1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | |
---|
5 | /* |
---|
6 | * ABSTRACT: |
---|
7 | */ |
---|
8 | |
---|
9 | #include "misc/auxiliary.h" |
---|
10 | |
---|
11 | #include "misc/mylimits.h" |
---|
12 | |
---|
13 | #include "misc/intvec.h" |
---|
14 | #include "coeffs/numbers.h" |
---|
15 | |
---|
16 | #include "reporter/reporter.h" |
---|
17 | |
---|
18 | |
---|
19 | #include "monomials/ring.h" |
---|
20 | #include "monomials/p_polys.h" |
---|
21 | |
---|
22 | #include "simpleideals.h" |
---|
23 | #include "matpol.h" |
---|
24 | #include "prCopy.h" |
---|
25 | #include "clapsing.h" |
---|
26 | |
---|
27 | #include "sparsmat.h" |
---|
28 | |
---|
29 | //omBin sip_sideal_bin = omGetSpecBin(sizeof(ip_smatrix)); |
---|
30 | /*0 implementation*/ |
---|
31 | |
---|
32 | static poly mp_Exdiv ( poly m, poly d, poly vars, const ring); |
---|
33 | static poly mp_Select (poly fro, poly what, const ring); |
---|
34 | static poly mp_SelectId (ideal I, poly what, const ring R); |
---|
35 | |
---|
36 | /// create a r x c zero-matrix |
---|
37 | matrix mpNew(int r, int c) |
---|
38 | { |
---|
39 | matrix rc = (matrix)omAllocBin(sip_sideal_bin); |
---|
40 | rc->nrows = r; |
---|
41 | rc->ncols = c; |
---|
42 | rc->rank = r; |
---|
43 | if ((c != 0)&&(r!=0)) |
---|
44 | { |
---|
45 | size_t s=((size_t)r)*((size_t)c)*sizeof(poly); |
---|
46 | rc->m = (poly*)omAlloc0(s); |
---|
47 | //if (rc->m==NULL) |
---|
48 | //{ |
---|
49 | // Werror("internal error: creating matrix[%d][%d]",r,c); |
---|
50 | // return NULL; |
---|
51 | //} |
---|
52 | } |
---|
53 | return rc; |
---|
54 | } |
---|
55 | |
---|
56 | /// copies matrix a (from ring r to r) |
---|
57 | matrix mp_Copy (matrix a, const ring r) |
---|
58 | { |
---|
59 | id_Test((ideal)a, r); |
---|
60 | poly t; |
---|
61 | int m=MATROWS(a), n=MATCOLS(a); |
---|
62 | matrix b = mpNew(m, n); |
---|
63 | |
---|
64 | for (long i=(long)m*(long)n-1; i>=0; i--) |
---|
65 | { |
---|
66 | t = a->m[i]; |
---|
67 | if (t!=NULL) |
---|
68 | { |
---|
69 | p_Normalize(t, r); |
---|
70 | b->m[i] = p_Copy(t, r); |
---|
71 | } |
---|
72 | } |
---|
73 | b->rank=a->rank; |
---|
74 | return b; |
---|
75 | } |
---|
76 | |
---|
77 | /// copies matrix a from rSrc into rDst |
---|
78 | matrix mp_Copy(const matrix a, const ring rSrc, const ring rDst) |
---|
79 | { |
---|
80 | id_Test((ideal)a, rSrc); |
---|
81 | |
---|
82 | poly t; |
---|
83 | int i, m=MATROWS(a), n=MATCOLS(a); |
---|
84 | |
---|
85 | matrix b = mpNew(m, n); |
---|
86 | |
---|
87 | for (i=m*n-1; i>=0; i--) |
---|
88 | { |
---|
89 | t = a->m[i]; |
---|
90 | if (t!=NULL) |
---|
91 | { |
---|
92 | b->m[i] = prCopyR_NoSort(t, rSrc, rDst); |
---|
93 | p_Normalize(b->m[i], rDst); |
---|
94 | } |
---|
95 | } |
---|
96 | b->rank=a->rank; |
---|
97 | |
---|
98 | id_Test((ideal)b, rDst); |
---|
99 | |
---|
100 | return b; |
---|
101 | } |
---|
102 | |
---|
103 | |
---|
104 | |
---|
105 | /// make it a p * unit matrix |
---|
106 | matrix mp_InitP(int r, int c, poly p, const ring R) |
---|
107 | { |
---|
108 | matrix rc = mpNew(r,c); |
---|
109 | int i=si_min(r,c), n = c*(i-1)+i-1, inc = c+1; |
---|
110 | |
---|
111 | p_Normalize(p, R); |
---|
112 | while (n>0) |
---|
113 | { |
---|
114 | rc->m[n] = p_Copy(p, R); |
---|
115 | n -= inc; |
---|
116 | } |
---|
117 | rc->m[0]=p; |
---|
118 | return rc; |
---|
119 | } |
---|
120 | |
---|
121 | /// make it a v * unit matrix |
---|
122 | matrix mp_InitI(int r, int c, int v, const ring R) |
---|
123 | { |
---|
124 | return mp_InitP(r, c, p_ISet(v, R), R); |
---|
125 | } |
---|
126 | |
---|
127 | /// c = f*a |
---|
128 | matrix mp_MultI(matrix a, int f, const ring R) |
---|
129 | { |
---|
130 | int k, n = a->nrows, m = a->ncols; |
---|
131 | poly p = p_ISet(f, R); |
---|
132 | matrix c = mpNew(n,m); |
---|
133 | |
---|
134 | for (k=m*n-1; k>0; k--) |
---|
135 | c->m[k] = pp_Mult_qq(a->m[k], p, R); |
---|
136 | c->m[0] = p_Mult_q(p_Copy(a->m[0], R), p, R); |
---|
137 | return c; |
---|
138 | } |
---|
139 | |
---|
140 | /// multiply a matrix 'a' by a poly 'p', destroy the args |
---|
141 | matrix mp_MultP(matrix a, poly p, const ring R) |
---|
142 | { |
---|
143 | int k, n = a->nrows, m = a->ncols; |
---|
144 | |
---|
145 | p_Normalize(p, R); |
---|
146 | for (k=m*n-1; k>0; k--) |
---|
147 | { |
---|
148 | if (a->m[k]!=NULL) |
---|
149 | a->m[k] = p_Mult_q(a->m[k], p_Copy(p, R), R); |
---|
150 | } |
---|
151 | a->m[0] = p_Mult_q(a->m[0], p, R); |
---|
152 | return a; |
---|
153 | } |
---|
154 | |
---|
155 | /*2 |
---|
156 | * multiply a poly 'p' by a matrix 'a', destroy the args |
---|
157 | */ |
---|
158 | matrix pMultMp(poly p, matrix a, const ring R) |
---|
159 | { |
---|
160 | int k, n = a->nrows, m = a->ncols; |
---|
161 | |
---|
162 | p_Normalize(p, R); |
---|
163 | for (k=m*n-1; k>0; k--) |
---|
164 | { |
---|
165 | if (a->m[k]!=NULL) |
---|
166 | a->m[k] = p_Mult_q(p_Copy(p, R), a->m[k], R); |
---|
167 | } |
---|
168 | a->m[0] = p_Mult_q(p, a->m[0], R); |
---|
169 | return a; |
---|
170 | } |
---|
171 | |
---|
172 | matrix mp_Add(matrix a, matrix b, const ring R) |
---|
173 | { |
---|
174 | int k, n = a->nrows, m = a->ncols; |
---|
175 | if ((n != b->nrows) || (m != b->ncols)) |
---|
176 | { |
---|
177 | /* |
---|
178 | * Werror("cannot add %dx%d matrix and %dx%d matrix", |
---|
179 | * m,n,b->cols(),b->rows()); |
---|
180 | */ |
---|
181 | return NULL; |
---|
182 | } |
---|
183 | matrix c = mpNew(n,m); |
---|
184 | for (k=m*n-1; k>=0; k--) |
---|
185 | c->m[k] = p_Add_q(p_Copy(a->m[k], R), p_Copy(b->m[k], R), R); |
---|
186 | return c; |
---|
187 | } |
---|
188 | |
---|
189 | matrix mp_Sub(matrix a, matrix b, const ring R) |
---|
190 | { |
---|
191 | int k, n = a->nrows, m = a->ncols; |
---|
192 | if ((n != b->nrows) || (m != b->ncols)) |
---|
193 | { |
---|
194 | /* |
---|
195 | * Werror("cannot sub %dx%d matrix and %dx%d matrix", |
---|
196 | * m,n,b->cols(),b->rows()); |
---|
197 | */ |
---|
198 | return NULL; |
---|
199 | } |
---|
200 | matrix c = mpNew(n,m); |
---|
201 | for (k=m*n-1; k>=0; k--) |
---|
202 | c->m[k] = p_Sub(p_Copy(a->m[k], R), p_Copy(b->m[k], R), R); |
---|
203 | return c; |
---|
204 | } |
---|
205 | |
---|
206 | matrix mp_Mult(matrix a, matrix b, const ring R) |
---|
207 | { |
---|
208 | int i, j, k; |
---|
209 | int m = MATROWS(a); |
---|
210 | int p = MATCOLS(a); |
---|
211 | int q = MATCOLS(b); |
---|
212 | |
---|
213 | if (p!=MATROWS(b)) |
---|
214 | { |
---|
215 | /* |
---|
216 | * Werror("cannot multiply %dx%d matrix and %dx%d matrix", |
---|
217 | * m,p,b->rows(),q); |
---|
218 | */ |
---|
219 | return NULL; |
---|
220 | } |
---|
221 | matrix c = mpNew(m,q); |
---|
222 | |
---|
223 | for (i=0; i<m; i++) |
---|
224 | { |
---|
225 | for (k=0; k<p; k++) |
---|
226 | { |
---|
227 | poly aik; |
---|
228 | if ((aik=MATELEM0(a,i,k))!=NULL) |
---|
229 | { |
---|
230 | for (j=0; j<q; j++) |
---|
231 | { |
---|
232 | poly bkj; |
---|
233 | if ((bkj=MATELEM0(b,k,j))!=NULL) |
---|
234 | { |
---|
235 | poly *cij=&(MATELEM0(c,i,j)); |
---|
236 | poly s = pp_Mult_qq(aik /*MATELEM0(a,i,k)*/, bkj/*MATELEM0(b,k,j)*/, R); |
---|
237 | (*cij)/*MATELEM0(c,i,j)*/ = p_Add_q((*cij) /*MATELEM0(c,i,j)*/ ,s, R); |
---|
238 | } |
---|
239 | } |
---|
240 | } |
---|
241 | } |
---|
242 | } |
---|
243 | for(i=m*q-1;i>=0;i--) p_Normalize(c->m[i], R); |
---|
244 | return c; |
---|
245 | } |
---|
246 | |
---|
247 | matrix mp_Transp(matrix a, const ring R) |
---|
248 | { |
---|
249 | int i, j, r = MATROWS(a), c = MATCOLS(a); |
---|
250 | poly *p; |
---|
251 | matrix b = mpNew(c,r); |
---|
252 | |
---|
253 | p = b->m; |
---|
254 | for (i=0; i<c; i++) |
---|
255 | { |
---|
256 | for (j=0; j<r; j++) |
---|
257 | { |
---|
258 | if (a->m[j*c+i]!=NULL) *p = p_Copy(a->m[j*c+i], R); |
---|
259 | p++; |
---|
260 | } |
---|
261 | } |
---|
262 | return b; |
---|
263 | } |
---|
264 | |
---|
265 | /*2 |
---|
266 | *returns the trace of matrix a |
---|
267 | */ |
---|
268 | poly mp_Trace ( matrix a, const ring R) |
---|
269 | { |
---|
270 | int i; |
---|
271 | int n = (MATCOLS(a)<MATROWS(a)) ? MATCOLS(a) : MATROWS(a); |
---|
272 | poly t = NULL; |
---|
273 | |
---|
274 | for (i=1; i<=n; i++) |
---|
275 | t = p_Add_q(t, p_Copy(MATELEM(a,i,i), R), R); |
---|
276 | return t; |
---|
277 | } |
---|
278 | |
---|
279 | /*2 |
---|
280 | *returns the trace of the product of a and b |
---|
281 | */ |
---|
282 | poly TraceOfProd ( matrix a, matrix b, int n, const ring R) |
---|
283 | { |
---|
284 | int i, j; |
---|
285 | poly p, t = NULL; |
---|
286 | |
---|
287 | for (i=1; i<=n; i++) |
---|
288 | { |
---|
289 | for (j=1; j<=n; j++) |
---|
290 | { |
---|
291 | p = pp_Mult_qq(MATELEM(a,i,j), MATELEM(b,j,i), R); |
---|
292 | t = p_Add_q(t, p, R); |
---|
293 | } |
---|
294 | } |
---|
295 | return t; |
---|
296 | } |
---|
297 | |
---|
298 | // #ifndef SIZE_OF_SYSTEM_PAGE |
---|
299 | // #define SIZE_OF_SYSTEM_PAGE 4096 |
---|
300 | // #endif |
---|
301 | |
---|
302 | /*2 |
---|
303 | * corresponds to Maple's coeffs: |
---|
304 | * var has to be the number of a variable |
---|
305 | */ |
---|
306 | matrix mp_Coeffs (ideal I, int var, const ring R) |
---|
307 | { |
---|
308 | poly h,f; |
---|
309 | int l, i, c, m=0; |
---|
310 | /* look for maximal power m of x_var in I */ |
---|
311 | for (i=IDELEMS(I)-1; i>=0; i--) |
---|
312 | { |
---|
313 | f=I->m[i]; |
---|
314 | while (f!=NULL) |
---|
315 | { |
---|
316 | l=p_GetExp(f,var, R); |
---|
317 | if (l>m) m=l; |
---|
318 | pIter(f); |
---|
319 | } |
---|
320 | } |
---|
321 | matrix co=mpNew((m+1)*I->rank,IDELEMS(I)); |
---|
322 | /* divide each monomial by a power of x_var, |
---|
323 | * remember the power in l and the component in c*/ |
---|
324 | for (i=IDELEMS(I)-1; i>=0; i--) |
---|
325 | { |
---|
326 | f=I->m[i]; |
---|
327 | I->m[i]=NULL; |
---|
328 | while (f!=NULL) |
---|
329 | { |
---|
330 | l=p_GetExp(f,var, R); |
---|
331 | p_SetExp(f,var,0, R); |
---|
332 | c=si_max((int)p_GetComp(f, R),1); |
---|
333 | p_SetComp(f,0, R); |
---|
334 | p_Setm(f, R); |
---|
335 | /* now add the resulting monomial to co*/ |
---|
336 | h=pNext(f); |
---|
337 | pNext(f)=NULL; |
---|
338 | //MATELEM(co,c*(m+1)-l,i+1) |
---|
339 | // =p_Add_q(MATELEM(co,c*(m+1)-l,i+1),f, R); |
---|
340 | MATELEM(co,(c-1)*(m+1)+l+1,i+1) |
---|
341 | =p_Add_q(MATELEM(co,(c-1)*(m+1)+l+1,i+1),f, R); |
---|
342 | /* iterate f*/ |
---|
343 | f=h; |
---|
344 | } |
---|
345 | } |
---|
346 | id_Delete(&I, R); |
---|
347 | return co; |
---|
348 | } |
---|
349 | |
---|
350 | /*2 |
---|
351 | * given the result c of mpCoeffs(ideal/module i, var) |
---|
352 | * i of rank r |
---|
353 | * build the matrix of the corresponding monomials in m |
---|
354 | */ |
---|
355 | void mp_Monomials(matrix c, int r, int var, matrix m, const ring R) |
---|
356 | { |
---|
357 | /* clear contents of m*/ |
---|
358 | int k,l; |
---|
359 | for (k=MATROWS(m);k>0;k--) |
---|
360 | { |
---|
361 | for(l=MATCOLS(m);l>0;l--) |
---|
362 | { |
---|
363 | p_Delete(&MATELEM(m,k,l), R); |
---|
364 | } |
---|
365 | } |
---|
366 | omfreeSize((ADDRESS)m->m,MATROWS(m)*MATCOLS(m)*sizeof(poly)); |
---|
367 | /* allocate monoms in the right size r x MATROWS(c)*/ |
---|
368 | m->m=(poly*)omAlloc0(r*MATROWS(c)*sizeof(poly)); |
---|
369 | MATROWS(m)=r; |
---|
370 | MATCOLS(m)=MATROWS(c); |
---|
371 | m->rank=r; |
---|
372 | /* the maximal power p of x_var: MATCOLS(m)=r*(p+1) */ |
---|
373 | int p=MATCOLS(m)/r-1; |
---|
374 | /* fill in the powers of x_var=h*/ |
---|
375 | poly h=p_One(R); |
---|
376 | for(k=r;k>0; k--) |
---|
377 | { |
---|
378 | MATELEM(m,k,k*(p+1))=p_One(R); |
---|
379 | } |
---|
380 | for(l=p;l>=0; l--) |
---|
381 | { |
---|
382 | p_SetExp(h,var,p-l, R); |
---|
383 | p_Setm(h, R); |
---|
384 | for(k=r;k>0; k--) |
---|
385 | { |
---|
386 | MATELEM(m,k,k*(p+1)-l)=p_Copy(h, R); |
---|
387 | } |
---|
388 | } |
---|
389 | p_Delete(&h, R); |
---|
390 | } |
---|
391 | |
---|
392 | matrix mp_CoeffProc (poly f, poly vars, const ring R) |
---|
393 | { |
---|
394 | assume(vars!=NULL); |
---|
395 | poly sel, h; |
---|
396 | int l, i; |
---|
397 | int pos_of_1 = -1; |
---|
398 | matrix co; |
---|
399 | |
---|
400 | if (f==NULL) |
---|
401 | { |
---|
402 | co = mpNew(2, 1); |
---|
403 | MATELEM(co,1,1) = p_One(R); |
---|
404 | //MATELEM(co,2,1) = NULL; |
---|
405 | return co; |
---|
406 | } |
---|
407 | sel = mp_Select(f, vars, R); |
---|
408 | l = pLength(sel); |
---|
409 | co = mpNew(2, l); |
---|
410 | |
---|
411 | if (rHasLocalOrMixedOrdering(R)) |
---|
412 | { |
---|
413 | for (i=l; i>=1; i--) |
---|
414 | { |
---|
415 | h = sel; |
---|
416 | pIter(sel); |
---|
417 | pNext(h)=NULL; |
---|
418 | MATELEM(co,1,i) = h; |
---|
419 | //MATELEM(co,2,i) = NULL; |
---|
420 | if (p_IsConstant(h, R)) pos_of_1 = i; |
---|
421 | } |
---|
422 | } |
---|
423 | else |
---|
424 | { |
---|
425 | for (i=1; i<=l; i++) |
---|
426 | { |
---|
427 | h = sel; |
---|
428 | pIter(sel); |
---|
429 | pNext(h)=NULL; |
---|
430 | MATELEM(co,1,i) = h; |
---|
431 | //MATELEM(co,2,i) = NULL; |
---|
432 | if (p_IsConstant(h, R)) pos_of_1 = i; |
---|
433 | } |
---|
434 | } |
---|
435 | while (f!=NULL) |
---|
436 | { |
---|
437 | i = 1; |
---|
438 | loop |
---|
439 | { |
---|
440 | if (i!=pos_of_1) |
---|
441 | { |
---|
442 | h = mp_Exdiv(f, MATELEM(co,1,i),vars, R); |
---|
443 | if (h!=NULL) |
---|
444 | { |
---|
445 | MATELEM(co,2,i) = p_Add_q(MATELEM(co,2,i), h, R); |
---|
446 | break; |
---|
447 | } |
---|
448 | } |
---|
449 | if (i == l) |
---|
450 | { |
---|
451 | // check monom 1 last: |
---|
452 | if (pos_of_1 != -1) |
---|
453 | { |
---|
454 | h = mp_Exdiv(f, MATELEM(co,1,pos_of_1),vars, R); |
---|
455 | if (h!=NULL) |
---|
456 | { |
---|
457 | MATELEM(co,2,pos_of_1) = p_Add_q(MATELEM(co,2,pos_of_1), h, R); |
---|
458 | } |
---|
459 | } |
---|
460 | break; |
---|
461 | } |
---|
462 | i ++; |
---|
463 | } |
---|
464 | pIter(f); |
---|
465 | } |
---|
466 | return co; |
---|
467 | } |
---|
468 | |
---|
469 | matrix mp_CoeffProcId (ideal I, poly vars, const ring R) |
---|
470 | { |
---|
471 | assume(vars!=NULL); |
---|
472 | poly sel, h; |
---|
473 | int l, i; |
---|
474 | int pos_of_1 = -1; |
---|
475 | matrix co; |
---|
476 | |
---|
477 | if (idIs0(I)) |
---|
478 | { |
---|
479 | co = mpNew(IDELEMS(I)+1,1); |
---|
480 | MATELEM(co,1,1) = p_One(R); |
---|
481 | return co; |
---|
482 | } |
---|
483 | sel = mp_SelectId(I, vars, R); |
---|
484 | l = pLength(sel); |
---|
485 | co = mpNew(IDELEMS(I)+1, l); |
---|
486 | |
---|
487 | if (rHasLocalOrMixedOrdering(R)) |
---|
488 | { |
---|
489 | for (i=l; i>=1; i--) |
---|
490 | { |
---|
491 | h = sel; |
---|
492 | pIter(sel); |
---|
493 | pNext(h)=NULL; |
---|
494 | MATELEM(co,1,i) = h; |
---|
495 | //MATELEM(co,2,i) = NULL; |
---|
496 | if (p_IsConstant(h, R)) pos_of_1 = i; |
---|
497 | } |
---|
498 | } |
---|
499 | else |
---|
500 | { |
---|
501 | for (i=1; i<=l; i++) |
---|
502 | { |
---|
503 | h = sel; |
---|
504 | pIter(sel); |
---|
505 | pNext(h)=NULL; |
---|
506 | MATELEM(co,1,i) = h; |
---|
507 | //MATELEM(co,2,i) = NULL; |
---|
508 | if (p_IsConstant(h, R)) pos_of_1 = i; |
---|
509 | } |
---|
510 | } |
---|
511 | for(int j=0;j<IDELEMS(I);j++) |
---|
512 | { |
---|
513 | poly f=I->m[j]; |
---|
514 | while (f!=NULL) |
---|
515 | { |
---|
516 | i = 1; |
---|
517 | loop |
---|
518 | { |
---|
519 | if (i!=pos_of_1) |
---|
520 | { |
---|
521 | h = mp_Exdiv(f, MATELEM(co,1,i),vars, R); |
---|
522 | if (h!=NULL) |
---|
523 | { |
---|
524 | MATELEM(co,j+2,i) = p_Add_q(MATELEM(co,j+2,i), h, R); |
---|
525 | break; |
---|
526 | } |
---|
527 | } |
---|
528 | if (i == l) |
---|
529 | { |
---|
530 | // check monom 1 last: |
---|
531 | if (pos_of_1 != -1) |
---|
532 | { |
---|
533 | h = mp_Exdiv(f, MATELEM(co,1,pos_of_1),vars, R); |
---|
534 | if (h!=NULL) |
---|
535 | { |
---|
536 | MATELEM(co,j+2,pos_of_1) = p_Add_q(MATELEM(co,j+2,pos_of_1), h, R); |
---|
537 | } |
---|
538 | } |
---|
539 | break; |
---|
540 | } |
---|
541 | i ++; |
---|
542 | } |
---|
543 | pIter(f); |
---|
544 | } |
---|
545 | } |
---|
546 | return co; |
---|
547 | } |
---|
548 | |
---|
549 | /*2 |
---|
550 | *exact divisor: let d == x^i*y^j, m is thought to have only one term; |
---|
551 | * return m/d iff d divides m, and no x^k*y^l (k>i or l>j) divides m |
---|
552 | * consider all variables in vars |
---|
553 | */ |
---|
554 | static poly mp_Exdiv ( poly m, poly d, poly vars, const ring R) |
---|
555 | { |
---|
556 | int i; |
---|
557 | poly h = p_Head(m, R); |
---|
558 | for (i=1; i<=rVar(R); i++) |
---|
559 | { |
---|
560 | if (p_GetExp(vars,i, R) > 0) |
---|
561 | { |
---|
562 | if (p_GetExp(d,i, R) != p_GetExp(h,i, R)) |
---|
563 | { |
---|
564 | p_Delete(&h, R); |
---|
565 | return NULL; |
---|
566 | } |
---|
567 | p_SetExp(h,i,0, R); |
---|
568 | } |
---|
569 | } |
---|
570 | p_Setm(h, R); |
---|
571 | return h; |
---|
572 | } |
---|
573 | |
---|
574 | void mp_Coef2(poly v, poly mon, matrix *c, matrix *m, const ring R) |
---|
575 | { |
---|
576 | poly* s; |
---|
577 | poly p; |
---|
578 | int sl,i,j; |
---|
579 | int l=0; |
---|
580 | poly sel=mp_Select(v,mon, R); |
---|
581 | |
---|
582 | p_Vec2Polys(sel,&s,&sl, R); |
---|
583 | for (i=0; i<sl; i++) |
---|
584 | l=si_max(l,pLength(s[i])); |
---|
585 | *c=mpNew(sl,l); |
---|
586 | *m=mpNew(sl,l); |
---|
587 | poly h; |
---|
588 | int isConst; |
---|
589 | for (j=1; j<=sl;j++) |
---|
590 | { |
---|
591 | p=s[j-1]; |
---|
592 | if (p_IsConstant(p, R)) /*p != NULL */ |
---|
593 | { |
---|
594 | isConst=-1; |
---|
595 | i=l; |
---|
596 | } |
---|
597 | else |
---|
598 | { |
---|
599 | isConst=1; |
---|
600 | i=1; |
---|
601 | } |
---|
602 | while(p!=NULL) |
---|
603 | { |
---|
604 | h = p_Head(p, R); |
---|
605 | MATELEM(*m,j,i) = h; |
---|
606 | i+=isConst; |
---|
607 | p = p->next; |
---|
608 | } |
---|
609 | } |
---|
610 | while (v!=NULL) |
---|
611 | { |
---|
612 | i = 1; |
---|
613 | j = __p_GetComp(v, R); |
---|
614 | loop |
---|
615 | { |
---|
616 | poly mp=MATELEM(*m,j,i); |
---|
617 | if (mp!=NULL) |
---|
618 | { |
---|
619 | h = mp_Exdiv(v, mp /*MATELEM(*m,j,i)*/, mp, R); |
---|
620 | if (h!=NULL) |
---|
621 | { |
---|
622 | p_SetComp(h,0, R); |
---|
623 | MATELEM(*c,j,i) = p_Add_q(MATELEM(*c,j,i), h, R); |
---|
624 | break; |
---|
625 | } |
---|
626 | } |
---|
627 | if (i < l) |
---|
628 | i++; |
---|
629 | else |
---|
630 | break; |
---|
631 | } |
---|
632 | v = v->next; |
---|
633 | } |
---|
634 | } |
---|
635 | |
---|
636 | int mp_Compare(matrix a, matrix b, const ring R) |
---|
637 | { |
---|
638 | if (MATCOLS(a)<MATCOLS(b)) return -1; |
---|
639 | else if (MATCOLS(a)>MATCOLS(b)) return 1; |
---|
640 | if (MATROWS(a)<MATROWS(b)) return -1; |
---|
641 | else if (MATROWS(a)<MATROWS(b)) return 1; |
---|
642 | |
---|
643 | unsigned ii=MATCOLS(a)*MATROWS(a)-1; |
---|
644 | unsigned j=0; |
---|
645 | int r=0; |
---|
646 | while (j<=ii) |
---|
647 | { |
---|
648 | r=p_Compare(a->m[j],b->m[j],R); |
---|
649 | if (r!=0) return r; |
---|
650 | j++; |
---|
651 | } |
---|
652 | return r; |
---|
653 | } |
---|
654 | |
---|
655 | BOOLEAN mp_Equal(matrix a, matrix b, const ring R) |
---|
656 | { |
---|
657 | if ((MATCOLS(a)!=MATCOLS(b)) || (MATROWS(a)!=MATROWS(b))) |
---|
658 | return FALSE; |
---|
659 | int i=MATCOLS(a)*MATROWS(a)-1; |
---|
660 | while (i>=0) |
---|
661 | { |
---|
662 | if (a->m[i]==NULL) |
---|
663 | { |
---|
664 | if (b->m[i]!=NULL) return FALSE; |
---|
665 | } |
---|
666 | else if (b->m[i]==NULL) return FALSE; |
---|
667 | else if (p_Cmp(a->m[i],b->m[i], R)!=0) return FALSE; |
---|
668 | i--; |
---|
669 | } |
---|
670 | i=MATCOLS(a)*MATROWS(a)-1; |
---|
671 | while (i>=0) |
---|
672 | { |
---|
673 | if(!p_EqualPolys(a->m[i],b->m[i], R)) return FALSE; |
---|
674 | i--; |
---|
675 | } |
---|
676 | return TRUE; |
---|
677 | } |
---|
678 | |
---|
679 | /*2 |
---|
680 | * insert a monomial into a list, avoid duplicates |
---|
681 | * arguments are destroyed |
---|
682 | */ |
---|
683 | static poly p_Insert(poly p1, poly p2, const ring R) |
---|
684 | { |
---|
685 | poly a1, p, a2, a; |
---|
686 | int c; |
---|
687 | |
---|
688 | if (p1==NULL) return p2; |
---|
689 | if (p2==NULL) return p1; |
---|
690 | a1 = p1; |
---|
691 | a2 = p2; |
---|
692 | a = p = p_One(R); |
---|
693 | loop |
---|
694 | { |
---|
695 | c = p_Cmp(a1, a2, R); |
---|
696 | if (c == 1) |
---|
697 | { |
---|
698 | a = pNext(a) = a1; |
---|
699 | pIter(a1); |
---|
700 | if (a1==NULL) |
---|
701 | { |
---|
702 | pNext(a) = a2; |
---|
703 | break; |
---|
704 | } |
---|
705 | } |
---|
706 | else if (c == -1) |
---|
707 | { |
---|
708 | a = pNext(a) = a2; |
---|
709 | pIter(a2); |
---|
710 | if (a2==NULL) |
---|
711 | { |
---|
712 | pNext(a) = a1; |
---|
713 | break; |
---|
714 | } |
---|
715 | } |
---|
716 | else |
---|
717 | { |
---|
718 | p_LmDelete(&a2, R); |
---|
719 | a = pNext(a) = a1; |
---|
720 | pIter(a1); |
---|
721 | if (a1==NULL) |
---|
722 | { |
---|
723 | pNext(a) = a2; |
---|
724 | break; |
---|
725 | } |
---|
726 | else if (a2==NULL) |
---|
727 | { |
---|
728 | pNext(a) = a1; |
---|
729 | break; |
---|
730 | } |
---|
731 | } |
---|
732 | } |
---|
733 | p_LmDelete(&p, R); |
---|
734 | return p; |
---|
735 | } |
---|
736 | |
---|
737 | /*2 |
---|
738 | *if what == xy the result is the list of all different power products |
---|
739 | * x^i*y^j (i, j >= 0) that appear in fro |
---|
740 | */ |
---|
741 | static poly mp_Select (poly fro, poly what, const ring R) |
---|
742 | { |
---|
743 | int i; |
---|
744 | poly h, res; |
---|
745 | res = NULL; |
---|
746 | while (fro!=NULL) |
---|
747 | { |
---|
748 | h = p_One(R); |
---|
749 | for (i=1; i<=rVar(R); i++) |
---|
750 | p_SetExp(h,i, p_GetExp(fro,i, R) * p_GetExp(what, i, R), R); |
---|
751 | p_SetComp(h, p_GetComp(fro, R), R); |
---|
752 | p_Setm(h, R); |
---|
753 | res = p_Insert(h, res, R); |
---|
754 | fro = fro->next; |
---|
755 | } |
---|
756 | return res; |
---|
757 | } |
---|
758 | |
---|
759 | static poly mp_SelectId (ideal I, poly what, const ring R) |
---|
760 | { |
---|
761 | int i; |
---|
762 | poly h, res; |
---|
763 | res = NULL; |
---|
764 | for(int j=0;j<IDELEMS(I);j++) |
---|
765 | { |
---|
766 | poly fro=I->m[j]; |
---|
767 | while (fro!=NULL) |
---|
768 | { |
---|
769 | h = p_One(R); |
---|
770 | for (i=1; i<=rVar(R); i++) |
---|
771 | p_SetExp(h,i, p_GetExp(fro,i, R) * p_GetExp(what, i, R), R); |
---|
772 | p_SetComp(h, p_GetComp(fro, R), R); |
---|
773 | p_Setm(h, R); |
---|
774 | res = p_Insert(h, res, R); |
---|
775 | fro = fro->next; |
---|
776 | } |
---|
777 | } |
---|
778 | return res; |
---|
779 | } |
---|
780 | |
---|
781 | /* |
---|
782 | *static void ppp(matrix a) |
---|
783 | *{ |
---|
784 | * int j,i,r=a->nrows,c=a->ncols; |
---|
785 | * for(j=1;j<=r;j++) |
---|
786 | * { |
---|
787 | * for(i=1;i<=c;i++) |
---|
788 | * { |
---|
789 | * if(MATELEM(a,j,i)!=NULL) PrintS("X"); |
---|
790 | * else PrintS("0"); |
---|
791 | * } |
---|
792 | * PrintLn(); |
---|
793 | * } |
---|
794 | *} |
---|
795 | */ |
---|
796 | |
---|
797 | static void mp_PartClean(matrix a, int lr, int lc, const ring R) |
---|
798 | { |
---|
799 | poly *q1; |
---|
800 | int i,j; |
---|
801 | |
---|
802 | for (i=lr-1;i>=0;i--) |
---|
803 | { |
---|
804 | q1 = &(a->m)[i*a->ncols]; |
---|
805 | for (j=lc-1;j>=0;j--) if(q1[j]) p_Delete(&q1[j], R); |
---|
806 | } |
---|
807 | } |
---|
808 | |
---|
809 | BOOLEAN mp_IsDiagUnit(matrix U, const ring R) |
---|
810 | { |
---|
811 | if(MATROWS(U)!=MATCOLS(U)) |
---|
812 | return FALSE; |
---|
813 | for(int i=MATCOLS(U);i>=1;i--) |
---|
814 | { |
---|
815 | for(int j=MATCOLS(U); j>=1; j--) |
---|
816 | { |
---|
817 | if (i==j) |
---|
818 | { |
---|
819 | if (!p_IsUnit(MATELEM(U,i,i), R)) return FALSE; |
---|
820 | } |
---|
821 | else if (MATELEM(U,i,j)!=NULL) return FALSE; |
---|
822 | } |
---|
823 | } |
---|
824 | return TRUE; |
---|
825 | } |
---|
826 | |
---|
827 | void iiWriteMatrix(matrix im, const char *n, int dim, const ring r, int spaces) |
---|
828 | { |
---|
829 | int i,ii = MATROWS(im)-1; |
---|
830 | int j,jj = MATCOLS(im)-1; |
---|
831 | poly *pp = im->m; |
---|
832 | |
---|
833 | for (i=0; i<=ii; i++) |
---|
834 | { |
---|
835 | for (j=0; j<=jj; j++) |
---|
836 | { |
---|
837 | if (spaces>0) |
---|
838 | Print("%-*.*s",spaces,spaces," "); |
---|
839 | if (dim == 2) Print("%s[%u,%u]=",n,i+1,j+1); |
---|
840 | else if (dim == 1) Print("%s[%u]=",n,j+1); |
---|
841 | else if (dim == 0) Print("%s=",n); |
---|
842 | if ((i<ii)||(j<jj)) p_Write(*pp++, r); |
---|
843 | else p_Write0(*pp, r); |
---|
844 | } |
---|
845 | } |
---|
846 | } |
---|
847 | |
---|
848 | char * iiStringMatrix(matrix im, int dim, const ring r, char ch) |
---|
849 | { |
---|
850 | int i,ii = MATROWS(im); |
---|
851 | int j,jj = MATCOLS(im); |
---|
852 | poly *pp = im->m; |
---|
853 | char ch_s[2]; |
---|
854 | ch_s[0]=ch; |
---|
855 | ch_s[1]='\0'; |
---|
856 | |
---|
857 | StringSetS(""); |
---|
858 | |
---|
859 | for (i=0; i<ii; i++) |
---|
860 | { |
---|
861 | for (j=0; j<jj; j++) |
---|
862 | { |
---|
863 | p_String0(*pp++, r); |
---|
864 | StringAppendS(ch_s); |
---|
865 | if (dim > 1) StringAppendS("\n"); |
---|
866 | } |
---|
867 | } |
---|
868 | char *s=StringEndS(); |
---|
869 | s[strlen(s)- (dim > 1 ? 2 : 1)]='\0'; |
---|
870 | return s; |
---|
871 | } |
---|
872 | |
---|
873 | void mp_Delete(matrix* a, const ring r) |
---|
874 | { |
---|
875 | id_Delete((ideal *) a, r); |
---|
876 | } |
---|
877 | |
---|
878 | /* |
---|
879 | * C++ classes for Bareiss algorithm |
---|
880 | */ |
---|
881 | class row_col_weight |
---|
882 | { |
---|
883 | private: |
---|
884 | int ym, yn; |
---|
885 | public: |
---|
886 | float *wrow, *wcol; |
---|
887 | row_col_weight() : ym(0) {} |
---|
888 | row_col_weight(int, int); |
---|
889 | ~row_col_weight(); |
---|
890 | }; |
---|
891 | |
---|
892 | row_col_weight::row_col_weight(int i, int j) |
---|
893 | { |
---|
894 | ym = i; |
---|
895 | yn = j; |
---|
896 | wrow = (float *)omAlloc(i*sizeof(float)); |
---|
897 | wcol = (float *)omAlloc(j*sizeof(float)); |
---|
898 | } |
---|
899 | row_col_weight::~row_col_weight() |
---|
900 | { |
---|
901 | if (ym!=0) |
---|
902 | { |
---|
903 | omFreeSize((ADDRESS)wcol, yn*sizeof(float)); |
---|
904 | omFreeSize((ADDRESS)wrow, ym*sizeof(float)); |
---|
905 | } |
---|
906 | } |
---|
907 | |
---|
908 | /*2 |
---|
909 | * a submatrix M of a matrix X[m,n]: |
---|
910 | * 0 <= i < s_m <= a_m |
---|
911 | * 0 <= j < s_n <= a_n |
---|
912 | * M = ( Xarray[qrow[i],qcol[j]] ) |
---|
913 | * if a_m = a_n and s_m = s_n |
---|
914 | * det(X) = sign*div^(s_m-1)*det(M) |
---|
915 | * resticted pivot for elimination |
---|
916 | * 0 <= j < piv_s |
---|
917 | */ |
---|
918 | class mp_permmatrix |
---|
919 | { |
---|
920 | private: |
---|
921 | int a_m, a_n, s_m, s_n, sign, piv_s; |
---|
922 | int *qrow, *qcol; |
---|
923 | poly *Xarray; |
---|
924 | ring _R; |
---|
925 | void mpInitMat(); |
---|
926 | poly * mpRowAdr(int r) |
---|
927 | { return &(Xarray[a_n*qrow[r]]); } |
---|
928 | poly * mpColAdr(int c) |
---|
929 | { return &(Xarray[qcol[c]]); } |
---|
930 | void mpRowWeight(float *); |
---|
931 | void mpColWeight(float *); |
---|
932 | void mpRowSwap(int, int); |
---|
933 | void mpColSwap(int, int); |
---|
934 | public: |
---|
935 | mp_permmatrix() : a_m(0) {} |
---|
936 | mp_permmatrix(matrix, ring); |
---|
937 | mp_permmatrix(mp_permmatrix *); |
---|
938 | ~mp_permmatrix(); |
---|
939 | int mpGetRow(); |
---|
940 | int mpGetCol(); |
---|
941 | int mpGetRdim() { return s_m; } |
---|
942 | int mpGetCdim() { return s_n; } |
---|
943 | int mpGetSign() { return sign; } |
---|
944 | void mpSetSearch(int s); |
---|
945 | void mpSaveArray() { Xarray = NULL; } |
---|
946 | poly mpGetElem(int, int); |
---|
947 | void mpSetElem(poly, int, int); |
---|
948 | void mpDelElem(int, int); |
---|
949 | void mpElimBareiss(poly); |
---|
950 | int mpPivotBareiss(row_col_weight *); |
---|
951 | int mpPivotRow(row_col_weight *, int); |
---|
952 | void mpToIntvec(intvec *); |
---|
953 | void mpRowReorder(); |
---|
954 | void mpColReorder(); |
---|
955 | }; |
---|
956 | mp_permmatrix::mp_permmatrix(matrix A, ring R) : sign(1) |
---|
957 | { |
---|
958 | a_m = A->nrows; |
---|
959 | a_n = A->ncols; |
---|
960 | this->mpInitMat(); |
---|
961 | Xarray = A->m; |
---|
962 | _R=R; |
---|
963 | } |
---|
964 | |
---|
965 | mp_permmatrix::mp_permmatrix(mp_permmatrix *M) |
---|
966 | { |
---|
967 | poly p, *athis, *aM; |
---|
968 | int i, j; |
---|
969 | |
---|
970 | _R=M->_R; |
---|
971 | a_m = M->s_m; |
---|
972 | a_n = M->s_n; |
---|
973 | sign = M->sign; |
---|
974 | this->mpInitMat(); |
---|
975 | Xarray = (poly *)omAlloc0(a_m*a_n*sizeof(poly)); |
---|
976 | for (i=a_m-1; i>=0; i--) |
---|
977 | { |
---|
978 | athis = this->mpRowAdr(i); |
---|
979 | aM = M->mpRowAdr(i); |
---|
980 | for (j=a_n-1; j>=0; j--) |
---|
981 | { |
---|
982 | p = aM[M->qcol[j]]; |
---|
983 | if (p) |
---|
984 | { |
---|
985 | athis[j] = p_Copy(p,_R); |
---|
986 | } |
---|
987 | } |
---|
988 | } |
---|
989 | } |
---|
990 | |
---|
991 | mp_permmatrix::~mp_permmatrix() |
---|
992 | { |
---|
993 | int k; |
---|
994 | |
---|
995 | if (a_m != 0) |
---|
996 | { |
---|
997 | omFreeSize((ADDRESS)qrow,a_m*sizeof(int)); |
---|
998 | omFreeSize((ADDRESS)qcol,a_n*sizeof(int)); |
---|
999 | if (Xarray != NULL) |
---|
1000 | { |
---|
1001 | for (k=a_m*a_n-1; k>=0; k--) |
---|
1002 | p_Delete(&Xarray[k],_R); |
---|
1003 | omFreeSize((ADDRESS)Xarray,a_m*a_n*sizeof(poly)); |
---|
1004 | } |
---|
1005 | } |
---|
1006 | } |
---|
1007 | |
---|
1008 | |
---|
1009 | static float mp_PolyWeight(poly p, const ring r); |
---|
1010 | void mp_permmatrix::mpColWeight(float *wcol) |
---|
1011 | { |
---|
1012 | poly p, *a; |
---|
1013 | int i, j; |
---|
1014 | float count; |
---|
1015 | |
---|
1016 | for (j=s_n; j>=0; j--) |
---|
1017 | { |
---|
1018 | a = this->mpColAdr(j); |
---|
1019 | count = 0.0; |
---|
1020 | for(i=s_m; i>=0; i--) |
---|
1021 | { |
---|
1022 | p = a[a_n*qrow[i]]; |
---|
1023 | if (p) |
---|
1024 | count += mp_PolyWeight(p,_R); |
---|
1025 | } |
---|
1026 | wcol[j] = count; |
---|
1027 | } |
---|
1028 | } |
---|
1029 | void mp_permmatrix::mpRowWeight(float *wrow) |
---|
1030 | { |
---|
1031 | poly p, *a; |
---|
1032 | int i, j; |
---|
1033 | float count; |
---|
1034 | |
---|
1035 | for (i=s_m; i>=0; i--) |
---|
1036 | { |
---|
1037 | a = this->mpRowAdr(i); |
---|
1038 | count = 0.0; |
---|
1039 | for(j=s_n; j>=0; j--) |
---|
1040 | { |
---|
1041 | p = a[qcol[j]]; |
---|
1042 | if (p) |
---|
1043 | count += mp_PolyWeight(p,_R); |
---|
1044 | } |
---|
1045 | wrow[i] = count; |
---|
1046 | } |
---|
1047 | } |
---|
1048 | |
---|
1049 | void mp_permmatrix::mpRowSwap(int i1, int i2) |
---|
1050 | { |
---|
1051 | poly p, *a1, *a2; |
---|
1052 | int j; |
---|
1053 | |
---|
1054 | a1 = &(Xarray[a_n*i1]); |
---|
1055 | a2 = &(Xarray[a_n*i2]); |
---|
1056 | for (j=a_n-1; j>= 0; j--) |
---|
1057 | { |
---|
1058 | p = a1[j]; |
---|
1059 | a1[j] = a2[j]; |
---|
1060 | a2[j] = p; |
---|
1061 | } |
---|
1062 | } |
---|
1063 | |
---|
1064 | void mp_permmatrix::mpColSwap(int j1, int j2) |
---|
1065 | { |
---|
1066 | poly p, *a1, *a2; |
---|
1067 | int i, k = a_n*a_m; |
---|
1068 | |
---|
1069 | a1 = &(Xarray[j1]); |
---|
1070 | a2 = &(Xarray[j2]); |
---|
1071 | for (i=0; i< k; i+=a_n) |
---|
1072 | { |
---|
1073 | p = a1[i]; |
---|
1074 | a1[i] = a2[i]; |
---|
1075 | a2[i] = p; |
---|
1076 | } |
---|
1077 | } |
---|
1078 | void mp_permmatrix::mpInitMat() |
---|
1079 | { |
---|
1080 | int k; |
---|
1081 | |
---|
1082 | s_m = a_m; |
---|
1083 | s_n = a_n; |
---|
1084 | piv_s = 0; |
---|
1085 | qrow = (int *)omAlloc(a_m*sizeof(int)); |
---|
1086 | qcol = (int *)omAlloc(a_n*sizeof(int)); |
---|
1087 | for (k=a_m-1; k>=0; k--) qrow[k] = k; |
---|
1088 | for (k=a_n-1; k>=0; k--) qcol[k] = k; |
---|
1089 | } |
---|
1090 | |
---|
1091 | void mp_permmatrix::mpColReorder() |
---|
1092 | { |
---|
1093 | int k, j, j1, j2; |
---|
1094 | |
---|
1095 | if (a_n > a_m) |
---|
1096 | k = a_n - a_m; |
---|
1097 | else |
---|
1098 | k = 0; |
---|
1099 | for (j=a_n-1; j>=k; j--) |
---|
1100 | { |
---|
1101 | j1 = qcol[j]; |
---|
1102 | if (j1 != j) |
---|
1103 | { |
---|
1104 | this->mpColSwap(j1, j); |
---|
1105 | j2 = 0; |
---|
1106 | while (qcol[j2] != j) j2++; |
---|
1107 | qcol[j2] = j1; |
---|
1108 | } |
---|
1109 | } |
---|
1110 | } |
---|
1111 | |
---|
1112 | void mp_permmatrix::mpRowReorder() |
---|
1113 | { |
---|
1114 | int k, i, i1, i2; |
---|
1115 | |
---|
1116 | if (a_m > a_n) |
---|
1117 | k = a_m - a_n; |
---|
1118 | else |
---|
1119 | k = 0; |
---|
1120 | for (i=a_m-1; i>=k; i--) |
---|
1121 | { |
---|
1122 | i1 = qrow[i]; |
---|
1123 | if (i1 != i) |
---|
1124 | { |
---|
1125 | this->mpRowSwap(i1, i); |
---|
1126 | i2 = 0; |
---|
1127 | while (qrow[i2] != i) i2++; |
---|
1128 | qrow[i2] = i1; |
---|
1129 | } |
---|
1130 | } |
---|
1131 | } |
---|
1132 | |
---|
1133 | /* |
---|
1134 | * perform replacement for pivot strategy in Bareiss algorithm |
---|
1135 | * change sign of determinant |
---|
1136 | */ |
---|
1137 | static void mpReplace(int j, int n, int &sign, int *perm) |
---|
1138 | { |
---|
1139 | int k; |
---|
1140 | |
---|
1141 | if (j != n) |
---|
1142 | { |
---|
1143 | k = perm[n]; |
---|
1144 | perm[n] = perm[j]; |
---|
1145 | perm[j] = k; |
---|
1146 | sign = -sign; |
---|
1147 | } |
---|
1148 | } |
---|
1149 | /*2 |
---|
1150 | * pivot strategy for Bareiss algorithm |
---|
1151 | */ |
---|
1152 | int mp_permmatrix::mpPivotBareiss(row_col_weight *C) |
---|
1153 | { |
---|
1154 | poly p, *a; |
---|
1155 | int i, j, iopt, jopt; |
---|
1156 | float sum, f1, f2, fo, r, ro, lp; |
---|
1157 | float *dr = C->wrow, *dc = C->wcol; |
---|
1158 | |
---|
1159 | fo = 1.0e20; |
---|
1160 | ro = 0.0; |
---|
1161 | iopt = jopt = -1; |
---|
1162 | |
---|
1163 | s_n--; |
---|
1164 | s_m--; |
---|
1165 | if (s_m == 0) |
---|
1166 | return 0; |
---|
1167 | if (s_n == 0) |
---|
1168 | { |
---|
1169 | for(i=s_m; i>=0; i--) |
---|
1170 | { |
---|
1171 | p = this->mpRowAdr(i)[qcol[0]]; |
---|
1172 | if (p) |
---|
1173 | { |
---|
1174 | f1 = mp_PolyWeight(p,_R); |
---|
1175 | if (f1 < fo) |
---|
1176 | { |
---|
1177 | fo = f1; |
---|
1178 | if (iopt >= 0) |
---|
1179 | p_Delete(&(this->mpRowAdr(iopt)[qcol[0]]),_R); |
---|
1180 | iopt = i; |
---|
1181 | } |
---|
1182 | else |
---|
1183 | p_Delete(&(this->mpRowAdr(i)[qcol[0]]),_R); |
---|
1184 | } |
---|
1185 | } |
---|
1186 | if (iopt >= 0) |
---|
1187 | mpReplace(iopt, s_m, sign, qrow); |
---|
1188 | return 0; |
---|
1189 | } |
---|
1190 | this->mpRowWeight(dr); |
---|
1191 | this->mpColWeight(dc); |
---|
1192 | sum = 0.0; |
---|
1193 | for(i=s_m; i>=0; i--) |
---|
1194 | sum += dr[i]; |
---|
1195 | for(i=s_m; i>=0; i--) |
---|
1196 | { |
---|
1197 | r = dr[i]; |
---|
1198 | a = this->mpRowAdr(i); |
---|
1199 | for(j=s_n; j>=0; j--) |
---|
1200 | { |
---|
1201 | p = a[qcol[j]]; |
---|
1202 | if (p) |
---|
1203 | { |
---|
1204 | lp = mp_PolyWeight(p,_R); |
---|
1205 | ro = r - lp; |
---|
1206 | f1 = ro * (dc[j]-lp); |
---|
1207 | if (f1 != 0.0) |
---|
1208 | { |
---|
1209 | f2 = lp * (sum - ro - dc[j]); |
---|
1210 | f2 += f1; |
---|
1211 | } |
---|
1212 | else |
---|
1213 | f2 = lp-r-dc[j]; |
---|
1214 | if (f2 < fo) |
---|
1215 | { |
---|
1216 | fo = f2; |
---|
1217 | iopt = i; |
---|
1218 | jopt = j; |
---|
1219 | } |
---|
1220 | } |
---|
1221 | } |
---|
1222 | } |
---|
1223 | if (iopt < 0) |
---|
1224 | return 0; |
---|
1225 | mpReplace(iopt, s_m, sign, qrow); |
---|
1226 | mpReplace(jopt, s_n, sign, qcol); |
---|
1227 | return 1; |
---|
1228 | } |
---|
1229 | poly mp_permmatrix::mpGetElem(int r, int c) |
---|
1230 | { |
---|
1231 | return Xarray[a_n*qrow[r]+qcol[c]]; |
---|
1232 | } |
---|
1233 | |
---|
1234 | /* |
---|
1235 | * the Bareiss-type elimination with division by div (div != NULL) |
---|
1236 | */ |
---|
1237 | void mp_permmatrix::mpElimBareiss(poly div) |
---|
1238 | { |
---|
1239 | poly piv, elim, q1, q2, *ap, *a; |
---|
1240 | int i, j, jj; |
---|
1241 | |
---|
1242 | ap = this->mpRowAdr(s_m); |
---|
1243 | piv = ap[qcol[s_n]]; |
---|
1244 | for(i=s_m-1; i>=0; i--) |
---|
1245 | { |
---|
1246 | a = this->mpRowAdr(i); |
---|
1247 | elim = a[qcol[s_n]]; |
---|
1248 | if (elim != NULL) |
---|
1249 | { |
---|
1250 | elim = p_Neg(elim,_R); |
---|
1251 | for (j=s_n-1; j>=0; j--) |
---|
1252 | { |
---|
1253 | q2 = NULL; |
---|
1254 | jj = qcol[j]; |
---|
1255 | if (ap[jj] != NULL) |
---|
1256 | { |
---|
1257 | q2 = SM_MULT(ap[jj], elim, div,_R); |
---|
1258 | if (a[jj] != NULL) |
---|
1259 | { |
---|
1260 | q1 = SM_MULT(a[jj], piv, div,_R); |
---|
1261 | p_Delete(&a[jj],_R); |
---|
1262 | q2 = p_Add_q(q2, q1, _R); |
---|
1263 | } |
---|
1264 | } |
---|
1265 | else if (a[jj] != NULL) |
---|
1266 | { |
---|
1267 | q2 = SM_MULT(a[jj], piv, div, _R); |
---|
1268 | } |
---|
1269 | if ((q2!=NULL) && div) |
---|
1270 | SM_DIV(q2, div, _R); |
---|
1271 | a[jj] = q2; |
---|
1272 | } |
---|
1273 | p_Delete(&a[qcol[s_n]], _R); |
---|
1274 | } |
---|
1275 | else |
---|
1276 | { |
---|
1277 | for (j=s_n-1; j>=0; j--) |
---|
1278 | { |
---|
1279 | jj = qcol[j]; |
---|
1280 | if (a[jj] != NULL) |
---|
1281 | { |
---|
1282 | q2 = SM_MULT(a[jj], piv, div, _R); |
---|
1283 | p_Delete(&a[jj], _R); |
---|
1284 | if (div) |
---|
1285 | SM_DIV(q2, div, _R); |
---|
1286 | a[jj] = q2; |
---|
1287 | } |
---|
1288 | } |
---|
1289 | } |
---|
1290 | } |
---|
1291 | } |
---|
1292 | /* |
---|
1293 | * weigth of a polynomial, for pivot strategy |
---|
1294 | */ |
---|
1295 | static float mp_PolyWeight(poly p, const ring r) |
---|
1296 | { |
---|
1297 | int i; |
---|
1298 | float res; |
---|
1299 | |
---|
1300 | if (pNext(p) == NULL) |
---|
1301 | { |
---|
1302 | res = (float)n_Size(pGetCoeff(p),r->cf); |
---|
1303 | for (i=r->N;i>0;i--) |
---|
1304 | { |
---|
1305 | if(p_GetExp(p,i,r)!=0) |
---|
1306 | { |
---|
1307 | res += 2.0; |
---|
1308 | break; |
---|
1309 | } |
---|
1310 | } |
---|
1311 | } |
---|
1312 | else |
---|
1313 | { |
---|
1314 | res = 0.0; |
---|
1315 | do |
---|
1316 | { |
---|
1317 | res += (float)n_Size(pGetCoeff(p),r->cf)+2.0; |
---|
1318 | pIter(p); |
---|
1319 | } |
---|
1320 | while (p); |
---|
1321 | } |
---|
1322 | return res; |
---|
1323 | } |
---|
1324 | /* |
---|
1325 | * find best row |
---|
1326 | */ |
---|
1327 | static int mp_PivBar(matrix a, int lr, int lc, const ring r) |
---|
1328 | { |
---|
1329 | float f1, f2; |
---|
1330 | poly *q1; |
---|
1331 | int i,j,io; |
---|
1332 | |
---|
1333 | io = -1; |
---|
1334 | f1 = 1.0e30; |
---|
1335 | for (i=lr-1;i>=0;i--) |
---|
1336 | { |
---|
1337 | q1 = &(a->m)[i*a->ncols]; |
---|
1338 | f2 = 0.0; |
---|
1339 | for (j=lc-1;j>=0;j--) |
---|
1340 | { |
---|
1341 | if (q1[j]!=NULL) |
---|
1342 | f2 += mp_PolyWeight(q1[j],r); |
---|
1343 | } |
---|
1344 | if ((f2!=0.0) && (f2<f1)) |
---|
1345 | { |
---|
1346 | f1 = f2; |
---|
1347 | io = i; |
---|
1348 | } |
---|
1349 | } |
---|
1350 | if (io<0) return 0; |
---|
1351 | else return io+1; |
---|
1352 | } |
---|
1353 | |
---|
1354 | static void mpSwapRow(matrix a, int pos, int lr, int lc) |
---|
1355 | { |
---|
1356 | poly sw; |
---|
1357 | int j; |
---|
1358 | poly* a2 = a->m; |
---|
1359 | poly* a1 = &a2[a->ncols*(pos-1)]; |
---|
1360 | |
---|
1361 | a2 = &a2[a->ncols*(lr-1)]; |
---|
1362 | for (j=lc-1; j>=0; j--) |
---|
1363 | { |
---|
1364 | sw = a1[j]; |
---|
1365 | a1[j] = a2[j]; |
---|
1366 | a2[j] = sw; |
---|
1367 | } |
---|
1368 | } |
---|
1369 | |
---|
1370 | /*2 |
---|
1371 | * prepare one step of 'Bareiss' algorithm |
---|
1372 | * for application in minor |
---|
1373 | */ |
---|
1374 | static int mp_PrepareRow (matrix a, int lr, int lc, const ring R) |
---|
1375 | { |
---|
1376 | int r; |
---|
1377 | |
---|
1378 | r = mp_PivBar(a,lr,lc,R); |
---|
1379 | if(r==0) return 0; |
---|
1380 | if(r<lr) mpSwapRow(a, r, lr, lc); |
---|
1381 | return 1; |
---|
1382 | } |
---|
1383 | |
---|
1384 | /* |
---|
1385 | * find pivot in the last row |
---|
1386 | */ |
---|
1387 | static int mp_PivRow(matrix a, int lr, int lc, const ring r) |
---|
1388 | { |
---|
1389 | float f1, f2; |
---|
1390 | poly *q1; |
---|
1391 | int j,jo; |
---|
1392 | |
---|
1393 | jo = -1; |
---|
1394 | f1 = 1.0e30; |
---|
1395 | q1 = &(a->m)[(lr-1)*a->ncols]; |
---|
1396 | for (j=lc-1;j>=0;j--) |
---|
1397 | { |
---|
1398 | if (q1[j]!=NULL) |
---|
1399 | { |
---|
1400 | f2 = mp_PolyWeight(q1[j],r); |
---|
1401 | if (f2<f1) |
---|
1402 | { |
---|
1403 | f1 = f2; |
---|
1404 | jo = j; |
---|
1405 | } |
---|
1406 | } |
---|
1407 | } |
---|
1408 | if (jo<0) return 0; |
---|
1409 | else return jo+1; |
---|
1410 | } |
---|
1411 | |
---|
1412 | static void mpSwapCol(matrix a, int pos, int lr, int lc) |
---|
1413 | { |
---|
1414 | poly sw; |
---|
1415 | int j; |
---|
1416 | poly* a2 = a->m; |
---|
1417 | poly* a1 = &a2[pos-1]; |
---|
1418 | |
---|
1419 | a2 = &a2[lc-1]; |
---|
1420 | for (j=a->ncols*(lr-1); j>=0; j-=a->ncols) |
---|
1421 | { |
---|
1422 | sw = a1[j]; |
---|
1423 | a1[j] = a2[j]; |
---|
1424 | a2[j] = sw; |
---|
1425 | } |
---|
1426 | } |
---|
1427 | |
---|
1428 | /*2 |
---|
1429 | * prepare one step of 'Bareiss' algorithm |
---|
1430 | * for application in minor |
---|
1431 | */ |
---|
1432 | static int mp_PreparePiv (matrix a, int lr, int lc,const ring r) |
---|
1433 | { |
---|
1434 | int c; |
---|
1435 | |
---|
1436 | c = mp_PivRow(a, lr, lc,r); |
---|
1437 | if(c==0) return 0; |
---|
1438 | if(c<lc) mpSwapCol(a, c, lr, lc); |
---|
1439 | return 1; |
---|
1440 | } |
---|
1441 | |
---|
1442 | static void mp_ElimBar(matrix a0, matrix re, poly div, int lr, int lc, const ring R) |
---|
1443 | { |
---|
1444 | int r=lr-1, c=lc-1; |
---|
1445 | poly *b = a0->m, *x = re->m; |
---|
1446 | poly piv, elim, q1, *ap, *a, *q; |
---|
1447 | int i, j; |
---|
1448 | |
---|
1449 | ap = &b[r*a0->ncols]; |
---|
1450 | piv = ap[c]; |
---|
1451 | for(j=c-1; j>=0; j--) |
---|
1452 | if (ap[j] != NULL) ap[j] = p_Neg(ap[j],R); |
---|
1453 | for(i=r-1; i>=0; i--) |
---|
1454 | { |
---|
1455 | a = &b[i*a0->ncols]; |
---|
1456 | q = &x[i*re->ncols]; |
---|
1457 | if (a[c] != NULL) |
---|
1458 | { |
---|
1459 | elim = a[c]; |
---|
1460 | for (j=c-1; j>=0; j--) |
---|
1461 | { |
---|
1462 | q1 = NULL; |
---|
1463 | if (a[j] != NULL) |
---|
1464 | { |
---|
1465 | q1 = sm_MultDiv(a[j], piv, div,R); |
---|
1466 | if (ap[j] != NULL) |
---|
1467 | { |
---|
1468 | poly q2 = sm_MultDiv(ap[j], elim, div, R); |
---|
1469 | q1 = p_Add_q(q1,q2,R); |
---|
1470 | } |
---|
1471 | } |
---|
1472 | else if (ap[j] != NULL) |
---|
1473 | q1 = sm_MultDiv(ap[j], elim, div, R); |
---|
1474 | if (q1 != NULL) |
---|
1475 | { |
---|
1476 | if (div) |
---|
1477 | sm_SpecialPolyDiv(q1, div,R); |
---|
1478 | q[j] = q1; |
---|
1479 | } |
---|
1480 | } |
---|
1481 | } |
---|
1482 | else |
---|
1483 | { |
---|
1484 | for (j=c-1; j>=0; j--) |
---|
1485 | { |
---|
1486 | if (a[j] != NULL) |
---|
1487 | { |
---|
1488 | q1 = sm_MultDiv(a[j], piv, div, R); |
---|
1489 | if (div) |
---|
1490 | sm_SpecialPolyDiv(q1, div, R); |
---|
1491 | q[j] = q1; |
---|
1492 | } |
---|
1493 | } |
---|
1494 | } |
---|
1495 | } |
---|
1496 | } |
---|
1497 | |
---|
1498 | /*2*/ |
---|
1499 | /// entries of a are minors and go to result (only if not in R) |
---|
1500 | void mp_MinorToResult(ideal result, int &elems, matrix a, int r, int c, |
---|
1501 | ideal R, const ring) |
---|
1502 | { |
---|
1503 | poly *q1; |
---|
1504 | int e=IDELEMS(result); |
---|
1505 | int i,j; |
---|
1506 | |
---|
1507 | if (R != NULL) |
---|
1508 | { |
---|
1509 | for (i=r-1;i>=0;i--) |
---|
1510 | { |
---|
1511 | q1 = &(a->m)[i*a->ncols]; |
---|
1512 | //for (j=c-1;j>=0;j--) |
---|
1513 | //{ |
---|
1514 | // if (q1[j]!=NULL) q1[j] = kNF(R,currRing->qideal,q1[j]); |
---|
1515 | //} |
---|
1516 | } |
---|
1517 | } |
---|
1518 | for (i=r-1;i>=0;i--) |
---|
1519 | { |
---|
1520 | q1 = &(a->m)[i*a->ncols]; |
---|
1521 | for (j=c-1;j>=0;j--) |
---|
1522 | { |
---|
1523 | if (q1[j]!=NULL) |
---|
1524 | { |
---|
1525 | if (elems>=e) |
---|
1526 | { |
---|
1527 | pEnlargeSet(&(result->m),e,e); |
---|
1528 | e += e; |
---|
1529 | IDELEMS(result) =e; |
---|
1530 | } |
---|
1531 | result->m[elems] = q1[j]; |
---|
1532 | q1[j] = NULL; |
---|
1533 | elems++; |
---|
1534 | } |
---|
1535 | } |
---|
1536 | } |
---|
1537 | } |
---|
1538 | /* |
---|
1539 | // from linalg_from_matpol.cc: TODO: compare with above & remove... |
---|
1540 | void mp_MinorToResult(ideal result, int &elems, matrix a, int r, int c, |
---|
1541 | ideal R, const ring R) |
---|
1542 | { |
---|
1543 | poly *q1; |
---|
1544 | int e=IDELEMS(result); |
---|
1545 | int i,j; |
---|
1546 | |
---|
1547 | if (R != NULL) |
---|
1548 | { |
---|
1549 | for (i=r-1;i>=0;i--) |
---|
1550 | { |
---|
1551 | q1 = &(a->m)[i*a->ncols]; |
---|
1552 | for (j=c-1;j>=0;j--) |
---|
1553 | { |
---|
1554 | if (q1[j]!=NULL) q1[j] = kNF(R,currRing->qideal,q1[j]); |
---|
1555 | } |
---|
1556 | } |
---|
1557 | } |
---|
1558 | for (i=r-1;i>=0;i--) |
---|
1559 | { |
---|
1560 | q1 = &(a->m)[i*a->ncols]; |
---|
1561 | for (j=c-1;j>=0;j--) |
---|
1562 | { |
---|
1563 | if (q1[j]!=NULL) |
---|
1564 | { |
---|
1565 | if (elems>=e) |
---|
1566 | { |
---|
1567 | if(e<SIZE_OF_SYSTEM_PAGE) |
---|
1568 | { |
---|
1569 | pEnlargeSet(&(result->m),e,e); |
---|
1570 | e += e; |
---|
1571 | } |
---|
1572 | else |
---|
1573 | { |
---|
1574 | pEnlargeSet(&(result->m),e,SIZE_OF_SYSTEM_PAGE); |
---|
1575 | e += SIZE_OF_SYSTEM_PAGE; |
---|
1576 | } |
---|
1577 | IDELEMS(result) =e; |
---|
1578 | } |
---|
1579 | result->m[elems] = q1[j]; |
---|
1580 | q1[j] = NULL; |
---|
1581 | elems++; |
---|
1582 | } |
---|
1583 | } |
---|
1584 | } |
---|
1585 | } |
---|
1586 | */ |
---|
1587 | |
---|
1588 | static void mpFinalClean(matrix a) |
---|
1589 | { |
---|
1590 | omFreeSize((ADDRESS)a->m,a->nrows*a->ncols*sizeof(poly)); |
---|
1591 | omFreeBin((ADDRESS)a, sip_sideal_bin); |
---|
1592 | } |
---|
1593 | |
---|
1594 | /*2*/ |
---|
1595 | /// produces recursively the ideal of all arxar-minors of a |
---|
1596 | void mp_RecMin(int ar,ideal result,int &elems,matrix a,int lr,int lc, |
---|
1597 | poly barDiv, ideal R, const ring r) |
---|
1598 | { |
---|
1599 | int k; |
---|
1600 | int kr=lr-1,kc=lc-1; |
---|
1601 | matrix nextLevel=mpNew(kr,kc); |
---|
1602 | |
---|
1603 | loop |
---|
1604 | { |
---|
1605 | /*--- look for an optimal row and bring it to last position ------------*/ |
---|
1606 | if(mp_PrepareRow(a,lr,lc,r)==0) break; |
---|
1607 | /*--- now take all pivots from the last row ------------*/ |
---|
1608 | k = lc; |
---|
1609 | loop |
---|
1610 | { |
---|
1611 | if(mp_PreparePiv(a,lr,k,r)==0) break; |
---|
1612 | mp_ElimBar(a,nextLevel,barDiv,lr,k,r); |
---|
1613 | k--; |
---|
1614 | if (ar>1) |
---|
1615 | { |
---|
1616 | mp_RecMin(ar-1,result,elems,nextLevel,kr,k,a->m[kr*a->ncols+k],R,r); |
---|
1617 | mp_PartClean(nextLevel,kr,k, r); |
---|
1618 | } |
---|
1619 | else mp_MinorToResult(result,elems,nextLevel,kr,k,R,r); |
---|
1620 | if (ar>k-1) break; |
---|
1621 | } |
---|
1622 | if (ar>=kr) break; |
---|
1623 | /*--- now we have to take out the last row...------------*/ |
---|
1624 | lr = kr; |
---|
1625 | kr--; |
---|
1626 | } |
---|
1627 | mpFinalClean(nextLevel); |
---|
1628 | } |
---|
1629 | /* |
---|
1630 | // from linalg_from_matpol.cc: TODO: compare with above & remove... |
---|
1631 | void mp_RecMin(int ar,ideal result,int &elems,matrix a,int lr,int lc, |
---|
1632 | poly barDiv, ideal R, const ring R) |
---|
1633 | { |
---|
1634 | int k; |
---|
1635 | int kr=lr-1,kc=lc-1; |
---|
1636 | matrix nextLevel=mpNew(kr,kc); |
---|
1637 | |
---|
1638 | loop |
---|
1639 | { |
---|
1640 | // --- look for an optimal row and bring it to last position ------------ |
---|
1641 | if(mpPrepareRow(a,lr,lc)==0) break; |
---|
1642 | // --- now take all pivots from the last row ------------ |
---|
1643 | k = lc; |
---|
1644 | loop |
---|
1645 | { |
---|
1646 | if(mpPreparePiv(a,lr,k)==0) break; |
---|
1647 | mpElimBar(a,nextLevel,barDiv,lr,k); |
---|
1648 | k--; |
---|
1649 | if (ar>1) |
---|
1650 | { |
---|
1651 | mpRecMin(ar-1,result,elems,nextLevel,kr,k,a->m[kr*a->ncols+k],R); |
---|
1652 | mpPartClean(nextLevel,kr,k); |
---|
1653 | } |
---|
1654 | else mpMinorToResult(result,elems,nextLevel,kr,k,R); |
---|
1655 | if (ar>k-1) break; |
---|
1656 | } |
---|
1657 | if (ar>=kr) break; |
---|
1658 | // --- now we have to take out the last row...------------ |
---|
1659 | lr = kr; |
---|
1660 | kr--; |
---|
1661 | } |
---|
1662 | mpFinalClean(nextLevel); |
---|
1663 | } |
---|
1664 | */ |
---|
1665 | |
---|
1666 | /*2*/ |
---|
1667 | /// returns the determinant of the matrix m; |
---|
1668 | /// uses Bareiss algorithm |
---|
1669 | poly mp_DetBareiss (matrix a, const ring r) |
---|
1670 | { |
---|
1671 | int s; |
---|
1672 | poly div, res; |
---|
1673 | if (MATROWS(a) != MATCOLS(a)) |
---|
1674 | { |
---|
1675 | Werror("det of %d x %d matrix",MATROWS(a),MATCOLS(a)); |
---|
1676 | return NULL; |
---|
1677 | } |
---|
1678 | matrix c = mp_Copy(a,r); |
---|
1679 | mp_permmatrix *Bareiss = new mp_permmatrix(c,r); |
---|
1680 | row_col_weight w(Bareiss->mpGetRdim(), Bareiss->mpGetCdim()); |
---|
1681 | |
---|
1682 | /* Bareiss */ |
---|
1683 | div = NULL; |
---|
1684 | while(Bareiss->mpPivotBareiss(&w)) |
---|
1685 | { |
---|
1686 | Bareiss->mpElimBareiss(div); |
---|
1687 | div = Bareiss->mpGetElem(Bareiss->mpGetRdim(), Bareiss->mpGetCdim()); |
---|
1688 | } |
---|
1689 | Bareiss->mpRowReorder(); |
---|
1690 | Bareiss->mpColReorder(); |
---|
1691 | Bareiss->mpSaveArray(); |
---|
1692 | s = Bareiss->mpGetSign(); |
---|
1693 | delete Bareiss; |
---|
1694 | |
---|
1695 | /* result */ |
---|
1696 | res = MATELEM(c,1,1); |
---|
1697 | MATELEM(c,1,1) = NULL; |
---|
1698 | id_Delete((ideal *)&c,r); |
---|
1699 | if (s < 0) |
---|
1700 | res = p_Neg(res,r); |
---|
1701 | return res; |
---|
1702 | } |
---|
1703 | /* |
---|
1704 | // from linalg_from_matpol.cc: TODO: compare with above & remove... |
---|
1705 | poly mp_DetBareiss (matrix a, const ring R) |
---|
1706 | { |
---|
1707 | int s; |
---|
1708 | poly div, res; |
---|
1709 | if (MATROWS(a) != MATCOLS(a)) |
---|
1710 | { |
---|
1711 | Werror("det of %d x %d matrix",MATROWS(a),MATCOLS(a)); |
---|
1712 | return NULL; |
---|
1713 | } |
---|
1714 | matrix c = mp_Copy(a, R); |
---|
1715 | mp_permmatrix *Bareiss = new mp_permmatrix(c, R); |
---|
1716 | row_col_weight w(Bareiss->mpGetRdim(), Bareiss->mpGetCdim()); |
---|
1717 | |
---|
1718 | // Bareiss |
---|
1719 | div = NULL; |
---|
1720 | while(Bareiss->mpPivotBareiss(&w)) |
---|
1721 | { |
---|
1722 | Bareiss->mpElimBareiss(div); |
---|
1723 | div = Bareiss->mpGetElem(Bareiss->mpGetRdim(), Bareiss->mpGetCdim()); |
---|
1724 | } |
---|
1725 | Bareiss->mpRowReorder(); |
---|
1726 | Bareiss->mpColReorder(); |
---|
1727 | Bareiss->mpSaveArray(); |
---|
1728 | s = Bareiss->mpGetSign(); |
---|
1729 | delete Bareiss; |
---|
1730 | |
---|
1731 | // result |
---|
1732 | res = MATELEM(c,1,1); |
---|
1733 | MATELEM(c,1,1) = NULL; |
---|
1734 | id_Delete((ideal *)&c, R); |
---|
1735 | if (s < 0) |
---|
1736 | res = p_Neg(res, R); |
---|
1737 | return res; |
---|
1738 | } |
---|
1739 | */ |
---|
1740 | |
---|
1741 | /*2 |
---|
1742 | * compute all ar-minors of the matrix a |
---|
1743 | */ |
---|
1744 | matrix mp_Wedge(matrix a, int ar, const ring R) |
---|
1745 | { |
---|
1746 | int i,j,k,l; |
---|
1747 | int *rowchoise,*colchoise; |
---|
1748 | BOOLEAN rowch,colch; |
---|
1749 | matrix result; |
---|
1750 | matrix tmp; |
---|
1751 | poly p; |
---|
1752 | |
---|
1753 | i = binom(a->nrows,ar); |
---|
1754 | j = binom(a->ncols,ar); |
---|
1755 | |
---|
1756 | rowchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
1757 | colchoise=(int *)omAlloc(ar*sizeof(int)); |
---|
1758 | result = mpNew(i,j); |
---|
1759 | tmp = mpNew(ar,ar); |
---|
1760 | l = 1; /* k,l:the index in result*/ |
---|
1761 | idInitChoise(ar,1,a->nrows,&rowch,rowchoise); |
---|
1762 | while (!rowch) |
---|
1763 | { |
---|
1764 | k=1; |
---|
1765 | idInitChoise(ar,1,a->ncols,&colch,colchoise); |
---|
1766 | while (!colch) |
---|
1767 | { |
---|
1768 | for (i=1; i<=ar; i++) |
---|
1769 | { |
---|
1770 | for (j=1; j<=ar; j++) |
---|
1771 | { |
---|
1772 | MATELEM(tmp,i,j) = MATELEM(a,rowchoise[i-1],colchoise[j-1]); |
---|
1773 | } |
---|
1774 | } |
---|
1775 | p = mp_DetBareiss(tmp, R); |
---|
1776 | if ((k+l) & 1) p=p_Neg(p, R); |
---|
1777 | MATELEM(result,l,k) = p; |
---|
1778 | k++; |
---|
1779 | idGetNextChoise(ar,a->ncols,&colch,colchoise); |
---|
1780 | } |
---|
1781 | idGetNextChoise(ar,a->nrows,&rowch,rowchoise); |
---|
1782 | l++; |
---|
1783 | } |
---|
1784 | |
---|
1785 | /*delete the matrix tmp*/ |
---|
1786 | for (i=1; i<=ar; i++) |
---|
1787 | { |
---|
1788 | for (j=1; j<=ar; j++) MATELEM(tmp,i,j) = NULL; |
---|
1789 | } |
---|
1790 | id_Delete((ideal *) &tmp, R); |
---|
1791 | return (result); |
---|
1792 | } |
---|
1793 | |
---|
1794 | // helper for sm_Tensor |
---|
1795 | // destroyes f, keeps B |
---|
1796 | static ideal sm_MultAndShift(poly f, ideal B, int s, const ring r) |
---|
1797 | { |
---|
1798 | assume(f!=NULL); |
---|
1799 | ideal res=idInit(IDELEMS(B),B->rank+s); |
---|
1800 | int q=IDELEMS(B); // p x q |
---|
1801 | for(int j=0;j<q;j++) |
---|
1802 | { |
---|
1803 | poly h=pp_Mult_qq(f,B->m[j],r); |
---|
1804 | if (h!=NULL) |
---|
1805 | { |
---|
1806 | if (s>0) p_Shift(&h,s,r); |
---|
1807 | res->m[j]=h; |
---|
1808 | } |
---|
1809 | } |
---|
1810 | p_Delete(&f,r); |
---|
1811 | return res; |
---|
1812 | } |
---|
1813 | // helper for sm_Tensor |
---|
1814 | // updates res, destroyes contents of sm |
---|
1815 | static void sm_AddSubMat(ideal res, ideal sm, int col, const ring r) |
---|
1816 | { |
---|
1817 | for(int i=0;i<IDELEMS(sm);i++) |
---|
1818 | { |
---|
1819 | res->m[col+i]=p_Add_q(res->m[col+i],sm->m[i],r); |
---|
1820 | sm->m[i]=NULL; |
---|
1821 | } |
---|
1822 | } |
---|
1823 | |
---|
1824 | ideal sm_Tensor(ideal A, ideal B, const ring r) |
---|
1825 | { |
---|
1826 | // size of the result m*p x n*q |
---|
1827 | int n=IDELEMS(A); // m x n |
---|
1828 | int m=A->rank; |
---|
1829 | int q=IDELEMS(B); // p x q |
---|
1830 | int p=B->rank; |
---|
1831 | ideal res=idInit(n*q,m*p); |
---|
1832 | poly *a=(poly*)omAlloc(m*sizeof(poly)); |
---|
1833 | for(int i=0; i<n; i++) |
---|
1834 | { |
---|
1835 | memset(a,0,m*sizeof(poly)); |
---|
1836 | p_Vec2Array(A->m[i],a,m,r); |
---|
1837 | for(int j=0;j<m;j++) |
---|
1838 | { |
---|
1839 | if (a[j]!=NULL) |
---|
1840 | { |
---|
1841 | ideal sm=sm_MultAndShift(a[j], // A_i_j |
---|
1842 | B, |
---|
1843 | j*p, // shift j*p down |
---|
1844 | r); |
---|
1845 | sm_AddSubMat(res,sm,i*q,r); // add this columns to col i*q ff |
---|
1846 | id_Delete(&sm,r); // delete the now empty ideal |
---|
1847 | } |
---|
1848 | } |
---|
1849 | } |
---|
1850 | omFreeSize(a,m*sizeof(poly)); |
---|
1851 | return res; |
---|
1852 | } |
---|
1853 | // -------------------------------------------------------------------------- |
---|
1854 | /**************************************** |
---|
1855 | * Computer Algebra System SINGULAR * |
---|
1856 | ****************************************/ |
---|
1857 | |
---|
1858 | /* |
---|
1859 | * ABSTRACT: basic operation for sparse matrices: |
---|
1860 | * type: ideal (of column vectors) |
---|
1861 | * nrows: I->rank, ncols: IDELEMS(I) |
---|
1862 | */ |
---|
1863 | |
---|
1864 | ideal sm_Add(ideal a, ideal b, const ring R) |
---|
1865 | { |
---|
1866 | assume(IDELEMS(a)==IDELEMS(b)); |
---|
1867 | assume(a->rank==b->rank); |
---|
1868 | ideal c=idInit(IDELEMS(a),a->rank); |
---|
1869 | for (int k=IDELEMS(a)-1; k>=0; k--) |
---|
1870 | c->m[k] = p_Add_q(p_Copy(a->m[k], R), p_Copy(b->m[k], R), R); |
---|
1871 | return c; |
---|
1872 | } |
---|
1873 | |
---|
1874 | ideal sm_Sub(ideal a, ideal b, const ring R) |
---|
1875 | { |
---|
1876 | assume(IDELEMS(a)==IDELEMS(b)); |
---|
1877 | assume(a->rank==b->rank); |
---|
1878 | ideal c=idInit(IDELEMS(a),a->rank); |
---|
1879 | for (int k=IDELEMS(a)-1; k>=0; k--) |
---|
1880 | c->m[k] = p_Sub(p_Copy(a->m[k], R), p_Copy(b->m[k], R), R); |
---|
1881 | return c; |
---|
1882 | } |
---|
1883 | |
---|
1884 | ideal sm_Mult(ideal a, ideal b, const ring R) |
---|
1885 | { |
---|
1886 | int i, j, k; |
---|
1887 | int m = a->rank; |
---|
1888 | int p = IDELEMS(a); |
---|
1889 | int q = IDELEMS(b); |
---|
1890 | |
---|
1891 | assume (IDELEMS(a)==b->rank); |
---|
1892 | ideal c = idInit(q,m); |
---|
1893 | |
---|
1894 | for (i=0; i<m; i++) |
---|
1895 | { |
---|
1896 | for (k=0; k<p; k++) |
---|
1897 | { |
---|
1898 | poly aik; |
---|
1899 | if ((aik=SMATELEM(a,i,k,R))!=NULL) |
---|
1900 | { |
---|
1901 | for (j=0; j<q; j++) |
---|
1902 | { |
---|
1903 | poly bkj=SMATELEM(b,k,j,R); |
---|
1904 | if (bkj!=NULL) |
---|
1905 | { |
---|
1906 | poly s = p_Mult_q(p_Copy(aik,R) /*SMATELEM(a,i,k)*/, bkj/*SMATELEM(b,k,j)*/, R); |
---|
1907 | if (s!=NULL) p_SetComp(s,i+1,R); |
---|
1908 | c->m[j]=p_Add_q(c->m[j],s, R); |
---|
1909 | } |
---|
1910 | } |
---|
1911 | p_Delete(&aik,R); |
---|
1912 | } |
---|
1913 | } |
---|
1914 | } |
---|
1915 | for(i=q-1;i>=0;i--) p_Normalize(c->m[i], R); |
---|
1916 | return c; |
---|
1917 | } |
---|
1918 | |
---|
1919 | ideal sm_Flatten(ideal a, const ring R) |
---|
1920 | { |
---|
1921 | if (IDELEMS(a)==0) return id_Copy(a,R); |
---|
1922 | ideal res=idInit(1,IDELEMS(a)*a->rank); |
---|
1923 | for(int i=0;i<IDELEMS(a);i++) |
---|
1924 | { |
---|
1925 | if(a->m[i]!=NULL) |
---|
1926 | { |
---|
1927 | poly p=p_Copy(a->m[i],R); |
---|
1928 | if (i==0) res->m[0]=p; |
---|
1929 | else |
---|
1930 | { |
---|
1931 | p_Shift(&p,i*a->rank,R); |
---|
1932 | res->m[0]=p_Add_q(res->m[0],p,R); |
---|
1933 | } |
---|
1934 | } |
---|
1935 | } |
---|
1936 | return res; |
---|
1937 | } |
---|
1938 | |
---|
1939 | ideal sm_UnFlatten(ideal a, int col, const ring R) |
---|
1940 | { |
---|
1941 | if ((IDELEMS(a)!=1) |
---|
1942 | ||((a->rank % col)!=0)) |
---|
1943 | { |
---|
1944 | Werror("wrong format: %d x %d for unflatten",(int)a->rank,IDELEMS(a)); |
---|
1945 | return NULL; |
---|
1946 | } |
---|
1947 | int row=a->rank/col; |
---|
1948 | ideal res=idInit(col,row); |
---|
1949 | poly p=a->m[0]; |
---|
1950 | while(p!=NULL) |
---|
1951 | { |
---|
1952 | poly h=p_Head(p,R); |
---|
1953 | int comp=p_GetComp(h,R); |
---|
1954 | int c=(comp-1)/row; |
---|
1955 | int r=comp%row; if (r==0) r=row; |
---|
1956 | p_SetComp(h,r,R); p_SetmComp(h,R); |
---|
1957 | res->m[c]=p_Add_q(res->m[c],h,R); |
---|
1958 | pIter(p); |
---|
1959 | } |
---|
1960 | return res; |
---|
1961 | } |
---|
1962 | |
---|
1963 | /*2 |
---|
1964 | *returns the trace of matrix a |
---|
1965 | */ |
---|
1966 | poly sm_Trace ( ideal a, const ring R) |
---|
1967 | { |
---|
1968 | int i; |
---|
1969 | int n = (IDELEMS(a)<a->rank) ? IDELEMS(a) : a->rank; |
---|
1970 | poly t = NULL; |
---|
1971 | |
---|
1972 | for (i=0; i<=n; i++) |
---|
1973 | t = p_Add_q(t, p_Copy(SMATELEM(a,i,i,R), R), R); |
---|
1974 | return t; |
---|
1975 | } |
---|
1976 | |
---|
1977 | int sm_Compare(ideal a, ideal b, const ring R) |
---|
1978 | { |
---|
1979 | if (IDELEMS(a)<IDELEMS(b)) return -1; |
---|
1980 | else if (IDELEMS(a)>IDELEMS(b)) return 1; |
---|
1981 | if ((a->rank)<(b->rank)) return -1; |
---|
1982 | else if ((a->rank)<(b->rank)) return 1; |
---|
1983 | |
---|
1984 | unsigned ii=IDELEMS(a)-1; |
---|
1985 | unsigned j=0; |
---|
1986 | int r=0; |
---|
1987 | while (j<=ii) |
---|
1988 | { |
---|
1989 | r=p_Compare(a->m[j],b->m[j],R); |
---|
1990 | if (r!=0) return r; |
---|
1991 | j++; |
---|
1992 | } |
---|
1993 | return r; |
---|
1994 | } |
---|
1995 | |
---|
1996 | BOOLEAN sm_Equal(ideal a, ideal b, const ring R) |
---|
1997 | { |
---|
1998 | if ((a->rank!=b->rank) || (IDELEMS(a)!=IDELEMS(b))) |
---|
1999 | return FALSE; |
---|
2000 | int i=IDELEMS(a)-1; |
---|
2001 | while (i>=0) |
---|
2002 | { |
---|
2003 | if (a->m[i]==NULL) |
---|
2004 | { |
---|
2005 | if (b->m[i]!=NULL) return FALSE; |
---|
2006 | } |
---|
2007 | else if (b->m[i]==NULL) return FALSE; |
---|
2008 | else if (p_Cmp(a->m[i],b->m[i], R)!=0) return FALSE; |
---|
2009 | i--; |
---|
2010 | } |
---|
2011 | i=IDELEMS(a)-1; |
---|
2012 | while (i>=0) |
---|
2013 | { |
---|
2014 | if(!p_EqualPolys(a->m[i],b->m[i], R)) return FALSE; |
---|
2015 | i--; |
---|
2016 | } |
---|
2017 | return TRUE; |
---|
2018 | } |
---|
2019 | |
---|
2020 | /* |
---|
2021 | * mu-Algorithmus: |
---|
2022 | */ |
---|
2023 | |
---|
2024 | // mu-Matrix |
---|
2025 | static matrix mu(matrix A, const ring R) |
---|
2026 | { |
---|
2027 | int n=MATROWS(A); |
---|
2028 | assume(MATCOLS(A)==n); |
---|
2029 | /* Die Funktion erstellt die Matrix mu |
---|
2030 | * |
---|
2031 | * Input: |
---|
2032 | * int n: Dimension der Matrix |
---|
2033 | * int A: Matrix der Groesse n*n |
---|
2034 | * int X: Speicherplatz fuer Output |
---|
2035 | * |
---|
2036 | * In der Matrix X speichert man die Matrix mu |
---|
2037 | */ |
---|
2038 | |
---|
2039 | // X als n*n Null-Matrix initalisieren |
---|
2040 | matrix X=mpNew(n,n); |
---|
2041 | |
---|
2042 | // Diagonaleintraege von X berrechnen |
---|
2043 | poly sum = NULL; |
---|
2044 | for (int i = n-1; i >= 0; i--) |
---|
2045 | { |
---|
2046 | MATELEM0(X,i,i) = p_Copy(sum,R); |
---|
2047 | sum=p_Sub(sum,p_Copy(MATELEM0(A,i,i),R),R); |
---|
2048 | } |
---|
2049 | p_Delete(&sum,R); |
---|
2050 | |
---|
2051 | // Eintraege aus dem oberen Dreieck von A nach X uebertragen |
---|
2052 | for (int i = n-1; i >=0; i--) |
---|
2053 | { |
---|
2054 | for (int j = i+1; j < n; j++) |
---|
2055 | { |
---|
2056 | MATELEM0(X,i,j)=p_Copy(MATELEM0(A,i,j),R); |
---|
2057 | } |
---|
2058 | } |
---|
2059 | return X; |
---|
2060 | } |
---|
2061 | |
---|
2062 | // Funktion muDet |
---|
2063 | poly mp_DetMu(matrix A, const ring R) |
---|
2064 | { |
---|
2065 | int n=MATROWS(A); |
---|
2066 | assume(MATCOLS(A)==n); |
---|
2067 | /* |
---|
2068 | * Intput: |
---|
2069 | * int n: Dimension der Matrix |
---|
2070 | * int A: n*n Matrix |
---|
2071 | * |
---|
2072 | * Berechnet n-1 mal: X = mu(X)*A |
---|
2073 | * |
---|
2074 | * Output: det(A) |
---|
2075 | */ |
---|
2076 | |
---|
2077 | //speichere A ab: |
---|
2078 | matrix workA=mp_Copy(A,R); |
---|
2079 | |
---|
2080 | // berechen X = mu(X)*A |
---|
2081 | matrix X; |
---|
2082 | for (int i = n-1; i >0; i--) |
---|
2083 | { |
---|
2084 | X=mu(workA,R); |
---|
2085 | id_Delete((ideal*)&workA,R); |
---|
2086 | workA=mp_Mult(X,A,R); |
---|
2087 | id_Delete((ideal*)&X,R); |
---|
2088 | } |
---|
2089 | |
---|
2090 | // berrechne det(A) |
---|
2091 | poly res; |
---|
2092 | if (n%2 == 0) |
---|
2093 | { |
---|
2094 | res=p_Neg(MATELEM0(workA,0,0),R); |
---|
2095 | } |
---|
2096 | else |
---|
2097 | { |
---|
2098 | res=MATELEM0(workA,0,0); |
---|
2099 | } |
---|
2100 | MATELEM0(workA,0,0)=NULL; |
---|
2101 | id_Delete((ideal*)&workA,R); |
---|
2102 | return res; |
---|
2103 | } |
---|
2104 | |
---|
2105 | DetVariant mp_GetAlgorithmDet(matrix m, const ring r) |
---|
2106 | { |
---|
2107 | if (MATROWS(m)+2*r->N>20+5*rField_is_Zp(r)) return DetMu; |
---|
2108 | if (MATROWS(m)<10+5*rField_is_Zp(r)) return DetSBareiss; |
---|
2109 | BOOLEAN isConst=TRUE; |
---|
2110 | int s=0; |
---|
2111 | for(int i=MATCOLS(m)*MATROWS(m)-1;i>=0;i--) |
---|
2112 | { |
---|
2113 | poly p=m->m[i]; |
---|
2114 | if (p!=NULL) |
---|
2115 | { |
---|
2116 | if(!p_IsConstant(p,r)) isConst=FALSE; |
---|
2117 | s++; |
---|
2118 | } |
---|
2119 | } |
---|
2120 | if (isConst && rField_is_Q(r)) return DetFactory; |
---|
2121 | if (s*2<MATCOLS(m)*MATROWS(m)) // few entries |
---|
2122 | return DetSBareiss; |
---|
2123 | return DetMu; |
---|
2124 | } |
---|
2125 | DetVariant mp_GetAlgorithmDet(const char *s) |
---|
2126 | { |
---|
2127 | if (strcmp(s,"Bareiss")==0) return DetBareiss; |
---|
2128 | if (strcmp(s,"SBareiss")==0) return DetSBareiss; |
---|
2129 | if (strcmp(s,"Mu")==0) return DetMu; |
---|
2130 | if (strcmp(s,"Factory")==0) return DetFactory; |
---|
2131 | WarnS("unknown method for det"); |
---|
2132 | return DetDefault; |
---|
2133 | } |
---|
2134 | |
---|
2135 | |
---|
2136 | poly mp_Det(matrix a, const ring r, DetVariant d/*=DetDefault*/) |
---|
2137 | { |
---|
2138 | if ((MATCOLS(a)==0) |
---|
2139 | && (MATROWS(a)==0)) |
---|
2140 | return p_One(r); |
---|
2141 | if (d==DetDefault) d=mp_GetAlgorithmDet(a,r); |
---|
2142 | switch (d) |
---|
2143 | { |
---|
2144 | case DetBareiss: return mp_DetBareiss(a,r); |
---|
2145 | case DetMu: return mp_DetMu(a,r); |
---|
2146 | case DetFactory: return singclap_det(a,r); |
---|
2147 | case DetSBareiss: |
---|
2148 | { |
---|
2149 | ideal I=id_Matrix2Module(mp_Copy(a, r),r); |
---|
2150 | poly p=sm_CallDet(I, r); |
---|
2151 | id_Delete(&I, r); |
---|
2152 | return p; |
---|
2153 | } |
---|
2154 | default: |
---|
2155 | WerrorS("unknown algorithm for det"); |
---|
2156 | return NULL; |
---|
2157 | } |
---|
2158 | } |
---|
2159 | |
---|
2160 | poly sm_Det(ideal a, const ring r, DetVariant d/*=DetDefault*/) |
---|
2161 | { |
---|
2162 | if ((MATCOLS(a)==0) |
---|
2163 | && (MATROWS(a)==0)) |
---|
2164 | return p_One(r); |
---|
2165 | if (d==DetDefault) d=mp_GetAlgorithmDet((matrix)a,r); |
---|
2166 | if (d==DetSBareiss) return sm_CallDet(a,r); |
---|
2167 | matrix m=id_Module2Matrix(id_Copy(a,r),r); |
---|
2168 | poly p=mp_Det(m,r,d); |
---|
2169 | id_Delete((ideal *)&m,r); |
---|
2170 | return p; |
---|
2171 | } |
---|