); |
---|
118 | res=convFactoryPSingP( gcd( F, G ) , r); |
---|
119 | } |
---|
120 | // and over Q(a) / Fp(a) |
---|
121 | else if ( r->cf->extRing!=NULL ) |
---|
122 | { |
---|
123 | if ( rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
124 | else setCharacteristic( rChar(r) ); |
---|
125 | if (r->cf->extRing->qideal!=NULL) |
---|
126 | { |
---|
127 | bool b1=isOn(SW_USE_QGCD); |
---|
128 | if ( rField_is_Q_a(r) ) On(SW_USE_QGCD); |
---|
129 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
130 | r->cf->extRing); |
---|
131 | Variable a=rootOf(mipo); |
---|
132 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
133 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
134 | res= convFactoryAPSingAP( gcd( F, G ),r ); |
---|
135 | prune (a); |
---|
136 | if (!b1) Off(SW_USE_QGCD); |
---|
137 | } |
---|
138 | else |
---|
139 | { |
---|
140 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
141 | res= convFactoryPSingTrP( gcd( F, G ),r ); |
---|
142 | } |
---|
143 | } |
---|
144 | else |
---|
145 | WerrorS( feNotImplemented ); |
---|
146 | Off(SW_RATIONAL); |
---|
147 | return res; |
---|
148 | } |
---|
149 | |
---|
150 | poly singclap_gcd_and_divide ( poly& f, poly& g, const ring r) |
---|
151 | { |
---|
152 | poly res=NULL; |
---|
153 | |
---|
154 | if (g == NULL) |
---|
155 | { |
---|
156 | res= f; |
---|
157 | f=p_One (r); |
---|
158 | return res; |
---|
159 | } |
---|
160 | if (f==NULL) |
---|
161 | { |
---|
162 | res= g; |
---|
163 | g=p_One (r); |
---|
164 | return res; |
---|
165 | } |
---|
166 | |
---|
167 | Off(SW_RATIONAL); |
---|
168 | CanonicalForm F,G,GCD; |
---|
169 | if (rField_is_Q(r) || (rField_is_Zp(r))) |
---|
170 | { |
---|
171 | bool b1=isOn(SW_USE_EZGCD_P); |
---|
172 | F=convSingPFactoryP( f,r ); |
---|
173 | G=convSingPFactoryP( g,r ); |
---|
174 | GCD=gcd(F,G); |
---|
175 | if (!GCD.isOne()) |
---|
176 | { |
---|
177 | p_Delete(&f,r); |
---|
178 | p_Delete(&g,r); |
---|
179 | if (getCharacteristic() == 0) |
---|
180 | On (SW_RATIONAL); |
---|
181 | F /= GCD; |
---|
182 | G /= GCD; |
---|
183 | if (getCharacteristic() == 0) |
---|
184 | { |
---|
185 | CanonicalForm denF= bCommonDen (F); |
---|
186 | CanonicalForm denG= bCommonDen (G); |
---|
187 | G *= denG; |
---|
188 | F *= denF; |
---|
189 | Off (SW_RATIONAL); |
---|
190 | CanonicalForm gcddenFdenG= gcd (denG, denF); |
---|
191 | denG /= gcddenFdenG; |
---|
192 | denF /= gcddenFdenG; |
---|
193 | On (SW_RATIONAL); |
---|
194 | G *= denF; |
---|
195 | F *= denG; |
---|
196 | } |
---|
197 | f=convFactoryPSingP( F, r); |
---|
198 | g=convFactoryPSingP( G, r); |
---|
199 | } |
---|
200 | res=convFactoryPSingP( GCD , r); |
---|
201 | if (!b1) Off (SW_USE_EZGCD_P); |
---|
202 | } |
---|
203 | // and over Q(a) / Fp(a) |
---|
204 | else if ( r->cf->extRing ) |
---|
205 | { |
---|
206 | if ( rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
207 | else setCharacteristic( rChar(r) ); |
---|
208 | if (r->cf->extRing->qideal!=NULL) |
---|
209 | { |
---|
210 | bool b1=isOn(SW_USE_QGCD); |
---|
211 | if ( rField_is_Q_a(r) ) On(SW_USE_QGCD); |
---|
212 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
213 | r->cf->extRing); |
---|
214 | Variable a=rootOf(mipo); |
---|
215 | F=( convSingAPFactoryAP( f,a,r ) ); |
---|
216 | G=( convSingAPFactoryAP( g,a,r ) ); |
---|
217 | GCD=gcd(F,G); |
---|
218 | if (!GCD.isOne()) |
---|
219 | { |
---|
220 | p_Delete(&f,r); |
---|
221 | p_Delete(&g,r); |
---|
222 | if (getCharacteristic() == 0) |
---|
223 | On (SW_RATIONAL); |
---|
224 | F /= GCD; |
---|
225 | G /= GCD; |
---|
226 | if (getCharacteristic() == 0) |
---|
227 | { |
---|
228 | CanonicalForm denF= bCommonDen (F); |
---|
229 | CanonicalForm denG= bCommonDen (G); |
---|
230 | G *= denG; |
---|
231 | F *= denF; |
---|
232 | Off (SW_RATIONAL); |
---|
233 | CanonicalForm gcddenFdenG= gcd (denG, denF); |
---|
234 | denG /= gcddenFdenG; |
---|
235 | denF /= gcddenFdenG; |
---|
236 | On (SW_RATIONAL); |
---|
237 | G *= denF; |
---|
238 | F *= denG; |
---|
239 | } |
---|
240 | f= convFactoryAPSingAP( F,r ); |
---|
241 | g= convFactoryAPSingAP( G,r ); |
---|
242 | } |
---|
243 | res= convFactoryAPSingAP( GCD,r ); |
---|
244 | prune (a); |
---|
245 | if (!b1) Off(SW_USE_QGCD); |
---|
246 | } |
---|
247 | else |
---|
248 | { |
---|
249 | F=( convSingTrPFactoryP( f,r ) ); |
---|
250 | G=( convSingTrPFactoryP( g,r ) ); |
---|
251 | GCD=gcd(F,G); |
---|
252 | if (!GCD.isOne()) |
---|
253 | { |
---|
254 | p_Delete(&f,r); |
---|
255 | p_Delete(&g,r); |
---|
256 | if (getCharacteristic() == 0) |
---|
257 | On (SW_RATIONAL); |
---|
258 | F /= GCD; |
---|
259 | G /= GCD; |
---|
260 | if (getCharacteristic() == 0) |
---|
261 | { |
---|
262 | CanonicalForm denF= bCommonDen (F); |
---|
263 | CanonicalForm denG= bCommonDen (G); |
---|
264 | G *= denG; |
---|
265 | F *= denF; |
---|
266 | Off (SW_RATIONAL); |
---|
267 | CanonicalForm gcddenFdenG= gcd (denG, denF); |
---|
268 | denG /= gcddenFdenG; |
---|
269 | denF /= gcddenFdenG; |
---|
270 | On (SW_RATIONAL); |
---|
271 | G *= denF; |
---|
272 | F *= denG; |
---|
273 | } |
---|
274 | f= convFactoryPSingTrP( F,r ); |
---|
275 | g= convFactoryPSingTrP( G,r ); |
---|
276 | } |
---|
277 | res= convFactoryPSingTrP( GCD,r ); |
---|
278 | } |
---|
279 | } |
---|
280 | else |
---|
281 | WerrorS( feNotImplemented ); |
---|
282 | Off(SW_RATIONAL); |
---|
283 | return res; |
---|
284 | } |
---|
285 | |
---|
286 | poly singclap_gcd ( poly f, poly g, const ring r) |
---|
287 | { |
---|
288 | poly res=NULL; |
---|
289 | |
---|
290 | if (f!=NULL) p_Cleardenom(f, r); |
---|
291 | if (g!=NULL) p_Cleardenom(g, r); |
---|
292 | else return f; // g==0 => gcd=f (but do a p_Cleardenom) |
---|
293 | if (f==NULL) return g; // f==0 => gcd=g (but do a p_Cleardenom) |
---|
294 | |
---|
295 | res=singclap_gcd_r(f,g,r); |
---|
296 | p_Delete(&f, r); |
---|
297 | p_Delete(&g, r); |
---|
298 | return res; |
---|
299 | } |
---|
300 | |
---|
301 | /*2 find the maximal exponent of var(i) in poly p*/ |
---|
302 | int pGetExp_Var(poly p, int i, const ring r) |
---|
303 | { |
---|
304 | int m=0; |
---|
305 | int mm; |
---|
306 | while (p!=NULL) |
---|
307 | { |
---|
308 | mm=p_GetExp(p,i,r); |
---|
309 | if (mm>m) m=mm; |
---|
310 | pIter(p); |
---|
311 | } |
---|
312 | return m; |
---|
313 | } |
---|
314 | |
---|
315 | // destroys f,g,x |
---|
316 | poly singclap_resultant ( poly f, poly g , poly x, const ring r) |
---|
317 | { |
---|
318 | poly res=NULL; |
---|
319 | int i=p_IsPurePower(x, r); |
---|
320 | if (i==0) |
---|
321 | { |
---|
322 | WerrorS("3rd argument must be a ring variable"); |
---|
323 | goto resultant_returns_res; |
---|
324 | } |
---|
325 | if ((f==NULL) || (g==NULL)) |
---|
326 | goto resultant_returns_res; |
---|
327 | // for now there is only the possibility to handle polynomials over |
---|
328 | // Q and Fp ... |
---|
329 | if (rField_is_Zp(r) || rField_is_Q(r)) |
---|
330 | { |
---|
331 | Variable X(i); |
---|
332 | setCharacteristic( rChar(r) ); |
---|
333 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r ) ); |
---|
334 | res=convFactoryPSingP( resultant( F, G, X),r ); |
---|
335 | Off(SW_RATIONAL); |
---|
336 | goto resultant_returns_res; |
---|
337 | } |
---|
338 | // and over Q(a) / Fp(a) |
---|
339 | else if (r->cf->extRing!=NULL) |
---|
340 | { |
---|
341 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
342 | else setCharacteristic( rChar(r) ); |
---|
343 | Variable X(i+rPar(r)); |
---|
344 | if (r->cf->extRing->qideal!=NULL) |
---|
345 | { |
---|
346 | //Variable X(i); |
---|
347 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
348 | r->cf->extRing); |
---|
349 | Variable a=rootOf(mipo); |
---|
350 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
351 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
352 | res= convFactoryAPSingAP( resultant( F, G, X ),r ); |
---|
353 | prune (a); |
---|
354 | } |
---|
355 | else |
---|
356 | { |
---|
357 | //Variable X(i+rPar(currRing)); |
---|
358 | number nf,ng; |
---|
359 | p_Cleardenom_n(f,r,nf);p_Cleardenom_n(g,r,ng); |
---|
360 | int ef,eg; |
---|
361 | ef=pGetExp_Var(f,i,r); |
---|
362 | eg=pGetExp_Var(g,i,r); |
---|
363 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
364 | res= convFactoryPSingTrP( resultant( F, G, X ),r ); |
---|
365 | if ((nf!=NULL)&&(!n_IsOne(nf,r->cf))) |
---|
366 | { |
---|
367 | number n=n_Invers(nf,r->cf); |
---|
368 | while(eg>0) |
---|
369 | { |
---|
370 | res=p_Mult_nn(res,n,r); |
---|
371 | eg--; |
---|
372 | } |
---|
373 | n_Delete(&n,r->cf); |
---|
374 | } |
---|
375 | n_Delete(&nf,r->cf); |
---|
376 | if ((ng!=NULL)&&(!n_IsOne(ng,r->cf))) |
---|
377 | { |
---|
378 | number n=n_Invers(ng,r->cf); |
---|
379 | while(ef>0) |
---|
380 | { |
---|
381 | res=p_Mult_nn(res,n,r); |
---|
382 | ef--; |
---|
383 | } |
---|
384 | n_Delete(&n,r->cf); |
---|
385 | } |
---|
386 | n_Delete(&ng,r->cf); |
---|
387 | } |
---|
388 | Off(SW_RATIONAL); |
---|
389 | goto resultant_returns_res; |
---|
390 | } |
---|
391 | else |
---|
392 | WerrorS( feNotImplemented ); |
---|
393 | resultant_returns_res: |
---|
394 | p_Delete(&f,r); |
---|
395 | p_Delete(&g,r); |
---|
396 | p_Delete(&x,r); |
---|
397 | return res; |
---|
398 | } |
---|
399 | //poly singclap_resultant ( poly f, poly g , poly x) |
---|
400 | //{ |
---|
401 | // int i=pVar(x); |
---|
402 | // if (i==0) |
---|
403 | // { |
---|
404 | // WerrorS("ringvar expected"); |
---|
405 | // return NULL; |
---|
406 | // } |
---|
407 | // ideal I=idInit(1,1); |
---|
408 | // |
---|
409 | // // get the coeffs von f wrt. x: |
---|
410 | // I->m[0]=pCopy(f); |
---|
411 | // matrix ffi=mpCoeffs(I,i); |
---|
412 | // ffi->rank=1; |
---|
413 | // ffi->ncols=ffi->nrows; |
---|
414 | // ffi->nrows=1; |
---|
415 | // ideal fi=(ideal)ffi; |
---|
416 | // |
---|
417 | // // get the coeffs von g wrt. x: |
---|
418 | // I->m[0]=pCopy(g); |
---|
419 | // matrix ggi=mpCoeffs(I,i); |
---|
420 | // ggi->rank=1; |
---|
421 | // ggi->ncols=ggi->nrows; |
---|
422 | // ggi->nrows=1; |
---|
423 | // ideal gi=(ideal)ggi; |
---|
424 | // |
---|
425 | // // contruct the matrix: |
---|
426 | // int fn=IDELEMS(fi); //= deg(f,x)+1 |
---|
427 | // int gn=IDELEMS(gi); //= deg(g,x)+1 |
---|
428 | // matrix m=mpNew(fn+gn-2,fn+gn-2); |
---|
429 | // if(m==NULL) |
---|
430 | // { |
---|
431 | // return NULL; |
---|
432 | // } |
---|
433 | // |
---|
434 | // // enter the coeffs into m: |
---|
435 | // int j; |
---|
436 | // for(i=0;i<gn-1;i++) |
---|
437 | // { |
---|
438 | // for(j=0;j<fn;j++) |
---|
439 | // { |
---|
440 | // MATELEM(m,i+1,fn-j+i)=pCopy(fi->m[j]); |
---|
441 | // } |
---|
442 | // } |
---|
443 | // for(i=0;i<fn-1;i++) |
---|
444 | // { |
---|
445 | // for(j=0;j<gn;j++) |
---|
446 | // { |
---|
447 | // MATELEM(m,gn+i,gn-j+i)=pCopy(gi->m[j]); |
---|
448 | // } |
---|
449 | // } |
---|
450 | // |
---|
451 | // poly r=mpDet(m); |
---|
452 | // |
---|
453 | // idDelete(&fi); |
---|
454 | // idDelete(&gi); |
---|
455 | // idDelete((ideal *)&m); |
---|
456 | // return r; |
---|
457 | //} |
---|
458 | |
---|
459 | BOOLEAN singclap_extgcd ( poly f, poly g, poly &res, poly &pa, poly &pb , const ring r) |
---|
460 | { |
---|
461 | // for now there is only the possibility to handle univariate |
---|
462 | // polynomials over |
---|
463 | // Q and Fp ... |
---|
464 | res=NULL;pa=NULL;pb=NULL; |
---|
465 | On(SW_SYMMETRIC_FF); |
---|
466 | if ( rField_is_Q(r) || rField_is_Zp(r) ) |
---|
467 | { |
---|
468 | setCharacteristic( rChar(r) ); |
---|
469 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r) ); |
---|
470 | CanonicalForm FpG=F+G; |
---|
471 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
472 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
473 | { |
---|
474 | Off(SW_RATIONAL); |
---|
475 | WerrorS("not univariate"); |
---|
476 | return TRUE; |
---|
477 | } |
---|
478 | CanonicalForm Fa,Gb; |
---|
479 | On(SW_RATIONAL); |
---|
480 | res=convFactoryPSingP( extgcd( F, G, Fa, Gb ),r ); |
---|
481 | pa=convFactoryPSingP(Fa,r); |
---|
482 | pb=convFactoryPSingP(Gb,r); |
---|
483 | Off(SW_RATIONAL); |
---|
484 | } |
---|
485 | // and over Q(a) / Fp(a) |
---|
486 | else if ( r->cf->extRing!=NULL ) |
---|
487 | { |
---|
488 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
489 | else setCharacteristic( rChar(r) ); |
---|
490 | CanonicalForm Fa,Gb; |
---|
491 | if (r->cf->extRing->qideal!=NULL) |
---|
492 | { |
---|
493 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
494 | r->cf->extRing); |
---|
495 | Variable a=rootOf(mipo); |
---|
496 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
497 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
498 | CanonicalForm FpG=F+G; |
---|
499 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
500 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
501 | { |
---|
502 | WerrorS("not univariate"); |
---|
503 | return TRUE; |
---|
504 | } |
---|
505 | res= convFactoryAPSingAP( extgcd( F, G, Fa, Gb ),r ); |
---|
506 | pa=convFactoryAPSingAP(Fa,r); |
---|
507 | pb=convFactoryAPSingAP(Gb,r); |
---|
508 | prune (a); |
---|
509 | } |
---|
510 | else |
---|
511 | { |
---|
512 | CanonicalForm F( convSingTrPFactoryP( f, r ) ), G( convSingTrPFactoryP( g, r ) ); |
---|
513 | CanonicalForm FpG=F+G; |
---|
514 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
515 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
516 | { |
---|
517 | Off(SW_RATIONAL); |
---|
518 | WerrorS("not univariate"); |
---|
519 | return TRUE; |
---|
520 | } |
---|
521 | res= convFactoryPSingTrP( extgcd( F, G, Fa, Gb ), r ); |
---|
522 | pa=convFactoryPSingTrP(Fa, r); |
---|
523 | pb=convFactoryPSingTrP(Gb, r); |
---|
524 | } |
---|
525 | Off(SW_RATIONAL); |
---|
526 | } |
---|
527 | else |
---|
528 | { |
---|
529 | WerrorS( feNotImplemented ); |
---|
530 | return TRUE; |
---|
531 | } |
---|
532 | #ifndef SING_NDEBUG |
---|
533 | // checking the result of extgcd: |
---|
534 | poly dummy; |
---|
535 | dummy=p_Sub(p_Add_q(pp_Mult_qq(f,pa,r),pp_Mult_qq(g,pb,r),r),p_Copy(res,r),r); |
---|
536 | if (dummy!=NULL) |
---|
537 | { |
---|
538 | PrintS("extgcd( ");p_Write(f,r);p_Write0(g,r);PrintS(" )\n"); |
---|
539 | PrintS("extgcd( ");p_Write(f,r);p_Write0(g,r);PrintS(" )\n"); |
---|
540 | p_Delete(&dummy,r); |
---|
541 | } |
---|
542 | #endif |
---|
543 | return FALSE; |
---|
544 | } |
---|
545 | |
---|
546 | poly singclap_pdivide ( poly f, poly g, const ring r ) |
---|
547 | { |
---|
548 | poly res=NULL; |
---|
549 | On(SW_RATIONAL); |
---|
550 | if (rField_is_Zp(r) || rField_is_Q(r)) |
---|
551 | { |
---|
552 | setCharacteristic( rChar(r) ); |
---|
553 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r ) ); |
---|
554 | res = convFactoryPSingP( F / G,r ); |
---|
555 | } |
---|
556 | else if (rField_is_Ring_Z(r)) |
---|
557 | { |
---|
558 | Off(SW_RATIONAL); |
---|
559 | setCharacteristic( rChar(r) ); |
---|
560 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r ) ); |
---|
561 | res = convFactoryPSingP( F / G,r ); |
---|
562 | } |
---|
563 | else if (r->cf->extRing!=NULL) |
---|
564 | { |
---|
565 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
566 | else setCharacteristic( rChar(r) ); |
---|
567 | if (r->cf->extRing->qideal!=NULL) |
---|
568 | { |
---|
569 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
570 | r->cf->extRing); |
---|
571 | Variable a=rootOf(mipo); |
---|
572 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
573 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
574 | res= convFactoryAPSingAP( F / G, r ); |
---|
575 | prune (a); |
---|
576 | } |
---|
577 | else |
---|
578 | { |
---|
579 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
580 | res= convFactoryPSingTrP( F / G,r ); |
---|
581 | } |
---|
582 | } |
---|
583 | #if 0 // not yet working |
---|
584 | else if (rField_is_GF()) |
---|
585 | { |
---|
586 | //Print("GF(%d^%d)\n",nfCharP,nfMinPoly[0]); |
---|
587 | setCharacteristic( nfCharP,nfMinPoly[0], currRing->parameter[0][0] ); |
---|
588 | CanonicalForm F( convSingGFFactoryGF( f ) ), G( convSingGFFactoryGF( g ) ); |
---|
589 | res = convFactoryGFSingGF( F / G ); |
---|
590 | } |
---|
591 | #endif |
---|
592 | else |
---|
593 | WerrorS( feNotImplemented ); |
---|
594 | Off(SW_RATIONAL); |
---|
595 | return res; |
---|
596 | } |
---|
597 | |
---|
598 | void singclap_divide_content ( poly f, const ring r ) |
---|
599 | { |
---|
600 | if ( f==NULL ) |
---|
601 | { |
---|
602 | return; |
---|
603 | } |
---|
604 | else if ( pNext( f ) == NULL ) |
---|
605 | { |
---|
606 | p_SetCoeff( f, n_Init( 1, r->cf ), r ); |
---|
607 | return; |
---|
608 | } |
---|
609 | else |
---|
610 | { |
---|
611 | if ( rField_is_Q_a(r) ) |
---|
612 | setCharacteristic( 0 ); |
---|
613 | else if ( rField_is_Zp_a(r) ) |
---|
614 | setCharacteristic( -rChar(r) ); |
---|
615 | else |
---|
616 | return; /* not implemented*/ |
---|
617 | |
---|
618 | CFList L; |
---|
619 | CanonicalForm g, h; |
---|
620 | poly p = pNext(f); |
---|
621 | |
---|
622 | // first attemp: find 2 smallest g: |
---|
623 | |
---|
624 | number g1=pGetCoeff(f); |
---|
625 | number g2=pGetCoeff(p); // p==pNext(f); |
---|
626 | pIter(p); |
---|
627 | int sz1=n_Size(g1, r->cf); |
---|
628 | int sz2=n_Size(g2, r->cf); |
---|
629 | if (sz1>sz2) |
---|
630 | { |
---|
631 | number gg=g1; |
---|
632 | g1=g2; g2=gg; |
---|
633 | int sz=sz1; |
---|
634 | sz1=sz2; sz2=sz; |
---|
635 | } |
---|
636 | while (p!=NULL) |
---|
637 | { |
---|
638 | int n_sz=n_Size(pGetCoeff(p),r->cf); |
---|
639 | if (n_sz<sz1) |
---|
640 | { |
---|
641 | sz2=sz1; |
---|
642 | g2=g1; |
---|
643 | g1=pGetCoeff(p); |
---|
644 | sz1=n_sz; |
---|
645 | if (sz1<=3) break; |
---|
646 | } |
---|
647 | else if(n_sz<sz2) |
---|
648 | { |
---|
649 | sz2=n_sz; |
---|
650 | g2=pGetCoeff(p); |
---|
651 | sz2=n_sz; |
---|
652 | } |
---|
653 | pIter(p); |
---|
654 | } |
---|
655 | g = convSingPFactoryP( NUM(((fraction)g1)), r->cf->extRing ); |
---|
656 | g = gcd( g, convSingPFactoryP( NUM(((fraction)g2)) , r->cf->extRing)); |
---|
657 | |
---|
658 | // second run: gcd's |
---|
659 | |
---|
660 | p = f; |
---|
661 | while ( (p != NULL) && (g != 1) && ( g != 0)) |
---|
662 | { |
---|
663 | h = convSingPFactoryP( NUM(((fraction)pGetCoeff(p))), r->cf->extRing ); |
---|
664 | pIter( p ); |
---|
665 | |
---|
666 | g = gcd( g, h ); |
---|
667 | |
---|
668 | L.append( h ); |
---|
669 | } |
---|
670 | if (( g == 1 ) || (g == 0)) |
---|
671 | { |
---|
672 | // pTest(f); |
---|
673 | return; |
---|
674 | } |
---|
675 | else |
---|
676 | { |
---|
677 | CFListIterator i; |
---|
678 | for ( i = L, p = f; i.hasItem(); i++, p=pNext(p) ) |
---|
679 | { |
---|
680 | fraction c=(fraction)pGetCoeff(p); |
---|
681 | p_Delete(&(NUM(c)),r->cf->extRing); // 2nd arg used to be nacRing |
---|
682 | NUM(c)=convFactoryPSingP( i.getItem() / g, r->cf->extRing ); |
---|
683 | //nTest((number)c); |
---|
684 | //#ifdef LDEBUG |
---|
685 | //number cn=(number)c; |
---|
686 | //StringSetS(""); nWrite(nt); StringAppend(" ==> "); |
---|
687 | //nWrite(cn);PrintS(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s); |
---|
688 | //#endif |
---|
689 | } |
---|
690 | } |
---|
691 | // pTest(f); |
---|
692 | } |
---|
693 | } |
---|
694 | |
---|
695 | BOOLEAN count_Factors(ideal I, intvec *v,int j, poly &f, poly fac, const ring r) |
---|
696 | { |
---|
697 | p_Test(f,r); |
---|
698 | p_Test(fac,r); |
---|
699 | int e=0; |
---|
700 | if (!p_IsConstantPoly(fac,r)) |
---|
701 | { |
---|
702 | #ifdef FACTORIZE2_DEBUG |
---|
703 | printf("start count_Factors(%d), Fdeg=%d, factor deg=%d\n",j,p_Totaldegree(f,r),p_Totaldegree(fac,r)); |
---|
704 | p_wrp(fac,r);PrintLn(); |
---|
705 | #endif |
---|
706 | On(SW_RATIONAL); |
---|
707 | CanonicalForm F, FAC,Q,R; |
---|
708 | Variable a; |
---|
709 | if (rField_is_Zp(r) || rField_is_Q(r)) |
---|
710 | { |
---|
711 | F=convSingPFactoryP( f,r ); |
---|
712 | FAC=convSingPFactoryP( fac,r ); |
---|
713 | } |
---|
714 | else if (r->cf->extRing!=NULL) |
---|
715 | { |
---|
716 | if (r->cf->extRing->qideal!=NULL) |
---|
717 | { |
---|
718 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
719 | r->cf->extRing); |
---|
720 | a=rootOf(mipo); |
---|
721 | F=convSingAPFactoryAP( f,a,r ); |
---|
722 | FAC=convSingAPFactoryAP( fac,a,r ); |
---|
723 | } |
---|
724 | else |
---|
725 | { |
---|
726 | F=convSingTrPFactoryP( f,r ); |
---|
727 | FAC=convSingTrPFactoryP( fac,r ); |
---|
728 | } |
---|
729 | } |
---|
730 | else |
---|
731 | WerrorS( feNotImplemented ); |
---|
732 | |
---|
733 | poly q; |
---|
734 | loop |
---|
735 | { |
---|
736 | Q=F; |
---|
737 | Q/=FAC; |
---|
738 | R=Q; |
---|
739 | R*=FAC; |
---|
740 | R-=F; |
---|
741 | if (R.isZero()) |
---|
742 | { |
---|
743 | if (rField_is_Zp(r) || rField_is_Q(r)) |
---|
744 | { |
---|
745 | q = convFactoryPSingP( Q,r ); |
---|
746 | } |
---|
747 | else if (r->cf->extRing!=NULL) |
---|
748 | { |
---|
749 | if (r->cf->extRing->qideal!=NULL) |
---|
750 | { |
---|
751 | q= convFactoryAPSingAP( Q,r ); |
---|
752 | } |
---|
753 | else |
---|
754 | { |
---|
755 | q= convFactoryPSingTrP( Q,r ); |
---|
756 | } |
---|
757 | } |
---|
758 | e++; p_Delete(&f,r); f=q; q=NULL; F=Q; |
---|
759 | } |
---|
760 | else |
---|
761 | { |
---|
762 | break; |
---|
763 | } |
---|
764 | } |
---|
765 | if (r->cf->extRing!=NULL) |
---|
766 | if (r->cf->extRing->qideal!=NULL) |
---|
767 | prune (a); |
---|
768 | if (e==0) |
---|
769 | { |
---|
770 | Off(SW_RATIONAL); |
---|
771 | return FALSE; |
---|
772 | } |
---|
773 | } |
---|
774 | else e=1; |
---|
775 | I->m[j]=fac; |
---|
776 | if (v!=NULL) (*v)[j]=e; |
---|
777 | Off(SW_RATIONAL); |
---|
778 | return TRUE; |
---|
779 | } |
---|
780 | |
---|
781 | int singclap_factorize_retry; |
---|
782 | |
---|
783 | ideal singclap_factorize ( poly f, intvec ** v , int with_exps, const ring r) |
---|
784 | /* destroys f, sets *v */ |
---|
785 | { |
---|
786 | p_Test(f,r); |
---|
787 | #ifdef FACTORIZE2_DEBUG |
---|
788 | printf("singclap_factorize, degree %ld\n",p_Totaldegree(f,r)); |
---|
789 | #endif |
---|
790 | // with_exps: 3,1 return only true factors, no exponents |
---|
791 | // 2 return true factors and exponents |
---|
792 | // 0 return coeff, factors and exponents |
---|
793 | BOOLEAN save_errorreported=errorreported; |
---|
794 | |
---|
795 | ideal res=NULL; |
---|
796 | |
---|
797 | // handle factorize(0) ========================================= |
---|
798 | if (f==NULL) |
---|
799 | { |
---|
800 | res=idInit(1,1); |
---|
801 | if (with_exps!=1) |
---|
802 | { |
---|
803 | (*v)=new intvec(1); |
---|
804 | (**v)[0]=1; |
---|
805 | } |
---|
806 | return res; |
---|
807 | } |
---|
808 | // handle factorize(mon) ========================================= |
---|
809 | if (pNext(f)==NULL) |
---|
810 | { |
---|
811 | int i=0; |
---|
812 | int n=0; |
---|
813 | int e; |
---|
814 | for(i=rVar(r);i>0;i--) if(p_GetExp(f,i,r)!=0) n++; |
---|
815 | if (with_exps==0) n++; // with coeff |
---|
816 | res=idInit(si_max(n,1),1); |
---|
817 | switch(with_exps) |
---|
818 | { |
---|
819 | case 0: // with coef & exp. |
---|
820 | res->m[0]=p_NSet(n_Copy(pGetCoeff(f),r->cf),r); |
---|
821 | // no break |
---|
822 | case 2: // with exp. |
---|
823 | (*v)=new intvec(si_max(1,n)); |
---|
824 | (**v)[0]=1; |
---|
825 | // no break |
---|
826 | case 1: ; |
---|
827 | #ifdef TEST |
---|
828 | default: ; |
---|
829 | #endif |
---|
830 | } |
---|
831 | if (n==0) |
---|
832 | { |
---|
833 | res->m[0]=p_One(r); |
---|
834 | // (**v)[0]=1; is already done |
---|
835 | } |
---|
836 | else |
---|
837 | { |
---|
838 | for(i=rVar(r);i>0;i--) |
---|
839 | { |
---|
840 | e=p_GetExp(f,i,r); |
---|
841 | if(e!=0) |
---|
842 | { |
---|
843 | n--; |
---|
844 | poly p=p_One(r); |
---|
845 | p_SetExp(p,i,1,r); |
---|
846 | p_Setm(p,r); |
---|
847 | res->m[n]=p; |
---|
848 | if (with_exps!=1) (**v)[n]=e; |
---|
849 | } |
---|
850 | } |
---|
851 | } |
---|
852 | p_Delete(&f,r); |
---|
853 | return res; |
---|
854 | } |
---|
855 | //PrintS("S:");p_Write(f,r);PrintLn(); |
---|
856 | // use factory/libfac in general ============================== |
---|
857 | Off(SW_RATIONAL); |
---|
858 | On(SW_SYMMETRIC_FF); |
---|
859 | CFFList L; |
---|
860 | number N=NULL; |
---|
861 | number NN=NULL; |
---|
862 | number old_lead_coeff=n_Copy(pGetCoeff(f), r->cf); |
---|
863 | |
---|
864 | Variable a; |
---|
865 | if (!rField_is_Zp(r) && !rField_is_Zp_a(r)) /* Q, Q(a) */ |
---|
866 | { |
---|
867 | //if (f!=NULL) // already tested at start of routine |
---|
868 | { |
---|
869 | number n0=n_Copy(pGetCoeff(f),r->cf); |
---|
870 | if (with_exps==0) |
---|
871 | N=n_Copy(n0,r->cf); |
---|
872 | p_Cleardenom(f, r); |
---|
873 | //after here f should not have a denominator!! |
---|
874 | //PrintS("S:");p_Write(f,r);PrintLn(); |
---|
875 | NN=n_Div(n0,pGetCoeff(f),r->cf); |
---|
876 | n_Delete(&n0,r->cf); |
---|
877 | if (with_exps==0) |
---|
878 | { |
---|
879 | n_Delete(&N,r->cf); |
---|
880 | N=n_Copy(NN,r->cf); |
---|
881 | } |
---|
882 | } |
---|
883 | } |
---|
884 | else if (rField_is_Zp_a(r)) |
---|
885 | { |
---|
886 | //if (f!=NULL) // already tested at start of routine |
---|
887 | if (singclap_factorize_retry==0) |
---|
888 | { |
---|
889 | number n0=n_Copy(pGetCoeff(f),r->cf); |
---|
890 | if (with_exps==0) |
---|
891 | N=n_Copy(n0,r->cf); |
---|
892 | p_Norm(f,r); |
---|
893 | p_Cleardenom(f, r); |
---|
894 | NN=n_Div(n0,pGetCoeff(f),r->cf); |
---|
895 | n_Delete(&n0,r->cf); |
---|
896 | if (with_exps==0) |
---|
897 | { |
---|
898 | n_Delete(&N,r->cf); |
---|
899 | N=n_Copy(NN,r->cf); |
---|
900 | } |
---|
901 | } |
---|
902 | } |
---|
903 | if (rField_is_Q(r) || rField_is_Zp(r)) |
---|
904 | { |
---|
905 | setCharacteristic( rChar(r) ); |
---|
906 | CanonicalForm F( convSingPFactoryP( f,r ) ); |
---|
907 | L = factorize( F ); |
---|
908 | } |
---|
909 | // and over Q(a) / Fp(a) |
---|
910 | else if (r->cf->extRing!=NULL) |
---|
911 | { |
---|
912 | if (rField_is_Q_a (r)) setCharacteristic (0); |
---|
913 | else setCharacteristic( rChar(r) ); |
---|
914 | if (r->cf->extRing->qideal!=NULL) |
---|
915 | { |
---|
916 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
917 | r->cf->extRing); |
---|
918 | a=rootOf(mipo); |
---|
919 | CanonicalForm F( convSingAPFactoryAP( f, a, r ) ); |
---|
920 | if (rField_is_Zp_a(r)) |
---|
921 | { |
---|
922 | L = factorize( F, a ); |
---|
923 | } |
---|
924 | else |
---|
925 | { |
---|
926 | // over Q(a) |
---|
927 | L= factorize (F, a); |
---|
928 | } |
---|
929 | } |
---|
930 | else |
---|
931 | { |
---|
932 | CanonicalForm F( convSingTrPFactoryP( f,r ) ); |
---|
933 | L = factorize( F ); |
---|
934 | } |
---|
935 | } |
---|
936 | else |
---|
937 | { |
---|
938 | goto notImpl; |
---|
939 | } |
---|
940 | { |
---|
941 | poly ff=p_Copy(f,r); // a copy for the retry stuff |
---|
942 | // the first factor should be a constant |
---|
943 | if ( ! L.getFirst().factor().inCoeffDomain() ) |
---|
944 | L.insert(CFFactor(1,1)); |
---|
945 | // convert into ideal |
---|
946 | int n = L.length(); |
---|
947 | if (n==0) n=1; |
---|
948 | CFFListIterator J=L; |
---|
949 | int j=0; |
---|
950 | if (with_exps!=1) |
---|
951 | { |
---|
952 | if ((with_exps==2)&&(n>1)) |
---|
953 | { |
---|
954 | n--; |
---|
955 | J++; |
---|
956 | } |
---|
957 | *v = new intvec( n ); |
---|
958 | } |
---|
959 | res = idInit( n ,1); |
---|
960 | for ( ; J.hasItem(); J++, j++ ) |
---|
961 | { |
---|
962 | if (with_exps!=1) (**v)[j] = J.getItem().exp(); |
---|
963 | if (rField_is_Zp(r) || rField_is_Q(r)) /* Q, Fp */ |
---|
964 | { |
---|
965 | //count_Factors(res,*v,f, j, convFactoryPSingP( J.getItem().factor() ); |
---|
966 | res->m[j] = convFactoryPSingP( J.getItem().factor(),r ); |
---|
967 | } |
---|
968 | #if 0 |
---|
969 | else if (rField_is_GF()) |
---|
970 | res->m[j] = convFactoryGFSingGF( J.getItem().factor() ); |
---|
971 | #endif |
---|
972 | else if (r->cf->extRing!=NULL) /* Q(a), Fp(a) */ |
---|
973 | { |
---|
974 | #ifndef SING_NDEBUG |
---|
975 | intvec *w=NULL; |
---|
976 | if (v!=NULL) w=*v; |
---|
977 | #endif |
---|
978 | if (r->cf->extRing->qideal==NULL) |
---|
979 | { |
---|
980 | #ifdef SING_NDEBUG |
---|
981 | res->m[j]= convFactoryPSingTrP( J.getItem().factor(),r ); |
---|
982 | #else |
---|
983 | if(!count_Factors(res,w,j,ff,convFactoryPSingTrP( J.getItem().factor(),r ),r)) |
---|
984 | { |
---|
985 | if (w!=NULL) |
---|
986 | (*w)[j]=1; |
---|
987 | res->m[j]=p_One(r); |
---|
988 | } |
---|
989 | #endif |
---|
990 | } |
---|
991 | else |
---|
992 | { |
---|
993 | #ifdef SING_NDEBUG |
---|
994 | res->m[j]= convFactoryAPSingAP( J.getItem().factor(),r ); |
---|
995 | #else |
---|
996 | if (!count_Factors(res,w,j,ff,convFactoryAPSingAP( J.getItem().factor(),r ),r)) |
---|
997 | { |
---|
998 | if (w!=NULL) |
---|
999 | (*w)[j]=1; |
---|
1000 | res->m[j]=p_One(r); |
---|
1001 | } |
---|
1002 | #endif |
---|
1003 | } |
---|
1004 | } |
---|
1005 | } |
---|
1006 | if (r->cf->extRing!=NULL) |
---|
1007 | if (r->cf->extRing->qideal!=NULL) |
---|
1008 | prune (a); |
---|
1009 | #ifndef SING_NDEBUG |
---|
1010 | if ((r->cf->extRing!=NULL) && (!p_IsConstantPoly(ff,r))) |
---|
1011 | { |
---|
1012 | singclap_factorize_retry++; |
---|
1013 | if (singclap_factorize_retry<3) |
---|
1014 | { |
---|
1015 | int jj; |
---|
1016 | #ifdef FACTORIZE2_DEBUG |
---|
1017 | printf("factorize_retry\n"); |
---|
1018 | #endif |
---|
1019 | intvec *ww=NULL; |
---|
1020 | id_Test(res,r); |
---|
1021 | ideal h=singclap_factorize ( ff, &ww , with_exps, r ); |
---|
1022 | id_Test(h,r); |
---|
1023 | int l=(*v)->length(); |
---|
1024 | (*v)->resize(l+ww->length()); |
---|
1025 | for(jj=0;jj<ww->length();jj++) |
---|
1026 | (**v)[jj+l]=(*ww)[jj]; |
---|
1027 | delete ww; |
---|
1028 | ideal hh=idInit(IDELEMS(res)+IDELEMS(h),1); |
---|
1029 | for(jj=IDELEMS(res)-1;jj>=0;jj--) |
---|
1030 | { |
---|
1031 | hh->m[jj]=res->m[jj]; |
---|
1032 | res->m[jj]=NULL; |
---|
1033 | } |
---|
1034 | for(jj=IDELEMS(h)-1;jj>=0;jj--) |
---|
1035 | { |
---|
1036 | hh->m[jj+IDELEMS(res)]=h->m[jj]; |
---|
1037 | h->m[jj]=NULL; |
---|
1038 | } |
---|
1039 | id_Delete(&res,r); |
---|
1040 | id_Delete(&h,r); |
---|
1041 | res=hh; |
---|
1042 | id_Test(res,r); |
---|
1043 | ff=NULL; |
---|
1044 | } |
---|
1045 | else |
---|
1046 | { |
---|
1047 | WarnS("problem with factorize"); |
---|
1048 | #if 0 |
---|
1049 | pWrite(ff); |
---|
1050 | idShow(res); |
---|
1051 | #endif |
---|
1052 | id_Delete(&res,r); |
---|
1053 | res=idInit(2,1); |
---|
1054 | res->m[0]=p_One(r); |
---|
1055 | res->m[1]=ff; ff=NULL; |
---|
1056 | } |
---|
1057 | } |
---|
1058 | #endif |
---|
1059 | p_Delete(&ff,r); |
---|
1060 | if (N!=NULL) |
---|
1061 | { |
---|
1062 | p_Mult_nn(res->m[0],N,r); |
---|
1063 | n_Delete(&N,r->cf); |
---|
1064 | N=NULL; |
---|
1065 | } |
---|
1066 | // delete constants |
---|
1067 | if (res!=NULL) |
---|
1068 | { |
---|
1069 | int i=IDELEMS(res)-1; |
---|
1070 | int j=0; |
---|
1071 | for(;i>=0;i--) |
---|
1072 | { |
---|
1073 | if ((res->m[i]!=NULL) |
---|
1074 | && (pNext(res->m[i])==NULL) |
---|
1075 | && (p_IsConstant(res->m[i],r))) |
---|
1076 | { |
---|
1077 | if (with_exps!=0) |
---|
1078 | { |
---|
1079 | p_Delete(&(res->m[i]),r); |
---|
1080 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1081 | (**v)[i]=0; |
---|
1082 | j++; |
---|
1083 | } |
---|
1084 | else if (i!=0) |
---|
1085 | { |
---|
1086 | while ((v!=NULL) && ((*v)!=NULL) && ((**v)[i]>1)) |
---|
1087 | { |
---|
1088 | res->m[0]=p_Mult_q(res->m[0],p_Copy(res->m[i],r),r); |
---|
1089 | (**v)[i]--; |
---|
1090 | } |
---|
1091 | res->m[0]=p_Mult_q(res->m[0],res->m[i],r); |
---|
1092 | res->m[i]=NULL; |
---|
1093 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1094 | (**v)[i]=1; |
---|
1095 | j++; |
---|
1096 | } |
---|
1097 | } |
---|
1098 | } |
---|
1099 | if (j>0) |
---|
1100 | { |
---|
1101 | idSkipZeroes(res); |
---|
1102 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1103 | { |
---|
1104 | intvec *w=*v; |
---|
1105 | int len=IDELEMS(res); |
---|
1106 | *v = new intvec( len ); |
---|
1107 | for (i=0,j=0;i<si_min(w->length(),len);i++) |
---|
1108 | { |
---|
1109 | if((*w)[i]!=0) |
---|
1110 | { |
---|
1111 | (**v)[j]=(*w)[i]; j++; |
---|
1112 | } |
---|
1113 | } |
---|
1114 | delete w; |
---|
1115 | } |
---|
1116 | } |
---|
1117 | if (res->m[0]==NULL) |
---|
1118 | { |
---|
1119 | res->m[0]=p_One(r); |
---|
1120 | } |
---|
1121 | } |
---|
1122 | } |
---|
1123 | if (rField_is_Q_a(r) && (r->cf->extRing->qideal!=NULL)) |
---|
1124 | { |
---|
1125 | int i=IDELEMS(res)-1; |
---|
1126 | int stop=1; |
---|
1127 | if (with_exps!=0) stop=0; |
---|
1128 | for(;i>=stop;i--) |
---|
1129 | { |
---|
1130 | p_Norm(res->m[i],r); |
---|
1131 | } |
---|
1132 | if (with_exps==0) p_SetCoeff(res->m[0],old_lead_coeff,r); |
---|
1133 | else n_Delete(&old_lead_coeff,r->cf); |
---|
1134 | } |
---|
1135 | else |
---|
1136 | n_Delete(&old_lead_coeff,r->cf); |
---|
1137 | errorreported=save_errorreported; |
---|
1138 | notImpl: |
---|
1139 | if (res==NULL) |
---|
1140 | WerrorS( feNotImplemented ); |
---|
1141 | if (NN!=NULL) |
---|
1142 | { |
---|
1143 | n_Delete(&NN,r->cf); |
---|
1144 | } |
---|
1145 | if (N!=NULL) |
---|
1146 | { |
---|
1147 | n_Delete(&N,r->cf); |
---|
1148 | } |
---|
1149 | if (f!=NULL) p_Delete(&f,r); |
---|
1150 | //PrintS("......S\n"); |
---|
1151 | return res; |
---|
1152 | } |
---|
1153 | |
---|
1154 | ideal singclap_sqrfree ( poly f, intvec ** v , int with_exps, const ring r) |
---|
1155 | { |
---|
1156 | p_Test(f,r); |
---|
1157 | #ifdef FACTORIZE2_DEBUG |
---|
1158 | printf("singclap_sqrfree, degree %d\n",pTotaldegree(f)); |
---|
1159 | #endif |
---|
1160 | // with_exps: 3,1 return only true factors, no exponents |
---|
1161 | // 2 return true factors and exponents |
---|
1162 | // 0 return coeff, factors and exponents |
---|
1163 | BOOLEAN save_errorreported=errorreported; |
---|
1164 | |
---|
1165 | ideal res=NULL; |
---|
1166 | |
---|
1167 | // handle factorize(0) ========================================= |
---|
1168 | if (f==NULL) |
---|
1169 | { |
---|
1170 | res=idInit(1,1); |
---|
1171 | if (with_exps!=1 && with_exps!=3) |
---|
1172 | { |
---|
1173 | (*v)=new intvec(1); |
---|
1174 | (**v)[0]=1; |
---|
1175 | } |
---|
1176 | return res; |
---|
1177 | } |
---|
1178 | // handle factorize(mon) ========================================= |
---|
1179 | if (pNext(f)==NULL) |
---|
1180 | { |
---|
1181 | int i=0; |
---|
1182 | int n=0; |
---|
1183 | int e; |
---|
1184 | for(i=rVar(r);i>0;i--) if(p_GetExp(f,i,r)!=0) n++; |
---|
1185 | if (with_exps==0 || with_exps==3) n++; // with coeff |
---|
1186 | res=idInit(si_max(n,1),1); |
---|
1187 | switch(with_exps) |
---|
1188 | { |
---|
1189 | case 0: // with coef & exp. |
---|
1190 | res->m[0]=p_NSet(n_Copy(pGetCoeff(f),r->cf),r); |
---|
1191 | // no break |
---|
1192 | case 3: // with coef & exp. |
---|
1193 | res->m[0]=p_NSet(n_Copy(pGetCoeff(f),r->cf),r); |
---|
1194 | // no break |
---|
1195 | case 2: // with exp. |
---|
1196 | (*v)=new intvec(si_max(1,n)); |
---|
1197 | (**v)[0]=1; |
---|
1198 | // no break |
---|
1199 | case 1: ; |
---|
1200 | #ifdef TEST |
---|
1201 | default: ; |
---|
1202 | #endif |
---|
1203 | } |
---|
1204 | res->m[0]=p_NSet(n_Copy(pGetCoeff(f),r->cf),r); |
---|
1205 | if (n==0) |
---|
1206 | { |
---|
1207 | res->m[0]=p_One(r); |
---|
1208 | // (**v)[0]=1; is already done |
---|
1209 | } |
---|
1210 | else |
---|
1211 | { |
---|
1212 | for(i=rVar(r);i>0;i--) |
---|
1213 | { |
---|
1214 | e=p_GetExp(f,i,r); |
---|
1215 | if(e!=0) |
---|
1216 | { |
---|
1217 | n--; |
---|
1218 | poly p=p_One(r); |
---|
1219 | p_SetExp(p,i,1,r); |
---|
1220 | p_Setm(p,r); |
---|
1221 | res->m[n]=p; |
---|
1222 | if (with_exps!=1) (**v)[n]=e; |
---|
1223 | } |
---|
1224 | } |
---|
1225 | } |
---|
1226 | p_Delete(&f,r); |
---|
1227 | return res; |
---|
1228 | } |
---|
1229 | //PrintS("S:");pWrite(f);PrintLn(); |
---|
1230 | // use factory/libfac in general ============================== |
---|
1231 | Off(SW_RATIONAL); |
---|
1232 | On(SW_SYMMETRIC_FF); |
---|
1233 | CFFList L; |
---|
1234 | number N=NULL; |
---|
1235 | number NN=NULL; |
---|
1236 | number old_lead_coeff=n_Copy(pGetCoeff(f), r->cf); |
---|
1237 | Variable a; |
---|
1238 | |
---|
1239 | if (!rField_is_Zp(r) && !rField_is_Zp_a(r)) /* Q, Q(a) */ |
---|
1240 | { |
---|
1241 | //if (f!=NULL) // already tested at start of routine |
---|
1242 | number n0=n_Copy(pGetCoeff(f),r->cf); |
---|
1243 | if (with_exps==0 || with_exps==3) |
---|
1244 | N=n_Copy(n0,r->cf); |
---|
1245 | p_Cleardenom(f, r); |
---|
1246 | //after here f should not have a denominator!! |
---|
1247 | //PrintS("S:");p_Write(f,r);PrintLn(); |
---|
1248 | NN=n_Div(n0,pGetCoeff(f),r->cf); |
---|
1249 | n_Delete(&n0,r->cf); |
---|
1250 | if (with_exps==0 || with_exps==3) |
---|
1251 | { |
---|
1252 | n_Delete(&N,r->cf); |
---|
1253 | N=n_Copy(NN,r->cf); |
---|
1254 | } |
---|
1255 | } |
---|
1256 | else if (rField_is_Zp_a(r)) |
---|
1257 | { |
---|
1258 | //if (f!=NULL) // already tested at start of routine |
---|
1259 | if (singclap_factorize_retry==0) |
---|
1260 | { |
---|
1261 | number n0=n_Copy(pGetCoeff(f),r->cf); |
---|
1262 | if (with_exps==0 || with_exps==3) |
---|
1263 | N=n_Copy(n0,r->cf); |
---|
1264 | p_Norm(f,r); |
---|
1265 | p_Cleardenom(f, r); |
---|
1266 | NN=n_Div(n0,pGetCoeff(f),r->cf); |
---|
1267 | n_Delete(&n0,r->cf); |
---|
1268 | if (with_exps==0 || with_exps==3) |
---|
1269 | { |
---|
1270 | n_Delete(&N,r->cf); |
---|
1271 | N=n_Copy(NN,r->cf); |
---|
1272 | } |
---|
1273 | } |
---|
1274 | } |
---|
1275 | if (rField_is_Q(r) || rField_is_Zp(r)) |
---|
1276 | { |
---|
1277 | setCharacteristic( rChar(r) ); |
---|
1278 | CanonicalForm F( convSingPFactoryP( f,r ) ); |
---|
1279 | L = sqrFree( F ); |
---|
1280 | } |
---|
1281 | else if (r->cf->extRing!=NULL) |
---|
1282 | { |
---|
1283 | if (rField_is_Q_a (r)) setCharacteristic (0); |
---|
1284 | else setCharacteristic( rChar(r) ); |
---|
1285 | if (r->cf->extRing->qideal!=NULL) |
---|
1286 | { |
---|
1287 | CanonicalForm mipo=convSingPFactoryP(r->cf->extRing->qideal->m[0], |
---|
1288 | r->cf->extRing); |
---|
1289 | a=rootOf(mipo); |
---|
1290 | CanonicalForm F( convSingAPFactoryAP( f, a, r ) ); |
---|
1291 | L= sqrFree (F); |
---|
1292 | } |
---|
1293 | else |
---|
1294 | { |
---|
1295 | CanonicalForm F( convSingTrPFactoryP( f,r ) ); |
---|
1296 | L = sqrFree( F ); |
---|
1297 | } |
---|
1298 | } |
---|
1299 | #if 0 |
---|
1300 | else if (rField_is_GF()) |
---|
1301 | { |
---|
1302 | int c=rChar(r); |
---|
1303 | setCharacteristic( c, primepower(c) ); |
---|
1304 | CanonicalForm F( convSingGFFactoryGF( f ) ); |
---|
1305 | if (F.isUnivariate()) |
---|
1306 | { |
---|
1307 | L = factorize( F ); |
---|
1308 | } |
---|
1309 | else |
---|
1310 | { |
---|
1311 | goto notImpl; |
---|
1312 | } |
---|
1313 | } |
---|
1314 | #endif |
---|
1315 | else |
---|
1316 | { |
---|
1317 | goto notImpl; |
---|
1318 | } |
---|
1319 | { |
---|
1320 | // convert into ideal |
---|
1321 | int n = L.length(); |
---|
1322 | if (n==0) n=1; |
---|
1323 | CFFListIterator J=L; |
---|
1324 | int j=0; |
---|
1325 | if (with_exps!=1) |
---|
1326 | { |
---|
1327 | if ((with_exps==2)&&(n>1)) |
---|
1328 | { |
---|
1329 | n--; |
---|
1330 | J++; |
---|
1331 | } |
---|
1332 | *v = new intvec( n ); |
---|
1333 | } |
---|
1334 | else if (L.getFirst().factor().inCoeffDomain() && with_exps!=3) |
---|
1335 | { |
---|
1336 | n--; |
---|
1337 | J++; |
---|
1338 | } |
---|
1339 | res = idInit( n ,1); |
---|
1340 | for ( ; J.hasItem(); J++, j++ ) |
---|
1341 | { |
---|
1342 | if (with_exps!=1 && with_exps!=3) (**v)[j] = J.getItem().exp(); |
---|
1343 | if (rField_is_Zp(r) || rField_is_Q(r)) |
---|
1344 | res->m[j] = convFactoryPSingP( J.getItem().factor(),r ); |
---|
1345 | else if (r->cf->extRing!=NULL) /* Q(a), Fp(a) */ |
---|
1346 | { |
---|
1347 | if (r->cf->extRing->qideal==NULL) |
---|
1348 | res->m[j]=convFactoryPSingTrP( J.getItem().factor(),r ); |
---|
1349 | else |
---|
1350 | res->m[j]=convFactoryAPSingAP( J.getItem().factor(),r ); |
---|
1351 | } |
---|
1352 | } |
---|
1353 | if (res->m[0]==NULL) |
---|
1354 | { |
---|
1355 | res->m[0]=p_One(r); |
---|
1356 | } |
---|
1357 | if (N!=NULL) |
---|
1358 | { |
---|
1359 | p_Mult_nn(res->m[0],N,r); |
---|
1360 | n_Delete(&N,r->cf); |
---|
1361 | N=NULL; |
---|
1362 | } |
---|
1363 | } |
---|
1364 | if (r->cf->extRing!=NULL) |
---|
1365 | if (r->cf->extRing->qideal!=NULL) |
---|
1366 | prune (a); |
---|
1367 | if (rField_is_Q_a(r) && (r->cf->extRing->qideal!=NULL)) |
---|
1368 | { |
---|
1369 | int i=IDELEMS(res)-1; |
---|
1370 | int stop=1; |
---|
1371 | if (with_exps!=0 || with_exps==3) stop=0; |
---|
1372 | for(;i>=stop;i--) |
---|
1373 | { |
---|
1374 | p_Norm(res->m[i],r); |
---|
1375 | } |
---|
1376 | if (with_exps==0 || with_exps==3) p_SetCoeff(res->m[0],old_lead_coeff,r); |
---|
1377 | else n_Delete(&old_lead_coeff,r->cf); |
---|
1378 | } |
---|
1379 | else |
---|
1380 | n_Delete(&old_lead_coeff,r->cf); |
---|
1381 | p_Delete(&f,r); |
---|
1382 | errorreported=save_errorreported; |
---|
1383 | notImpl: |
---|
1384 | if (res==NULL) |
---|
1385 | WerrorS( feNotImplemented ); |
---|
1386 | if (NN!=NULL) |
---|
1387 | { |
---|
1388 | n_Delete(&NN,r->cf); |
---|
1389 | } |
---|
1390 | if (N!=NULL) |
---|
1391 | { |
---|
1392 | n_Delete(&N,r->cf); |
---|
1393 | } |
---|
1394 | return res; |
---|
1395 | } |
---|
1396 | |
---|
1397 | matrix singclap_irrCharSeries ( ideal I, const ring r) |
---|
1398 | { |
---|
1399 | if (idIs0(I)) return mpNew(1,1); |
---|
1400 | |
---|
1401 | // for now there is only the possibility to handle polynomials over |
---|
1402 | // Q and Fp ... |
---|
1403 | matrix res=NULL; |
---|
1404 | int i; |
---|
1405 | Off(SW_RATIONAL); |
---|
1406 | On(SW_SYMMETRIC_FF); |
---|
1407 | CFList L; |
---|
1408 | ListCFList LL; |
---|
1409 | if (rField_is_Q(r) || rField_is_Zp(r)) |
---|
1410 | { |
---|
1411 | setCharacteristic( rChar(r) ); |
---|
1412 | for(i=0;i<IDELEMS(I);i++) |
---|
1413 | { |
---|
1414 | poly p=I->m[i]; |
---|
1415 | if (p!=NULL) |
---|
1416 | { |
---|
1417 | p=p_Copy(p,r); |
---|
1418 | p_Cleardenom(p, r); |
---|
1419 | L.append(convSingPFactoryP(p,r)); |
---|
1420 | } |
---|
1421 | } |
---|
1422 | } |
---|
1423 | // and over Q(a) / Fp(a) |
---|
1424 | else if (nCoeff_is_transExt (r->cf)) |
---|
1425 | { |
---|
1426 | setCharacteristic( rChar(r) ); |
---|
1427 | for(i=0;i<IDELEMS(I);i++) |
---|
1428 | { |
---|
1429 | poly p=I->m[i]; |
---|
1430 | if (p!=NULL) |
---|
1431 | { |
---|
1432 | p=p_Copy(p,r); |
---|
1433 | p_Cleardenom(p, r); |
---|
1434 | L.append(convSingTrPFactoryP(p,r)); |
---|
1435 | } |
---|
1436 | } |
---|
1437 | } |
---|
1438 | else |
---|
1439 | { |
---|
1440 | WerrorS( feNotImplemented ); |
---|
1441 | return res; |
---|
1442 | } |
---|
1443 | |
---|
1444 | // a very bad work-around --- FIX IT in libfac |
---|
1445 | // should be fixed as of 2001/6/27 |
---|
1446 | int tries=0; |
---|
1447 | int m,n; |
---|
1448 | ListIterator<CFList> LLi; |
---|
1449 | loop |
---|
1450 | { |
---|
1451 | LL=irrCharSeries(L); |
---|
1452 | m= LL.length(); // Anzahl Zeilen |
---|
1453 | n=0; |
---|
1454 | for ( LLi = LL; LLi.hasItem(); LLi++ ) |
---|
1455 | { |
---|
1456 | n = si_max(LLi.getItem().length(),n); |
---|
1457 | } |
---|
1458 | if ((m!=0) && (n!=0)) break; |
---|
1459 | tries++; |
---|
1460 | if (tries>=5) break; |
---|
1461 | } |
---|
1462 | if ((m==0) || (n==0)) |
---|
1463 | { |
---|
1464 | Warn("char_series returns %d x %d matrix from %d input polys (%d)", |
---|
1465 | m,n,IDELEMS(I)+1,LL.length()); |
---|
1466 | iiWriteMatrix((matrix)I,"I",2,r,0); |
---|
1467 | m=si_max(m,1); |
---|
1468 | n=si_max(n,1); |
---|
1469 | } |
---|
1470 | res=mpNew(m,n); |
---|
1471 | CFListIterator Li; |
---|
1472 | for ( m=1, LLi = LL; LLi.hasItem(); LLi++, m++ ) |
---|
1473 | { |
---|
1474 | for (n=1, Li = LLi.getItem(); Li.hasItem(); Li++, n++) |
---|
1475 | { |
---|
1476 | if (rField_is_Q(r) || rField_is_Zp(r)) |
---|
1477 | MATELEM(res,m,n)=convFactoryPSingP(Li.getItem(),r); |
---|
1478 | else |
---|
1479 | MATELEM(res,m,n)=convFactoryPSingTrP(Li.getItem(),r); |
---|
1480 | } |
---|
1481 | } |
---|
1482 | Off(SW_RATIONAL); |
---|
1483 | return res; |
---|
1484 | } |
---|
1485 | |
---|
1486 | char* singclap_neworder ( ideal I, const ring r) |
---|
1487 | { |
---|
1488 | int i; |
---|
1489 | Off(SW_RATIONAL); |
---|
1490 | On(SW_SYMMETRIC_FF); |
---|
1491 | CFList L; |
---|
1492 | if (rField_is_Q(r) || rField_is_Zp(r)) |
---|
1493 | { |
---|
1494 | setCharacteristic( rChar(r) ); |
---|
1495 | for(i=0;i<IDELEMS(I);i++) |
---|
1496 | { |
---|
1497 | poly p=I->m[i]; |
---|
1498 | if (p!=NULL) |
---|
1499 | { |
---|
1500 | p=p_Copy(p,r); |
---|
1501 | p_Cleardenom(p, r); |
---|
1502 | L.append(convSingPFactoryP(p,r)); |
---|
1503 | } |
---|
1504 | } |
---|
1505 | } |
---|
1506 | // and over Q(a) / Fp(a) |
---|
1507 | else if (nCoeff_is_transExt (r->cf)) |
---|
1508 | { |
---|
1509 | setCharacteristic( rChar(r) ); |
---|
1510 | for(i=0;i<IDELEMS(I);i++) |
---|
1511 | { |
---|
1512 | poly p=I->m[i]; |
---|
1513 | if (p!=NULL) |
---|
1514 | { |
---|
1515 | p=p_Copy(p,r); |
---|
1516 | p_Cleardenom(p, r); |
---|
1517 | L.append(convSingTrPFactoryP(p,r)); |
---|
1518 | } |
---|
1519 | } |
---|
1520 | } |
---|
1521 | else |
---|
1522 | { |
---|
1523 | WerrorS( feNotImplemented ); |
---|
1524 | return NULL; |
---|
1525 | } |
---|
1526 | |
---|
1527 | List<int> IL=neworderint(L); |
---|
1528 | ListIterator<int> Li; |
---|
1529 | StringSetS(""); |
---|
1530 | Li = IL; |
---|
1531 | int offs=rPar(r); |
---|
1532 | int* mark=(int*)omAlloc0((rVar(r)+offs)*sizeof(int)); |
---|
1533 | int cnt=rVar(r)+offs; |
---|
1534 | loop |
---|
1535 | { |
---|
1536 | if(! Li.hasItem()) break; |
---|
1537 | BOOLEAN done=TRUE; |
---|
1538 | i=Li.getItem()-1; |
---|
1539 | mark[i]=1; |
---|
1540 | if (i<offs) |
---|
1541 | { |
---|
1542 | done=FALSE; |
---|
1543 | //StringAppendS(r->parameter[i]); |
---|
1544 | } |
---|
1545 | else |
---|
1546 | { |
---|
1547 | StringAppendS(r->names[i-offs]); |
---|
1548 | } |
---|
1549 | Li++; |
---|
1550 | cnt--; |
---|
1551 | if(cnt==0) break; |
---|
1552 | if (done) StringAppendS(","); |
---|
1553 | } |
---|
1554 | for(i=0;i<rVar(r)+offs;i++) |
---|
1555 | { |
---|
1556 | BOOLEAN done=TRUE; |
---|
1557 | if(mark[i]==0) |
---|
1558 | { |
---|
1559 | if (i<offs) |
---|
1560 | { |
---|
1561 | done=FALSE; |
---|
1562 | //StringAppendS(r->parameter[i]); |
---|
1563 | } |
---|
1564 | else |
---|
1565 | { |
---|
1566 | StringAppendS(r->names[i-offs]); |
---|
1567 | } |
---|
1568 | cnt--; |
---|
1569 | if(cnt==0) break; |
---|
1570 | if (done) StringAppendS(","); |
---|
1571 | } |
---|
1572 | } |
---|
1573 | char * s=StringEndS(); |
---|
1574 | if (s[strlen(s)-1]==',') s[strlen(s)-1]='\0'; |
---|
1575 | return s; |
---|
1576 | } |
---|
1577 | |
---|
1578 | poly singclap_det( const matrix m, const ring s ) |
---|
1579 | { |
---|
1580 | int r=m->rows(); |
---|
1581 | if (r!=m->cols()) |
---|
1582 | { |
---|
1583 | Werror("det of %d x %d matrix",r,m->cols()); |
---|
1584 | return NULL; |
---|
1585 | } |
---|
1586 | poly res=NULL; |
---|
1587 | CFMatrix M(r,r); |
---|
1588 | int i,j; |
---|
1589 | for(i=r;i>0;i--) |
---|
1590 | { |
---|
1591 | for(j=r;j>0;j--) |
---|
1592 | { |
---|
1593 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j),s); |
---|
1594 | } |
---|
1595 | } |
---|
1596 | res= convFactoryPSingP( determinant(M,r),s ) ; |
---|
1597 | Off(SW_RATIONAL); |
---|
1598 | return res; |
---|
1599 | } |
---|
1600 | |
---|
1601 | int singclap_det_i( intvec * m, const ring /*r*/) |
---|
1602 | { |
---|
1603 | // assume( r == currRing ); // Anything else is not guaranted to work! |
---|
1604 | |
---|
1605 | setCharacteristic( 0 ); // ? |
---|
1606 | CFMatrix M(m->rows(),m->cols()); |
---|
1607 | int i,j; |
---|
1608 | for(i=m->rows();i>0;i--) |
---|
1609 | { |
---|
1610 | for(j=m->cols();j>0;j--) |
---|
1611 | { |
---|
1612 | M(i,j)=IMATELEM(*m,i,j); |
---|
1613 | } |
---|
1614 | } |
---|
1615 | int res= convFactoryISingI( determinant(M,m->rows()) ) ; |
---|
1616 | return res; |
---|
1617 | } |
---|
1618 | |
---|
1619 | number singclap_det_bi( bigintmat * m, const coeffs cf) |
---|
1620 | { |
---|
1621 | assume(m->basecoeffs()==cf); |
---|
1622 | CFMatrix M(m->rows(),m->cols()); |
---|
1623 | int i,j; |
---|
1624 | BOOLEAN setchar=TRUE; |
---|
1625 | for(i=m->rows();i>0;i--) |
---|
1626 | { |
---|
1627 | for(j=m->cols();j>0;j--) |
---|
1628 | { |
---|
1629 | M(i,j)=n_convSingNFactoryN(BIMATELEM(*m,i,j),setchar,cf); |
---|
1630 | setchar=FALSE; |
---|
1631 | } |
---|
1632 | } |
---|
1633 | number res=n_convFactoryNSingN( determinant(M,m->rows()),cf ) ; |
---|
1634 | return res; |
---|
1635 | } |
---|
1636 | |
---|
1637 | #ifdef HAVE_NTL |
---|
1638 | #if 1 |
---|
1639 | matrix singntl_HNF(matrix m, const ring s ) |
---|
1640 | { |
---|
1641 | int r=m->rows(); |
---|
1642 | if (r!=m->cols()) |
---|
1643 | { |
---|
1644 | Werror("HNF of %d x %d matrix",r,m->cols()); |
---|
1645 | return NULL; |
---|
1646 | } |
---|
1647 | |
---|
1648 | matrix res=mp_New(r,r); |
---|
1649 | |
---|
1650 | if (rField_is_Q(s)) |
---|
1651 | { |
---|
1652 | |
---|
1653 | CFMatrix M(r,r); |
---|
1654 | int i,j; |
---|
1655 | for(i=r;i>0;i--) |
---|
1656 | { |
---|
1657 | for(j=r;j>0;j--) |
---|
1658 | { |
---|
1659 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j),s ); |
---|
1660 | } |
---|
1661 | } |
---|
1662 | CFMatrix *MM=cf_HNF(M); |
---|
1663 | for(i=r;i>0;i--) |
---|
1664 | { |
---|
1665 | for(j=r;j>0;j--) |
---|
1666 | { |
---|
1667 | MATELEM(res,i,j)=convFactoryPSingP((*MM)(i,j),s); |
---|
1668 | } |
---|
1669 | } |
---|
1670 | delete MM; |
---|
1671 | } |
---|
1672 | return res; |
---|
1673 | } |
---|
1674 | |
---|
1675 | intvec* singntl_HNF(intvec* m) |
---|
1676 | { |
---|
1677 | int r=m->rows(); |
---|
1678 | if (r!=m->cols()) |
---|
1679 | { |
---|
1680 | Werror("HNF of %d x %d matrix",r,m->cols()); |
---|
1681 | return NULL; |
---|
1682 | } |
---|
1683 | setCharacteristic( 0 ); |
---|
1684 | CFMatrix M(r,r); |
---|
1685 | int i,j; |
---|
1686 | for(i=r;i>0;i--) |
---|
1687 | { |
---|
1688 | for(j=r;j>0;j--) |
---|
1689 | { |
---|
1690 | M(i,j)=IMATELEM(*m,i,j); |
---|
1691 | } |
---|
1692 | } |
---|
1693 | CFMatrix *MM=cf_HNF(M); |
---|
1694 | intvec *mm=ivCopy(m); |
---|
1695 | for(i=r;i>0;i--) |
---|
1696 | { |
---|
1697 | for(j=r;j>0;j--) |
---|
1698 | { |
---|
1699 | IMATELEM(*mm,i,j)=convFactoryISingI((*MM)(i,j)); |
---|
1700 | } |
---|
1701 | } |
---|
1702 | delete MM; |
---|
1703 | return mm; |
---|
1704 | } |
---|
1705 | |
---|
1706 | matrix singntl_LLL(matrix m, const ring s ) |
---|
1707 | { |
---|
1708 | int r=m->rows(); |
---|
1709 | int c=m->cols(); |
---|
1710 | matrix res=mp_New(r,c); |
---|
1711 | if (rField_is_Q(s)) |
---|
1712 | { |
---|
1713 | CFMatrix M(r,c); |
---|
1714 | int i,j; |
---|
1715 | for(i=r;i>0;i--) |
---|
1716 | { |
---|
1717 | for(j=c;j>0;j--) |
---|
1718 | { |
---|
1719 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j),s); |
---|
1720 | } |
---|
1721 | } |
---|
1722 | CFMatrix *MM=cf_LLL(M); |
---|
1723 | for(i=r;i>0;i--) |
---|
1724 | { |
---|
1725 | for(j=c;j>0;j--) |
---|
1726 | { |
---|
1727 | MATELEM(res,i,j)=convFactoryPSingP((*MM)(i,j),s); |
---|
1728 | } |
---|
1729 | } |
---|
1730 | delete MM; |
---|
1731 | } |
---|
1732 | return res; |
---|
1733 | } |
---|
1734 | |
---|
1735 | intvec* singntl_LLL(intvec* m) |
---|
1736 | { |
---|
1737 | int r=m->rows(); |
---|
1738 | int c=m->cols(); |
---|
1739 | setCharacteristic( 0 ); |
---|
1740 | CFMatrix M(r,c); |
---|
1741 | int i,j; |
---|
1742 | for(i=r;i>0;i--) |
---|
1743 | { |
---|
1744 | for(j=c;j>0;j--) |
---|
1745 | { |
---|
1746 | M(i,j)=IMATELEM(*m,i,j); |
---|
1747 | } |
---|
1748 | } |
---|
1749 | CFMatrix *MM=cf_LLL(M); |
---|
1750 | intvec *mm=ivCopy(m); |
---|
1751 | for(i=r;i>0;i--) |
---|
1752 | { |
---|
1753 | for(j=c;j>0;j--) |
---|
1754 | { |
---|
1755 | IMATELEM(*mm,i,j)=convFactoryISingI((*MM)(i,j)); |
---|
1756 | } |
---|
1757 | } |
---|
1758 | delete MM; |
---|
1759 | return mm; |
---|
1760 | } |
---|
1761 | |
---|
1762 | ideal singclap_absFactorize ( poly f, ideal & mipos, intvec ** exps, int & numFactors, const ring r) |
---|
1763 | { |
---|
1764 | p_Test(f, r); |
---|
1765 | |
---|
1766 | ideal res=NULL; |
---|
1767 | |
---|
1768 | int offs = rPar(r); |
---|
1769 | if (f==NULL) |
---|
1770 | { |
---|
1771 | res= idInit (1, 1); |
---|
1772 | mipos= idInit (1, 1); |
---|
1773 | mipos->m[0]= convFactoryPSingTrP (Variable (offs), r); //overkill |
---|
1774 | (*exps)=new intvec (1); |
---|
1775 | (**exps)[0]= 1; |
---|
1776 | numFactors= 0; |
---|
1777 | return res; |
---|
1778 | } |
---|
1779 | CanonicalForm F( convSingTrPFactoryP( f, r) ); |
---|
1780 | |
---|
1781 | bool isRat= isOn (SW_RATIONAL); |
---|
1782 | if (!isRat) |
---|
1783 | On (SW_RATIONAL); |
---|
1784 | |
---|
1785 | CFAFList absFactors= absFactorize (F); |
---|
1786 | |
---|
1787 | int n= absFactors.length(); |
---|
1788 | *exps=new intvec (n); |
---|
1789 | |
---|
1790 | res= idInit (n, 1); |
---|
1791 | |
---|
1792 | mipos= idInit (n, 1); |
---|
1793 | |
---|
1794 | Variable x= Variable (offs); |
---|
1795 | Variable alpha; |
---|
1796 | int i= 0; |
---|
1797 | numFactors= 0; |
---|
1798 | int count; |
---|
1799 | CFAFListIterator iter= absFactors; |
---|
1800 | CanonicalForm lead= iter.getItem().factor(); |
---|
1801 | if (iter.getItem().factor().inCoeffDomain()) |
---|
1802 | { |
---|
1803 | i++; |
---|
1804 | iter++; |
---|
1805 | } |
---|
1806 | for (; iter.hasItem(); iter++, i++) |
---|
1807 | { |
---|
1808 | (**exps)[i]= iter.getItem().exp(); |
---|
1809 | alpha= iter.getItem().minpoly().mvar(); |
---|
1810 | if (iter.getItem().minpoly().isOne()) |
---|
1811 | lead /= power (bCommonDen (iter.getItem().factor()), iter.getItem().exp()); |
---|
1812 | else |
---|
1813 | lead /= power (power (bCommonDen (iter.getItem().factor()), degree (iter.getItem().minpoly())), iter.getItem().exp()); |
---|
1814 | res->m[i]= convFactoryPSingTrP (replacevar (iter.getItem().factor()*bCommonDen (iter.getItem().factor()), alpha, x), r); |
---|
1815 | if (iter.getItem().minpoly().isOne()) |
---|
1816 | { |
---|
1817 | count= iter.getItem().exp(); |
---|
1818 | mipos->m[i]= convFactoryPSingTrP (x,r); |
---|
1819 | } |
---|
1820 | else |
---|
1821 | { |
---|
1822 | count= iter.getItem().exp()*degree (iter.getItem().minpoly()); |
---|
1823 | mipos->m[i]= convFactoryPSingTrP (replacevar (iter.getItem().minpoly(), alpha, x), r); |
---|
1824 | } |
---|
1825 | if (!iter.getItem().minpoly().isOne()) |
---|
1826 | prune (alpha); |
---|
1827 | numFactors += count; |
---|
1828 | } |
---|
1829 | if (!isRat) |
---|
1830 | Off (SW_RATIONAL); |
---|
1831 | |
---|
1832 | (**exps)[0]= 1; |
---|
1833 | res->m[0]= convFactoryPSingTrP (lead, r); |
---|
1834 | mipos->m[0]= convFactoryPSingTrP (x, r); |
---|
1835 | return res; |
---|
1836 | } |
---|
1837 | |
---|
1838 | #endif |
---|
1839 | #endif /* HAVE_NTL */ |
---|
1840 | |
---|