1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id$ */ |
---|
5 | /* |
---|
6 | * ABSTRACT: numbers in a rational function field K(t_1, .., t_s) with |
---|
7 | * transcendental variables t_1, ..., t_s, where s >= 1. |
---|
8 | * Denoting the implemented coeffs object by cf, then these numbers |
---|
9 | * are represented as quotients of polynomials living in the |
---|
10 | * polynomial ring K[t_1, .., t_s] represented by cf->extring. |
---|
11 | * |
---|
12 | * An element of K(t_1, .., t_s) may have numerous representations, |
---|
13 | * due to the possibility of common polynomial factors in the |
---|
14 | * numerator and denominator. This problem is handled by a |
---|
15 | * cancellation heuristic: Each number "knows" its complexity |
---|
16 | * which is 0 if and only if common factors have definitely been |
---|
17 | * cancelled, and some positive integer otherwise. |
---|
18 | * Each arithmetic operation of two numbers with complexities c1 |
---|
19 | * and c2 will result in a number of complexity c1 + c2 + some |
---|
20 | * penalty (specific for each arithmetic operation; see constants |
---|
21 | * in the *.h file). Whenever the resulting complexity exceeds a |
---|
22 | * certain threshold (see constant in the *.h file), then the |
---|
23 | * cancellation heuristic will call 'factory' to compute the gcd |
---|
24 | * and cancel it out in the given number. (This definite cancel- |
---|
25 | * lation will also be performed at the beginning of ntWrite, |
---|
26 | * ensuring that any output is free of common factors. |
---|
27 | * For the special case of K = Q (i.e., when computing over the |
---|
28 | * rationals), this definite cancellation procedure will also take |
---|
29 | * care of nested fractions: If there are fractional coefficients |
---|
30 | * in the numerator or denominator of a number, then this number |
---|
31 | * is being replaced by a quotient of two polynomials over Z, or |
---|
32 | * - if the denominator is a constant - by a polynomial over Q. |
---|
33 | */ |
---|
34 | #define TRANSEXT_PRIVATES |
---|
35 | |
---|
36 | #include "config.h" |
---|
37 | #include <misc/auxiliary.h> |
---|
38 | |
---|
39 | #include <omalloc/omalloc.h> |
---|
40 | |
---|
41 | #include <reporter/reporter.h> |
---|
42 | |
---|
43 | #include <coeffs/coeffs.h> |
---|
44 | #include <coeffs/numbers.h> |
---|
45 | #include <coeffs/longrat.h> |
---|
46 | |
---|
47 | #include <polys/monomials/ring.h> |
---|
48 | #include <polys/monomials/p_polys.h> |
---|
49 | #include <polys/simpleideals.h> |
---|
50 | |
---|
51 | #ifdef HAVE_FACTORY |
---|
52 | #include <polys/clapsing.h> |
---|
53 | #endif |
---|
54 | |
---|
55 | #include "ext_fields/transext.h" |
---|
56 | |
---|
57 | |
---|
58 | /* constants for controlling the complexity of numbers */ |
---|
59 | #define ADD_COMPLEXITY 1 /**< complexity increase due to + and - */ |
---|
60 | #define MULT_COMPLEXITY 2 /**< complexity increase due to * and / */ |
---|
61 | #define BOUND_COMPLEXITY 10 /**< maximum complexity of a number */ |
---|
62 | |
---|
63 | /* some useful accessors for fractions: */ |
---|
64 | #define IS0(f) (f == NULL) /**< TRUE iff n represents 0 in K(t_1, .., t_s) */ |
---|
65 | |
---|
66 | #define DENIS1(f) (f->denominator == NULL) /**< TRUE iff den. represents 1 */ |
---|
67 | #define NUMIS1(f) (p_IsConstant(f->numerator, cf->extRing) && \ |
---|
68 | n_IsOne(p_GetCoeff(f->numerator, cf->extRing), \ |
---|
69 | cf->extRing->cf)) |
---|
70 | /**< TRUE iff num. represents 1 */ |
---|
71 | #define COM(f) f->complexity |
---|
72 | |
---|
73 | |
---|
74 | #ifdef LDEBUG |
---|
75 | #define ntTest(a) ntDBTest(a,__FILE__,__LINE__,cf) |
---|
76 | BOOLEAN ntDBTest(number a, const char *f, const int l, const coeffs r); |
---|
77 | #else |
---|
78 | #define ntTest(a) (TRUE) |
---|
79 | #endif |
---|
80 | |
---|
81 | /// Our own type! |
---|
82 | static const n_coeffType ID = n_transExt; |
---|
83 | |
---|
84 | /* polynomial ring in which the numerators and denominators of our |
---|
85 | numbers live */ |
---|
86 | #define ntRing cf->extRing |
---|
87 | |
---|
88 | /* coeffs object in which the coefficients of our numbers live; |
---|
89 | * methods attached to ntCoeffs may be used to compute with the |
---|
90 | * coefficients of our numbers, e.g., use ntCoeffs->nAdd to add |
---|
91 | * coefficients of our numbers */ |
---|
92 | #define ntCoeffs cf->extRing->cf |
---|
93 | |
---|
94 | |
---|
95 | |
---|
96 | extern omBin fractionObjectBin = omGetSpecBin(sizeof(fractionObject)); |
---|
97 | |
---|
98 | /// forward declarations |
---|
99 | BOOLEAN ntGreaterZero(number a, const coeffs cf); |
---|
100 | BOOLEAN ntGreater(number a, number b, const coeffs cf); |
---|
101 | BOOLEAN ntEqual(number a, number b, const coeffs cf); |
---|
102 | BOOLEAN ntIsOne(number a, const coeffs cf); |
---|
103 | BOOLEAN ntIsMOne(number a, const coeffs cf); |
---|
104 | BOOLEAN ntIsZero(number a, const coeffs cf); |
---|
105 | number ntInit(int i, const coeffs cf); |
---|
106 | int ntInt(number &a, const coeffs cf); |
---|
107 | number ntNeg(number a, const coeffs cf); |
---|
108 | number ntInvers(number a, const coeffs cf); |
---|
109 | number ntAdd(number a, number b, const coeffs cf); |
---|
110 | number ntSub(number a, number b, const coeffs cf); |
---|
111 | number ntMult(number a, number b, const coeffs cf); |
---|
112 | number ntDiv(number a, number b, const coeffs cf); |
---|
113 | void ntPower(number a, int exp, number *b, const coeffs cf); |
---|
114 | number ntCopy(number a, const coeffs cf); |
---|
115 | void ntWrite(number &a, const coeffs cf); |
---|
116 | number ntRePart(number a, const coeffs cf); |
---|
117 | number ntImPart(number a, const coeffs cf); |
---|
118 | number ntGetDenom(number &a, const coeffs cf); |
---|
119 | number ntGetNumerator(number &a, const coeffs cf); |
---|
120 | number ntGcd(number a, number b, const coeffs cf); |
---|
121 | number ntLcm(number a, number b, const coeffs cf); |
---|
122 | int ntSize(number a, const coeffs cf); |
---|
123 | void ntDelete(number * a, const coeffs cf); |
---|
124 | void ntCoeffWrite(const coeffs cf); |
---|
125 | number ntIntDiv(number a, number b, const coeffs cf); |
---|
126 | const char * ntRead(const char *s, number *a, const coeffs cf); |
---|
127 | static BOOLEAN ntCoeffIsEqual(const coeffs cf, n_coeffType n, void * param); |
---|
128 | |
---|
129 | void heuristicGcdCancellation(number a, const coeffs cf); |
---|
130 | void definiteGcdCancellation(number a, const coeffs cf, |
---|
131 | BOOLEAN simpleTestsHaveAlreadyBeenPerformed); |
---|
132 | void handleNestedFractionsOverQ(fraction f, const coeffs cf); |
---|
133 | |
---|
134 | #ifdef LDEBUG |
---|
135 | BOOLEAN ntDBTest(number a, const char *f, const int l, const coeffs cf) |
---|
136 | { |
---|
137 | assume(getCoeffType(cf) == ID); |
---|
138 | fraction t = (fraction)a; |
---|
139 | if (IS0(t)) return TRUE; |
---|
140 | assume(NUM(t) != NULL); /**< t != 0 ==> numerator(t) != 0 */ |
---|
141 | p_Test(NUM(t), ntRing); |
---|
142 | if (!DENIS1(t)) p_Test(DEN(t), ntRing); |
---|
143 | return TRUE; |
---|
144 | } |
---|
145 | #endif |
---|
146 | |
---|
147 | /* returns the bottom field in this field extension tower; if the tower |
---|
148 | is flat, i.e., if there is no extension, then r itself is returned; |
---|
149 | as a side-effect, the counter 'height' is filled with the height of |
---|
150 | the extension tower (in case the tower is flat, 'height' is zero) */ |
---|
151 | static coeffs nCoeff_bottom(const coeffs r, int &height) |
---|
152 | { |
---|
153 | assume(r != NULL); |
---|
154 | coeffs cf = r; |
---|
155 | height = 0; |
---|
156 | while (nCoeff_is_Extension(cf)) |
---|
157 | { |
---|
158 | assume(cf->extRing != NULL); assume(cf->extRing->cf != NULL); |
---|
159 | cf = cf->extRing->cf; |
---|
160 | height++; |
---|
161 | } |
---|
162 | return cf; |
---|
163 | } |
---|
164 | |
---|
165 | BOOLEAN ntIsZero(number a, const coeffs cf) |
---|
166 | { |
---|
167 | ntTest(a); |
---|
168 | return (IS0(a)); |
---|
169 | } |
---|
170 | |
---|
171 | void ntDelete(number * a, const coeffs cf) |
---|
172 | { |
---|
173 | fraction f = (fraction)(*a); |
---|
174 | if (IS0(f)) return; |
---|
175 | p_Delete(&NUM(f), ntRing); |
---|
176 | if (!DENIS1(f)) p_Delete(&DEN(f), ntRing); |
---|
177 | omFreeBin((ADDRESS)f, fractionObjectBin); |
---|
178 | *a = NULL; |
---|
179 | } |
---|
180 | |
---|
181 | BOOLEAN ntEqual(number a, number b, const coeffs cf) |
---|
182 | { |
---|
183 | ntTest(a); ntTest(b); |
---|
184 | |
---|
185 | /// simple tests |
---|
186 | if (a == b) return TRUE; |
---|
187 | if ((IS0(a)) && (!IS0(b))) return FALSE; |
---|
188 | if ((IS0(b)) && (!IS0(a))) return FALSE; |
---|
189 | |
---|
190 | /// cheap test if gcd's have been cancelled in both numbers |
---|
191 | fraction fa = (fraction)a; |
---|
192 | fraction fb = (fraction)b; |
---|
193 | if ((COM(fa) == 1) && (COM(fb) == 1)) |
---|
194 | { |
---|
195 | poly f = p_Add_q(p_Copy(NUM(fa), ntRing), |
---|
196 | p_Neg(p_Copy(NUM(fb), ntRing), ntRing), |
---|
197 | ntRing); |
---|
198 | if (f != NULL) { p_Delete(&f, ntRing); return FALSE; } |
---|
199 | if (DENIS1(fa) && DENIS1(fb)) return TRUE; |
---|
200 | if (DENIS1(fa) && !DENIS1(fb)) return FALSE; |
---|
201 | if (!DENIS1(fa) && DENIS1(fb)) return FALSE; |
---|
202 | f = p_Add_q(p_Copy(DEN(fa), ntRing), |
---|
203 | p_Neg(p_Copy(DEN(fb), ntRing), ntRing), |
---|
204 | ntRing); |
---|
205 | if (f != NULL) { p_Delete(&f, ntRing); return FALSE; } |
---|
206 | return TRUE; |
---|
207 | } |
---|
208 | |
---|
209 | /* default: the more expensive multiplication test |
---|
210 | a/b = c/d <==> a*d = b*c */ |
---|
211 | poly f = p_Copy(NUM(fa), ntRing); |
---|
212 | if (!DENIS1(fb)) f = p_Mult_q(f, p_Copy(DEN(fb), ntRing), ntRing); |
---|
213 | poly g = p_Copy(NUM(fb), ntRing); |
---|
214 | if (!DENIS1(fa)) g = p_Mult_q(g, p_Copy(DEN(fa), ntRing), ntRing); |
---|
215 | poly h = p_Add_q(f, p_Neg(g, ntRing), ntRing); |
---|
216 | if (h == NULL) return TRUE; |
---|
217 | else |
---|
218 | { |
---|
219 | p_Delete(&h, ntRing); |
---|
220 | return FALSE; |
---|
221 | } |
---|
222 | } |
---|
223 | |
---|
224 | number ntCopy(number a, const coeffs cf) |
---|
225 | { |
---|
226 | ntTest(a); |
---|
227 | if (IS0(a)) return NULL; |
---|
228 | fraction f = (fraction)a; |
---|
229 | poly g = p_Copy(NUM(f), ntRing); |
---|
230 | poly h = NULL; if (!DENIS1(f)) h = p_Copy(DEN(f), ntRing); |
---|
231 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
232 | NUM(result) = g; |
---|
233 | DEN(result) = h; |
---|
234 | COM(result) = COM(f); |
---|
235 | return (number)result; |
---|
236 | } |
---|
237 | |
---|
238 | number ntGetNumerator(number &a, const coeffs cf) |
---|
239 | { |
---|
240 | ntTest(a); |
---|
241 | definiteGcdCancellation(a, cf, FALSE); |
---|
242 | if (IS0(a)) return NULL; |
---|
243 | fraction f = (fraction)a; |
---|
244 | poly g = p_Copy(NUM(f), ntRing); |
---|
245 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
246 | NUM(result) = g; |
---|
247 | DEN(result) = NULL; |
---|
248 | COM(result) = 0; |
---|
249 | return (number)result; |
---|
250 | } |
---|
251 | |
---|
252 | number ntGetDenom(number &a, const coeffs cf) |
---|
253 | { |
---|
254 | ntTest(a); |
---|
255 | definiteGcdCancellation(a, cf, FALSE); |
---|
256 | fraction f = (fraction)a; |
---|
257 | poly g; |
---|
258 | if (IS0(f) || DENIS1(f)) g = p_One(ntRing); |
---|
259 | else g = p_Copy(DEN(f), ntRing); |
---|
260 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
261 | NUM(result) = g; |
---|
262 | DEN(result) = NULL; |
---|
263 | COM(result) = 0; |
---|
264 | return (number)result; |
---|
265 | } |
---|
266 | |
---|
267 | BOOLEAN ntIsOne(number a, const coeffs cf) |
---|
268 | { |
---|
269 | ntTest(a); |
---|
270 | definiteGcdCancellation(a, cf, FALSE); |
---|
271 | fraction f = (fraction)a; |
---|
272 | return (f!=NULL) && DENIS1(f) && NUMIS1(f); |
---|
273 | } |
---|
274 | |
---|
275 | BOOLEAN ntIsMOne(number a, const coeffs cf) |
---|
276 | { |
---|
277 | ntTest(a); |
---|
278 | definiteGcdCancellation(a, cf, FALSE); |
---|
279 | fraction f = (fraction)a; |
---|
280 | if ((f==NULL) || (!DENIS1(f))) return FALSE; |
---|
281 | poly g = NUM(f); |
---|
282 | if (!p_IsConstant(g, ntRing)) return FALSE; |
---|
283 | return n_IsMOne(p_GetCoeff(g, ntRing), ntCoeffs); |
---|
284 | } |
---|
285 | |
---|
286 | /// this is in-place, modifies a |
---|
287 | number ntNeg(number a, const coeffs cf) |
---|
288 | { |
---|
289 | ntTest(a); |
---|
290 | if (!IS0(a)) |
---|
291 | { |
---|
292 | fraction f = (fraction)a; |
---|
293 | NUM(f) = p_Neg(NUM(f), ntRing); |
---|
294 | } |
---|
295 | return a; |
---|
296 | } |
---|
297 | |
---|
298 | number ntImPart(number a, const coeffs cf) |
---|
299 | { |
---|
300 | ntTest(a); |
---|
301 | return NULL; |
---|
302 | } |
---|
303 | |
---|
304 | number ntInit(int i, const coeffs cf) |
---|
305 | { |
---|
306 | if (i == 0) return NULL; |
---|
307 | else |
---|
308 | { |
---|
309 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
310 | NUM(result) = p_ISet(i, ntRing); |
---|
311 | DEN(result) = NULL; |
---|
312 | COM(result) = 0; |
---|
313 | return (number)result; |
---|
314 | } |
---|
315 | } |
---|
316 | |
---|
317 | int ntInt(number &a, const coeffs cf) |
---|
318 | { |
---|
319 | ntTest(a); |
---|
320 | if (IS0(a)) return 0; |
---|
321 | definiteGcdCancellation(a, cf, FALSE); |
---|
322 | fraction f = (fraction)a; |
---|
323 | if (!DENIS1(f)) return 0; |
---|
324 | if (!p_IsConstant(NUM(f), ntRing)) return 0; |
---|
325 | return n_Int(p_GetCoeff(NUM(f), ntRing), ntCoeffs); |
---|
326 | } |
---|
327 | |
---|
328 | /* This method will only consider the numerators of a and b, without |
---|
329 | cancelling gcd's before. |
---|
330 | Moreover it may return TRUE only if one or both numerators |
---|
331 | are zero or if their degrees are equal. Then TRUE is returned iff |
---|
332 | coeff(numerator(a)) > coeff(numerator(b)); |
---|
333 | In all other cases, FALSE will be returned. */ |
---|
334 | BOOLEAN ntGreater(number a, number b, const coeffs cf) |
---|
335 | { |
---|
336 | ntTest(a); ntTest(b); |
---|
337 | number aNumCoeff = NULL; int aNumDeg = 0; |
---|
338 | number bNumCoeff = NULL; int bNumDeg = 0; |
---|
339 | if (!IS0(a)) |
---|
340 | { |
---|
341 | fraction fa = (fraction)a; |
---|
342 | aNumDeg = p_Totaldegree(NUM(fa), ntRing); |
---|
343 | aNumCoeff = p_GetCoeff(NUM(fa), ntRing); |
---|
344 | } |
---|
345 | if (!IS0(b)) |
---|
346 | { |
---|
347 | fraction fb = (fraction)b; |
---|
348 | bNumDeg = p_Totaldegree(NUM(fb), ntRing); |
---|
349 | bNumCoeff = p_GetCoeff(NUM(fb), ntRing); |
---|
350 | } |
---|
351 | if (aNumDeg != bNumDeg) return FALSE; |
---|
352 | else return n_Greater(aNumCoeff, bNumCoeff, ntCoeffs); |
---|
353 | } |
---|
354 | |
---|
355 | /* this method will only consider the numerator of a, without cancelling |
---|
356 | the gcd before; |
---|
357 | returns TRUE iff the leading coefficient of the numerator of a is > 0 |
---|
358 | or the leading term of the numerator of a is not a |
---|
359 | constant */ |
---|
360 | BOOLEAN ntGreaterZero(number a, const coeffs cf) |
---|
361 | { |
---|
362 | ntTest(a); |
---|
363 | if (IS0(a)) return FALSE; |
---|
364 | fraction f = (fraction)a; |
---|
365 | poly g = NUM(f); |
---|
366 | return (n_GreaterZero(p_GetCoeff(g, ntRing), ntCoeffs) || |
---|
367 | (!p_LmIsConstant(g, ntRing))); |
---|
368 | } |
---|
369 | |
---|
370 | void ntCoeffWrite(const coeffs cf) |
---|
371 | { |
---|
372 | assume( cf != NULL ); |
---|
373 | |
---|
374 | const ring A = cf->extRing; |
---|
375 | |
---|
376 | assume( A != NULL ); |
---|
377 | assume( A->cf != NULL ); |
---|
378 | |
---|
379 | n_CoeffWrite(A->cf); |
---|
380 | |
---|
381 | // rWrite(A); |
---|
382 | |
---|
383 | const int P = rVar(A); |
---|
384 | assume( P > 0 ); |
---|
385 | |
---|
386 | Print("// %d parameter : ", P); |
---|
387 | |
---|
388 | for (int nop=0; nop < P; nop ++) |
---|
389 | Print("%s ", rRingVar(nop, A)); |
---|
390 | |
---|
391 | assume( A->minideal == NULL ); |
---|
392 | |
---|
393 | PrintS("\n// minpoly : 0\n"); |
---|
394 | |
---|
395 | |
---|
396 | /* |
---|
397 | PrintS("// Coefficients live in the rational function field\n"); |
---|
398 | Print("// K("); |
---|
399 | for (int i = 0; i < rVar(ntRing); i++) |
---|
400 | { |
---|
401 | if (i > 0) PrintS(" "); |
---|
402 | Print("%s", rRingVar(i, ntRing)); |
---|
403 | } |
---|
404 | PrintS(") with\n"); |
---|
405 | PrintS("// K: "); n_CoeffWrite(cf->extRing->cf); |
---|
406 | */ |
---|
407 | } |
---|
408 | |
---|
409 | number ntAdd(number a, number b, const coeffs cf) |
---|
410 | { |
---|
411 | ntTest(a); ntTest(b); |
---|
412 | if (IS0(a)) return ntCopy(b, cf); |
---|
413 | if (IS0(b)) return ntCopy(a, cf); |
---|
414 | |
---|
415 | fraction fa = (fraction)a; |
---|
416 | fraction fb = (fraction)b; |
---|
417 | |
---|
418 | poly g = p_Copy(NUM(fa), ntRing); |
---|
419 | if (!DENIS1(fb)) g = p_Mult_q(g, p_Copy(DEN(fb), ntRing), ntRing); |
---|
420 | poly h = p_Copy(NUM(fb), ntRing); |
---|
421 | if (!DENIS1(fa)) h = p_Mult_q(h, p_Copy(DEN(fa), ntRing), ntRing); |
---|
422 | g = p_Add_q(g, h, ntRing); |
---|
423 | |
---|
424 | if (g == NULL) return NULL; |
---|
425 | |
---|
426 | poly f; |
---|
427 | if (DENIS1(fa) && DENIS1(fb)) f = NULL; |
---|
428 | else if (!DENIS1(fa) && DENIS1(fb)) f = p_Copy(DEN(fa), ntRing); |
---|
429 | else if (DENIS1(fa) && !DENIS1(fb)) f = p_Copy(DEN(fb), ntRing); |
---|
430 | else /* both denom's are != 1 */ f = p_Mult_q(p_Copy(DEN(fa), ntRing), |
---|
431 | p_Copy(DEN(fb), ntRing), |
---|
432 | ntRing); |
---|
433 | |
---|
434 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
435 | NUM(result) = g; |
---|
436 | DEN(result) = f; |
---|
437 | COM(result) = COM(fa) + COM(fb) + ADD_COMPLEXITY; |
---|
438 | heuristicGcdCancellation((number)result, cf); |
---|
439 | return (number)result; |
---|
440 | } |
---|
441 | |
---|
442 | number ntSub(number a, number b, const coeffs cf) |
---|
443 | { |
---|
444 | ntTest(a); ntTest(b); |
---|
445 | if (IS0(a)) return ntNeg(ntCopy(b, cf), cf); |
---|
446 | if (IS0(b)) return ntCopy(a, cf); |
---|
447 | |
---|
448 | fraction fa = (fraction)a; |
---|
449 | fraction fb = (fraction)b; |
---|
450 | |
---|
451 | poly g = p_Copy(NUM(fa), ntRing); |
---|
452 | if (!DENIS1(fb)) g = p_Mult_q(g, p_Copy(DEN(fb), ntRing), ntRing); |
---|
453 | poly h = p_Copy(NUM(fb), ntRing); |
---|
454 | if (!DENIS1(fa)) h = p_Mult_q(h, p_Copy(DEN(fa), ntRing), ntRing); |
---|
455 | g = p_Add_q(g, p_Neg(h, ntRing), ntRing); |
---|
456 | |
---|
457 | if (g == NULL) return NULL; |
---|
458 | |
---|
459 | poly f; |
---|
460 | if (DENIS1(fa) && DENIS1(fb)) f = NULL; |
---|
461 | else if (!DENIS1(fa) && DENIS1(fb)) f = p_Copy(DEN(fa), ntRing); |
---|
462 | else if (DENIS1(fa) && !DENIS1(fb)) f = p_Copy(DEN(fb), ntRing); |
---|
463 | else /* both den's are != 1 */ f = p_Mult_q(p_Copy(DEN(fa), ntRing), |
---|
464 | p_Copy(DEN(fb), ntRing), |
---|
465 | ntRing); |
---|
466 | |
---|
467 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
468 | NUM(result) = g; |
---|
469 | DEN(result) = f; |
---|
470 | COM(result) = COM(fa) + COM(fb) + ADD_COMPLEXITY; |
---|
471 | heuristicGcdCancellation((number)result, cf); |
---|
472 | return (number)result; |
---|
473 | } |
---|
474 | |
---|
475 | number ntMult(number a, number b, const coeffs cf) |
---|
476 | { |
---|
477 | ntTest(a); ntTest(b); |
---|
478 | if (IS0(a) || IS0(b)) return NULL; |
---|
479 | |
---|
480 | fraction fa = (fraction)a; |
---|
481 | fraction fb = (fraction)b; |
---|
482 | |
---|
483 | poly g = p_Copy(NUM(fa), ntRing); |
---|
484 | poly h = p_Copy(NUM(fb), ntRing); |
---|
485 | g = p_Mult_q(g, h, ntRing); |
---|
486 | |
---|
487 | if (g == NULL) return NULL; /* may happen due to zero divisors */ |
---|
488 | |
---|
489 | poly f; |
---|
490 | if (DENIS1(fa) && DENIS1(fb)) f = NULL; |
---|
491 | else if (!DENIS1(fa) && DENIS1(fb)) f = p_Copy(DEN(fa), ntRing); |
---|
492 | else if (DENIS1(fa) && !DENIS1(fb)) f = p_Copy(DEN(fb), ntRing); |
---|
493 | else /* both den's are != 1 */ f = p_Mult_q(p_Copy(DEN(fa), ntRing), |
---|
494 | p_Copy(DEN(fb), ntRing), |
---|
495 | ntRing); |
---|
496 | |
---|
497 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
498 | NUM(result) = g; |
---|
499 | DEN(result) = f; |
---|
500 | COM(result) = COM(fa) + COM(fb) + MULT_COMPLEXITY; |
---|
501 | heuristicGcdCancellation((number)result, cf); |
---|
502 | return (number)result; |
---|
503 | } |
---|
504 | |
---|
505 | number ntDiv(number a, number b, const coeffs cf) |
---|
506 | { |
---|
507 | ntTest(a); ntTest(b); |
---|
508 | if (IS0(a)) return NULL; |
---|
509 | if (IS0(b)) WerrorS(nDivBy0); |
---|
510 | |
---|
511 | fraction fa = (fraction)a; |
---|
512 | fraction fb = (fraction)b; |
---|
513 | |
---|
514 | poly g = p_Copy(NUM(fa), ntRing); |
---|
515 | if (!DENIS1(fb)) g = p_Mult_q(g, p_Copy(DEN(fb), ntRing), ntRing); |
---|
516 | |
---|
517 | if (g == NULL) return NULL; /* may happen due to zero divisors */ |
---|
518 | |
---|
519 | poly f = p_Copy(NUM(fb), ntRing); |
---|
520 | if (!DENIS1(fa)) f = p_Mult_q(f, p_Copy(DEN(fa), ntRing), ntRing); |
---|
521 | |
---|
522 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
523 | NUM(result) = g; |
---|
524 | DEN(result) = f; |
---|
525 | COM(result) = COM(fa) + COM(fb) + MULT_COMPLEXITY; |
---|
526 | heuristicGcdCancellation((number)result, cf); |
---|
527 | return (number)result; |
---|
528 | } |
---|
529 | |
---|
530 | /* 0^0 = 0; |
---|
531 | for |exp| <= 7 compute power by a simple multiplication loop; |
---|
532 | for |exp| >= 8 compute power along binary presentation of |exp|, e.g. |
---|
533 | p^13 = p^1 * p^4 * p^8, where we utilise that |
---|
534 | p^(2^(k+1)) = p^(2^k) * p^(2^k); |
---|
535 | intermediate cancellation is controlled by the in-place method |
---|
536 | heuristicGcdCancellation; see there. |
---|
537 | */ |
---|
538 | void ntPower(number a, int exp, number *b, const coeffs cf) |
---|
539 | { |
---|
540 | ntTest(a); |
---|
541 | |
---|
542 | /* special cases first */ |
---|
543 | if (IS0(a)) |
---|
544 | { |
---|
545 | if (exp >= 0) *b = NULL; |
---|
546 | else WerrorS(nDivBy0); |
---|
547 | } |
---|
548 | else if (exp == 0) { *b = ntInit(1, cf); return;} |
---|
549 | else if (exp == 1) { *b = ntCopy(a, cf); return;} |
---|
550 | else if (exp == -1) { *b = ntInvers(a, cf); return;} |
---|
551 | |
---|
552 | int expAbs = exp; if (expAbs < 0) expAbs = -expAbs; |
---|
553 | |
---|
554 | /* now compute a^expAbs */ |
---|
555 | number pow; number t; |
---|
556 | if (expAbs <= 7) |
---|
557 | { |
---|
558 | pow = ntCopy(a, cf); |
---|
559 | for (int i = 2; i <= expAbs; i++) |
---|
560 | { |
---|
561 | t = ntMult(pow, a, cf); |
---|
562 | ntDelete(&pow, cf); |
---|
563 | pow = t; |
---|
564 | heuristicGcdCancellation(pow, cf); |
---|
565 | } |
---|
566 | } |
---|
567 | else |
---|
568 | { |
---|
569 | pow = ntInit(1, cf); |
---|
570 | number factor = ntCopy(a, cf); |
---|
571 | while (expAbs != 0) |
---|
572 | { |
---|
573 | if (expAbs & 1) |
---|
574 | { |
---|
575 | t = ntMult(pow, factor, cf); |
---|
576 | ntDelete(&pow, cf); |
---|
577 | pow = t; |
---|
578 | heuristicGcdCancellation(pow, cf); |
---|
579 | } |
---|
580 | expAbs = expAbs / 2; |
---|
581 | if (expAbs != 0) |
---|
582 | { |
---|
583 | t = ntMult(factor, factor, cf); |
---|
584 | ntDelete(&factor, cf); |
---|
585 | factor = t; |
---|
586 | heuristicGcdCancellation(factor, cf); |
---|
587 | } |
---|
588 | } |
---|
589 | ntDelete(&factor, cf); |
---|
590 | } |
---|
591 | |
---|
592 | /* invert if original exponent was negative */ |
---|
593 | if (exp < 0) |
---|
594 | { |
---|
595 | t = ntInvers(pow, cf); |
---|
596 | ntDelete(&pow, cf); |
---|
597 | pow = t; |
---|
598 | } |
---|
599 | *b = pow; |
---|
600 | } |
---|
601 | |
---|
602 | /* assumes that cf represents the rationals, i.e. Q, and will only |
---|
603 | be called in that case; |
---|
604 | assumes furthermore that f != NULL and that the denominator of f != 1; |
---|
605 | generally speaking, this method removes denominators in the rational |
---|
606 | coefficients of the numerator and denominator of 'a'; |
---|
607 | more concretely, the following normalizations will be performed, |
---|
608 | where t^alpha denotes a monomial in the transcendental variables t_k |
---|
609 | (1) if 'a' is of the form |
---|
610 | (sum_alpha a_alpha/b_alpha * t^alpha) |
---|
611 | ------------------------------------- |
---|
612 | (sum_beta c_beta/d_beta * t^beta) |
---|
613 | with integers a_alpha, b_alpha, c_beta, d_beta, then both the |
---|
614 | numerator and the denominator will be multiplied by the LCM of |
---|
615 | the b_alpha's and the d_beta's (if this LCM is != 1), |
---|
616 | (2) if 'a' is - e.g. after having performed step (1) - of the form |
---|
617 | (sum_alpha a_alpha * t^alpha) |
---|
618 | ----------------------------- |
---|
619 | (sum_beta c_beta * t^beta) |
---|
620 | with integers a_alpha, c_beta, and with a non-constant denominator, |
---|
621 | then both the numerator and the denominator will be divided by the |
---|
622 | GCD of the a_alpha's and the c_beta's (if this GCD is != 1), |
---|
623 | (3) if 'a' is - e.g. after having performed steps (1) and (2) - of the |
---|
624 | form |
---|
625 | (sum_alpha a_alpha * t^alpha) |
---|
626 | ----------------------------- |
---|
627 | c |
---|
628 | with integers a_alpha, and c != 1, then 'a' will be replaced by |
---|
629 | (sum_alpha a_alpha/c * t^alpha); |
---|
630 | this procedure does not alter COM(f) (this has to be done by the |
---|
631 | calling procedure); |
---|
632 | modifies f */ |
---|
633 | void handleNestedFractionsOverQ(fraction f, const coeffs cf) |
---|
634 | { |
---|
635 | assume(nCoeff_is_Q(ntCoeffs)); |
---|
636 | assume(!IS0(f)); |
---|
637 | assume(!DENIS1(f)); |
---|
638 | |
---|
639 | if (!p_IsConstant(DEN(f), ntRing)) |
---|
640 | { /* step (1); see documentation of this procedure above */ |
---|
641 | p_Normalize(NUM(f), ntRing); |
---|
642 | p_Normalize(DEN(f), ntRing); |
---|
643 | number lcmOfDenominators = n_Init(1, ntCoeffs); |
---|
644 | number c; number tmp; |
---|
645 | poly p = NUM(f); |
---|
646 | /* careful when using n_Lcm!!! It computes the lcm of the numerator |
---|
647 | of the 1st argument and the denominator of the 2nd!!! */ |
---|
648 | while (p != NULL) |
---|
649 | { |
---|
650 | c = p_GetCoeff(p, ntRing); |
---|
651 | tmp = n_Lcm(lcmOfDenominators, c, ntCoeffs); |
---|
652 | n_Delete(&lcmOfDenominators, ntCoeffs); |
---|
653 | lcmOfDenominators = tmp; |
---|
654 | pIter(p); |
---|
655 | } |
---|
656 | p = DEN(f); |
---|
657 | while (p != NULL) |
---|
658 | { |
---|
659 | c = p_GetCoeff(p, ntRing); |
---|
660 | tmp = n_Lcm(lcmOfDenominators, c, ntCoeffs); |
---|
661 | n_Delete(&lcmOfDenominators, ntCoeffs); |
---|
662 | lcmOfDenominators = tmp; |
---|
663 | pIter(p); |
---|
664 | } |
---|
665 | if (!n_IsOne(lcmOfDenominators, ntCoeffs)) |
---|
666 | { /* multiply NUM(f) and DEN(f) with lcmOfDenominators */ |
---|
667 | NUM(f) = p_Mult_nn(NUM(f), lcmOfDenominators, ntRing); |
---|
668 | p_Normalize(NUM(f), ntRing); |
---|
669 | DEN(f) = p_Mult_nn(DEN(f), lcmOfDenominators, ntRing); |
---|
670 | p_Normalize(DEN(f), ntRing); |
---|
671 | } |
---|
672 | n_Delete(&lcmOfDenominators, ntCoeffs); |
---|
673 | if (!p_IsConstant(DEN(f), ntRing)) |
---|
674 | { /* step (2); see documentation of this procedure above */ |
---|
675 | p = NUM(f); |
---|
676 | number gcdOfCoefficients = n_Copy(p_GetCoeff(p, ntRing), ntCoeffs); |
---|
677 | pIter(p); |
---|
678 | while ((p != NULL) && (!n_IsOne(gcdOfCoefficients, ntCoeffs))) |
---|
679 | { |
---|
680 | c = p_GetCoeff(p, ntRing); |
---|
681 | tmp = n_Gcd(c, gcdOfCoefficients, ntCoeffs); |
---|
682 | n_Delete(&gcdOfCoefficients, ntCoeffs); |
---|
683 | gcdOfCoefficients = tmp; |
---|
684 | pIter(p); |
---|
685 | } |
---|
686 | p = DEN(f); |
---|
687 | while ((p != NULL) && (!n_IsOne(gcdOfCoefficients, ntCoeffs))) |
---|
688 | { |
---|
689 | c = p_GetCoeff(p, ntRing); |
---|
690 | tmp = n_Gcd(c, gcdOfCoefficients, ntCoeffs); |
---|
691 | n_Delete(&gcdOfCoefficients, ntCoeffs); |
---|
692 | gcdOfCoefficients = tmp; |
---|
693 | pIter(p); |
---|
694 | } |
---|
695 | if (!n_IsOne(gcdOfCoefficients, ntCoeffs)) |
---|
696 | { /* divide NUM(f) and DEN(f) by gcdOfCoefficients */ |
---|
697 | number inverseOfGcdOfCoefficients = n_Invers(gcdOfCoefficients, |
---|
698 | ntCoeffs); |
---|
699 | NUM(f) = p_Mult_nn(NUM(f), inverseOfGcdOfCoefficients, ntRing); |
---|
700 | p_Normalize(NUM(f), ntRing); |
---|
701 | DEN(f) = p_Mult_nn(DEN(f), inverseOfGcdOfCoefficients, ntRing); |
---|
702 | p_Normalize(DEN(f), ntRing); |
---|
703 | n_Delete(&inverseOfGcdOfCoefficients, ntCoeffs); |
---|
704 | } |
---|
705 | n_Delete(&gcdOfCoefficients, ntCoeffs); |
---|
706 | } |
---|
707 | } |
---|
708 | if (p_IsConstant(DEN(f), ntRing) && |
---|
709 | (!n_IsOne(p_GetCoeff(DEN(f), ntRing), ntCoeffs))) |
---|
710 | { /* step (3); see documentation of this procedure above */ |
---|
711 | number inverseOfDen = n_Invers(p_GetCoeff(DEN(f), ntRing), ntCoeffs); |
---|
712 | NUM(f) = p_Mult_nn(NUM(f), inverseOfDen, ntRing); |
---|
713 | n_Delete(&inverseOfDen, ntCoeffs); |
---|
714 | p_Delete(&DEN(f), ntRing); |
---|
715 | DEN(f) = NULL; |
---|
716 | } |
---|
717 | |
---|
718 | /* Now, due to the above computations, DEN(f) may have become the |
---|
719 | 1-polynomial which needs to be represented by NULL: */ |
---|
720 | if ((DEN(f) != NULL) && |
---|
721 | p_IsConstant(DEN(f), ntRing) && |
---|
722 | n_IsOne(p_GetCoeff(DEN(f), ntRing), ntCoeffs)) |
---|
723 | { |
---|
724 | p_Delete(&DEN(f), ntRing); DEN(f) = NULL; |
---|
725 | } |
---|
726 | } |
---|
727 | |
---|
728 | /* modifies a */ |
---|
729 | void heuristicGcdCancellation(number a, const coeffs cf) |
---|
730 | { |
---|
731 | ntTest(a); |
---|
732 | if (IS0(a)) return; |
---|
733 | |
---|
734 | fraction f = (fraction)a; |
---|
735 | if (DENIS1(f) || NUMIS1(f)) { COM(f) = 0; return; } |
---|
736 | |
---|
737 | /* check whether NUM(f) = DEN(f), and - if so - replace 'a' by 1 */ |
---|
738 | if (p_EqualPolys(NUM(f), DEN(f), ntRing)) |
---|
739 | { /* numerator and denominator are both != 1 */ |
---|
740 | p_Delete(&NUM(f), ntRing); NUM(f) = p_ISet(1, ntRing); |
---|
741 | p_Delete(&DEN(f), ntRing); DEN(f) = NULL; |
---|
742 | COM(f) = 0; |
---|
743 | return; |
---|
744 | } |
---|
745 | |
---|
746 | if (COM(f) <= BOUND_COMPLEXITY) return; |
---|
747 | else definiteGcdCancellation(a, cf, TRUE); |
---|
748 | } |
---|
749 | |
---|
750 | /* modifies a */ |
---|
751 | void definiteGcdCancellation(number a, const coeffs cf, |
---|
752 | BOOLEAN simpleTestsHaveAlreadyBeenPerformed) |
---|
753 | { |
---|
754 | ntTest(a); |
---|
755 | |
---|
756 | fraction f = (fraction)a; |
---|
757 | |
---|
758 | if (!simpleTestsHaveAlreadyBeenPerformed) |
---|
759 | { |
---|
760 | if (IS0(a)) return; |
---|
761 | if (DENIS1(f) || NUMIS1(f)) { COM(f) = 0; return; } |
---|
762 | |
---|
763 | /* check whether NUM(f) = DEN(f), and - if so - replace 'a' by 1 */ |
---|
764 | if (p_EqualPolys(NUM(f), DEN(f), ntRing)) |
---|
765 | { /* numerator and denominator are both != 1 */ |
---|
766 | p_Delete(&NUM(f), ntRing); NUM(f) = p_ISet(1, ntRing); |
---|
767 | p_Delete(&DEN(f), ntRing); DEN(f) = NULL; |
---|
768 | COM(f) = 0; |
---|
769 | return; |
---|
770 | } |
---|
771 | } |
---|
772 | |
---|
773 | #ifdef HAVE_FACTORY |
---|
774 | /* singclap_gcd destroys its arguments; we hence need copies: */ |
---|
775 | poly pNum = p_Copy(NUM(f), ntRing); |
---|
776 | poly pDen = p_Copy(DEN(f), ntRing); |
---|
777 | |
---|
778 | /* Note that, over Q, singclap_gcd will remove the denominators in all |
---|
779 | rational coefficients of pNum and pDen, before starting to compute |
---|
780 | the gcd. Thus, we do not need to ensure that the coefficients of |
---|
781 | pNum and pDen live in Z; they may well be elements of Q\Z. */ |
---|
782 | poly pGcd = singclap_gcd(pNum, pDen, cf->extRing); |
---|
783 | if (p_IsConstant(pGcd, ntRing) && |
---|
784 | n_IsOne(p_GetCoeff(pGcd, ntRing), ntCoeffs)) |
---|
785 | { /* gcd = 1; nothing to cancel; |
---|
786 | Suppose the given rational function field is over Q. Although the |
---|
787 | gcd is 1, we may have produced fractional coefficients in NUM(f), |
---|
788 | DEN(f), or both, due to previous arithmetics. The next call will |
---|
789 | remove those nested fractions, in case there are any. */ |
---|
790 | if (nCoeff_is_Q(ntCoeffs)) handleNestedFractionsOverQ(f, cf); |
---|
791 | } |
---|
792 | else |
---|
793 | { /* We divide both NUM(f) and DEN(f) by the gcd which is known |
---|
794 | to be != 1. */ |
---|
795 | poly newNum = singclap_pdivide(NUM(f), pGcd, ntRing); |
---|
796 | p_Delete(&NUM(f), ntRing); |
---|
797 | NUM(f) = newNum; |
---|
798 | poly newDen = singclap_pdivide(DEN(f), pGcd, ntRing); |
---|
799 | p_Delete(&DEN(f), ntRing); |
---|
800 | DEN(f) = newDen; |
---|
801 | if (p_IsConstant(DEN(f), ntRing) && |
---|
802 | n_IsOne(p_GetCoeff(DEN(f), ntRing), ntCoeffs)) |
---|
803 | { |
---|
804 | /* DEN(f) = 1 needs to be represented by NULL! */ |
---|
805 | p_Delete(&DEN(f), ntRing); |
---|
806 | newDen = NULL; |
---|
807 | } |
---|
808 | else |
---|
809 | { /* Note that over Q, by cancelling the gcd, we may have produced |
---|
810 | fractional coefficients in NUM(f), DEN(f), or both. The next |
---|
811 | call will remove those nested fractions, in case there are |
---|
812 | any. */ |
---|
813 | if (nCoeff_is_Q(ntCoeffs)) handleNestedFractionsOverQ(f, cf); |
---|
814 | } |
---|
815 | } |
---|
816 | COM(f) = 0; |
---|
817 | p_Delete(&pGcd, ntRing); |
---|
818 | #endif /* HAVE_FACTORY */ |
---|
819 | } |
---|
820 | |
---|
821 | /* modifies a */ |
---|
822 | void ntWrite(number &a, const coeffs cf) |
---|
823 | { |
---|
824 | ntTest(a); |
---|
825 | definiteGcdCancellation(a, cf, FALSE); |
---|
826 | if (IS0(a)) |
---|
827 | StringAppendS("0"); |
---|
828 | else |
---|
829 | { |
---|
830 | fraction f = (fraction)a; |
---|
831 | // stole logic from napWrite from kernel/longtrans.cc of legacy singular |
---|
832 | BOOLEAN omitBrackets = p_IsConstant(NUM(f), ntRing); |
---|
833 | if (!omitBrackets) StringAppendS("("); |
---|
834 | p_String0(NUM(f), ntRing, ntRing); |
---|
835 | if (!omitBrackets) StringAppendS(")"); |
---|
836 | if (!DENIS1(f)) |
---|
837 | { |
---|
838 | StringAppendS("/"); |
---|
839 | omitBrackets = p_IsConstant(DEN(f), ntRing); |
---|
840 | if (!omitBrackets) StringAppendS("("); |
---|
841 | p_String0(DEN(f), ntRing, ntRing); |
---|
842 | if (!omitBrackets) StringAppendS(")"); |
---|
843 | } |
---|
844 | } |
---|
845 | } |
---|
846 | |
---|
847 | const char * ntRead(const char *s, number *a, const coeffs cf) |
---|
848 | { |
---|
849 | poly p; |
---|
850 | const char * result = p_Read(s, p, ntRing); |
---|
851 | if (p == NULL) { *a = NULL; return result; } |
---|
852 | else |
---|
853 | { |
---|
854 | fraction f = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
855 | NUM(f) = p; |
---|
856 | DEN(f) = NULL; |
---|
857 | COM(f) = 0; |
---|
858 | *a = (number)f; |
---|
859 | return result; |
---|
860 | } |
---|
861 | } |
---|
862 | |
---|
863 | /* expects *param to be castable to TransExtInfo */ |
---|
864 | static BOOLEAN ntCoeffIsEqual(const coeffs cf, n_coeffType n, void * param) |
---|
865 | { |
---|
866 | if (ID != n) return FALSE; |
---|
867 | TransExtInfo *e = (TransExtInfo *)param; |
---|
868 | /* for rational function fields we expect the underlying |
---|
869 | polynomial rings to be IDENTICAL, i.e. the SAME OBJECT; |
---|
870 | this expectation is based on the assumption that we have properly |
---|
871 | registered cf and perform reference counting rather than creating |
---|
872 | multiple copies of the same coefficient field/domain/ring */ |
---|
873 | return (ntRing == e->r); |
---|
874 | } |
---|
875 | |
---|
876 | number ntLcm(number a, number b, const coeffs cf) |
---|
877 | { |
---|
878 | ntTest(a); ntTest(b); |
---|
879 | fraction fb = (fraction)b; |
---|
880 | if ((b==NULL)||(DEN(fb)==NULL)) return ntCopy(a,cf); |
---|
881 | #ifdef HAVE_FACTORY |
---|
882 | fraction fa = (fraction)a; |
---|
883 | /* singclap_gcd destroys its arguments; we hence need copies: */ |
---|
884 | poly pa = p_Copy(NUM(fa), ntRing); |
---|
885 | poly pb = p_Copy(DEN(fb), ntRing); |
---|
886 | |
---|
887 | /* Note that, over Q, singclap_gcd will remove the denominators in all |
---|
888 | rational coefficients of pa and pb, before starting to compute |
---|
889 | the gcd. Thus, we do not need to ensure that the coefficients of |
---|
890 | pa and pb live in Z; they may well be elements of Q\Z. */ |
---|
891 | poly pGcd = singclap_gcd(pa, pb, cf->extRing); |
---|
892 | if (p_IsConstant(pGcd, ntRing) && |
---|
893 | n_IsOne(p_GetCoeff(pGcd, ntRing), ntCoeffs)) |
---|
894 | { /* gcd = 1; return pa*pb*/ |
---|
895 | p_Delete(&pGcd,ntRing); |
---|
896 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
897 | NUM(result) = pp_Mult_qq(NUM(fa),DEN(fb),ntRing); |
---|
898 | return (number)result; |
---|
899 | } |
---|
900 | else |
---|
901 | { /* return pa*pb/gcd */ |
---|
902 | poly newNum = singclap_pdivide(NUM(fa), pGcd, ntRing); |
---|
903 | p_Delete(&pGcd,ntRing); |
---|
904 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
905 | NUM(result) = p_Mult_q(p_Copy(DEN(fb),ntRing),newNum,ntRing); |
---|
906 | return (number)result; |
---|
907 | } |
---|
908 | #else |
---|
909 | Print("// factory needed: transext.cc:ntLcm\n"); |
---|
910 | return NULL; |
---|
911 | #endif /* HAVE_FACTORY */ |
---|
912 | return NULL; |
---|
913 | } |
---|
914 | |
---|
915 | number ntGcd(number a, number b, const coeffs cf) |
---|
916 | { |
---|
917 | ntTest(a); ntTest(b); |
---|
918 | if (a==NULL) return ntCopy(b,cf); |
---|
919 | if (b==NULL) return ntCopy(a,cf); |
---|
920 | #ifdef HAVE_FACTORY |
---|
921 | fraction fa = (fraction)a; |
---|
922 | fraction fb = (fraction)b; |
---|
923 | /* singclap_gcd destroys its arguments; we hence need copies: */ |
---|
924 | poly pa = p_Copy(NUM(fa), ntRing); |
---|
925 | poly pb = p_Copy(NUM(fb), ntRing); |
---|
926 | |
---|
927 | /* Note that, over Q, singclap_gcd will remove the denominators in all |
---|
928 | rational coefficients of pa and pb, before starting to compute |
---|
929 | the gcd. Thus, we do not need to ensure that the coefficients of |
---|
930 | pa and pb live in Z; they may well be elements of Q\Z. */ |
---|
931 | poly pGcd = singclap_gcd(pa, pb, cf->extRing); |
---|
932 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
933 | NUM(result) = pGcd; |
---|
934 | return (number)result; |
---|
935 | #else |
---|
936 | Print("// factory needed: transext.cc:ntGcd\n"); |
---|
937 | return NULL; |
---|
938 | #endif /* HAVE_FACTORY */ |
---|
939 | } |
---|
940 | |
---|
941 | int ntSize(number a, const coeffs cf) |
---|
942 | { |
---|
943 | ntTest(a); |
---|
944 | if (IS0(a)) return -1; |
---|
945 | /* this has been taken from the old implementation of field extensions, |
---|
946 | where we computed the sum of the degrees and the numbers of terms in |
---|
947 | the numerator and denominator of a; so we leave it at that, for the |
---|
948 | time being */ |
---|
949 | fraction f = (fraction)a; |
---|
950 | poly p = NUM(f); |
---|
951 | int noOfTerms = 0; |
---|
952 | int numDegree = 0; |
---|
953 | while (p != NULL) |
---|
954 | { |
---|
955 | noOfTerms++; |
---|
956 | int d = 0; |
---|
957 | for (int i = 1; i <= rVar(ntRing); i++) |
---|
958 | d += p_GetExp(p, i, ntRing); |
---|
959 | if (d > numDegree) numDegree = d; |
---|
960 | pIter(p); |
---|
961 | } |
---|
962 | int denDegree = 0; |
---|
963 | if (!DENIS1(f)) |
---|
964 | { |
---|
965 | p = DEN(f); |
---|
966 | while (p != NULL) |
---|
967 | { |
---|
968 | noOfTerms++; |
---|
969 | int d = 0; |
---|
970 | for (int i = 1; i <= rVar(ntRing); i++) |
---|
971 | d += p_GetExp(p, i, ntRing); |
---|
972 | if (d > denDegree) denDegree = d; |
---|
973 | pIter(p); |
---|
974 | } |
---|
975 | } |
---|
976 | return numDegree + denDegree + noOfTerms; |
---|
977 | } |
---|
978 | |
---|
979 | number ntInvers(number a, const coeffs cf) |
---|
980 | { |
---|
981 | ntTest(a); |
---|
982 | if (IS0(a)) WerrorS(nDivBy0); |
---|
983 | fraction f = (fraction)a; |
---|
984 | fraction result = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
985 | poly g; |
---|
986 | if (DENIS1(f)) g = p_One(ntRing); |
---|
987 | else g = p_Copy(DEN(f), ntRing); |
---|
988 | NUM(result) = g; |
---|
989 | DEN(result) = p_Copy(NUM(f), ntRing); |
---|
990 | COM(result) = COM(f); |
---|
991 | return (number)result; |
---|
992 | } |
---|
993 | |
---|
994 | /* assumes that src = Q, dst = Q(t_1, ..., t_s) */ |
---|
995 | number ntMap00(number a, const coeffs src, const coeffs dst) |
---|
996 | { |
---|
997 | if (n_IsZero(a, src)) return NULL; |
---|
998 | assume(src == dst->extRing->cf); |
---|
999 | poly p = p_One(dst->extRing); |
---|
1000 | p_SetCoeff(p, ntCopy(a, src), dst->extRing); |
---|
1001 | fraction f = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
1002 | NUM(f) = p; DEN(f) = NULL; COM(f) = 0; |
---|
1003 | return (number)f; |
---|
1004 | } |
---|
1005 | |
---|
1006 | /* assumes that src = Z/p, dst = Q(t_1, ..., t_s) */ |
---|
1007 | number ntMapP0(number a, const coeffs src, const coeffs dst) |
---|
1008 | { |
---|
1009 | if (n_IsZero(a, src)) return NULL; |
---|
1010 | /* mapping via intermediate int: */ |
---|
1011 | int n = n_Int(a, src); |
---|
1012 | number q = n_Init(n, dst->extRing->cf); |
---|
1013 | poly p; |
---|
1014 | if (n_IsZero(q, dst->extRing->cf)) |
---|
1015 | { |
---|
1016 | n_Delete(&q, dst->extRing->cf); |
---|
1017 | return NULL; |
---|
1018 | } |
---|
1019 | p = p_One(dst->extRing); |
---|
1020 | p_SetCoeff(p, q, dst->extRing); |
---|
1021 | fraction f = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
1022 | NUM(f) = p; DEN(f) = NULL; COM(f) = 0; |
---|
1023 | return (number)f; |
---|
1024 | } |
---|
1025 | |
---|
1026 | /* assumes that either src = Q(t_1, ..., t_s), dst = Q(t_1, ..., t_s), or |
---|
1027 | src = Z/p(t_1, ..., t_s), dst = Z/p(t_1, ..., t_s) */ |
---|
1028 | number ntCopyMap(number a, const coeffs src, const coeffs dst) |
---|
1029 | { |
---|
1030 | return ntCopy(a, dst); |
---|
1031 | } |
---|
1032 | |
---|
1033 | number ntCopyAlg(number a, const coeffs src, const coeffs dst) |
---|
1034 | { |
---|
1035 | if (n_IsZero(a, src)) return NULL; |
---|
1036 | fraction f = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
1037 | NUM(f) = p_Copy((poly)a,src->extRing);// DEN(f) = NULL; COM(f) = 0; |
---|
1038 | return (number)f; |
---|
1039 | } |
---|
1040 | |
---|
1041 | /* assumes that src = Q, dst = Z/p(t_1, ..., t_s) */ |
---|
1042 | number ntMap0P(number a, const coeffs src, const coeffs dst) |
---|
1043 | { |
---|
1044 | if (n_IsZero(a, src)) return NULL; |
---|
1045 | int p = rChar(dst->extRing); |
---|
1046 | int n = nlModP(a, p, src); |
---|
1047 | number q = n_Init(n, dst->extRing->cf); |
---|
1048 | poly g; |
---|
1049 | if (n_IsZero(q, dst->extRing->cf)) |
---|
1050 | { |
---|
1051 | n_Delete(&q, dst->extRing->cf); |
---|
1052 | return NULL; |
---|
1053 | } |
---|
1054 | g = p_One(dst->extRing); |
---|
1055 | p_SetCoeff(g, q, dst->extRing); |
---|
1056 | fraction f = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
1057 | NUM(f) = g; // DEN(f) = NULL; COM(f) = 0; |
---|
1058 | return (number)f; |
---|
1059 | } |
---|
1060 | |
---|
1061 | /* assumes that src = Z/p, dst = Z/p(t_1, ..., t_s) */ |
---|
1062 | number ntMapPP(number a, const coeffs src, const coeffs dst) |
---|
1063 | { |
---|
1064 | if (n_IsZero(a, src)) return NULL; |
---|
1065 | assume(src == dst->extRing->cf); |
---|
1066 | poly p = p_One(dst->extRing); |
---|
1067 | p_SetCoeff(p, n_Copy(a, src), dst->extRing); |
---|
1068 | fraction f = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
1069 | NUM(f) = p; DEN(f) = NULL; COM(f) = 0; |
---|
1070 | return (number)f; |
---|
1071 | } |
---|
1072 | |
---|
1073 | /* assumes that src = Z/u, dst = Z/p(t_1, ..., t_s), where u != p */ |
---|
1074 | number ntMapUP(number a, const coeffs src, const coeffs dst) |
---|
1075 | { |
---|
1076 | if (n_IsZero(a, src)) return NULL; |
---|
1077 | /* mapping via intermediate int: */ |
---|
1078 | int n = n_Int(a, src); |
---|
1079 | number q = n_Init(n, dst->extRing->cf); |
---|
1080 | poly p; |
---|
1081 | if (n_IsZero(q, dst->extRing->cf)) |
---|
1082 | { |
---|
1083 | n_Delete(&q, dst->extRing->cf); |
---|
1084 | return NULL; |
---|
1085 | } |
---|
1086 | p = p_One(dst->extRing); |
---|
1087 | p_SetCoeff(p, q, dst->extRing); |
---|
1088 | fraction f = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
1089 | NUM(f) = p; DEN(f) = NULL; COM(f) = 0; |
---|
1090 | return (number)f; |
---|
1091 | } |
---|
1092 | |
---|
1093 | nMapFunc ntSetMap(const coeffs src, const coeffs dst) |
---|
1094 | { |
---|
1095 | /* dst is expected to be a rational function field */ |
---|
1096 | assume(getCoeffType(dst) == ID); |
---|
1097 | |
---|
1098 | int h = 0; /* the height of the extension tower given by dst */ |
---|
1099 | coeffs bDst = nCoeff_bottom(dst, h); /* the bottom field in the tower dst */ |
---|
1100 | coeffs bSrc = nCoeff_bottom(src, h); /* the bottom field in the tower src */ |
---|
1101 | |
---|
1102 | /* for the time being, we only provide maps if h = 1 and if b is Q or |
---|
1103 | some field Z/pZ: */ |
---|
1104 | if (h==0) |
---|
1105 | { |
---|
1106 | if (nCoeff_is_Q(src) && nCoeff_is_Q(bDst)) |
---|
1107 | return ntMap00; /// Q --> Q(T) |
---|
1108 | if (nCoeff_is_Zp(src) && nCoeff_is_Q(bDst)) |
---|
1109 | return ntMapP0; /// Z/p --> Q(T) |
---|
1110 | if (nCoeff_is_Q(src) && nCoeff_is_Zp(bDst)) |
---|
1111 | return ntMap0P; /// Q --> Z/p(T) |
---|
1112 | if (nCoeff_is_Zp(src) && nCoeff_is_Zp(bDst)) |
---|
1113 | { |
---|
1114 | if (src->ch == dst->ch) return ntMapPP; /// Z/p --> Z/p(T) |
---|
1115 | else return ntMapUP; /// Z/u --> Z/p(T) |
---|
1116 | } |
---|
1117 | } |
---|
1118 | if (h != 1) return NULL; |
---|
1119 | if ((!nCoeff_is_Zp(bDst)) && (!nCoeff_is_Q(bDst))) return NULL; |
---|
1120 | |
---|
1121 | /* Let T denote the sequence of transcendental extension variables, i.e., |
---|
1122 | K[t_1, ..., t_s] =: K[T]; |
---|
1123 | Let moreover, for any such sequence T, T' denote any subsequence of T |
---|
1124 | of the form t_1, ..., t_w with w <= s. */ |
---|
1125 | |
---|
1126 | if ((!nCoeff_is_Zp(bSrc)) && (!nCoeff_is_Q(bSrc))) return NULL; |
---|
1127 | |
---|
1128 | if (nCoeff_is_Q(bSrc) && nCoeff_is_Q(bDst)) |
---|
1129 | { |
---|
1130 | if (rVar(src->extRing) > rVar(dst->extRing)) return NULL; |
---|
1131 | for (int i = 0; i < rVar(src->extRing); i++) |
---|
1132 | if (strcmp(rRingVar(i, src->extRing), |
---|
1133 | rRingVar(i, dst->extRing)) != 0) return NULL; |
---|
1134 | if (src->type==n_transExt) |
---|
1135 | return ndCopyMap; //ntCopyMap; /// Q(T') --> Q(T) |
---|
1136 | else |
---|
1137 | return ntCopyAlg; |
---|
1138 | } |
---|
1139 | |
---|
1140 | if (nCoeff_is_Zp(bSrc) && nCoeff_is_Zp(bDst)) |
---|
1141 | { |
---|
1142 | if (rVar(src->extRing) > rVar(dst->extRing)) return NULL; |
---|
1143 | for (int i = 0; i < rVar(src->extRing); i++) |
---|
1144 | if (strcmp(rRingVar(i, src->extRing), |
---|
1145 | rRingVar(i, dst->extRing)) != 0) return NULL; |
---|
1146 | if (src->type==n_transExt) |
---|
1147 | return ndCopyMap; //ntCopyMap; /// Z/p(T') --> Z/p(T) |
---|
1148 | else |
---|
1149 | return ntCopyAlg; |
---|
1150 | } |
---|
1151 | |
---|
1152 | return NULL; /// default |
---|
1153 | } |
---|
1154 | |
---|
1155 | void ntKillChar(coeffs cf) |
---|
1156 | { |
---|
1157 | if ((--cf->extRing->ref) == 0) |
---|
1158 | rDelete(cf->extRing); |
---|
1159 | } |
---|
1160 | |
---|
1161 | BOOLEAN ntInitChar(coeffs cf, void * infoStruct) |
---|
1162 | { |
---|
1163 | |
---|
1164 | assume( infoStruct != NULL ); |
---|
1165 | |
---|
1166 | TransExtInfo *e = (TransExtInfo *)infoStruct; |
---|
1167 | |
---|
1168 | assume( e->r != NULL); // extRing; |
---|
1169 | assume( e->r->cf != NULL); // extRing->cf; |
---|
1170 | assume( e->r->minideal == NULL ); |
---|
1171 | |
---|
1172 | assume( cf != NULL ); |
---|
1173 | assume(getCoeffType(cf) == ID); // coeff type; |
---|
1174 | |
---|
1175 | cf->extRing = e->r; |
---|
1176 | cf->extRing->ref ++; // increase the ref.counter for the ground poly. ring! |
---|
1177 | |
---|
1178 | /* propagate characteristic up so that it becomes |
---|
1179 | directly accessible in cf: */ |
---|
1180 | cf->ch = cf->extRing->cf->ch; |
---|
1181 | |
---|
1182 | cf->cfGreaterZero = ntGreaterZero; |
---|
1183 | cf->cfGreater = ntGreater; |
---|
1184 | cf->cfEqual = ntEqual; |
---|
1185 | cf->cfIsZero = ntIsZero; |
---|
1186 | cf->cfIsOne = ntIsOne; |
---|
1187 | cf->cfIsMOne = ntIsMOne; |
---|
1188 | cf->cfInit = ntInit; |
---|
1189 | cf->cfInt = ntInt; |
---|
1190 | cf->cfNeg = ntNeg; |
---|
1191 | cf->cfAdd = ntAdd; |
---|
1192 | cf->cfSub = ntSub; |
---|
1193 | cf->cfMult = ntMult; |
---|
1194 | cf->cfDiv = ntDiv; |
---|
1195 | cf->cfExactDiv = ntDiv; |
---|
1196 | cf->cfPower = ntPower; |
---|
1197 | cf->cfCopy = ntCopy; |
---|
1198 | cf->cfWrite = ntWrite; |
---|
1199 | cf->cfRead = ntRead; |
---|
1200 | cf->cfDelete = ntDelete; |
---|
1201 | cf->cfSetMap = ntSetMap; |
---|
1202 | cf->cfGetDenom = ntGetDenom; |
---|
1203 | cf->cfGetNumerator = ntGetNumerator; |
---|
1204 | cf->cfRePart = ntCopy; |
---|
1205 | cf->cfImPart = ntImPart; |
---|
1206 | cf->cfCoeffWrite = ntCoeffWrite; |
---|
1207 | #ifdef LDEBUG |
---|
1208 | cf->cfDBTest = ntDBTest; |
---|
1209 | #endif |
---|
1210 | cf->cfGcd = ntGcd; |
---|
1211 | cf->cfLcm = ntLcm; |
---|
1212 | cf->cfSize = ntSize; |
---|
1213 | cf->nCoeffIsEqual = ntCoeffIsEqual; |
---|
1214 | cf->cfInvers = ntInvers; |
---|
1215 | cf->cfIntDiv = ntDiv; |
---|
1216 | cf->cfKillChar = ntKillChar; |
---|
1217 | |
---|
1218 | #ifndef HAVE_FACTORY |
---|
1219 | PrintS("// Warning: The 'factory' module is not available.\n"); |
---|
1220 | PrintS("// Hence gcd's cannot be cancelled in any\n"); |
---|
1221 | PrintS("// computed fraction!\n"); |
---|
1222 | #endif |
---|
1223 | |
---|
1224 | return FALSE; |
---|
1225 | } |
---|
1226 | |
---|
1227 | |
---|
1228 | number ntParam(const short iParameter, const coeffs cf) |
---|
1229 | { |
---|
1230 | assume(getCoeffType(cf) == ID); |
---|
1231 | |
---|
1232 | const ring R = cf->extRing; |
---|
1233 | assume( R != NULL ); |
---|
1234 | assume( 0 < iParameter && iParameter <= rVar(R) ); |
---|
1235 | |
---|
1236 | poly p = p_One(R); p_SetExp(p, iParameter, 1, R); p_Setm(p, R); |
---|
1237 | |
---|
1238 | // return (number) p; |
---|
1239 | |
---|
1240 | fraction f = (fraction)omAlloc0Bin(fractionObjectBin); |
---|
1241 | NUM(f) = p; |
---|
1242 | DEN(f) = NULL; |
---|
1243 | COM(f) = 0; |
---|
1244 | |
---|
1245 | return (number)f; |
---|
1246 | } |
---|
1247 | |
---|
1248 | |
---|
1249 | /// if m == var(i)/1 => return i, |
---|
1250 | int ntIsParam(number m, const coeffs cf) |
---|
1251 | { |
---|
1252 | assume(getCoeffType(cf) == ID); |
---|
1253 | |
---|
1254 | const ring R = cf->extRing; |
---|
1255 | assume( R != NULL ); |
---|
1256 | |
---|
1257 | fraction f = (fraction)m; |
---|
1258 | |
---|
1259 | if( DEN(f) != NULL ) |
---|
1260 | return 0; |
---|
1261 | |
---|
1262 | return p_Var( NUM(f), R ); |
---|
1263 | } |
---|