1 | // emacs edit mode for this file is -*- C++ -*- |
---|
2 | /**************************************** |
---|
3 | * Computer Algebra System SINGULAR * |
---|
4 | ****************************************/ |
---|
5 | // $Id$ |
---|
6 | /* |
---|
7 | * ABSTRACT: interface between Singular and factory |
---|
8 | */ |
---|
9 | |
---|
10 | //#define FACTORIZE2_DEBUG |
---|
11 | #include "config.h" |
---|
12 | #include <misc/auxiliary.h> |
---|
13 | |
---|
14 | |
---|
15 | TODO(Martin, Please adapt the following code for the use in SW) |
---|
16 | #ifdef HAVE_FACTORY |
---|
17 | |
---|
18 | #define SI_DONT_HAVE_GLOBAL_VARS |
---|
19 | #include <omalloc/omalloc.h> |
---|
20 | #include <coeffs/numbers.h> |
---|
21 | #include <coeffs/coeffs.h> |
---|
22 | |
---|
23 | // #include <kernel/ffields.h> |
---|
24 | // #include <kernel/clapconv.h> |
---|
25 | // #include <libfac/factor.h> |
---|
26 | |
---|
27 | #include <factory/factory.h> |
---|
28 | |
---|
29 | #include "clapsing.h" |
---|
30 | #include "monomials/ring.h" |
---|
31 | #include "simpleideals.h" |
---|
32 | |
---|
33 | |
---|
34 | void out_cf(const char *s1,const CanonicalForm &f,const char *s2); |
---|
35 | |
---|
36 | poly singclap_gcd_r ( poly f, poly g, const ring r ) |
---|
37 | { |
---|
38 | // assume p_Cleardenom is done |
---|
39 | // assume f!=0, g!=0 |
---|
40 | poly res=NULL; |
---|
41 | |
---|
42 | assume(f!=NULL); |
---|
43 | assume(g!=NULL); |
---|
44 | |
---|
45 | if((pNext(f)==NULL) && (pNext(g)==NULL)) |
---|
46 | { |
---|
47 | poly p=pOne(); |
---|
48 | for(int i=rVar(r);i>0;i--) |
---|
49 | p_SetExp(p,i,si_min(p_GetExp(f,i,r),p_GetExp(g,i,r)),r); |
---|
50 | p_Setm(p,r); |
---|
51 | return p; |
---|
52 | } |
---|
53 | |
---|
54 | // for now there is only the possibility to handle polynomials over |
---|
55 | // Q and Fp ... |
---|
56 | Off(SW_RATIONAL); |
---|
57 | if (rField_is_Q(r) || (rField_is_Zp(r))) |
---|
58 | { |
---|
59 | setCharacteristic( n_GetChar(r) ); |
---|
60 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g, r ) ); |
---|
61 | res=convFactoryPSingP( gcd( F, G ) , r); |
---|
62 | } |
---|
63 | // and over Q(a) / Fp(a) |
---|
64 | else if ( rField_is_Extension(r)) |
---|
65 | { |
---|
66 | if ( rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
67 | else setCharacteristic( -n_GetChar(r) ); |
---|
68 | if (r->minpoly!=NULL) |
---|
69 | { |
---|
70 | bool b1=isOn(SW_USE_QGCD); |
---|
71 | bool b2=isOn(SW_USE_fieldGCD); |
---|
72 | if ( rField_is_Q_a() ) On(SW_USE_QGCD); |
---|
73 | else On(SW_USE_fieldGCD); |
---|
74 | CanonicalForm mipo=convSingPFactoryP(((lnumber)r->minpoly)->z, |
---|
75 | r->algring); |
---|
76 | Variable a=rootOf(mipo); |
---|
77 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
78 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
79 | res= convFactoryAPSingAP( gcd( F, G ),currRing ); |
---|
80 | if (!b1) Off(SW_USE_QGCD); |
---|
81 | if (!b2) Off(SW_USE_fieldGCD); |
---|
82 | } |
---|
83 | else |
---|
84 | { |
---|
85 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
86 | res= convFactoryPSingTrP( gcd( F, G ),r ); |
---|
87 | } |
---|
88 | } |
---|
89 | #if 0 |
---|
90 | else if (( n_GetChar(r)>1 )&&(r->parameter!=NULL)) /* GF(q) */ |
---|
91 | { |
---|
92 | int p=rChar(r); |
---|
93 | int n=2; |
---|
94 | int t=p*p; |
---|
95 | while (t!=n_Char(r)) { t*=p;n++; } |
---|
96 | setCharacteristic(p,n,'a'); |
---|
97 | CanonicalForm F( convSingGFFactoryGF( f,r ) ), G( convSingGFFactoryGF( g,r ) ); |
---|
98 | res= convFactoryGFSingGF( gcd( F, G ),r ); |
---|
99 | } |
---|
100 | #endif |
---|
101 | else |
---|
102 | WerrorS( feNotImplemented ); |
---|
103 | |
---|
104 | Off(SW_RATIONAL); |
---|
105 | return res; |
---|
106 | } |
---|
107 | |
---|
108 | poly singclap_gcd ( poly f, poly g ) |
---|
109 | { |
---|
110 | poly res=NULL; |
---|
111 | |
---|
112 | if (f!=NULL) p_Cleardenom(f, currRing); |
---|
113 | if (g!=NULL) p_Cleardenom(g, currRing); |
---|
114 | else return f; // g==0 => gcd=f (but do a p_Cleardenom) |
---|
115 | if (f==NULL) return g; // f==0 => gcd=g (but do a p_Cleardenom) |
---|
116 | |
---|
117 | res=singclap_gcd_r(f,g,currRing); |
---|
118 | pDelete(&f); |
---|
119 | pDelete(&g); |
---|
120 | return res; |
---|
121 | } |
---|
122 | |
---|
123 | /*2 find the maximal exponent of var(i) in poly p*/ |
---|
124 | int pGetExp_Var(poly p, int i) |
---|
125 | { |
---|
126 | int m=0; |
---|
127 | int mm; |
---|
128 | while (p!=NULL) |
---|
129 | { |
---|
130 | mm=pGetExp(p,i); |
---|
131 | if (mm>m) m=mm; |
---|
132 | pIter(p); |
---|
133 | } |
---|
134 | return m; |
---|
135 | } |
---|
136 | |
---|
137 | // destroys f,g,x |
---|
138 | poly singclap_resultant ( poly f, poly g , poly x) |
---|
139 | { |
---|
140 | poly res=NULL; |
---|
141 | int i=pIsPurePower(x); |
---|
142 | if (i==0) |
---|
143 | { |
---|
144 | WerrorS("3rd argument must be a ring variable"); |
---|
145 | goto resultant_returns_res; |
---|
146 | } |
---|
147 | if ((f==NULL) || (g==NULL)) |
---|
148 | goto resultant_returns_res; |
---|
149 | // for now there is only the possibility to handle polynomials over |
---|
150 | // Q and Fp ... |
---|
151 | if (rField_is_Zp() || rField_is_Q()) |
---|
152 | { |
---|
153 | Variable X(i); |
---|
154 | setCharacteristic( nGetChar() ); |
---|
155 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
156 | res=convFactoryPSingP( resultant( F, G, X ) ); |
---|
157 | Off(SW_RATIONAL); |
---|
158 | goto resultant_returns_res; |
---|
159 | } |
---|
160 | // and over Q(a) / Fp(a) |
---|
161 | else if (rField_is_Extension()) |
---|
162 | { |
---|
163 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
164 | else setCharacteristic( -nGetChar() ); |
---|
165 | Variable X(i+rPar(currRing)); |
---|
166 | if (currRing->minpoly!=NULL) |
---|
167 | { |
---|
168 | //Variable X(i); |
---|
169 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
170 | currRing->algring); |
---|
171 | Variable a=rootOf(mipo); |
---|
172 | CanonicalForm F( convSingAPFactoryAP( f,a,currRing ) ), |
---|
173 | G( convSingAPFactoryAP( g,a,currRing ) ); |
---|
174 | res= convFactoryAPSingAP( resultant( F, G, X ),currRing ); |
---|
175 | } |
---|
176 | else |
---|
177 | { |
---|
178 | //Variable X(i+rPar(currRing)); |
---|
179 | number nf,ng; |
---|
180 | p_Cleardenom_n(f, currRing,nf);p_Cleardenom_n(g, currRing,ng); |
---|
181 | int ef,eg; |
---|
182 | ef=pGetExp_Var(f,i); |
---|
183 | eg=pGetExp_Var(g,i); |
---|
184 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
185 | res= convFactoryPSingTrP( resultant( F, G, X ) ); |
---|
186 | if ((nf!=NULL)&&(!nIsOne(nf))&&(!nIsZero(nf))) |
---|
187 | { |
---|
188 | number n=nInvers(nf); |
---|
189 | while(eg>0) |
---|
190 | { |
---|
191 | res=pMult_nn(res,n); |
---|
192 | eg--; |
---|
193 | } |
---|
194 | nDelete(&n); |
---|
195 | } |
---|
196 | nDelete(&nf); |
---|
197 | if ((ng!=NULL)&&(!nIsOne(ng))&&(!nIsZero(ng))) |
---|
198 | { |
---|
199 | number n=nInvers(ng); |
---|
200 | while(ef>0) |
---|
201 | { |
---|
202 | res=pMult_nn(res,n); |
---|
203 | ef--; |
---|
204 | } |
---|
205 | nDelete(&n); |
---|
206 | } |
---|
207 | nDelete(&ng); |
---|
208 | } |
---|
209 | Off(SW_RATIONAL); |
---|
210 | goto resultant_returns_res; |
---|
211 | } |
---|
212 | else |
---|
213 | WerrorS( feNotImplemented ); |
---|
214 | resultant_returns_res: |
---|
215 | pDelete(&f); |
---|
216 | pDelete(&g); |
---|
217 | pDelete(&x); |
---|
218 | return res; |
---|
219 | } |
---|
220 | //poly singclap_resultant ( poly f, poly g , poly x) |
---|
221 | //{ |
---|
222 | // int i=pVar(x); |
---|
223 | // if (i==0) |
---|
224 | // { |
---|
225 | // WerrorS("ringvar expected"); |
---|
226 | // return NULL; |
---|
227 | // } |
---|
228 | // ideal I=idInit(1,1); |
---|
229 | // |
---|
230 | // // get the coeffs von f wrt. x: |
---|
231 | // I->m[0]=pCopy(f); |
---|
232 | // matrix ffi=mpCoeffs(I,i); |
---|
233 | // ffi->rank=1; |
---|
234 | // ffi->ncols=ffi->nrows; |
---|
235 | // ffi->nrows=1; |
---|
236 | // ideal fi=(ideal)ffi; |
---|
237 | // |
---|
238 | // // get the coeffs von g wrt. x: |
---|
239 | // I->m[0]=pCopy(g); |
---|
240 | // matrix ggi=mpCoeffs(I,i); |
---|
241 | // ggi->rank=1; |
---|
242 | // ggi->ncols=ggi->nrows; |
---|
243 | // ggi->nrows=1; |
---|
244 | // ideal gi=(ideal)ggi; |
---|
245 | // |
---|
246 | // // contruct the matrix: |
---|
247 | // int fn=IDELEMS(fi); //= deg(f,x)+1 |
---|
248 | // int gn=IDELEMS(gi); //= deg(g,x)+1 |
---|
249 | // matrix m=mpNew(fn+gn-2,fn+gn-2); |
---|
250 | // if(m==NULL) |
---|
251 | // { |
---|
252 | // return NULL; |
---|
253 | // } |
---|
254 | // |
---|
255 | // // enter the coeffs into m: |
---|
256 | // int j; |
---|
257 | // for(i=0;i<gn-1;i++) |
---|
258 | // { |
---|
259 | // for(j=0;j<fn;j++) |
---|
260 | // { |
---|
261 | // MATELEM(m,i+1,fn-j+i)=pCopy(fi->m[j]); |
---|
262 | // } |
---|
263 | // } |
---|
264 | // for(i=0;i<fn-1;i++) |
---|
265 | // { |
---|
266 | // for(j=0;j<gn;j++) |
---|
267 | // { |
---|
268 | // MATELEM(m,gn+i,gn-j+i)=pCopy(gi->m[j]); |
---|
269 | // } |
---|
270 | // } |
---|
271 | // |
---|
272 | // poly r=mpDet(m); |
---|
273 | // |
---|
274 | // idDelete(&fi); |
---|
275 | // idDelete(&gi); |
---|
276 | // idDelete((ideal *)&m); |
---|
277 | // return r; |
---|
278 | //} |
---|
279 | |
---|
280 | BOOLEAN singclap_extgcd ( poly f, poly g, poly &res, poly &pa, poly &pb ) |
---|
281 | { |
---|
282 | // for now there is only the possibility to handle univariate |
---|
283 | // polynomials over |
---|
284 | // Q and Fp ... |
---|
285 | res=NULL;pa=NULL;pb=NULL; |
---|
286 | On(SW_SYMMETRIC_FF); |
---|
287 | if (rField_is_Zp() || rField_is_Q()) |
---|
288 | { |
---|
289 | setCharacteristic( nGetChar() ); |
---|
290 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
291 | CanonicalForm FpG=F+G; |
---|
292 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
293 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
294 | { |
---|
295 | Off(SW_RATIONAL); |
---|
296 | WerrorS("not univariate"); |
---|
297 | return TRUE; |
---|
298 | } |
---|
299 | CanonicalForm Fa,Gb; |
---|
300 | On(SW_RATIONAL); |
---|
301 | res=convFactoryPSingP( extgcd( F, G, Fa, Gb ) ); |
---|
302 | pa=convFactoryPSingP(Fa); |
---|
303 | pb=convFactoryPSingP(Gb); |
---|
304 | Off(SW_RATIONAL); |
---|
305 | } |
---|
306 | // and over Q(a) / Fp(a) |
---|
307 | else if (rField_is_Extension()) |
---|
308 | { |
---|
309 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
310 | else setCharacteristic( -nGetChar() ); |
---|
311 | CanonicalForm Fa,Gb; |
---|
312 | if (currRing->minpoly!=NULL) |
---|
313 | { |
---|
314 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
315 | currRing->algring); |
---|
316 | Variable a=rootOf(mipo); |
---|
317 | CanonicalForm F( convSingAPFactoryAP( f,a,currRing ) ), |
---|
318 | G( convSingAPFactoryAP( g,a,currRing ) ); |
---|
319 | CanonicalForm FpG=F+G; |
---|
320 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
321 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
322 | { |
---|
323 | WerrorS("not univariate"); |
---|
324 | return TRUE; |
---|
325 | } |
---|
326 | res= convFactoryAPSingAP( extgcd( F, G, Fa, Gb ),currRing ); |
---|
327 | pa=convFactoryAPSingAP(Fa,currRing); |
---|
328 | pb=convFactoryAPSingAP(Gb,currRing); |
---|
329 | } |
---|
330 | else |
---|
331 | { |
---|
332 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
333 | CanonicalForm FpG=F+G; |
---|
334 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
335 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
336 | { |
---|
337 | Off(SW_RATIONAL); |
---|
338 | WerrorS("not univariate"); |
---|
339 | return TRUE; |
---|
340 | } |
---|
341 | res= convFactoryPSingTrP( extgcd( F, G, Fa, Gb ) ); |
---|
342 | pa=convFactoryPSingTrP(Fa); |
---|
343 | pb=convFactoryPSingTrP(Gb); |
---|
344 | } |
---|
345 | Off(SW_RATIONAL); |
---|
346 | } |
---|
347 | else |
---|
348 | { |
---|
349 | WerrorS( feNotImplemented ); |
---|
350 | return TRUE; |
---|
351 | } |
---|
352 | #ifndef NDEBUG |
---|
353 | // checking the result of extgcd: |
---|
354 | poly dummy; |
---|
355 | dummy=pSub(pAdd(pMult(pCopy(f),pCopy(pa)),pMult(pCopy(g),pCopy(pb))),pCopy(res)); |
---|
356 | if (dummy!=NULL) |
---|
357 | { |
---|
358 | PrintS("extgcd( ");pWrite(f);pWrite0(g);PrintS(" )\n"); |
---|
359 | PrintS("gcd, co-factors:");pWrite(res); pWrite(pa);pWrite(pb); |
---|
360 | pDelete(&dummy); |
---|
361 | } |
---|
362 | #endif |
---|
363 | return FALSE; |
---|
364 | } |
---|
365 | |
---|
366 | BOOLEAN singclap_extgcd_r ( poly f, poly g, poly &res, poly &pa, poly &pb, const ring r ) |
---|
367 | { |
---|
368 | // for now there is only the possibility to handle univariate |
---|
369 | // polynomials over |
---|
370 | // Q and Fp ... |
---|
371 | res=NULL;pa=NULL;pb=NULL; |
---|
372 | On(SW_SYMMETRIC_FF); |
---|
373 | if ( rField_is_Q(r) || rField_is_Zp(r) ) |
---|
374 | { |
---|
375 | setCharacteristic( n_GetChar(r) ); |
---|
376 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r) ); |
---|
377 | CanonicalForm FpG=F+G; |
---|
378 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
379 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
380 | { |
---|
381 | Off(SW_RATIONAL); |
---|
382 | WerrorS("not univariate"); |
---|
383 | return TRUE; |
---|
384 | } |
---|
385 | CanonicalForm Fa,Gb; |
---|
386 | On(SW_RATIONAL); |
---|
387 | res=convFactoryPSingP( extgcd( F, G, Fa, Gb ),r ); |
---|
388 | pa=convFactoryPSingP(Fa,r); |
---|
389 | pb=convFactoryPSingP(Gb,r); |
---|
390 | Off(SW_RATIONAL); |
---|
391 | } |
---|
392 | // and over Q(a) / Fp(a) |
---|
393 | else if ( rField_is_Extension(r)) |
---|
394 | { |
---|
395 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
396 | else setCharacteristic( -n_GetChar(r) ); |
---|
397 | CanonicalForm Fa,Gb; |
---|
398 | if (r->minpoly!=NULL) |
---|
399 | { |
---|
400 | CanonicalForm mipo=convSingPFactoryP(((lnumber)r->minpoly)->z, |
---|
401 | r->algring); |
---|
402 | Variable a=rootOf(mipo); |
---|
403 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
404 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
405 | CanonicalForm FpG=F+G; |
---|
406 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
407 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
408 | { |
---|
409 | WerrorS("not univariate"); |
---|
410 | return TRUE; |
---|
411 | } |
---|
412 | res= convFactoryAPSingAP( extgcd( F, G, Fa, Gb ),currRing ); |
---|
413 | pa=convFactoryAPSingAP(Fa,currRing); |
---|
414 | pb=convFactoryAPSingAP(Gb,currRing); |
---|
415 | } |
---|
416 | else |
---|
417 | { |
---|
418 | CanonicalForm F( convSingTrPFactoryP( f, r ) ), G( convSingTrPFactoryP( g, r ) ); |
---|
419 | CanonicalForm FpG=F+G; |
---|
420 | if (!(FpG.isUnivariate()|| FpG.inCoeffDomain())) |
---|
421 | //if (!F.isUnivariate() || !G.isUnivariate() || F.mvar()!=G.mvar()) |
---|
422 | { |
---|
423 | Off(SW_RATIONAL); |
---|
424 | WerrorS("not univariate"); |
---|
425 | return TRUE; |
---|
426 | } |
---|
427 | res= convFactoryPSingTrP( extgcd( F, G, Fa, Gb ), r ); |
---|
428 | pa=convFactoryPSingTrP(Fa, r); |
---|
429 | pb=convFactoryPSingTrP(Gb, r); |
---|
430 | } |
---|
431 | Off(SW_RATIONAL); |
---|
432 | } |
---|
433 | else |
---|
434 | { |
---|
435 | WerrorS( feNotImplemented ); |
---|
436 | return TRUE; |
---|
437 | } |
---|
438 | return FALSE; |
---|
439 | } |
---|
440 | |
---|
441 | poly singclap_pdivide ( poly f, poly g ) |
---|
442 | { |
---|
443 | poly res=NULL; |
---|
444 | On(SW_RATIONAL); |
---|
445 | if (rField_is_Zp() || rField_is_Q()) |
---|
446 | { |
---|
447 | setCharacteristic( nGetChar() ); |
---|
448 | CanonicalForm F( convSingPFactoryP( f ) ), G( convSingPFactoryP( g ) ); |
---|
449 | res = convFactoryPSingP( F / G ); |
---|
450 | } |
---|
451 | else if (rField_is_Extension()) |
---|
452 | { |
---|
453 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
454 | else setCharacteristic( -nGetChar() ); |
---|
455 | if (currRing->minpoly!=NULL) |
---|
456 | { |
---|
457 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
458 | currRing->algring); |
---|
459 | Variable a=rootOf(mipo); |
---|
460 | CanonicalForm F( convSingAPFactoryAP( f,a,currRing ) ), |
---|
461 | G( convSingAPFactoryAP( g,a,currRing ) ); |
---|
462 | res= convFactoryAPSingAP( F / G,currRing ); |
---|
463 | } |
---|
464 | else |
---|
465 | { |
---|
466 | CanonicalForm F( convSingTrPFactoryP( f ) ), G( convSingTrPFactoryP( g ) ); |
---|
467 | res= convFactoryPSingTrP( F / G ); |
---|
468 | } |
---|
469 | } |
---|
470 | #if 0 // not yet working |
---|
471 | else if (rField_is_GF()) |
---|
472 | { |
---|
473 | //Print("GF(%d^%d)\n",nfCharP,nfMinPoly[0]); |
---|
474 | setCharacteristic( nfCharP,nfMinPoly[0], currRing->parameter[0][0] ); |
---|
475 | CanonicalForm F( convSingGFFactoryGF( f ) ), G( convSingGFFactoryGF( g ) ); |
---|
476 | res = convFactoryGFSingGF( F / G ); |
---|
477 | } |
---|
478 | #endif |
---|
479 | else |
---|
480 | WerrorS( feNotImplemented ); |
---|
481 | Off(SW_RATIONAL); |
---|
482 | return res; |
---|
483 | } |
---|
484 | |
---|
485 | poly singclap_pdivide_r ( poly f, poly g, const ring r ) |
---|
486 | { |
---|
487 | poly res=NULL; |
---|
488 | On(SW_RATIONAL); |
---|
489 | if (rField_is_Zp(r) || rField_is_Q(r)) |
---|
490 | { |
---|
491 | setCharacteristic( n_GetChar(r) ); |
---|
492 | CanonicalForm F( convSingPFactoryP( f,r ) ), G( convSingPFactoryP( g,r ) ); |
---|
493 | res = convFactoryPSingP( F / G,r ); |
---|
494 | } |
---|
495 | else if (rField_is_Extension(r)) |
---|
496 | { |
---|
497 | if (rField_is_Q_a(r)) setCharacteristic( 0 ); |
---|
498 | else setCharacteristic( -n_GetChar(r) ); |
---|
499 | if (r->minpoly!=NULL) |
---|
500 | { |
---|
501 | CanonicalForm mipo=convSingPFactoryP(((lnumber)r->minpoly)->z, |
---|
502 | r->algring); |
---|
503 | Variable a=rootOf(mipo); |
---|
504 | CanonicalForm F( convSingAPFactoryAP( f,a,r ) ), |
---|
505 | G( convSingAPFactoryAP( g,a,r ) ); |
---|
506 | res= convFactoryAPSingAP( F / G, r ); |
---|
507 | } |
---|
508 | else |
---|
509 | { |
---|
510 | CanonicalForm F( convSingTrPFactoryP( f,r ) ), G( convSingTrPFactoryP( g,r ) ); |
---|
511 | res= convFactoryPSingTrP( F / G,r ); |
---|
512 | } |
---|
513 | } |
---|
514 | #if 0 // not yet working |
---|
515 | else if (rField_is_GF()) |
---|
516 | { |
---|
517 | //Print("GF(%d^%d)\n",nfCharP,nfMinPoly[0]); |
---|
518 | setCharacteristic( nfCharP,nfMinPoly[0], currRing->parameter[0][0] ); |
---|
519 | CanonicalForm F( convSingGFFactoryGF( f ) ), G( convSingGFFactoryGF( g ) ); |
---|
520 | res = convFactoryGFSingGF( F / G ); |
---|
521 | } |
---|
522 | #endif |
---|
523 | else |
---|
524 | WerrorS( feNotImplemented ); |
---|
525 | Off(SW_RATIONAL); |
---|
526 | return res; |
---|
527 | } |
---|
528 | |
---|
529 | void singclap_divide_content ( poly f ) |
---|
530 | { |
---|
531 | if ( f==NULL ) |
---|
532 | { |
---|
533 | return; |
---|
534 | } |
---|
535 | else if ( pNext( f ) == NULL ) |
---|
536 | { |
---|
537 | pSetCoeff( f, nInit( 1 ) ); |
---|
538 | return; |
---|
539 | } |
---|
540 | else |
---|
541 | { |
---|
542 | if ( rField_is_Q_a() ) |
---|
543 | setCharacteristic( 0 ); |
---|
544 | else if ( rField_is_Zp_a() ) |
---|
545 | setCharacteristic( -nGetChar() ); |
---|
546 | else |
---|
547 | return; /* not implemented*/ |
---|
548 | |
---|
549 | CFList L; |
---|
550 | CanonicalForm g, h; |
---|
551 | poly p = pNext(f); |
---|
552 | |
---|
553 | // first attemp: find 2 smallest g: |
---|
554 | |
---|
555 | number g1=pGetCoeff(f); |
---|
556 | number g2=pGetCoeff(p); // p==pNext(f); |
---|
557 | pIter(p); |
---|
558 | int sz1=nSize(g1); |
---|
559 | int sz2=nSize(g2); |
---|
560 | if (sz1>sz2) |
---|
561 | { |
---|
562 | number gg=g1; |
---|
563 | g1=g2; g2=gg; |
---|
564 | int sz=sz1; |
---|
565 | sz1=sz2; sz2=sz; |
---|
566 | } |
---|
567 | while (p!=NULL) |
---|
568 | { |
---|
569 | int n_sz=nSize(pGetCoeff(p)); |
---|
570 | if (n_sz<sz1) |
---|
571 | { |
---|
572 | sz2=sz1; |
---|
573 | g2=g1; |
---|
574 | g1=pGetCoeff(p); |
---|
575 | sz1=n_sz; |
---|
576 | if (sz1<=3) break; |
---|
577 | } |
---|
578 | else if(n_sz<sz2) |
---|
579 | { |
---|
580 | sz2=n_sz; |
---|
581 | g2=pGetCoeff(p); |
---|
582 | sz2=n_sz; |
---|
583 | } |
---|
584 | pIter(p); |
---|
585 | } |
---|
586 | g = convSingPFactoryP( ((lnumber)g1)->z, currRing->algring ); |
---|
587 | g = gcd( g, convSingPFactoryP( ((lnumber)g2)->z , currRing->algring)); |
---|
588 | |
---|
589 | // second run: gcd's |
---|
590 | |
---|
591 | p = f; |
---|
592 | while ( (p != NULL) && (g != 1) && ( g != 0)) |
---|
593 | { |
---|
594 | h = convSingPFactoryP( ((lnumber)pGetCoeff(p))->z, currRing->algring ); |
---|
595 | pIter( p ); |
---|
596 | |
---|
597 | g = gcd( g, h ); |
---|
598 | |
---|
599 | L.append( h ); |
---|
600 | } |
---|
601 | if (( g == 1 ) || (g == 0)) |
---|
602 | { |
---|
603 | // pTest(f); |
---|
604 | return; |
---|
605 | } |
---|
606 | else |
---|
607 | { |
---|
608 | CFListIterator i; |
---|
609 | for ( i = L, p = f; i.hasItem(); i++, p=pNext(p) ) |
---|
610 | { |
---|
611 | lnumber c=(lnumber)pGetCoeff(p); |
---|
612 | p_Delete(&c->z,currRing->algring); // 2nd arg used to be nacRing |
---|
613 | c->z=convFactoryPSingP( i.getItem() / g, currRing->algring ); |
---|
614 | //nTest((number)c); |
---|
615 | //#ifdef LDEBUG |
---|
616 | //number cn=(number)c; |
---|
617 | //StringSetS(""); nWrite(nt); StringAppend(" ==> "); |
---|
618 | //nWrite(cn);PrintS(StringAppend("\n")); |
---|
619 | //#endif |
---|
620 | } |
---|
621 | } |
---|
622 | // pTest(f); |
---|
623 | } |
---|
624 | } |
---|
625 | |
---|
626 | BOOLEAN count_Factors(ideal I, intvec *v,int j, poly &f, poly fac) |
---|
627 | { |
---|
628 | pTest(f); |
---|
629 | pTest(fac); |
---|
630 | int e=0; |
---|
631 | if (!pIsConstantPoly(fac)) |
---|
632 | { |
---|
633 | #ifdef FACTORIZE2_DEBUG |
---|
634 | printf("start count_Factors(%d), Fdeg=%d, factor deg=%d\n",j,pTotaldegree(f),pTotaldegree(fac)); |
---|
635 | p_wrp(fac,currRing);PrintLn(); |
---|
636 | #endif |
---|
637 | On(SW_RATIONAL); |
---|
638 | CanonicalForm F, FAC,Q,R; |
---|
639 | Variable a; |
---|
640 | if (rField_is_Zp() || rField_is_Q()) |
---|
641 | { |
---|
642 | F=convSingPFactoryP( f ); |
---|
643 | FAC=convSingPFactoryP( fac ); |
---|
644 | } |
---|
645 | else if (rField_is_Extension()) |
---|
646 | { |
---|
647 | if (currRing->minpoly!=NULL) |
---|
648 | { |
---|
649 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
650 | currRing->algring); |
---|
651 | a=rootOf(mipo); |
---|
652 | F=convSingAPFactoryAP( f,a,currRing ); |
---|
653 | FAC=convSingAPFactoryAP( fac,a,currRing ); |
---|
654 | } |
---|
655 | else |
---|
656 | { |
---|
657 | F=convSingTrPFactoryP( f ); |
---|
658 | FAC=convSingTrPFactoryP( fac ); |
---|
659 | } |
---|
660 | } |
---|
661 | else |
---|
662 | WerrorS( feNotImplemented ); |
---|
663 | |
---|
664 | poly q; |
---|
665 | loop |
---|
666 | { |
---|
667 | Q=F; |
---|
668 | Q/=FAC; |
---|
669 | R=Q; |
---|
670 | R*=FAC; |
---|
671 | R-=F; |
---|
672 | if (R.isZero()) |
---|
673 | { |
---|
674 | if (rField_is_Zp() || rField_is_Q()) |
---|
675 | { |
---|
676 | q = convFactoryPSingP( Q ); |
---|
677 | } |
---|
678 | else if (rField_is_Extension()) |
---|
679 | { |
---|
680 | if (currRing->minpoly!=NULL) |
---|
681 | { |
---|
682 | q= convFactoryAPSingAP( Q,currRing ); |
---|
683 | } |
---|
684 | else |
---|
685 | { |
---|
686 | q= convFactoryPSingTrP( Q ); |
---|
687 | } |
---|
688 | } |
---|
689 | e++; pDelete(&f); f=q; q=NULL; F=Q; |
---|
690 | } |
---|
691 | else |
---|
692 | { |
---|
693 | break; |
---|
694 | } |
---|
695 | } |
---|
696 | if (e==0) |
---|
697 | { |
---|
698 | Off(SW_RATIONAL); |
---|
699 | return FALSE; |
---|
700 | } |
---|
701 | } |
---|
702 | else e=1; |
---|
703 | I->m[j]=fac; |
---|
704 | if (v!=NULL) (*v)[j]=e; |
---|
705 | Off(SW_RATIONAL); |
---|
706 | return TRUE; |
---|
707 | } |
---|
708 | |
---|
709 | int singclap_factorize_retry; |
---|
710 | extern int libfac_interruptflag; |
---|
711 | |
---|
712 | ideal singclap_factorize ( poly f, intvec ** v , int with_exps) |
---|
713 | /* destroys f, sets *v */ |
---|
714 | { |
---|
715 | pTest(f); |
---|
716 | #ifdef FACTORIZE2_DEBUG |
---|
717 | printf("singclap_factorize, degree %ld\n",pTotaldegree(f)); |
---|
718 | #endif |
---|
719 | // with_exps: 3,1 return only true factors, no exponents |
---|
720 | // 2 return true factors and exponents |
---|
721 | // 0 return coeff, factors and exponents |
---|
722 | BOOLEAN save_errorreported=errorreported; |
---|
723 | |
---|
724 | ideal res=NULL; |
---|
725 | |
---|
726 | // handle factorize(0) ========================================= |
---|
727 | if (f==NULL) |
---|
728 | { |
---|
729 | res=idInit(1,1); |
---|
730 | if (with_exps!=1) |
---|
731 | { |
---|
732 | (*v)=new intvec(1); |
---|
733 | (**v)[0]=1; |
---|
734 | } |
---|
735 | return res; |
---|
736 | } |
---|
737 | // handle factorize(mon) ========================================= |
---|
738 | if (pNext(f)==NULL) |
---|
739 | { |
---|
740 | int i=0; |
---|
741 | int n=0; |
---|
742 | int e; |
---|
743 | for(i=pVariables;i>0;i--) if(pGetExp(f,i)!=0) n++; |
---|
744 | if (with_exps==0) n++; // with coeff |
---|
745 | res=idInit(si_max(n,1),1); |
---|
746 | switch(with_exps) |
---|
747 | { |
---|
748 | case 0: // with coef & exp. |
---|
749 | res->m[0]=pNSet(nCopy(pGetCoeff(f))); |
---|
750 | // no break |
---|
751 | case 2: // with exp. |
---|
752 | (*v)=new intvec(si_max(1,n)); |
---|
753 | (**v)[0]=1; |
---|
754 | // no break |
---|
755 | case 1: ; |
---|
756 | #ifdef TEST |
---|
757 | default: ; |
---|
758 | #endif |
---|
759 | } |
---|
760 | if (n==0) |
---|
761 | { |
---|
762 | res->m[0]=pOne(); |
---|
763 | // (**v)[0]=1; is already done |
---|
764 | } |
---|
765 | else |
---|
766 | { |
---|
767 | for(i=pVariables;i>0;i--) |
---|
768 | { |
---|
769 | e=pGetExp(f,i); |
---|
770 | if(e!=0) |
---|
771 | { |
---|
772 | n--; |
---|
773 | poly p=pOne(); |
---|
774 | pSetExp(p,i,1); |
---|
775 | pSetm(p); |
---|
776 | res->m[n]=p; |
---|
777 | if (with_exps!=1) (**v)[n]=e; |
---|
778 | } |
---|
779 | } |
---|
780 | } |
---|
781 | pDelete(&f); |
---|
782 | return res; |
---|
783 | } |
---|
784 | //PrintS("S:");pWrite(f);PrintLn(); |
---|
785 | // use factory/libfac in general ============================== |
---|
786 | Off(SW_RATIONAL); |
---|
787 | On(SW_SYMMETRIC_FF); |
---|
788 | #ifdef HAVE_NTL |
---|
789 | extern int prime_number; |
---|
790 | if(rField_is_Q()) prime_number=0; |
---|
791 | #endif |
---|
792 | CFFList L; |
---|
793 | number N=NULL; |
---|
794 | number NN=NULL; |
---|
795 | number old_lead_coeff=nCopy(pGetCoeff(f)); |
---|
796 | |
---|
797 | if (!rField_is_Zp() && !rField_is_Zp_a()) /* Q, Q(a) */ |
---|
798 | { |
---|
799 | //if (f!=NULL) // already tested at start of routine |
---|
800 | { |
---|
801 | number n0=nCopy(pGetCoeff(f)); |
---|
802 | if (with_exps==0) |
---|
803 | N=nCopy(n0); |
---|
804 | p_Cleardenom(f, currRing); |
---|
805 | NN=nDiv(n0,pGetCoeff(f)); |
---|
806 | nDelete(&n0); |
---|
807 | if (with_exps==0) |
---|
808 | { |
---|
809 | nDelete(&N); |
---|
810 | N=nCopy(NN); |
---|
811 | } |
---|
812 | } |
---|
813 | } |
---|
814 | else if (rField_is_Zp_a()) |
---|
815 | { |
---|
816 | //if (f!=NULL) // already tested at start of routine |
---|
817 | if (singclap_factorize_retry==0) |
---|
818 | { |
---|
819 | number n0=nCopy(pGetCoeff(f)); |
---|
820 | if (with_exps==0) |
---|
821 | N=nCopy(n0); |
---|
822 | pNorm(f); |
---|
823 | p_Cleardenom(f, currRing); |
---|
824 | NN=nDiv(n0,pGetCoeff(f)); |
---|
825 | nDelete(&n0); |
---|
826 | if (with_exps==0) |
---|
827 | { |
---|
828 | nDelete(&N); |
---|
829 | N=nCopy(NN); |
---|
830 | } |
---|
831 | } |
---|
832 | } |
---|
833 | if (rField_is_Q() || rField_is_Zp()) |
---|
834 | { |
---|
835 | setCharacteristic( nGetChar() ); |
---|
836 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
837 | L = factorize( F ); |
---|
838 | } |
---|
839 | #if 0 |
---|
840 | else if (rField_is_GF()) |
---|
841 | { |
---|
842 | int c=rChar(currRing); |
---|
843 | setCharacteristic( c, primepower(c) ); |
---|
844 | CanonicalForm F( convSingGFFactoryGF( f ) ); |
---|
845 | if (F.isUnivariate()) |
---|
846 | { |
---|
847 | L = factorize( F ); |
---|
848 | } |
---|
849 | else |
---|
850 | { |
---|
851 | goto notImpl; |
---|
852 | } |
---|
853 | } |
---|
854 | #endif |
---|
855 | // and over Q(a) / Fp(a) |
---|
856 | else if (rField_is_Extension()) |
---|
857 | { |
---|
858 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
859 | else setCharacteristic( -nGetChar() ); |
---|
860 | if (currRing->minpoly!=NULL) |
---|
861 | { |
---|
862 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
863 | currRing->algring); |
---|
864 | Variable a=rootOf(mipo); |
---|
865 | CanonicalForm F( convSingAPFactoryAP( f,a,currRing ) ); |
---|
866 | if (rField_is_Zp_a()) |
---|
867 | { |
---|
868 | L = factorize( F, a ); |
---|
869 | } |
---|
870 | else |
---|
871 | { |
---|
872 | // over Q(a) |
---|
873 | L= factorize (F, a); |
---|
874 | } |
---|
875 | } |
---|
876 | else |
---|
877 | { |
---|
878 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
879 | L = factorize( F ); |
---|
880 | } |
---|
881 | } |
---|
882 | else |
---|
883 | { |
---|
884 | goto notImpl; |
---|
885 | } |
---|
886 | { |
---|
887 | poly ff=pCopy(f); // a copy for the retry stuff |
---|
888 | // the first factor should be a constant |
---|
889 | if ( ! L.getFirst().factor().inCoeffDomain() ) |
---|
890 | L.insert(CFFactor(1,1)); |
---|
891 | // convert into ideal |
---|
892 | int n = L.length(); |
---|
893 | if (n==0) n=1; |
---|
894 | CFFListIterator J=L; |
---|
895 | int j=0; |
---|
896 | if (with_exps!=1) |
---|
897 | { |
---|
898 | if ((with_exps==2)&&(n>1)) |
---|
899 | { |
---|
900 | n--; |
---|
901 | J++; |
---|
902 | } |
---|
903 | *v = new intvec( n ); |
---|
904 | } |
---|
905 | res = idInit( n ,1); |
---|
906 | for ( ; J.hasItem(); J++, j++ ) |
---|
907 | { |
---|
908 | if (with_exps!=1) (**v)[j] = J.getItem().exp(); |
---|
909 | if (rField_is_Zp() || rField_is_Q()) /* Q, Fp */ |
---|
910 | { |
---|
911 | //count_Factors(res,*v,f, j, convFactoryPSingP( J.getItem().factor() ); |
---|
912 | res->m[j] = convFactoryPSingP( J.getItem().factor() ); |
---|
913 | } |
---|
914 | #if 0 |
---|
915 | else if (rField_is_GF()) |
---|
916 | res->m[j] = convFactoryGFSingGF( J.getItem().factor() ); |
---|
917 | #endif |
---|
918 | else if (rField_is_Extension()) /* Q(a), Fp(a) */ |
---|
919 | { |
---|
920 | intvec *w=NULL; |
---|
921 | if (v!=NULL) w=*v; |
---|
922 | if (currRing->minpoly==NULL) |
---|
923 | { |
---|
924 | if(!count_Factors(res,w,j,ff,convFactoryPSingTrP( J.getItem().factor() ))) |
---|
925 | { |
---|
926 | if (w!=NULL) |
---|
927 | (*w)[j]=1; |
---|
928 | res->m[j]=pOne(); |
---|
929 | } |
---|
930 | } |
---|
931 | else |
---|
932 | { |
---|
933 | if (!count_Factors(res,w,j,ff,convFactoryAPSingAP( J.getItem().factor(),currRing ))) |
---|
934 | { |
---|
935 | if (w!=NULL) |
---|
936 | (*w)[j]=1; |
---|
937 | res->m[j]=pOne(); |
---|
938 | } |
---|
939 | } |
---|
940 | } |
---|
941 | } |
---|
942 | if (rField_is_Extension() && (!pIsConstantPoly(ff))) |
---|
943 | { |
---|
944 | singclap_factorize_retry++; |
---|
945 | if (singclap_factorize_retry<3) |
---|
946 | { |
---|
947 | int jj; |
---|
948 | #ifdef FACTORIZE2_DEBUG |
---|
949 | printf("factorize_retry\n"); |
---|
950 | #endif |
---|
951 | intvec *ww=NULL; |
---|
952 | idTest(res); |
---|
953 | ideal h=singclap_factorize ( ff, &ww , with_exps); |
---|
954 | idTest(h); |
---|
955 | int l=(*v)->length(); |
---|
956 | (*v)->resize(l+ww->length()); |
---|
957 | for(jj=0;jj<ww->length();jj++) |
---|
958 | (**v)[jj+l]=(*ww)[jj]; |
---|
959 | delete ww; |
---|
960 | ideal hh=idInit(IDELEMS(res)+IDELEMS(h),1); |
---|
961 | for(jj=IDELEMS(res)-1;jj>=0;jj--) |
---|
962 | { |
---|
963 | hh->m[jj]=res->m[jj]; |
---|
964 | res->m[jj]=NULL; |
---|
965 | } |
---|
966 | for(jj=IDELEMS(h)-1;jj>=0;jj--) |
---|
967 | { |
---|
968 | hh->m[jj+IDELEMS(res)]=h->m[jj]; |
---|
969 | h->m[jj]=NULL; |
---|
970 | } |
---|
971 | idDelete(&res); |
---|
972 | idDelete(&h); |
---|
973 | res=hh; |
---|
974 | idTest(res); |
---|
975 | ff=NULL; |
---|
976 | } |
---|
977 | else |
---|
978 | { |
---|
979 | WarnS("problem with factorize"); |
---|
980 | #if 0 |
---|
981 | pWrite(ff); |
---|
982 | idShow(res); |
---|
983 | #endif |
---|
984 | idDelete(&res); |
---|
985 | res=idInit(2,1); |
---|
986 | res->m[0]=pOne(); |
---|
987 | res->m[1]=ff; ff=NULL; |
---|
988 | } |
---|
989 | } |
---|
990 | pDelete(&ff); |
---|
991 | if (N!=NULL) |
---|
992 | { |
---|
993 | pMult_nn(res->m[0],N); |
---|
994 | nDelete(&N); |
---|
995 | N=NULL; |
---|
996 | } |
---|
997 | // delete constants |
---|
998 | if (res!=NULL) |
---|
999 | { |
---|
1000 | int i=IDELEMS(res)-1; |
---|
1001 | int j=0; |
---|
1002 | for(;i>=0;i--) |
---|
1003 | { |
---|
1004 | if ((res->m[i]!=NULL) |
---|
1005 | && (pNext(res->m[i])==NULL) |
---|
1006 | && (pIsConstant(res->m[i]))) |
---|
1007 | { |
---|
1008 | if (with_exps!=0) |
---|
1009 | { |
---|
1010 | pDelete(&(res->m[i])); |
---|
1011 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1012 | (**v)[i]=0; |
---|
1013 | j++; |
---|
1014 | } |
---|
1015 | else if (i!=0) |
---|
1016 | { |
---|
1017 | while ((v!=NULL) && ((*v)!=NULL) && ((**v)[i]>1)) |
---|
1018 | { |
---|
1019 | res->m[0]=pMult(res->m[0],pCopy(res->m[i])); |
---|
1020 | (**v)[i]--; |
---|
1021 | } |
---|
1022 | res->m[0]=pMult(res->m[0],res->m[i]); |
---|
1023 | res->m[i]=NULL; |
---|
1024 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1025 | (**v)[i]=1; |
---|
1026 | j++; |
---|
1027 | } |
---|
1028 | } |
---|
1029 | } |
---|
1030 | if (j>0) |
---|
1031 | { |
---|
1032 | idSkipZeroes(res); |
---|
1033 | if ((v!=NULL) && ((*v)!=NULL)) |
---|
1034 | { |
---|
1035 | intvec *w=*v; |
---|
1036 | int len=IDELEMS(res); |
---|
1037 | *v = new intvec( len ); |
---|
1038 | for (i=0,j=0;i<si_min(w->length(),len);i++) |
---|
1039 | { |
---|
1040 | if((*w)[i]!=0) |
---|
1041 | { |
---|
1042 | (**v)[j]=(*w)[i]; j++; |
---|
1043 | } |
---|
1044 | } |
---|
1045 | delete w; |
---|
1046 | } |
---|
1047 | } |
---|
1048 | if (res->m[0]==NULL) |
---|
1049 | { |
---|
1050 | res->m[0]=pOne(); |
---|
1051 | } |
---|
1052 | } |
---|
1053 | } |
---|
1054 | if (rField_is_Q_a() && (currRing->minpoly!=NULL)) |
---|
1055 | { |
---|
1056 | int i=IDELEMS(res)-1; |
---|
1057 | int stop=1; |
---|
1058 | if (with_exps!=0) stop=0; |
---|
1059 | for(;i>=stop;i--) |
---|
1060 | { |
---|
1061 | pNorm(res->m[i]); |
---|
1062 | } |
---|
1063 | if (with_exps==0) pSetCoeff(res->m[0],old_lead_coeff); |
---|
1064 | else nDelete(&old_lead_coeff); |
---|
1065 | } |
---|
1066 | else |
---|
1067 | nDelete(&old_lead_coeff); |
---|
1068 | errorreported=save_errorreported; |
---|
1069 | notImpl: |
---|
1070 | if (res==NULL) |
---|
1071 | WerrorS( feNotImplemented ); |
---|
1072 | if (NN!=NULL) |
---|
1073 | { |
---|
1074 | nDelete(&NN); |
---|
1075 | } |
---|
1076 | if (N!=NULL) |
---|
1077 | { |
---|
1078 | nDelete(&N); |
---|
1079 | } |
---|
1080 | if (f!=NULL) pDelete(&f); |
---|
1081 | //PrintS("......S\n"); |
---|
1082 | return res; |
---|
1083 | } |
---|
1084 | ideal singclap_sqrfree ( poly f) |
---|
1085 | { |
---|
1086 | pTest(f); |
---|
1087 | #ifdef FACTORIZE2_DEBUG |
---|
1088 | printf("singclap_sqrfree, degree %d\n",pTotaldegree(f)); |
---|
1089 | #endif |
---|
1090 | // with_exps: 3,1 return only true factors, no exponents |
---|
1091 | // 2 return true factors and exponents |
---|
1092 | // 0 return coeff, factors and exponents |
---|
1093 | BOOLEAN save_errorreported=errorreported; |
---|
1094 | |
---|
1095 | ideal res=NULL; |
---|
1096 | |
---|
1097 | // handle factorize(0) ========================================= |
---|
1098 | if (f==NULL) |
---|
1099 | { |
---|
1100 | res=idInit(1,1); |
---|
1101 | return res; |
---|
1102 | } |
---|
1103 | // handle factorize(mon) ========================================= |
---|
1104 | if (pNext(f)==NULL) |
---|
1105 | { |
---|
1106 | int i=0; |
---|
1107 | int n=0; |
---|
1108 | int e; |
---|
1109 | for(i=pVariables;i>0;i--) if(pGetExp(f,i)!=0) n++; |
---|
1110 | n++; // with coeff |
---|
1111 | res=idInit(si_max(n,1),1); |
---|
1112 | res->m[0]=pNSet(nCopy(pGetCoeff(f))); |
---|
1113 | if (n==0) |
---|
1114 | { |
---|
1115 | res->m[0]=pOne(); |
---|
1116 | // (**v)[0]=1; is already done |
---|
1117 | return res; |
---|
1118 | } |
---|
1119 | for(i=pVariables;i>0;i--) |
---|
1120 | { |
---|
1121 | e=pGetExp(f,i); |
---|
1122 | if(e!=0) |
---|
1123 | { |
---|
1124 | n--; |
---|
1125 | poly p=pOne(); |
---|
1126 | pSetExp(p,i,1); |
---|
1127 | pSetm(p); |
---|
1128 | res->m[n]=p; |
---|
1129 | } |
---|
1130 | } |
---|
1131 | return res; |
---|
1132 | } |
---|
1133 | //PrintS("S:");pWrite(f);PrintLn(); |
---|
1134 | // use factory/libfac in general ============================== |
---|
1135 | Off(SW_RATIONAL); |
---|
1136 | On(SW_SYMMETRIC_FF); |
---|
1137 | #ifdef HAVE_NTL |
---|
1138 | extern int prime_number; |
---|
1139 | if(rField_is_Q()) prime_number=0; |
---|
1140 | #endif |
---|
1141 | CFFList L; |
---|
1142 | |
---|
1143 | if (!rField_is_Zp() && !rField_is_Zp_a()) /* Q, Q(a) */ |
---|
1144 | { |
---|
1145 | //if (f!=NULL) // already tested at start of routine |
---|
1146 | { |
---|
1147 | p_Cleardenom(f, currRing); |
---|
1148 | } |
---|
1149 | } |
---|
1150 | else if (rField_is_Zp_a()) |
---|
1151 | { |
---|
1152 | //if (f!=NULL) // already tested at start of routine |
---|
1153 | if (singclap_factorize_retry==0) |
---|
1154 | { |
---|
1155 | pNorm(f); |
---|
1156 | p_Cleardenom(f, currRing); |
---|
1157 | } |
---|
1158 | } |
---|
1159 | if (rField_is_Q() || rField_is_Zp()) |
---|
1160 | { |
---|
1161 | setCharacteristic( nGetChar() ); |
---|
1162 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
1163 | L = sqrFree( F ); |
---|
1164 | } |
---|
1165 | #if 0 |
---|
1166 | else if (rField_is_GF()) |
---|
1167 | { |
---|
1168 | int c=rChar(currRing); |
---|
1169 | setCharacteristic( c, primepower(c) ); |
---|
1170 | CanonicalForm F( convSingGFFactoryGF( f ) ); |
---|
1171 | if (F.isUnivariate()) |
---|
1172 | { |
---|
1173 | L = factorize( F ); |
---|
1174 | } |
---|
1175 | else |
---|
1176 | { |
---|
1177 | goto notImpl; |
---|
1178 | } |
---|
1179 | } |
---|
1180 | #endif |
---|
1181 | // and over Q(a) / Fp(a) |
---|
1182 | else if (rField_is_Extension()) |
---|
1183 | { |
---|
1184 | if (rField_is_Q_a()) setCharacteristic( 0 ); |
---|
1185 | else setCharacteristic( -nGetChar() ); |
---|
1186 | if (currRing->minpoly!=NULL) |
---|
1187 | { |
---|
1188 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1189 | currRing->algring); |
---|
1190 | Variable a=rootOf(mipo); |
---|
1191 | CanonicalForm F( convSingAPFactoryAP( f,a,currRing ) ); |
---|
1192 | CFFList SqrFreeMV( const CanonicalForm & f , const CanonicalForm & mipo=0) ; |
---|
1193 | |
---|
1194 | L = SqrFreeMV( F,mipo ); |
---|
1195 | //WarnS("L = sqrFree( F,mipo );"); |
---|
1196 | //L = sqrFree( F ); |
---|
1197 | } |
---|
1198 | else |
---|
1199 | { |
---|
1200 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
1201 | L = sqrFree( F ); |
---|
1202 | } |
---|
1203 | } |
---|
1204 | else |
---|
1205 | { |
---|
1206 | goto notImpl; |
---|
1207 | } |
---|
1208 | { |
---|
1209 | // convert into ideal |
---|
1210 | int n = L.length(); |
---|
1211 | if (n==0) n=1; |
---|
1212 | CFFListIterator J=L; |
---|
1213 | int j=0; |
---|
1214 | res = idInit( n ,1); |
---|
1215 | for ( ; J.hasItem(); J++, j++ ) |
---|
1216 | { |
---|
1217 | if (rField_is_Zp() || rField_is_Q()) /* Q, Fp */ |
---|
1218 | //count_Factors(res,*v,f, j, convFactoryPSingP( J.getItem().factor() ); |
---|
1219 | res->m[j] = convFactoryPSingP( J.getItem().factor() ); |
---|
1220 | #if 0 |
---|
1221 | else if (rField_is_GF()) |
---|
1222 | res->m[j] = convFactoryGFSingGF( J.getItem().factor() ); |
---|
1223 | #endif |
---|
1224 | else if (rField_is_Extension()) /* Q(a), Fp(a) */ |
---|
1225 | { |
---|
1226 | if (currRing->minpoly==NULL) |
---|
1227 | res->m[j]=convFactoryPSingTrP( J.getItem().factor() ); |
---|
1228 | else |
---|
1229 | res->m[j]=convFactoryAPSingAP( J.getItem().factor(),currRing ); |
---|
1230 | } |
---|
1231 | } |
---|
1232 | if (res->m[0]==NULL) |
---|
1233 | { |
---|
1234 | res->m[0]=pOne(); |
---|
1235 | } |
---|
1236 | } |
---|
1237 | pDelete(&f); |
---|
1238 | errorreported=save_errorreported; |
---|
1239 | notImpl: |
---|
1240 | if (res==NULL) |
---|
1241 | WerrorS( feNotImplemented ); |
---|
1242 | return res; |
---|
1243 | } |
---|
1244 | matrix singclap_irrCharSeries ( ideal I) |
---|
1245 | { |
---|
1246 | if (idIs0(I)) return mpNew(1,1); |
---|
1247 | |
---|
1248 | // for now there is only the possibility to handle polynomials over |
---|
1249 | // Q and Fp ... |
---|
1250 | matrix res=NULL; |
---|
1251 | int i; |
---|
1252 | Off(SW_RATIONAL); |
---|
1253 | On(SW_SYMMETRIC_FF); |
---|
1254 | CFList L; |
---|
1255 | ListCFList LL; |
---|
1256 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1257 | && (currRing->parameter==NULL)) |
---|
1258 | { |
---|
1259 | setCharacteristic( nGetChar() ); |
---|
1260 | for(i=0;i<IDELEMS(I);i++) |
---|
1261 | { |
---|
1262 | poly p=I->m[i]; |
---|
1263 | if (p!=NULL) |
---|
1264 | { |
---|
1265 | p=pCopy(p); |
---|
1266 | p_Cleardenom(p, currRing); |
---|
1267 | L.append(convSingPFactoryP(p)); |
---|
1268 | } |
---|
1269 | } |
---|
1270 | } |
---|
1271 | // and over Q(a) / Fp(a) |
---|
1272 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1273 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1274 | { |
---|
1275 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1276 | else setCharacteristic( -nGetChar() ); |
---|
1277 | for(i=0;i<IDELEMS(I);i++) |
---|
1278 | { |
---|
1279 | poly p=I->m[i]; |
---|
1280 | if (p!=NULL) |
---|
1281 | { |
---|
1282 | p=pCopy(p); |
---|
1283 | p_Cleardenom(p, currRing); |
---|
1284 | L.append(convSingTrPFactoryP(p)); |
---|
1285 | } |
---|
1286 | } |
---|
1287 | } |
---|
1288 | else |
---|
1289 | { |
---|
1290 | WerrorS( feNotImplemented ); |
---|
1291 | return res; |
---|
1292 | } |
---|
1293 | |
---|
1294 | // a very bad work-around --- FIX IT in libfac |
---|
1295 | // should be fixed as of 2001/6/27 |
---|
1296 | int tries=0; |
---|
1297 | int m,n; |
---|
1298 | ListIterator<CFList> LLi; |
---|
1299 | loop |
---|
1300 | { |
---|
1301 | LL=IrrCharSeries(L); |
---|
1302 | m= LL.length(); // Anzahl Zeilen |
---|
1303 | n=0; |
---|
1304 | for ( LLi = LL; LLi.hasItem(); LLi++ ) |
---|
1305 | { |
---|
1306 | n = si_max(LLi.getItem().length(),n); |
---|
1307 | } |
---|
1308 | if ((m!=0) && (n!=0)) break; |
---|
1309 | tries++; |
---|
1310 | if (tries>=5) break; |
---|
1311 | } |
---|
1312 | if ((m==0) || (n==0)) |
---|
1313 | { |
---|
1314 | Warn("char_series returns %d x %d matrix from %d input polys (%d)", |
---|
1315 | m,n,IDELEMS(I)+1,LL.length()); |
---|
1316 | iiWriteMatrix((matrix)I,"I",2,0); |
---|
1317 | m=si_max(m,1); |
---|
1318 | n=si_max(n,1); |
---|
1319 | } |
---|
1320 | res=mpNew(m,n); |
---|
1321 | CFListIterator Li; |
---|
1322 | for ( m=1, LLi = LL; LLi.hasItem(); LLi++, m++ ) |
---|
1323 | { |
---|
1324 | for (n=1, Li = LLi.getItem(); Li.hasItem(); Li++, n++) |
---|
1325 | { |
---|
1326 | if ( (nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1327 | MATELEM(res,m,n)=convFactoryPSingP(Li.getItem()); |
---|
1328 | else |
---|
1329 | MATELEM(res,m,n)=convFactoryPSingTrP(Li.getItem()); |
---|
1330 | } |
---|
1331 | } |
---|
1332 | Off(SW_RATIONAL); |
---|
1333 | return res; |
---|
1334 | } |
---|
1335 | |
---|
1336 | char* singclap_neworder ( ideal I) |
---|
1337 | { |
---|
1338 | int i; |
---|
1339 | Off(SW_RATIONAL); |
---|
1340 | On(SW_SYMMETRIC_FF); |
---|
1341 | CFList L; |
---|
1342 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1343 | && (currRing->parameter==NULL)) |
---|
1344 | { |
---|
1345 | setCharacteristic( nGetChar() ); |
---|
1346 | for(i=0;i<IDELEMS(I);i++) |
---|
1347 | { |
---|
1348 | L.append(convSingPFactoryP(I->m[i])); |
---|
1349 | } |
---|
1350 | } |
---|
1351 | // and over Q(a) / Fp(a) |
---|
1352 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1353 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1354 | { |
---|
1355 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1356 | else setCharacteristic( -nGetChar() ); |
---|
1357 | for(i=0;i<IDELEMS(I);i++) |
---|
1358 | { |
---|
1359 | L.append(convSingTrPFactoryP(I->m[i])); |
---|
1360 | } |
---|
1361 | } |
---|
1362 | else |
---|
1363 | { |
---|
1364 | WerrorS( feNotImplemented ); |
---|
1365 | return NULL; |
---|
1366 | } |
---|
1367 | |
---|
1368 | List<int> IL=neworderint(L); |
---|
1369 | ListIterator<int> Li; |
---|
1370 | StringSetS(""); |
---|
1371 | Li = IL; |
---|
1372 | int offs=rPar(currRing); |
---|
1373 | int* mark=(int*)omAlloc0((pVariables+offs)*sizeof(int)); |
---|
1374 | int cnt=pVariables+offs; |
---|
1375 | loop |
---|
1376 | { |
---|
1377 | if(! Li.hasItem()) break; |
---|
1378 | BOOLEAN done=TRUE; |
---|
1379 | i=Li.getItem()-1; |
---|
1380 | mark[i]=1; |
---|
1381 | if (i<offs) |
---|
1382 | { |
---|
1383 | done=FALSE; |
---|
1384 | //StringAppendS(currRing->parameter[i]); |
---|
1385 | } |
---|
1386 | else |
---|
1387 | { |
---|
1388 | StringAppendS(currRing->names[i-offs]); |
---|
1389 | } |
---|
1390 | Li++; |
---|
1391 | cnt--; |
---|
1392 | if(cnt==0) break; |
---|
1393 | if (done) StringAppendS(","); |
---|
1394 | } |
---|
1395 | for(i=0;i<pVariables+offs;i++) |
---|
1396 | { |
---|
1397 | BOOLEAN done=TRUE; |
---|
1398 | if(mark[i]==0) |
---|
1399 | { |
---|
1400 | if (i<offs) |
---|
1401 | { |
---|
1402 | done=FALSE; |
---|
1403 | //StringAppendS(currRing->parameter[i]); |
---|
1404 | } |
---|
1405 | else |
---|
1406 | { |
---|
1407 | StringAppendS(currRing->names[i-offs]); |
---|
1408 | } |
---|
1409 | cnt--; |
---|
1410 | if(cnt==0) break; |
---|
1411 | if (done) StringAppendS(","); |
---|
1412 | } |
---|
1413 | } |
---|
1414 | char * s=omStrDup(StringAppendS("")); |
---|
1415 | if (s[strlen(s)-1]==',') s[strlen(s)-1]='\0'; |
---|
1416 | return s; |
---|
1417 | } |
---|
1418 | |
---|
1419 | BOOLEAN singclap_isSqrFree(poly f) |
---|
1420 | { |
---|
1421 | BOOLEAN b=FALSE; |
---|
1422 | Off(SW_RATIONAL); |
---|
1423 | // Q / Fp |
---|
1424 | if (((nGetChar() == 0) || (nGetChar() > 1) ) |
---|
1425 | &&(currRing->parameter==NULL)) |
---|
1426 | { |
---|
1427 | setCharacteristic( nGetChar() ); |
---|
1428 | CanonicalForm F( convSingPFactoryP( f ) ); |
---|
1429 | if((nGetChar()>1)&&(!F.isUnivariate())) |
---|
1430 | goto err; |
---|
1431 | b=(BOOLEAN)isSqrFree(F); |
---|
1432 | } |
---|
1433 | // and over Q(a) / Fp(a) |
---|
1434 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1435 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1436 | { |
---|
1437 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1438 | else setCharacteristic( -nGetChar() ); |
---|
1439 | //if (currRing->minpoly!=NULL) |
---|
1440 | //{ |
---|
1441 | // CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1442 | // currRing->algring); |
---|
1443 | // Variable a=rootOf(mipo); |
---|
1444 | // CanonicalForm F( convSingAPFactoryAP( f,a ) ); |
---|
1445 | // ... |
---|
1446 | //} |
---|
1447 | //else |
---|
1448 | { |
---|
1449 | CanonicalForm F( convSingTrPFactoryP( f ) ); |
---|
1450 | b=(BOOLEAN)isSqrFree(F); |
---|
1451 | } |
---|
1452 | Off(SW_RATIONAL); |
---|
1453 | } |
---|
1454 | else |
---|
1455 | { |
---|
1456 | err: |
---|
1457 | WerrorS( feNotImplemented ); |
---|
1458 | } |
---|
1459 | return b; |
---|
1460 | } |
---|
1461 | |
---|
1462 | poly singclap_det( const matrix m ) |
---|
1463 | { |
---|
1464 | int r=m->rows(); |
---|
1465 | if (r!=m->cols()) |
---|
1466 | { |
---|
1467 | Werror("det of %d x %d matrix",r,m->cols()); |
---|
1468 | return NULL; |
---|
1469 | } |
---|
1470 | poly res=NULL; |
---|
1471 | if (( nGetChar() == 0 || nGetChar() > 1 ) |
---|
1472 | && (currRing->parameter==NULL)) |
---|
1473 | { |
---|
1474 | setCharacteristic( nGetChar() ); |
---|
1475 | CFMatrix M(r,r); |
---|
1476 | int i,j; |
---|
1477 | for(i=r;i>0;i--) |
---|
1478 | { |
---|
1479 | for(j=r;j>0;j--) |
---|
1480 | { |
---|
1481 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j)); |
---|
1482 | } |
---|
1483 | } |
---|
1484 | res= convFactoryPSingP( determinant(M,r) ) ; |
---|
1485 | } |
---|
1486 | // and over Q(a) / Fp(a) |
---|
1487 | else if (( nGetChar()==1 ) /* Q(a) */ |
---|
1488 | || (nGetChar() <-1)) /* Fp(a) */ |
---|
1489 | { |
---|
1490 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1491 | else setCharacteristic( -nGetChar() ); |
---|
1492 | CFMatrix M(r,r); |
---|
1493 | poly res; |
---|
1494 | if (currRing->minpoly!=NULL) |
---|
1495 | { |
---|
1496 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1497 | currRing->algring); |
---|
1498 | Variable a=rootOf(mipo); |
---|
1499 | int i,j; |
---|
1500 | for(i=r;i>0;i--) |
---|
1501 | { |
---|
1502 | for(j=r;j>0;j--) |
---|
1503 | { |
---|
1504 | M(i,j)=convSingAPFactoryAP(MATELEM(m,i,j),a,currRing); |
---|
1505 | } |
---|
1506 | } |
---|
1507 | res= convFactoryAPSingAP( determinant(M,r),currRing ) ; |
---|
1508 | } |
---|
1509 | else |
---|
1510 | { |
---|
1511 | int i,j; |
---|
1512 | for(i=r;i>0;i--) |
---|
1513 | { |
---|
1514 | for(j=r;j>0;j--) |
---|
1515 | { |
---|
1516 | M(i,j)=convSingTrPFactoryP(MATELEM(m,i,j)); |
---|
1517 | } |
---|
1518 | } |
---|
1519 | res= convFactoryPSingTrP( determinant(M,r) ); |
---|
1520 | } |
---|
1521 | } |
---|
1522 | else |
---|
1523 | WerrorS( feNotImplemented ); |
---|
1524 | Off(SW_RATIONAL); |
---|
1525 | return res; |
---|
1526 | } |
---|
1527 | |
---|
1528 | int singclap_det_i( intvec * m ) |
---|
1529 | { |
---|
1530 | setCharacteristic( 0 ); |
---|
1531 | CFMatrix M(m->rows(),m->cols()); |
---|
1532 | int i,j; |
---|
1533 | for(i=m->rows();i>0;i--) |
---|
1534 | { |
---|
1535 | for(j=m->cols();j>0;j--) |
---|
1536 | { |
---|
1537 | M(i,j)=IMATELEM(*m,i,j); |
---|
1538 | } |
---|
1539 | } |
---|
1540 | int res= convFactoryISingI( determinant(M,m->rows())) ; |
---|
1541 | Off(SW_RATIONAL); |
---|
1542 | return res; |
---|
1543 | } |
---|
1544 | #ifdef HAVE_NTL |
---|
1545 | matrix singntl_HNF(matrix m ) |
---|
1546 | { |
---|
1547 | int r=m->rows(); |
---|
1548 | if (r!=m->cols()) |
---|
1549 | { |
---|
1550 | Werror("HNF of %d x %d matrix",r,m->cols()); |
---|
1551 | return NULL; |
---|
1552 | } |
---|
1553 | matrix res=mpNew(r,r); |
---|
1554 | if (rField_is_Q(currRing)) |
---|
1555 | { |
---|
1556 | |
---|
1557 | CFMatrix M(r,r); |
---|
1558 | int i,j; |
---|
1559 | for(i=r;i>0;i--) |
---|
1560 | { |
---|
1561 | for(j=r;j>0;j--) |
---|
1562 | { |
---|
1563 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j)); |
---|
1564 | } |
---|
1565 | } |
---|
1566 | CFMatrix *MM=cf_HNF(M); |
---|
1567 | for(i=r;i>0;i--) |
---|
1568 | { |
---|
1569 | for(j=r;j>0;j--) |
---|
1570 | { |
---|
1571 | MATELEM(res,i,j)=convFactoryPSingP((*MM)(i,j)); |
---|
1572 | } |
---|
1573 | } |
---|
1574 | delete MM; |
---|
1575 | } |
---|
1576 | return res; |
---|
1577 | } |
---|
1578 | intvec* singntl_HNF(intvec* m ) |
---|
1579 | { |
---|
1580 | int r=m->rows(); |
---|
1581 | if (r!=m->cols()) |
---|
1582 | { |
---|
1583 | Werror("HNF of %d x %d matrix",r,m->cols()); |
---|
1584 | return NULL; |
---|
1585 | } |
---|
1586 | setCharacteristic( 0 ); |
---|
1587 | CFMatrix M(r,r); |
---|
1588 | int i,j; |
---|
1589 | for(i=r;i>0;i--) |
---|
1590 | { |
---|
1591 | for(j=r;j>0;j--) |
---|
1592 | { |
---|
1593 | M(i,j)=IMATELEM(*m,i,j); |
---|
1594 | } |
---|
1595 | } |
---|
1596 | CFMatrix *MM=cf_HNF(M); |
---|
1597 | intvec *mm=ivCopy(m); |
---|
1598 | for(i=r;i>0;i--) |
---|
1599 | { |
---|
1600 | for(j=r;j>0;j--) |
---|
1601 | { |
---|
1602 | IMATELEM(*mm,i,j)=convFactoryISingI((*MM)(i,j)); |
---|
1603 | } |
---|
1604 | } |
---|
1605 | delete MM; |
---|
1606 | return mm; |
---|
1607 | } |
---|
1608 | matrix singntl_LLL(matrix m ) |
---|
1609 | { |
---|
1610 | int r=m->rows(); |
---|
1611 | int c=m->cols(); |
---|
1612 | matrix res=mpNew(r,c); |
---|
1613 | if (rField_is_Q(currRing)) |
---|
1614 | { |
---|
1615 | CFMatrix M(r,c); |
---|
1616 | int i,j; |
---|
1617 | for(i=r;i>0;i--) |
---|
1618 | { |
---|
1619 | for(j=c;j>0;j--) |
---|
1620 | { |
---|
1621 | M(i,j)=convSingPFactoryP(MATELEM(m,i,j)); |
---|
1622 | } |
---|
1623 | } |
---|
1624 | CFMatrix *MM=cf_LLL(M); |
---|
1625 | for(i=r;i>0;i--) |
---|
1626 | { |
---|
1627 | for(j=c;j>0;j--) |
---|
1628 | { |
---|
1629 | MATELEM(res,i,j)=convFactoryPSingP((*MM)(i,j)); |
---|
1630 | } |
---|
1631 | } |
---|
1632 | delete MM; |
---|
1633 | } |
---|
1634 | return res; |
---|
1635 | } |
---|
1636 | intvec* singntl_LLL(intvec* m ) |
---|
1637 | { |
---|
1638 | int r=m->rows(); |
---|
1639 | int c=m->cols(); |
---|
1640 | setCharacteristic( 0 ); |
---|
1641 | CFMatrix M(r,c); |
---|
1642 | int i,j; |
---|
1643 | for(i=r;i>0;i--) |
---|
1644 | { |
---|
1645 | for(j=r;j>0;j--) |
---|
1646 | { |
---|
1647 | M(i,j)=IMATELEM(*m,i,j); |
---|
1648 | } |
---|
1649 | } |
---|
1650 | CFMatrix *MM=cf_LLL(M); |
---|
1651 | intvec *mm=ivCopy(m); |
---|
1652 | for(i=r;i>0;i--) |
---|
1653 | { |
---|
1654 | for(j=c;j>0;j--) |
---|
1655 | { |
---|
1656 | IMATELEM(*mm,i,j)=convFactoryISingI((*MM)(i,j)); |
---|
1657 | } |
---|
1658 | } |
---|
1659 | delete MM; |
---|
1660 | return mm; |
---|
1661 | } |
---|
1662 | /* |
---|
1663 | napoly singclap_alglcm ( napoly f, napoly g ) |
---|
1664 | { |
---|
1665 | |
---|
1666 | // over Q(a) / Fp(a) |
---|
1667 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1668 | else setCharacteristic( -nGetChar() ); |
---|
1669 | napoly res; |
---|
1670 | |
---|
1671 | if (currRing->minpoly!=NULL) |
---|
1672 | { |
---|
1673 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1674 | currRing->algring); |
---|
1675 | Variable a=rootOf(mipo); |
---|
1676 | CanonicalForm F( convSingAFactoryA( f,a, currRing ) ), |
---|
1677 | G( convSingAFactoryA( g,a, currRing ) ); |
---|
1678 | CanonicalForm GCD; |
---|
1679 | |
---|
1680 | // calculate gcd |
---|
1681 | GCD = gcd( F, G ); |
---|
1682 | |
---|
1683 | // calculate lcm |
---|
1684 | res= convFactoryASingA( (F/GCD)*G,currRing ); |
---|
1685 | } |
---|
1686 | else |
---|
1687 | { |
---|
1688 | CanonicalForm F( convSingPFactoryP( f,currRing->algring ) ), |
---|
1689 | G( convSingPFactoryP( g,currRing->algring ) ); |
---|
1690 | CanonicalForm GCD; |
---|
1691 | // calculate gcd |
---|
1692 | GCD = gcd( F, G ); |
---|
1693 | |
---|
1694 | // calculate lcm |
---|
1695 | res= convFactoryPSingP( (F/GCD)*G, currRing->algring ); |
---|
1696 | } |
---|
1697 | |
---|
1698 | Off(SW_RATIONAL); |
---|
1699 | return res; |
---|
1700 | } |
---|
1701 | |
---|
1702 | void singclap_algdividecontent ( napoly f, napoly g, napoly &ff, napoly &gg ) |
---|
1703 | { |
---|
1704 | // over Q(a) / Fp(a) |
---|
1705 | if (nGetChar()==1) setCharacteristic( 0 ); |
---|
1706 | else setCharacteristic( -nGetChar() ); |
---|
1707 | ff=gg=NULL; |
---|
1708 | On(SW_RATIONAL); |
---|
1709 | |
---|
1710 | if (currRing->minpoly!=NULL) |
---|
1711 | { |
---|
1712 | CanonicalForm mipo=convSingPFactoryP(((lnumber)currRing->minpoly)->z, |
---|
1713 | currRing->algring); |
---|
1714 | Variable a=rootOf(mipo); |
---|
1715 | CanonicalForm F( convSingAFactoryA( f,a, currRing ) ), |
---|
1716 | G( convSingAFactoryA( g,a, currRing ) ); |
---|
1717 | CanonicalForm GCD; |
---|
1718 | |
---|
1719 | GCD=gcd( F, G ); |
---|
1720 | |
---|
1721 | if ((GCD!=1) && (GCD!=0)) |
---|
1722 | { |
---|
1723 | ff= convFactoryASingA( F/ GCD, currRing ); |
---|
1724 | gg= convFactoryASingA( G/ GCD, currRing ); |
---|
1725 | } |
---|
1726 | } |
---|
1727 | else |
---|
1728 | { |
---|
1729 | CanonicalForm F( convSingPFactoryP( f,currRing->algring ) ), |
---|
1730 | G( convSingPFactoryP( g,currRing->algring ) ); |
---|
1731 | CanonicalForm GCD; |
---|
1732 | |
---|
1733 | GCD=gcd( F, G ); |
---|
1734 | |
---|
1735 | if ((GCD!=1) && (GCD!=0)) |
---|
1736 | { |
---|
1737 | ff= convFactoryPSingP( F/ GCD, currRing->algring ); |
---|
1738 | gg= convFactoryPSingP( G/ GCD, currRing->algring ); |
---|
1739 | } |
---|
1740 | } |
---|
1741 | |
---|
1742 | Off(SW_RATIONAL); |
---|
1743 | } |
---|
1744 | */ |
---|
1745 | |
---|
1746 | #if 0 |
---|
1747 | lists singclap_chineseRemainder(lists x, lists q) |
---|
1748 | { |
---|
1749 | //assume(x->nr == q->nr); |
---|
1750 | //assume(x->nr >= 0); |
---|
1751 | int n=x->nr+1; |
---|
1752 | if ((x->nr<0) || (x->nr!=q->nr)) |
---|
1753 | { |
---|
1754 | WerrorS("list are empty or not of equal length"); |
---|
1755 | return NULL; |
---|
1756 | } |
---|
1757 | lists res=(lists)omAlloc0Bin(slists_bin); |
---|
1758 | CFArray X(1,n), Q(1,n); |
---|
1759 | int i; |
---|
1760 | for(i=0; i<n; i++) |
---|
1761 | { |
---|
1762 | if (x->m[i-1].Typ()==INT_CMD) |
---|
1763 | { |
---|
1764 | X[i]=(int)x->m[i-1].Data(); |
---|
1765 | } |
---|
1766 | else if (x->m[i-1].Typ()==NUMBER_CMD) |
---|
1767 | { |
---|
1768 | number N=(number)x->m[i-1].Data(); |
---|
1769 | X[i]=convSingNFactoryN(N); |
---|
1770 | } |
---|
1771 | else |
---|
1772 | { |
---|
1773 | WerrorS("illegal type in chineseRemainder"); |
---|
1774 | omFreeBin(res,slists_bin); |
---|
1775 | return NULL; |
---|
1776 | } |
---|
1777 | if (q->m[i-1].Typ()==INT_CMD) |
---|
1778 | { |
---|
1779 | Q[i]=(int)q->m[i-1].Data(); |
---|
1780 | } |
---|
1781 | else if (q->m[i-1].Typ()==NUMBER_CMD) |
---|
1782 | { |
---|
1783 | number N=(number)x->m[i-1].Data(); |
---|
1784 | Q[i]=convSingNFactoryN(N); |
---|
1785 | } |
---|
1786 | else |
---|
1787 | { |
---|
1788 | WerrorS("illegal type in chineseRemainder"); |
---|
1789 | omFreeBin(res,slists_bin); |
---|
1790 | return NULL; |
---|
1791 | } |
---|
1792 | } |
---|
1793 | CanonicalForm r, prod; |
---|
1794 | chineseRemainder( X, Q, r, prod ); |
---|
1795 | res->Init(2); |
---|
1796 | res->m[0].rtyp=NUMBER_CMD; |
---|
1797 | res->m[1].rtyp=NUMBER_CMD; |
---|
1798 | res->m[0].data=(char *)convFactoryNSingN( r ); |
---|
1799 | res->m[1].data=(char *)convFactoryNSingN( prod ); |
---|
1800 | return res; |
---|
1801 | } |
---|
1802 | #endif |
---|
1803 | #endif |
---|