1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /*************************************************************** |
---|
5 | * File: p_polys.cc |
---|
6 | * Purpose: implementation of ring independent poly procedures? |
---|
7 | * Author: obachman (Olaf Bachmann) |
---|
8 | * Created: 8/00 |
---|
9 | *******************************************************************/ |
---|
10 | |
---|
11 | |
---|
12 | |
---|
13 | |
---|
14 | |
---|
15 | |
---|
16 | #include <ctype.h> |
---|
17 | |
---|
18 | #include <omalloc/omalloc.h> |
---|
19 | |
---|
20 | #include <misc/auxiliary.h> |
---|
21 | |
---|
22 | #include <misc/options.h> |
---|
23 | #include <misc/intvec.h> |
---|
24 | |
---|
25 | #include <coeffs/longrat.h> // ??? |
---|
26 | #include <coeffs/ffields.h> |
---|
27 | |
---|
28 | #include <polys/PolyEnumerator.h> |
---|
29 | |
---|
30 | #define TRANSEXT_PRIVATES |
---|
31 | |
---|
32 | #include <polys/ext_fields/transext.h> |
---|
33 | #include <polys/ext_fields/algext.h> |
---|
34 | |
---|
35 | #include <polys/weight.h> |
---|
36 | #include <polys/simpleideals.h> |
---|
37 | |
---|
38 | #include "ring.h" |
---|
39 | #include "p_polys.h" |
---|
40 | |
---|
41 | #include <polys/templates/p_MemCmp.h> |
---|
42 | #include <polys/templates/p_MemAdd.h> |
---|
43 | #include <polys/templates/p_MemCopy.h> |
---|
44 | |
---|
45 | |
---|
46 | // #include <???/ideals.h> |
---|
47 | // #include <???/int64vec.h> |
---|
48 | |
---|
49 | #ifndef SING_NDEBUG |
---|
50 | // #include <???/febase.h> |
---|
51 | #endif |
---|
52 | |
---|
53 | #ifdef HAVE_PLURAL |
---|
54 | #include "nc/nc.h" |
---|
55 | #include "nc/sca.h" |
---|
56 | #endif |
---|
57 | |
---|
58 | #include "coeffrings.h" |
---|
59 | #include "clapsing.h" |
---|
60 | |
---|
61 | #define ADIDEBUG 0 |
---|
62 | |
---|
63 | /* |
---|
64 | * lift ideal with coeffs over Z (mod N) to Q via Farey |
---|
65 | */ |
---|
66 | poly p_Farey(poly p, number N, const ring r) |
---|
67 | { |
---|
68 | poly h=p_Copy(p,r); |
---|
69 | poly hh=h; |
---|
70 | while(h!=NULL) |
---|
71 | { |
---|
72 | number c=pGetCoeff(h); |
---|
73 | pSetCoeff0(h,n_Farey(c,N,r->cf)); |
---|
74 | n_Delete(&c,r->cf); |
---|
75 | pIter(h); |
---|
76 | } |
---|
77 | while((hh!=NULL)&&(n_IsZero(pGetCoeff(hh),r->cf))) |
---|
78 | { |
---|
79 | p_LmDelete(&hh,r); |
---|
80 | } |
---|
81 | h=hh; |
---|
82 | while((h!=NULL) && (pNext(h)!=NULL)) |
---|
83 | { |
---|
84 | if(n_IsZero(pGetCoeff(pNext(h)),r->cf)) |
---|
85 | { |
---|
86 | p_LmDelete(&pNext(h),r); |
---|
87 | } |
---|
88 | else pIter(h); |
---|
89 | } |
---|
90 | return hh; |
---|
91 | } |
---|
92 | /*2 |
---|
93 | * xx,q: arrays of length 0..rl-1 |
---|
94 | * xx[i]: SB mod q[i] |
---|
95 | * assume: char=0 |
---|
96 | * assume: q[i]!=0 |
---|
97 | * destroys xx |
---|
98 | */ |
---|
99 | poly p_ChineseRemainder(poly *xx, number *x,number *q, int rl, const ring R) |
---|
100 | { |
---|
101 | poly r,h,hh; |
---|
102 | int j; |
---|
103 | poly res_p=NULL; |
---|
104 | loop |
---|
105 | { |
---|
106 | /* search the lead term */ |
---|
107 | r=NULL; |
---|
108 | for(j=rl-1;j>=0;j--) |
---|
109 | { |
---|
110 | h=xx[j]; |
---|
111 | if ((h!=NULL) |
---|
112 | &&((r==NULL)||(p_LmCmp(r,h,R)==-1))) |
---|
113 | r=h; |
---|
114 | } |
---|
115 | /* nothing found -> return */ |
---|
116 | if (r==NULL) break; |
---|
117 | /* create the monomial in h */ |
---|
118 | h=p_Head(r,R); |
---|
119 | /* collect the coeffs in x[..]*/ |
---|
120 | for(j=rl-1;j>=0;j--) |
---|
121 | { |
---|
122 | hh=xx[j]; |
---|
123 | if ((hh!=NULL) && (p_LmCmp(r,hh,R)==0)) |
---|
124 | { |
---|
125 | x[j]=pGetCoeff(hh); |
---|
126 | hh=p_LmFreeAndNext(hh,R); |
---|
127 | xx[j]=hh; |
---|
128 | } |
---|
129 | else |
---|
130 | x[j]=n_Init(0, R); |
---|
131 | } |
---|
132 | number n=n_ChineseRemainderSym(x,q,rl,TRUE,R->cf); |
---|
133 | for(j=rl-1;j>=0;j--) |
---|
134 | { |
---|
135 | x[j]=NULL; // nlInit(0...) takes no memory |
---|
136 | } |
---|
137 | if (n_IsZero(n,R)) p_Delete(&h,R); |
---|
138 | else |
---|
139 | { |
---|
140 | //Print("new mon:");pWrite(h); |
---|
141 | p_SetCoeff(h,n,R); |
---|
142 | pNext(h)=res_p; |
---|
143 | res_p=h; // building res_p in reverse order! |
---|
144 | } |
---|
145 | } |
---|
146 | res_p=pReverse(res_p); |
---|
147 | p_Test(res_p, R); |
---|
148 | return res_p; |
---|
149 | } |
---|
150 | /*************************************************************** |
---|
151 | * |
---|
152 | * Completing what needs to be set for the monomial |
---|
153 | * |
---|
154 | ***************************************************************/ |
---|
155 | // this is special for the syz stuff |
---|
156 | static int* _components = NULL; |
---|
157 | static long* _componentsShifted = NULL; |
---|
158 | static int _componentsExternal = 0; |
---|
159 | |
---|
160 | BOOLEAN pSetm_error=0; |
---|
161 | |
---|
162 | #ifndef SING_NDEBUG |
---|
163 | # define MYTEST 0 |
---|
164 | #else /* ifndef SING_NDEBUG */ |
---|
165 | # define MYTEST 0 |
---|
166 | #endif /* ifndef SING_NDEBUG */ |
---|
167 | |
---|
168 | void p_Setm_General(poly p, const ring r) |
---|
169 | { |
---|
170 | p_LmCheckPolyRing(p, r); |
---|
171 | int pos=0; |
---|
172 | if (r->typ!=NULL) |
---|
173 | { |
---|
174 | loop |
---|
175 | { |
---|
176 | unsigned long ord=0; |
---|
177 | sro_ord* o=&(r->typ[pos]); |
---|
178 | switch(o->ord_typ) |
---|
179 | { |
---|
180 | case ro_dp: |
---|
181 | { |
---|
182 | int a,e; |
---|
183 | a=o->data.dp.start; |
---|
184 | e=o->data.dp.end; |
---|
185 | for(int i=a;i<=e;i++) ord+=p_GetExp(p,i,r); |
---|
186 | p->exp[o->data.dp.place]=ord; |
---|
187 | break; |
---|
188 | } |
---|
189 | case ro_wp_neg: |
---|
190 | ord=POLY_NEGWEIGHT_OFFSET; |
---|
191 | // no break; |
---|
192 | case ro_wp: |
---|
193 | { |
---|
194 | int a,e; |
---|
195 | a=o->data.wp.start; |
---|
196 | e=o->data.wp.end; |
---|
197 | int *w=o->data.wp.weights; |
---|
198 | #if 1 |
---|
199 | for(int i=a;i<=e;i++) ord+=((unsigned long)p_GetExp(p,i,r))*((unsigned long)w[i-a]); |
---|
200 | #else |
---|
201 | long ai; |
---|
202 | int ei,wi; |
---|
203 | for(int i=a;i<=e;i++) |
---|
204 | { |
---|
205 | ei=p_GetExp(p,i,r); |
---|
206 | wi=w[i-a]; |
---|
207 | ai=ei*wi; |
---|
208 | if (ai/ei!=wi) pSetm_error=TRUE; |
---|
209 | ord+=ai; |
---|
210 | if (ord<ai) pSetm_error=TRUE; |
---|
211 | } |
---|
212 | #endif |
---|
213 | p->exp[o->data.wp.place]=ord; |
---|
214 | break; |
---|
215 | } |
---|
216 | case ro_am: |
---|
217 | { |
---|
218 | ord = POLY_NEGWEIGHT_OFFSET; |
---|
219 | const short a=o->data.am.start; |
---|
220 | const short e=o->data.am.end; |
---|
221 | const int * w=o->data.am.weights; |
---|
222 | #if 1 |
---|
223 | for(short i=a; i<=e; i++, w++) |
---|
224 | ord += ((*w) * p_GetExp(p,i,r)); |
---|
225 | #else |
---|
226 | long ai; |
---|
227 | int ei,wi; |
---|
228 | for(short i=a;i<=e;i++) |
---|
229 | { |
---|
230 | ei=p_GetExp(p,i,r); |
---|
231 | wi=w[i-a]; |
---|
232 | ai=ei*wi; |
---|
233 | if (ai/ei!=wi) pSetm_error=TRUE; |
---|
234 | ord += ai; |
---|
235 | if (ord<ai) pSetm_error=TRUE; |
---|
236 | } |
---|
237 | #endif |
---|
238 | const int c = p_GetComp(p,r); |
---|
239 | |
---|
240 | const short len_gen= o->data.am.len_gen; |
---|
241 | |
---|
242 | if ((c > 0) && (c <= len_gen)) |
---|
243 | { |
---|
244 | assume( w == o->data.am.weights_m ); |
---|
245 | assume( w[0] == len_gen ); |
---|
246 | ord += w[c]; |
---|
247 | } |
---|
248 | |
---|
249 | p->exp[o->data.am.place] = ord; |
---|
250 | break; |
---|
251 | } |
---|
252 | case ro_wp64: |
---|
253 | { |
---|
254 | int64 ord=0; |
---|
255 | int a,e; |
---|
256 | a=o->data.wp64.start; |
---|
257 | e=o->data.wp64.end; |
---|
258 | int64 *w=o->data.wp64.weights64; |
---|
259 | int64 ei,wi,ai; |
---|
260 | for(int i=a;i<=e;i++) |
---|
261 | { |
---|
262 | //Print("exp %d w %d \n",p_GetExp(p,i,r),(int)w[i-a]); |
---|
263 | //ord+=((int64)p_GetExp(p,i,r))*w[i-a]; |
---|
264 | ei=(int64)p_GetExp(p,i,r); |
---|
265 | wi=w[i-a]; |
---|
266 | ai=ei*wi; |
---|
267 | if(ei!=0 && ai/ei!=wi) |
---|
268 | { |
---|
269 | pSetm_error=TRUE; |
---|
270 | #if SIZEOF_LONG == 4 |
---|
271 | Print("ai %lld, wi %lld\n",ai,wi); |
---|
272 | #else |
---|
273 | Print("ai %ld, wi %ld\n",ai,wi); |
---|
274 | #endif |
---|
275 | } |
---|
276 | ord+=ai; |
---|
277 | if (ord<ai) |
---|
278 | { |
---|
279 | pSetm_error=TRUE; |
---|
280 | #if SIZEOF_LONG == 4 |
---|
281 | Print("ai %lld, ord %lld\n",ai,ord); |
---|
282 | #else |
---|
283 | Print("ai %ld, ord %ld\n",ai,ord); |
---|
284 | #endif |
---|
285 | } |
---|
286 | } |
---|
287 | int64 mask=(int64)0x7fffffff; |
---|
288 | long a_0=(long)(ord&mask); //2^31 |
---|
289 | long a_1=(long)(ord >>31 ); /*(ord/(mask+1));*/ |
---|
290 | |
---|
291 | //Print("mask: %x, ord: %d, a_0: %d, a_1: %d\n" |
---|
292 | //,(int)mask,(int)ord,(int)a_0,(int)a_1); |
---|
293 | //Print("mask: %d",mask); |
---|
294 | |
---|
295 | p->exp[o->data.wp64.place]=a_1; |
---|
296 | p->exp[o->data.wp64.place+1]=a_0; |
---|
297 | // if(p_Setm_error) Print("***************************\n |
---|
298 | // ***************************\n |
---|
299 | // **WARNING: overflow error**\n |
---|
300 | // ***************************\n |
---|
301 | // ***************************\n"); |
---|
302 | break; |
---|
303 | } |
---|
304 | case ro_cp: |
---|
305 | { |
---|
306 | int a,e; |
---|
307 | a=o->data.cp.start; |
---|
308 | e=o->data.cp.end; |
---|
309 | int pl=o->data.cp.place; |
---|
310 | for(int i=a;i<=e;i++) { p->exp[pl]=p_GetExp(p,i,r); pl++; } |
---|
311 | break; |
---|
312 | } |
---|
313 | case ro_syzcomp: |
---|
314 | { |
---|
315 | int c=p_GetComp(p,r); |
---|
316 | long sc = c; |
---|
317 | int* Components = (_componentsExternal ? _components : |
---|
318 | o->data.syzcomp.Components); |
---|
319 | long* ShiftedComponents = (_componentsExternal ? _componentsShifted: |
---|
320 | o->data.syzcomp.ShiftedComponents); |
---|
321 | if (ShiftedComponents != NULL) |
---|
322 | { |
---|
323 | assume(Components != NULL); |
---|
324 | assume(c == 0 || Components[c] != 0); |
---|
325 | sc = ShiftedComponents[Components[c]]; |
---|
326 | assume(c == 0 || sc != 0); |
---|
327 | } |
---|
328 | p->exp[o->data.syzcomp.place]=sc; |
---|
329 | break; |
---|
330 | } |
---|
331 | case ro_syz: |
---|
332 | { |
---|
333 | const unsigned long c = p_GetComp(p, r); |
---|
334 | const short place = o->data.syz.place; |
---|
335 | const int limit = o->data.syz.limit; |
---|
336 | |
---|
337 | if (c > (unsigned long)limit) |
---|
338 | p->exp[place] = o->data.syz.curr_index; |
---|
339 | else if (c > 0) |
---|
340 | { |
---|
341 | assume( (1 <= c) && (c <= (unsigned long)limit) ); |
---|
342 | p->exp[place]= o->data.syz.syz_index[c]; |
---|
343 | } |
---|
344 | else |
---|
345 | { |
---|
346 | assume(c == 0); |
---|
347 | p->exp[place]= 0; |
---|
348 | } |
---|
349 | break; |
---|
350 | } |
---|
351 | // Prefix for Induced Schreyer ordering |
---|
352 | case ro_isTemp: // Do nothing?? (to be removed into suffix later on...?) |
---|
353 | { |
---|
354 | assume(p != NULL); |
---|
355 | |
---|
356 | #ifndef SING_NDEBUG |
---|
357 | #if MYTEST |
---|
358 | Print("p_Setm_General: ro_isTemp ord: pos: %d, p: ", pos); p_DebugPrint(p, r, r, 1); |
---|
359 | #endif |
---|
360 | #endif |
---|
361 | int c = p_GetComp(p, r); |
---|
362 | |
---|
363 | assume( c >= 0 ); |
---|
364 | |
---|
365 | // Let's simulate case ro_syz above.... |
---|
366 | // Should accumulate (by Suffix) and be a level indicator |
---|
367 | const int* const pVarOffset = o->data.isTemp.pVarOffset; |
---|
368 | |
---|
369 | assume( pVarOffset != NULL ); |
---|
370 | |
---|
371 | // TODO: Can this be done in the suffix??? |
---|
372 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
373 | { |
---|
374 | const int vo = pVarOffset[i]; |
---|
375 | if( vo != -1) // TODO: optimize: can be done once! |
---|
376 | { |
---|
377 | // Hans! Please don't break it again! p_SetExp(p, ..., r, vo) is correct: |
---|
378 | p_SetExp(p, p_GetExp(p, i, r), r, vo); // copy put them verbatim |
---|
379 | // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct: |
---|
380 | assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim |
---|
381 | } |
---|
382 | } |
---|
383 | #ifndef SING_NDEBUG |
---|
384 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
385 | { |
---|
386 | const int vo = pVarOffset[i]; |
---|
387 | if( vo != -1) // TODO: optimize: can be done once! |
---|
388 | { |
---|
389 | // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct: |
---|
390 | assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim |
---|
391 | } |
---|
392 | } |
---|
393 | #if MYTEST |
---|
394 | // if( p->exp[o->data.isTemp.start] > 0 ) |
---|
395 | PrintS("after Values: "); p_DebugPrint(p, r, r, 1); |
---|
396 | #endif |
---|
397 | #endif |
---|
398 | break; |
---|
399 | } |
---|
400 | |
---|
401 | // Suffix for Induced Schreyer ordering |
---|
402 | case ro_is: |
---|
403 | { |
---|
404 | #ifndef SING_NDEBUG |
---|
405 | #if MYTEST |
---|
406 | Print("p_Setm_General: ro_is ord: pos: %d, p: ", pos); p_DebugPrint(p, r, r, 1); |
---|
407 | #endif |
---|
408 | #endif |
---|
409 | |
---|
410 | assume(p != NULL); |
---|
411 | |
---|
412 | int c = p_GetComp(p, r); |
---|
413 | |
---|
414 | assume( c >= 0 ); |
---|
415 | const ideal F = o->data.is.F; |
---|
416 | const int limit = o->data.is.limit; |
---|
417 | assume( limit >= 0 ); |
---|
418 | const int start = o->data.is.start; |
---|
419 | |
---|
420 | if( F != NULL && c > limit ) |
---|
421 | { |
---|
422 | #ifndef SING_NDEBUG |
---|
423 | #if MYTEST |
---|
424 | Print("p_Setm_General: ro_is : in rSetm: pos: %d, c: %d > limit: %d\n", c, pos, limit); // p_DebugPrint(p, r, r, 1); |
---|
425 | PrintS("preComputed Values: "); |
---|
426 | p_DebugPrint(p, r, r, 1); |
---|
427 | #endif |
---|
428 | #endif |
---|
429 | // if( c > limit ) // BUG??? |
---|
430 | p->exp[start] = 1; |
---|
431 | // else |
---|
432 | // p->exp[start] = 0; |
---|
433 | |
---|
434 | |
---|
435 | c -= limit; |
---|
436 | assume( c > 0 ); |
---|
437 | c--; |
---|
438 | |
---|
439 | if( c >= IDELEMS(F) ) |
---|
440 | break; |
---|
441 | |
---|
442 | assume( c < IDELEMS(F) ); // What about others??? |
---|
443 | |
---|
444 | const poly pp = F->m[c]; // get reference monomial!!! |
---|
445 | |
---|
446 | if(pp == NULL) |
---|
447 | break; |
---|
448 | |
---|
449 | assume(pp != NULL); |
---|
450 | |
---|
451 | #ifndef SING_NDEBUG |
---|
452 | #if MYTEST |
---|
453 | Print("Respective F[c - %d: %d] pp: ", limit, c); |
---|
454 | p_DebugPrint(pp, r, r, 1); |
---|
455 | #endif |
---|
456 | #endif |
---|
457 | |
---|
458 | const int end = o->data.is.end; |
---|
459 | assume(start <= end); |
---|
460 | |
---|
461 | |
---|
462 | // const int st = o->data.isTemp.start; |
---|
463 | |
---|
464 | #ifndef SING_NDEBUG |
---|
465 | Print("p_Setm_General: is(-Temp-) :: c: %d, limit: %d, [st:%d] ===>>> %ld\n", c, limit, start, p->exp[start]); |
---|
466 | #endif |
---|
467 | |
---|
468 | // p_ExpVectorAdd(p, pp, r); |
---|
469 | |
---|
470 | for( int i = start; i <= end; i++) // v[0] may be here... |
---|
471 | p->exp[i] += pp->exp[i]; // !!!!!!!! ADD corresponding LT(F) |
---|
472 | |
---|
473 | // p_MemAddAdjust(p, ri); |
---|
474 | if (r->NegWeightL_Offset != NULL) |
---|
475 | { |
---|
476 | for (int i=r->NegWeightL_Size-1; i>=0; i--) |
---|
477 | { |
---|
478 | const int _i = r->NegWeightL_Offset[i]; |
---|
479 | if( start <= _i && _i <= end ) |
---|
480 | p->exp[_i] -= POLY_NEGWEIGHT_OFFSET; |
---|
481 | } |
---|
482 | } |
---|
483 | |
---|
484 | |
---|
485 | #ifndef SING_NDEBUG |
---|
486 | const int* const pVarOffset = o->data.is.pVarOffset; |
---|
487 | |
---|
488 | assume( pVarOffset != NULL ); |
---|
489 | |
---|
490 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
491 | { |
---|
492 | const int vo = pVarOffset[i]; |
---|
493 | if( vo != -1) // TODO: optimize: can be done once! |
---|
494 | // Hans! Please don't break it again! p_GetExp(p/pp, r, vo) is correct: |
---|
495 | assume( p_GetExp(p, r, vo) == (p_GetExp(p, i, r) + p_GetExp(pp, r, vo)) ); |
---|
496 | } |
---|
497 | // TODO: how to check this for computed values??? |
---|
498 | #if MYTEST |
---|
499 | PrintS("Computed Values: "); p_DebugPrint(p, r, r, 1); |
---|
500 | #endif |
---|
501 | #endif |
---|
502 | } else |
---|
503 | { |
---|
504 | p->exp[start] = 0; //!!!!????? where????? |
---|
505 | |
---|
506 | const int* const pVarOffset = o->data.is.pVarOffset; |
---|
507 | |
---|
508 | // What about v[0] - component: it will be added later by |
---|
509 | // suffix!!! |
---|
510 | // TODO: Test it! |
---|
511 | const int vo = pVarOffset[0]; |
---|
512 | if( vo != -1 ) |
---|
513 | p->exp[vo] = c; // initial component v[0]! |
---|
514 | |
---|
515 | #ifndef SING_NDEBUG |
---|
516 | #if MYTEST |
---|
517 | Print("ELSE p_Setm_General: ro_is :: c: %d <= limit: %d, vo: %d, exp: %d\n", c, limit, vo, p->exp[vo]); |
---|
518 | p_DebugPrint(p, r, r, 1); |
---|
519 | #endif |
---|
520 | #endif |
---|
521 | } |
---|
522 | |
---|
523 | break; |
---|
524 | } |
---|
525 | default: |
---|
526 | dReportError("wrong ord in rSetm:%d\n",o->ord_typ); |
---|
527 | return; |
---|
528 | } |
---|
529 | pos++; |
---|
530 | if (pos == r->OrdSize) return; |
---|
531 | } |
---|
532 | } |
---|
533 | } |
---|
534 | |
---|
535 | void p_Setm_Syz(poly p, ring r, int* Components, long* ShiftedComponents) |
---|
536 | { |
---|
537 | _components = Components; |
---|
538 | _componentsShifted = ShiftedComponents; |
---|
539 | _componentsExternal = 1; |
---|
540 | p_Setm_General(p, r); |
---|
541 | _componentsExternal = 0; |
---|
542 | } |
---|
543 | |
---|
544 | // dummy for lp, ls, etc |
---|
545 | void p_Setm_Dummy(poly p, const ring r) |
---|
546 | { |
---|
547 | p_LmCheckPolyRing(p, r); |
---|
548 | } |
---|
549 | |
---|
550 | // for dp, Dp, ds, etc |
---|
551 | void p_Setm_TotalDegree(poly p, const ring r) |
---|
552 | { |
---|
553 | p_LmCheckPolyRing(p, r); |
---|
554 | p->exp[r->pOrdIndex] = p_Totaldegree(p, r); |
---|
555 | } |
---|
556 | |
---|
557 | // for wp, Wp, ws, etc |
---|
558 | void p_Setm_WFirstTotalDegree(poly p, const ring r) |
---|
559 | { |
---|
560 | p_LmCheckPolyRing(p, r); |
---|
561 | p->exp[r->pOrdIndex] = p_WFirstTotalDegree(p, r); |
---|
562 | } |
---|
563 | |
---|
564 | p_SetmProc p_GetSetmProc(ring r) |
---|
565 | { |
---|
566 | // covers lp, rp, ls, |
---|
567 | if (r->typ == NULL) return p_Setm_Dummy; |
---|
568 | |
---|
569 | if (r->OrdSize == 1) |
---|
570 | { |
---|
571 | if (r->typ[0].ord_typ == ro_dp && |
---|
572 | r->typ[0].data.dp.start == 1 && |
---|
573 | r->typ[0].data.dp.end == r->N && |
---|
574 | r->typ[0].data.dp.place == r->pOrdIndex) |
---|
575 | return p_Setm_TotalDegree; |
---|
576 | if (r->typ[0].ord_typ == ro_wp && |
---|
577 | r->typ[0].data.wp.start == 1 && |
---|
578 | r->typ[0].data.wp.end == r->N && |
---|
579 | r->typ[0].data.wp.place == r->pOrdIndex && |
---|
580 | r->typ[0].data.wp.weights == r->firstwv) |
---|
581 | return p_Setm_WFirstTotalDegree; |
---|
582 | } |
---|
583 | return p_Setm_General; |
---|
584 | } |
---|
585 | |
---|
586 | |
---|
587 | /* -------------------------------------------------------------------*/ |
---|
588 | /* several possibilities for pFDeg: the degree of the head term */ |
---|
589 | |
---|
590 | /* comptible with ordering */ |
---|
591 | long p_Deg(poly a, const ring r) |
---|
592 | { |
---|
593 | p_LmCheckPolyRing(a, r); |
---|
594 | // assume(p_GetOrder(a, r) == p_WTotaldegree(a, r)); // WRONG assume! |
---|
595 | return p_GetOrder(a, r); |
---|
596 | } |
---|
597 | |
---|
598 | // p_WTotalDegree for weighted orderings |
---|
599 | // whose first block covers all variables |
---|
600 | long p_WFirstTotalDegree(poly p, const ring r) |
---|
601 | { |
---|
602 | int i; |
---|
603 | long sum = 0; |
---|
604 | |
---|
605 | for (i=1; i<= r->firstBlockEnds; i++) |
---|
606 | { |
---|
607 | sum += p_GetExp(p, i, r)*r->firstwv[i-1]; |
---|
608 | } |
---|
609 | return sum; |
---|
610 | } |
---|
611 | |
---|
612 | /*2 |
---|
613 | * compute the degree of the leading monomial of p |
---|
614 | * with respect to weigths from the ordering |
---|
615 | * the ordering is not compatible with degree so do not use p->Order |
---|
616 | */ |
---|
617 | long p_WTotaldegree(poly p, const ring r) |
---|
618 | { |
---|
619 | p_LmCheckPolyRing(p, r); |
---|
620 | int i, k; |
---|
621 | long j =0; |
---|
622 | |
---|
623 | // iterate through each block: |
---|
624 | for (i=0;r->order[i]!=0;i++) |
---|
625 | { |
---|
626 | int b0=r->block0[i]; |
---|
627 | int b1=r->block1[i]; |
---|
628 | switch(r->order[i]) |
---|
629 | { |
---|
630 | case ringorder_M: |
---|
631 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
632 | { // in jedem block: |
---|
633 | j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn; |
---|
634 | } |
---|
635 | break; |
---|
636 | case ringorder_wp: |
---|
637 | case ringorder_ws: |
---|
638 | case ringorder_Wp: |
---|
639 | case ringorder_Ws: |
---|
640 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
641 | { // in jedem block: |
---|
642 | j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]; |
---|
643 | } |
---|
644 | break; |
---|
645 | case ringorder_lp: |
---|
646 | case ringorder_ls: |
---|
647 | case ringorder_rs: |
---|
648 | case ringorder_dp: |
---|
649 | case ringorder_ds: |
---|
650 | case ringorder_Dp: |
---|
651 | case ringorder_Ds: |
---|
652 | case ringorder_rp: |
---|
653 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
654 | { |
---|
655 | j+= p_GetExp(p,k,r); |
---|
656 | } |
---|
657 | break; |
---|
658 | case ringorder_a64: |
---|
659 | { |
---|
660 | int64* w=(int64*)r->wvhdl[i]; |
---|
661 | for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++) |
---|
662 | { |
---|
663 | //there should be added a line which checks if w[k]>2^31 |
---|
664 | j+= p_GetExp(p,k+1, r)*(long)w[k]; |
---|
665 | } |
---|
666 | //break; |
---|
667 | return j; |
---|
668 | } |
---|
669 | case ringorder_c: |
---|
670 | case ringorder_C: |
---|
671 | case ringorder_S: |
---|
672 | case ringorder_s: |
---|
673 | case ringorder_aa: |
---|
674 | case ringorder_IS: |
---|
675 | break; |
---|
676 | case ringorder_a: |
---|
677 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
678 | { // only one line |
---|
679 | j+= p_GetExp(p,k, r)*r->wvhdl[i][ k- b0 /*r->block0[i]*/]; |
---|
680 | } |
---|
681 | //break; |
---|
682 | return j; |
---|
683 | |
---|
684 | #ifndef SING_NDEBUG |
---|
685 | default: |
---|
686 | Print("missing order %d in p_WTotaldegree\n",r->order[i]); |
---|
687 | break; |
---|
688 | #endif |
---|
689 | } |
---|
690 | } |
---|
691 | return j; |
---|
692 | } |
---|
693 | |
---|
694 | long p_DegW(poly p, const short *w, const ring R) |
---|
695 | { |
---|
696 | assume( p_Test(p, R) ); |
---|
697 | assume( w != NULL ); |
---|
698 | long r=-LONG_MAX; |
---|
699 | |
---|
700 | while (p!=NULL) |
---|
701 | { |
---|
702 | long t=totaldegreeWecart_IV(p,R,w); |
---|
703 | if (t>r) r=t; |
---|
704 | pIter(p); |
---|
705 | } |
---|
706 | return r; |
---|
707 | } |
---|
708 | |
---|
709 | int p_Weight(int i, const ring r) |
---|
710 | { |
---|
711 | if ((r->firstwv==NULL) || (i>r->firstBlockEnds)) |
---|
712 | { |
---|
713 | return 1; |
---|
714 | } |
---|
715 | return r->firstwv[i-1]; |
---|
716 | } |
---|
717 | |
---|
718 | long p_WDegree(poly p, const ring r) |
---|
719 | { |
---|
720 | if (r->firstwv==NULL) return p_Totaldegree(p, r); |
---|
721 | p_LmCheckPolyRing(p, r); |
---|
722 | int i; |
---|
723 | long j =0; |
---|
724 | |
---|
725 | for(i=1;i<=r->firstBlockEnds;i++) |
---|
726 | j+=p_GetExp(p, i, r)*r->firstwv[i-1]; |
---|
727 | |
---|
728 | for (;i<=rVar(r);i++) |
---|
729 | j+=p_GetExp(p,i, r)*p_Weight(i, r); |
---|
730 | |
---|
731 | return j; |
---|
732 | } |
---|
733 | |
---|
734 | |
---|
735 | /* ---------------------------------------------------------------------*/ |
---|
736 | /* several possibilities for pLDeg: the maximal degree of a monomial in p*/ |
---|
737 | /* compute in l also the pLength of p */ |
---|
738 | |
---|
739 | /*2 |
---|
740 | * compute the length of a polynomial (in l) |
---|
741 | * and the degree of the monomial with maximal degree: the last one |
---|
742 | */ |
---|
743 | long pLDeg0(poly p,int *l, const ring r) |
---|
744 | { |
---|
745 | p_CheckPolyRing(p, r); |
---|
746 | long k= p_GetComp(p, r); |
---|
747 | int ll=1; |
---|
748 | |
---|
749 | if (k > 0) |
---|
750 | { |
---|
751 | while ((pNext(p)!=NULL) && (p_GetComp(pNext(p), r)==k)) |
---|
752 | { |
---|
753 | pIter(p); |
---|
754 | ll++; |
---|
755 | } |
---|
756 | } |
---|
757 | else |
---|
758 | { |
---|
759 | while (pNext(p)!=NULL) |
---|
760 | { |
---|
761 | pIter(p); |
---|
762 | ll++; |
---|
763 | } |
---|
764 | } |
---|
765 | *l=ll; |
---|
766 | return r->pFDeg(p, r); |
---|
767 | } |
---|
768 | |
---|
769 | /*2 |
---|
770 | * compute the length of a polynomial (in l) |
---|
771 | * and the degree of the monomial with maximal degree: the last one |
---|
772 | * but search in all components before syzcomp |
---|
773 | */ |
---|
774 | long pLDeg0c(poly p,int *l, const ring r) |
---|
775 | { |
---|
776 | assume(p!=NULL); |
---|
777 | #ifdef PDEBUG |
---|
778 | _p_Test(p,r,PDEBUG); |
---|
779 | #endif |
---|
780 | p_CheckPolyRing(p, r); |
---|
781 | long o; |
---|
782 | int ll=1; |
---|
783 | |
---|
784 | if (! rIsSyzIndexRing(r)) |
---|
785 | { |
---|
786 | while (pNext(p) != NULL) |
---|
787 | { |
---|
788 | pIter(p); |
---|
789 | ll++; |
---|
790 | } |
---|
791 | o = r->pFDeg(p, r); |
---|
792 | } |
---|
793 | else |
---|
794 | { |
---|
795 | int curr_limit = rGetCurrSyzLimit(r); |
---|
796 | poly pp = p; |
---|
797 | while ((p=pNext(p))!=NULL) |
---|
798 | { |
---|
799 | if (p_GetComp(p, r)<=curr_limit/*syzComp*/) |
---|
800 | ll++; |
---|
801 | else break; |
---|
802 | pp = p; |
---|
803 | } |
---|
804 | #ifdef PDEBUG |
---|
805 | _p_Test(pp,r,PDEBUG); |
---|
806 | #endif |
---|
807 | o = r->pFDeg(pp, r); |
---|
808 | } |
---|
809 | *l=ll; |
---|
810 | return o; |
---|
811 | } |
---|
812 | |
---|
813 | /*2 |
---|
814 | * compute the length of a polynomial (in l) |
---|
815 | * and the degree of the monomial with maximal degree: the first one |
---|
816 | * this works for the polynomial case with degree orderings |
---|
817 | * (both c,dp and dp,c) |
---|
818 | */ |
---|
819 | long pLDegb(poly p,int *l, const ring r) |
---|
820 | { |
---|
821 | p_CheckPolyRing(p, r); |
---|
822 | long k= p_GetComp(p, r); |
---|
823 | long o = r->pFDeg(p, r); |
---|
824 | int ll=1; |
---|
825 | |
---|
826 | if (k != 0) |
---|
827 | { |
---|
828 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
829 | { |
---|
830 | ll++; |
---|
831 | } |
---|
832 | } |
---|
833 | else |
---|
834 | { |
---|
835 | while ((p=pNext(p)) !=NULL) |
---|
836 | { |
---|
837 | ll++; |
---|
838 | } |
---|
839 | } |
---|
840 | *l=ll; |
---|
841 | return o; |
---|
842 | } |
---|
843 | |
---|
844 | /*2 |
---|
845 | * compute the length of a polynomial (in l) |
---|
846 | * and the degree of the monomial with maximal degree: |
---|
847 | * this is NOT the last one, we have to look for it |
---|
848 | */ |
---|
849 | long pLDeg1(poly p,int *l, const ring r) |
---|
850 | { |
---|
851 | p_CheckPolyRing(p, r); |
---|
852 | long k= p_GetComp(p, r); |
---|
853 | int ll=1; |
---|
854 | long t,max; |
---|
855 | |
---|
856 | max=r->pFDeg(p, r); |
---|
857 | if (k > 0) |
---|
858 | { |
---|
859 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
860 | { |
---|
861 | t=r->pFDeg(p, r); |
---|
862 | if (t>max) max=t; |
---|
863 | ll++; |
---|
864 | } |
---|
865 | } |
---|
866 | else |
---|
867 | { |
---|
868 | while ((p=pNext(p))!=NULL) |
---|
869 | { |
---|
870 | t=r->pFDeg(p, r); |
---|
871 | if (t>max) max=t; |
---|
872 | ll++; |
---|
873 | } |
---|
874 | } |
---|
875 | *l=ll; |
---|
876 | return max; |
---|
877 | } |
---|
878 | |
---|
879 | /*2 |
---|
880 | * compute the length of a polynomial (in l) |
---|
881 | * and the degree of the monomial with maximal degree: |
---|
882 | * this is NOT the last one, we have to look for it |
---|
883 | * in all components |
---|
884 | */ |
---|
885 | long pLDeg1c(poly p,int *l, const ring r) |
---|
886 | { |
---|
887 | p_CheckPolyRing(p, r); |
---|
888 | int ll=1; |
---|
889 | long t,max; |
---|
890 | |
---|
891 | max=r->pFDeg(p, r); |
---|
892 | if (rIsSyzIndexRing(r)) |
---|
893 | { |
---|
894 | long limit = rGetCurrSyzLimit(r); |
---|
895 | while ((p=pNext(p))!=NULL) |
---|
896 | { |
---|
897 | if (p_GetComp(p, r)<=limit) |
---|
898 | { |
---|
899 | if ((t=r->pFDeg(p, r))>max) max=t; |
---|
900 | ll++; |
---|
901 | } |
---|
902 | else break; |
---|
903 | } |
---|
904 | } |
---|
905 | else |
---|
906 | { |
---|
907 | while ((p=pNext(p))!=NULL) |
---|
908 | { |
---|
909 | if ((t=r->pFDeg(p, r))>max) max=t; |
---|
910 | ll++; |
---|
911 | } |
---|
912 | } |
---|
913 | *l=ll; |
---|
914 | return max; |
---|
915 | } |
---|
916 | |
---|
917 | // like pLDeg1, only pFDeg == pDeg |
---|
918 | long pLDeg1_Deg(poly p,int *l, const ring r) |
---|
919 | { |
---|
920 | assume(r->pFDeg == p_Deg); |
---|
921 | p_CheckPolyRing(p, r); |
---|
922 | long k= p_GetComp(p, r); |
---|
923 | int ll=1; |
---|
924 | long t,max; |
---|
925 | |
---|
926 | max=p_GetOrder(p, r); |
---|
927 | if (k > 0) |
---|
928 | { |
---|
929 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
930 | { |
---|
931 | t=p_GetOrder(p, r); |
---|
932 | if (t>max) max=t; |
---|
933 | ll++; |
---|
934 | } |
---|
935 | } |
---|
936 | else |
---|
937 | { |
---|
938 | while ((p=pNext(p))!=NULL) |
---|
939 | { |
---|
940 | t=p_GetOrder(p, r); |
---|
941 | if (t>max) max=t; |
---|
942 | ll++; |
---|
943 | } |
---|
944 | } |
---|
945 | *l=ll; |
---|
946 | return max; |
---|
947 | } |
---|
948 | |
---|
949 | long pLDeg1c_Deg(poly p,int *l, const ring r) |
---|
950 | { |
---|
951 | assume(r->pFDeg == p_Deg); |
---|
952 | p_CheckPolyRing(p, r); |
---|
953 | int ll=1; |
---|
954 | long t,max; |
---|
955 | |
---|
956 | max=p_GetOrder(p, r); |
---|
957 | if (rIsSyzIndexRing(r)) |
---|
958 | { |
---|
959 | long limit = rGetCurrSyzLimit(r); |
---|
960 | while ((p=pNext(p))!=NULL) |
---|
961 | { |
---|
962 | if (p_GetComp(p, r)<=limit) |
---|
963 | { |
---|
964 | if ((t=p_GetOrder(p, r))>max) max=t; |
---|
965 | ll++; |
---|
966 | } |
---|
967 | else break; |
---|
968 | } |
---|
969 | } |
---|
970 | else |
---|
971 | { |
---|
972 | while ((p=pNext(p))!=NULL) |
---|
973 | { |
---|
974 | if ((t=p_GetOrder(p, r))>max) max=t; |
---|
975 | ll++; |
---|
976 | } |
---|
977 | } |
---|
978 | *l=ll; |
---|
979 | return max; |
---|
980 | } |
---|
981 | |
---|
982 | // like pLDeg1, only pFDeg == pTotoalDegree |
---|
983 | long pLDeg1_Totaldegree(poly p,int *l, const ring r) |
---|
984 | { |
---|
985 | p_CheckPolyRing(p, r); |
---|
986 | long k= p_GetComp(p, r); |
---|
987 | int ll=1; |
---|
988 | long t,max; |
---|
989 | |
---|
990 | max=p_Totaldegree(p, r); |
---|
991 | if (k > 0) |
---|
992 | { |
---|
993 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
994 | { |
---|
995 | t=p_Totaldegree(p, r); |
---|
996 | if (t>max) max=t; |
---|
997 | ll++; |
---|
998 | } |
---|
999 | } |
---|
1000 | else |
---|
1001 | { |
---|
1002 | while ((p=pNext(p))!=NULL) |
---|
1003 | { |
---|
1004 | t=p_Totaldegree(p, r); |
---|
1005 | if (t>max) max=t; |
---|
1006 | ll++; |
---|
1007 | } |
---|
1008 | } |
---|
1009 | *l=ll; |
---|
1010 | return max; |
---|
1011 | } |
---|
1012 | |
---|
1013 | long pLDeg1c_Totaldegree(poly p,int *l, const ring r) |
---|
1014 | { |
---|
1015 | p_CheckPolyRing(p, r); |
---|
1016 | int ll=1; |
---|
1017 | long t,max; |
---|
1018 | |
---|
1019 | max=p_Totaldegree(p, r); |
---|
1020 | if (rIsSyzIndexRing(r)) |
---|
1021 | { |
---|
1022 | long limit = rGetCurrSyzLimit(r); |
---|
1023 | while ((p=pNext(p))!=NULL) |
---|
1024 | { |
---|
1025 | if (p_GetComp(p, r)<=limit) |
---|
1026 | { |
---|
1027 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
1028 | ll++; |
---|
1029 | } |
---|
1030 | else break; |
---|
1031 | } |
---|
1032 | } |
---|
1033 | else |
---|
1034 | { |
---|
1035 | while ((p=pNext(p))!=NULL) |
---|
1036 | { |
---|
1037 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
1038 | ll++; |
---|
1039 | } |
---|
1040 | } |
---|
1041 | *l=ll; |
---|
1042 | return max; |
---|
1043 | } |
---|
1044 | |
---|
1045 | // like pLDeg1, only pFDeg == p_WFirstTotalDegree |
---|
1046 | long pLDeg1_WFirstTotalDegree(poly p,int *l, const ring r) |
---|
1047 | { |
---|
1048 | p_CheckPolyRing(p, r); |
---|
1049 | long k= p_GetComp(p, r); |
---|
1050 | int ll=1; |
---|
1051 | long t,max; |
---|
1052 | |
---|
1053 | max=p_WFirstTotalDegree(p, r); |
---|
1054 | if (k > 0) |
---|
1055 | { |
---|
1056 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
1057 | { |
---|
1058 | t=p_WFirstTotalDegree(p, r); |
---|
1059 | if (t>max) max=t; |
---|
1060 | ll++; |
---|
1061 | } |
---|
1062 | } |
---|
1063 | else |
---|
1064 | { |
---|
1065 | while ((p=pNext(p))!=NULL) |
---|
1066 | { |
---|
1067 | t=p_WFirstTotalDegree(p, r); |
---|
1068 | if (t>max) max=t; |
---|
1069 | ll++; |
---|
1070 | } |
---|
1071 | } |
---|
1072 | *l=ll; |
---|
1073 | return max; |
---|
1074 | } |
---|
1075 | |
---|
1076 | long pLDeg1c_WFirstTotalDegree(poly p,int *l, const ring r) |
---|
1077 | { |
---|
1078 | p_CheckPolyRing(p, r); |
---|
1079 | int ll=1; |
---|
1080 | long t,max; |
---|
1081 | |
---|
1082 | max=p_WFirstTotalDegree(p, r); |
---|
1083 | if (rIsSyzIndexRing(r)) |
---|
1084 | { |
---|
1085 | long limit = rGetCurrSyzLimit(r); |
---|
1086 | while ((p=pNext(p))!=NULL) |
---|
1087 | { |
---|
1088 | if (p_GetComp(p, r)<=limit) |
---|
1089 | { |
---|
1090 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
1091 | ll++; |
---|
1092 | } |
---|
1093 | else break; |
---|
1094 | } |
---|
1095 | } |
---|
1096 | else |
---|
1097 | { |
---|
1098 | while ((p=pNext(p))!=NULL) |
---|
1099 | { |
---|
1100 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
1101 | ll++; |
---|
1102 | } |
---|
1103 | } |
---|
1104 | *l=ll; |
---|
1105 | return max; |
---|
1106 | } |
---|
1107 | |
---|
1108 | /*************************************************************** |
---|
1109 | * |
---|
1110 | * Maximal Exponent business |
---|
1111 | * |
---|
1112 | ***************************************************************/ |
---|
1113 | |
---|
1114 | static inline unsigned long |
---|
1115 | p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, |
---|
1116 | unsigned long number_of_exp) |
---|
1117 | { |
---|
1118 | const unsigned long bitmask = r->bitmask; |
---|
1119 | unsigned long ml1 = l1 & bitmask; |
---|
1120 | unsigned long ml2 = l2 & bitmask; |
---|
1121 | unsigned long max = (ml1 > ml2 ? ml1 : ml2); |
---|
1122 | unsigned long j = number_of_exp - 1; |
---|
1123 | |
---|
1124 | if (j > 0) |
---|
1125 | { |
---|
1126 | unsigned long mask = bitmask << r->BitsPerExp; |
---|
1127 | while (1) |
---|
1128 | { |
---|
1129 | ml1 = l1 & mask; |
---|
1130 | ml2 = l2 & mask; |
---|
1131 | max |= ((ml1 > ml2 ? ml1 : ml2) & mask); |
---|
1132 | j--; |
---|
1133 | if (j == 0) break; |
---|
1134 | mask = mask << r->BitsPerExp; |
---|
1135 | } |
---|
1136 | } |
---|
1137 | return max; |
---|
1138 | } |
---|
1139 | |
---|
1140 | static inline unsigned long |
---|
1141 | p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r) |
---|
1142 | { |
---|
1143 | return p_GetMaxExpL2(l1, l2, r, r->ExpPerLong); |
---|
1144 | } |
---|
1145 | |
---|
1146 | poly p_GetMaxExpP(poly p, const ring r) |
---|
1147 | { |
---|
1148 | p_CheckPolyRing(p, r); |
---|
1149 | if (p == NULL) return p_Init(r); |
---|
1150 | poly max = p_LmInit(p, r); |
---|
1151 | pIter(p); |
---|
1152 | if (p == NULL) return max; |
---|
1153 | int i, offset; |
---|
1154 | unsigned long l_p, l_max; |
---|
1155 | unsigned long divmask = r->divmask; |
---|
1156 | |
---|
1157 | do |
---|
1158 | { |
---|
1159 | offset = r->VarL_Offset[0]; |
---|
1160 | l_p = p->exp[offset]; |
---|
1161 | l_max = max->exp[offset]; |
---|
1162 | // do the divisibility trick to find out whether l has an exponent |
---|
1163 | if (l_p > l_max || |
---|
1164 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1165 | max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r); |
---|
1166 | |
---|
1167 | for (i=1; i<r->VarL_Size; i++) |
---|
1168 | { |
---|
1169 | offset = r->VarL_Offset[i]; |
---|
1170 | l_p = p->exp[offset]; |
---|
1171 | l_max = max->exp[offset]; |
---|
1172 | // do the divisibility trick to find out whether l has an exponent |
---|
1173 | if (l_p > l_max || |
---|
1174 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1175 | max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r); |
---|
1176 | } |
---|
1177 | pIter(p); |
---|
1178 | } |
---|
1179 | while (p != NULL); |
---|
1180 | return max; |
---|
1181 | } |
---|
1182 | |
---|
1183 | unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max) |
---|
1184 | { |
---|
1185 | unsigned long l_p, divmask = r->divmask; |
---|
1186 | int i; |
---|
1187 | |
---|
1188 | while (p != NULL) |
---|
1189 | { |
---|
1190 | l_p = p->exp[r->VarL_Offset[0]]; |
---|
1191 | if (l_p > l_max || |
---|
1192 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1193 | l_max = p_GetMaxExpL2(l_max, l_p, r); |
---|
1194 | for (i=1; i<r->VarL_Size; i++) |
---|
1195 | { |
---|
1196 | l_p = p->exp[r->VarL_Offset[i]]; |
---|
1197 | // do the divisibility trick to find out whether l has an exponent |
---|
1198 | if (l_p > l_max || |
---|
1199 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1200 | l_max = p_GetMaxExpL2(l_max, l_p, r); |
---|
1201 | } |
---|
1202 | pIter(p); |
---|
1203 | } |
---|
1204 | return l_max; |
---|
1205 | } |
---|
1206 | |
---|
1207 | |
---|
1208 | |
---|
1209 | |
---|
1210 | /*************************************************************** |
---|
1211 | * |
---|
1212 | * Misc things |
---|
1213 | * |
---|
1214 | ***************************************************************/ |
---|
1215 | // returns TRUE, if all monoms have the same component |
---|
1216 | BOOLEAN p_OneComp(poly p, const ring r) |
---|
1217 | { |
---|
1218 | if(p!=NULL) |
---|
1219 | { |
---|
1220 | long i = p_GetComp(p, r); |
---|
1221 | while (pNext(p)!=NULL) |
---|
1222 | { |
---|
1223 | pIter(p); |
---|
1224 | if(i != p_GetComp(p, r)) return FALSE; |
---|
1225 | } |
---|
1226 | } |
---|
1227 | return TRUE; |
---|
1228 | } |
---|
1229 | |
---|
1230 | /*2 |
---|
1231 | *test if a monomial /head term is a pure power |
---|
1232 | */ |
---|
1233 | int p_IsPurePower(const poly p, const ring r) |
---|
1234 | { |
---|
1235 | #ifdef HAVE_RINGS |
---|
1236 | if (rField_is_Ring(r)) |
---|
1237 | { |
---|
1238 | if (p == NULL) return 0; |
---|
1239 | if (!n_IsUnit(pGetCoeff(p), r->cf)) return 0; |
---|
1240 | } |
---|
1241 | #endif |
---|
1242 | int i,k=0; |
---|
1243 | |
---|
1244 | for (i=r->N;i;i--) |
---|
1245 | { |
---|
1246 | if (p_GetExp(p,i, r)!=0) |
---|
1247 | { |
---|
1248 | if(k!=0) return 0; |
---|
1249 | k=i; |
---|
1250 | } |
---|
1251 | } |
---|
1252 | return k; |
---|
1253 | } |
---|
1254 | |
---|
1255 | /*2 |
---|
1256 | *test if a polynomial is univariate |
---|
1257 | * return -1 for constant, |
---|
1258 | * 0 for not univariate,s |
---|
1259 | * i if dep. on var(i) |
---|
1260 | */ |
---|
1261 | int p_IsUnivariate(poly p, const ring r) |
---|
1262 | { |
---|
1263 | int i,k=-1; |
---|
1264 | |
---|
1265 | while (p!=NULL) |
---|
1266 | { |
---|
1267 | for (i=r->N;i;i--) |
---|
1268 | { |
---|
1269 | if (p_GetExp(p,i, r)!=0) |
---|
1270 | { |
---|
1271 | if((k!=-1)&&(k!=i)) return 0; |
---|
1272 | k=i; |
---|
1273 | } |
---|
1274 | } |
---|
1275 | pIter(p); |
---|
1276 | } |
---|
1277 | return k; |
---|
1278 | } |
---|
1279 | |
---|
1280 | // set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 |
---|
1281 | int p_GetVariables(poly p, int * e, const ring r) |
---|
1282 | { |
---|
1283 | int i; |
---|
1284 | int n=0; |
---|
1285 | while(p!=NULL) |
---|
1286 | { |
---|
1287 | n=0; |
---|
1288 | for(i=r->N; i>0; i--) |
---|
1289 | { |
---|
1290 | if(e[i]==0) |
---|
1291 | { |
---|
1292 | if (p_GetExp(p,i,r)>0) |
---|
1293 | { |
---|
1294 | e[i]=1; |
---|
1295 | n++; |
---|
1296 | } |
---|
1297 | } |
---|
1298 | else |
---|
1299 | n++; |
---|
1300 | } |
---|
1301 | if (n==r->N) break; |
---|
1302 | pIter(p); |
---|
1303 | } |
---|
1304 | return n; |
---|
1305 | } |
---|
1306 | |
---|
1307 | |
---|
1308 | /*2 |
---|
1309 | * returns a polynomial representing the integer i |
---|
1310 | */ |
---|
1311 | poly p_ISet(long i, const ring r) |
---|
1312 | { |
---|
1313 | poly rc = NULL; |
---|
1314 | if (i!=0) |
---|
1315 | { |
---|
1316 | rc = p_Init(r); |
---|
1317 | pSetCoeff0(rc,n_Init(i,r->cf)); |
---|
1318 | if (n_IsZero(pGetCoeff(rc),r->cf)) |
---|
1319 | p_LmDelete(&rc,r); |
---|
1320 | } |
---|
1321 | return rc; |
---|
1322 | } |
---|
1323 | |
---|
1324 | /*2 |
---|
1325 | * an optimized version of p_ISet for the special case 1 |
---|
1326 | */ |
---|
1327 | poly p_One(const ring r) |
---|
1328 | { |
---|
1329 | poly rc = p_Init(r); |
---|
1330 | pSetCoeff0(rc,n_Init(1,r->cf)); |
---|
1331 | return rc; |
---|
1332 | } |
---|
1333 | |
---|
1334 | void p_Split(poly p, poly *h) |
---|
1335 | { |
---|
1336 | *h=pNext(p); |
---|
1337 | pNext(p)=NULL; |
---|
1338 | } |
---|
1339 | |
---|
1340 | /*2 |
---|
1341 | * pair has no common factor ? or is no polynomial |
---|
1342 | */ |
---|
1343 | BOOLEAN p_HasNotCF(poly p1, poly p2, const ring r) |
---|
1344 | { |
---|
1345 | |
---|
1346 | if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0) |
---|
1347 | return FALSE; |
---|
1348 | int i = rVar(r); |
---|
1349 | loop |
---|
1350 | { |
---|
1351 | if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0)) |
---|
1352 | return FALSE; |
---|
1353 | i--; |
---|
1354 | if (i == 0) |
---|
1355 | return TRUE; |
---|
1356 | } |
---|
1357 | } |
---|
1358 | |
---|
1359 | /*2 |
---|
1360 | * convert monomial given as string to poly, e.g. 1x3y5z |
---|
1361 | */ |
---|
1362 | const char * p_Read(const char *st, poly &rc, const ring r) |
---|
1363 | { |
---|
1364 | if (r==NULL) { rc=NULL;return st;} |
---|
1365 | int i,j; |
---|
1366 | rc = p_Init(r); |
---|
1367 | const char *s = r->cf->cfRead(st,&(rc->coef),r->cf); |
---|
1368 | if (s==st) |
---|
1369 | /* i.e. it does not start with a coeff: test if it is a ringvar*/ |
---|
1370 | { |
---|
1371 | j = r_IsRingVar(s,r->names,r->N); |
---|
1372 | if (j >= 0) |
---|
1373 | { |
---|
1374 | p_IncrExp(rc,1+j,r); |
---|
1375 | while (*s!='\0') s++; |
---|
1376 | goto done; |
---|
1377 | } |
---|
1378 | } |
---|
1379 | while (*s!='\0') |
---|
1380 | { |
---|
1381 | char ss[2]; |
---|
1382 | ss[0] = *s++; |
---|
1383 | ss[1] = '\0'; |
---|
1384 | j = r_IsRingVar(ss,r->names,r->N); |
---|
1385 | if (j >= 0) |
---|
1386 | { |
---|
1387 | const char *s_save=s; |
---|
1388 | s = eati(s,&i); |
---|
1389 | if (((unsigned long)i) > r->bitmask) |
---|
1390 | { |
---|
1391 | // exponent to large: it is not a monomial |
---|
1392 | p_LmDelete(&rc,r); |
---|
1393 | return s_save; |
---|
1394 | } |
---|
1395 | p_AddExp(rc,1+j, (long)i, r); |
---|
1396 | } |
---|
1397 | else |
---|
1398 | { |
---|
1399 | // 1st char of is not a varname |
---|
1400 | // We return the parsed polynomial nevertheless. This is needed when |
---|
1401 | // we are parsing coefficients in a rational function field. |
---|
1402 | s--; |
---|
1403 | break; |
---|
1404 | } |
---|
1405 | } |
---|
1406 | done: |
---|
1407 | if (n_IsZero(pGetCoeff(rc),r->cf)) p_LmDelete(&rc,r); |
---|
1408 | else |
---|
1409 | { |
---|
1410 | #ifdef HAVE_PLURAL |
---|
1411 | // in super-commutative ring |
---|
1412 | // squares of anti-commutative variables are zeroes! |
---|
1413 | if(rIsSCA(r)) |
---|
1414 | { |
---|
1415 | const unsigned int iFirstAltVar = scaFirstAltVar(r); |
---|
1416 | const unsigned int iLastAltVar = scaLastAltVar(r); |
---|
1417 | |
---|
1418 | assume(rc != NULL); |
---|
1419 | |
---|
1420 | for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++) |
---|
1421 | if( p_GetExp(rc, k, r) > 1 ) |
---|
1422 | { |
---|
1423 | p_LmDelete(&rc, r); |
---|
1424 | goto finish; |
---|
1425 | } |
---|
1426 | } |
---|
1427 | #endif |
---|
1428 | |
---|
1429 | p_Setm(rc,r); |
---|
1430 | } |
---|
1431 | finish: |
---|
1432 | return s; |
---|
1433 | } |
---|
1434 | poly p_mInit(const char *st, BOOLEAN &ok, const ring r) |
---|
1435 | { |
---|
1436 | poly p; |
---|
1437 | const char *s=p_Read(st,p,r); |
---|
1438 | if (*s!='\0') |
---|
1439 | { |
---|
1440 | if ((s!=st)&&isdigit(st[0])) |
---|
1441 | { |
---|
1442 | errorreported=TRUE; |
---|
1443 | } |
---|
1444 | ok=FALSE; |
---|
1445 | p_Delete(&p,r); |
---|
1446 | return NULL; |
---|
1447 | } |
---|
1448 | #ifdef PDEBUG |
---|
1449 | _p_Test(p,r,PDEBUG); |
---|
1450 | #endif |
---|
1451 | ok=!errorreported; |
---|
1452 | return p; |
---|
1453 | } |
---|
1454 | |
---|
1455 | /*2 |
---|
1456 | * returns a polynomial representing the number n |
---|
1457 | * destroys n |
---|
1458 | */ |
---|
1459 | poly p_NSet(number n, const ring r) |
---|
1460 | { |
---|
1461 | if (n_IsZero(n,r->cf)) |
---|
1462 | { |
---|
1463 | n_Delete(&n, r->cf); |
---|
1464 | return NULL; |
---|
1465 | } |
---|
1466 | else |
---|
1467 | { |
---|
1468 | poly rc = p_Init(r); |
---|
1469 | pSetCoeff0(rc,n); |
---|
1470 | return rc; |
---|
1471 | } |
---|
1472 | } |
---|
1473 | /*2 |
---|
1474 | * assumes that LM(a) = LM(b)*m, for some monomial m, |
---|
1475 | * returns the multiplicant m, |
---|
1476 | * leaves a and b unmodified |
---|
1477 | */ |
---|
1478 | poly p_Divide(poly a, poly b, const ring r) |
---|
1479 | { |
---|
1480 | assume((p_GetComp(a,r)==p_GetComp(b,r)) || (p_GetComp(b,r)==0)); |
---|
1481 | int i; |
---|
1482 | poly result = p_Init(r); |
---|
1483 | |
---|
1484 | for(i=(int)r->N; i; i--) |
---|
1485 | p_SetExp(result,i, p_GetExp(a,i,r)- p_GetExp(b,i,r),r); |
---|
1486 | p_SetComp(result, p_GetComp(a,r) - p_GetComp(b,r),r); |
---|
1487 | p_Setm(result,r); |
---|
1488 | return result; |
---|
1489 | } |
---|
1490 | |
---|
1491 | poly p_Div_nn(poly p, const number n, const ring r) |
---|
1492 | { |
---|
1493 | pAssume(!n_IsZero(n,r->cf)); |
---|
1494 | p_Test(p, r); |
---|
1495 | |
---|
1496 | poly q = p; |
---|
1497 | while (p != NULL) |
---|
1498 | { |
---|
1499 | number nc = pGetCoeff(p); |
---|
1500 | pSetCoeff0(p, n_Div(nc, n, r->cf)); |
---|
1501 | n_Delete(&nc, r->cf); |
---|
1502 | pIter(p); |
---|
1503 | } |
---|
1504 | p_Test(q, r); |
---|
1505 | return q; |
---|
1506 | } |
---|
1507 | |
---|
1508 | /*2 |
---|
1509 | * divides a by the monomial b, ignores monomials which are not divisible |
---|
1510 | * assumes that b is not NULL, destroyes b |
---|
1511 | */ |
---|
1512 | poly p_DivideM(poly a, poly b, const ring r) |
---|
1513 | { |
---|
1514 | if (a==NULL) { p_Delete(&b,r); return NULL; } |
---|
1515 | poly result=a; |
---|
1516 | poly prev=NULL; |
---|
1517 | int i; |
---|
1518 | #ifdef HAVE_RINGS |
---|
1519 | number inv=pGetCoeff(b); |
---|
1520 | #else |
---|
1521 | number inv=n_Invers(pGetCoeff(b),r->cf); |
---|
1522 | #endif |
---|
1523 | |
---|
1524 | while (a!=NULL) |
---|
1525 | { |
---|
1526 | if (p_DivisibleBy(b,a,r)) |
---|
1527 | { |
---|
1528 | for(i=(int)r->N; i; i--) |
---|
1529 | p_SubExp(a,i, p_GetExp(b,i,r),r); |
---|
1530 | p_SubComp(a, p_GetComp(b,r),r); |
---|
1531 | p_Setm(a,r); |
---|
1532 | prev=a; |
---|
1533 | pIter(a); |
---|
1534 | } |
---|
1535 | else |
---|
1536 | { |
---|
1537 | if (prev==NULL) |
---|
1538 | { |
---|
1539 | p_LmDelete(&result,r); |
---|
1540 | a=result; |
---|
1541 | } |
---|
1542 | else |
---|
1543 | { |
---|
1544 | p_LmDelete(&pNext(prev),r); |
---|
1545 | a=pNext(prev); |
---|
1546 | } |
---|
1547 | } |
---|
1548 | } |
---|
1549 | #ifdef HAVE_RINGS |
---|
1550 | if (n_IsUnit(inv,r->cf)) |
---|
1551 | { |
---|
1552 | inv = n_Invers(inv,r->cf); |
---|
1553 | p_Mult_nn(result,inv,r); |
---|
1554 | n_Delete(&inv, r->cf); |
---|
1555 | } |
---|
1556 | else |
---|
1557 | { |
---|
1558 | p_Div_nn(result,inv,r); |
---|
1559 | } |
---|
1560 | #else |
---|
1561 | p_Mult_nn(result,inv,r); |
---|
1562 | n_Delete(&inv, r->cf); |
---|
1563 | #endif |
---|
1564 | p_Delete(&b, r); |
---|
1565 | return result; |
---|
1566 | } |
---|
1567 | |
---|
1568 | #ifdef HAVE_RINGS |
---|
1569 | /* TRUE iff LT(f) | LT(g) */ |
---|
1570 | BOOLEAN p_DivisibleByRingCase(poly f, poly g, const ring r) |
---|
1571 | { |
---|
1572 | int exponent; |
---|
1573 | for(int i = (int)rVar(r); i>0; i--) |
---|
1574 | { |
---|
1575 | exponent = p_GetExp(g, i, r) - p_GetExp(f, i, r); |
---|
1576 | if (exponent < 0) return FALSE; |
---|
1577 | } |
---|
1578 | return n_DivBy(pGetCoeff(g), pGetCoeff(f), r->cf); |
---|
1579 | } |
---|
1580 | #endif |
---|
1581 | |
---|
1582 | // returns the LCM of the head terms of a and b in *m |
---|
1583 | void p_Lcm(const poly a, const poly b, poly m, const ring r) |
---|
1584 | { |
---|
1585 | for (int i=rVar(r); i; --i) |
---|
1586 | p_SetExp(m,i, si_max( p_GetExp(a,i,r), p_GetExp(b,i,r)),r); |
---|
1587 | |
---|
1588 | p_SetComp(m, si_max(p_GetComp(a,r), p_GetComp(b,r)),r); |
---|
1589 | /* Don't do a pSetm here, otherwise hres/lres chockes */ |
---|
1590 | } |
---|
1591 | |
---|
1592 | |
---|
1593 | |
---|
1594 | #ifdef HAVE_RATGRING |
---|
1595 | /*2 |
---|
1596 | * returns the rational LCM of the head terms of a and b |
---|
1597 | * without coefficient!!! |
---|
1598 | */ |
---|
1599 | poly p_LcmRat(const poly a, const poly b, const long lCompM, const ring r) |
---|
1600 | { |
---|
1601 | poly m = // p_One( r); |
---|
1602 | p_Init(r); |
---|
1603 | |
---|
1604 | // const int (currRing->N) = r->N; |
---|
1605 | |
---|
1606 | // for (int i = (currRing->N); i>=r->real_var_start; i--) |
---|
1607 | for (int i = r->real_var_end; i>=r->real_var_start; i--) |
---|
1608 | { |
---|
1609 | const int lExpA = p_GetExp (a, i, r); |
---|
1610 | const int lExpB = p_GetExp (b, i, r); |
---|
1611 | |
---|
1612 | p_SetExp (m, i, si_max(lExpA, lExpB), r); |
---|
1613 | } |
---|
1614 | |
---|
1615 | p_SetComp (m, lCompM, r); |
---|
1616 | p_Setm(m,r); |
---|
1617 | n_New(&(p_GetCoeff(m, r)), r); |
---|
1618 | |
---|
1619 | return(m); |
---|
1620 | }; |
---|
1621 | |
---|
1622 | void p_LmDeleteAndNextRat(poly *p, int ishift, ring r) |
---|
1623 | { |
---|
1624 | /* modifies p*/ |
---|
1625 | // Print("start: "); Print(" "); p_wrp(*p,r); |
---|
1626 | p_LmCheckPolyRing2(*p, r); |
---|
1627 | poly q = p_Head(*p,r); |
---|
1628 | const long cmp = p_GetComp(*p, r); |
---|
1629 | while ( ( (*p)!=NULL ) && ( p_Comp_k_n(*p, q, ishift+1, r) ) && (p_GetComp(*p, r) == cmp) ) |
---|
1630 | { |
---|
1631 | p_LmDelete(p,r); |
---|
1632 | // Print("while: ");p_wrp(*p,r);Print(" "); |
---|
1633 | } |
---|
1634 | // p_wrp(*p,r);Print(" "); |
---|
1635 | // PrintS("end\n"); |
---|
1636 | p_LmDelete(&q,r); |
---|
1637 | } |
---|
1638 | |
---|
1639 | |
---|
1640 | /* returns x-coeff of p, i.e. a poly in x, s.t. corresponding xd-monomials |
---|
1641 | have the same D-part and the component 0 |
---|
1642 | does not destroy p |
---|
1643 | */ |
---|
1644 | poly p_GetCoeffRat(poly p, int ishift, ring r) |
---|
1645 | { |
---|
1646 | poly q = pNext(p); |
---|
1647 | poly res; // = p_Head(p,r); |
---|
1648 | res = p_GetExp_k_n(p, ishift+1, r->N, r); // does pSetm internally |
---|
1649 | p_SetCoeff(res,n_Copy(p_GetCoeff(p,r),r),r); |
---|
1650 | poly s; |
---|
1651 | long cmp = p_GetComp(p, r); |
---|
1652 | while ( (q!= NULL) && (p_Comp_k_n(p, q, ishift+1, r)) && (p_GetComp(q, r) == cmp) ) |
---|
1653 | { |
---|
1654 | s = p_GetExp_k_n(q, ishift+1, r->N, r); |
---|
1655 | p_SetCoeff(s,n_Copy(p_GetCoeff(q,r),r),r); |
---|
1656 | res = p_Add_q(res,s,r); |
---|
1657 | q = pNext(q); |
---|
1658 | } |
---|
1659 | cmp = 0; |
---|
1660 | p_SetCompP(res,cmp,r); |
---|
1661 | return res; |
---|
1662 | } |
---|
1663 | |
---|
1664 | |
---|
1665 | |
---|
1666 | void p_ContentRat(poly &ph, const ring r) |
---|
1667 | // changes ph |
---|
1668 | // for rat coefficients in K(x1,..xN) |
---|
1669 | { |
---|
1670 | // init array of RatLeadCoeffs |
---|
1671 | // poly p_GetCoeffRat(poly p, int ishift, ring r); |
---|
1672 | |
---|
1673 | int len=pLength(ph); |
---|
1674 | poly *C = (poly *)omAlloc0((len+1)*sizeof(poly)); //rat coeffs |
---|
1675 | poly *LM = (poly *)omAlloc0((len+1)*sizeof(poly)); // rat lead terms |
---|
1676 | int *D = (int *)omAlloc0((len+1)*sizeof(int)); //degrees of coeffs |
---|
1677 | int *L = (int *)omAlloc0((len+1)*sizeof(int)); //lengths of coeffs |
---|
1678 | int k = 0; |
---|
1679 | poly p = p_Copy(ph, r); // ph will be needed below |
---|
1680 | int mintdeg = p_Totaldegree(p, r); |
---|
1681 | int minlen = len; |
---|
1682 | int dd = 0; int i; |
---|
1683 | int HasConstantCoef = 0; |
---|
1684 | int is = r->real_var_start - 1; |
---|
1685 | while (p!=NULL) |
---|
1686 | { |
---|
1687 | LM[k] = p_GetExp_k_n(p,1,is, r); // need LmRat istead of p_HeadRat(p, is, currRing); ! |
---|
1688 | C[k] = p_GetCoeffRat(p, is, r); |
---|
1689 | D[k] = p_Totaldegree(C[k], r); |
---|
1690 | mintdeg = si_min(mintdeg,D[k]); |
---|
1691 | L[k] = pLength(C[k]); |
---|
1692 | minlen = si_min(minlen,L[k]); |
---|
1693 | if (p_IsConstant(C[k], r)) |
---|
1694 | { |
---|
1695 | // C[k] = const, so the content will be numerical |
---|
1696 | HasConstantCoef = 1; |
---|
1697 | // smth like goto cleanup and return(pContent(p)); |
---|
1698 | } |
---|
1699 | p_LmDeleteAndNextRat(&p, is, r); |
---|
1700 | k++; |
---|
1701 | } |
---|
1702 | |
---|
1703 | // look for 1 element of minimal degree and of minimal length |
---|
1704 | k--; |
---|
1705 | poly d; |
---|
1706 | int mindeglen = len; |
---|
1707 | if (k<=0) // this poly is not a ratgring poly -> pContent |
---|
1708 | { |
---|
1709 | p_Delete(&C[0], r); |
---|
1710 | p_Delete(&LM[0], r); |
---|
1711 | p_Content(ph, r); |
---|
1712 | goto cleanup; |
---|
1713 | } |
---|
1714 | |
---|
1715 | int pmindeglen; |
---|
1716 | for(i=0; i<=k; i++) |
---|
1717 | { |
---|
1718 | if (D[i] == mintdeg) |
---|
1719 | { |
---|
1720 | if (L[i] < mindeglen) |
---|
1721 | { |
---|
1722 | mindeglen=L[i]; |
---|
1723 | pmindeglen = i; |
---|
1724 | } |
---|
1725 | } |
---|
1726 | } |
---|
1727 | d = p_Copy(C[pmindeglen], r); |
---|
1728 | // there are dd>=1 mindeg elements |
---|
1729 | // and pmideglen is the coordinate of one of the smallest among them |
---|
1730 | |
---|
1731 | // poly g = singclap_gcd(p_Copy(p,r),p_Copy(q,r)); |
---|
1732 | // return naGcd(d,d2,currRing); |
---|
1733 | |
---|
1734 | // adjoin pContentRat here? |
---|
1735 | for(i=0; i<=k; i++) |
---|
1736 | { |
---|
1737 | d=singclap_gcd(d,p_Copy(C[i], r), r); |
---|
1738 | if (p_Totaldegree(d, r)==0) |
---|
1739 | { |
---|
1740 | // cleanup, pContent, return |
---|
1741 | p_Delete(&d, r); |
---|
1742 | for(;k>=0;k--) |
---|
1743 | { |
---|
1744 | p_Delete(&C[k], r); |
---|
1745 | p_Delete(&LM[k], r); |
---|
1746 | } |
---|
1747 | p_Content(ph, r); |
---|
1748 | goto cleanup; |
---|
1749 | } |
---|
1750 | } |
---|
1751 | for(i=0; i<=k; i++) |
---|
1752 | { |
---|
1753 | poly h=singclap_pdivide(C[i],d, r); |
---|
1754 | p_Delete(&C[i], r); |
---|
1755 | C[i]=h; |
---|
1756 | } |
---|
1757 | |
---|
1758 | // zusammensetzen, |
---|
1759 | p=NULL; // just to be sure |
---|
1760 | for(i=0; i<=k; i++) |
---|
1761 | { |
---|
1762 | p = p_Add_q(p, p_Mult_q(C[i],LM[i], r), r); |
---|
1763 | C[i]=NULL; LM[i]=NULL; |
---|
1764 | } |
---|
1765 | p_Delete(&ph, r); // do not need it anymore |
---|
1766 | ph = p; |
---|
1767 | // aufraeumen, return |
---|
1768 | cleanup: |
---|
1769 | omFree(C); |
---|
1770 | omFree(LM); |
---|
1771 | omFree(D); |
---|
1772 | omFree(L); |
---|
1773 | } |
---|
1774 | |
---|
1775 | |
---|
1776 | #endif |
---|
1777 | |
---|
1778 | |
---|
1779 | /* assumes that p and divisor are univariate polynomials in r, |
---|
1780 | mentioning the same variable; |
---|
1781 | assumes divisor != NULL; |
---|
1782 | p may be NULL; |
---|
1783 | assumes a global monomial ordering in r; |
---|
1784 | performs polynomial division of p by divisor: |
---|
1785 | - afterwards p contains the remainder of the division, i.e., |
---|
1786 | p_before = result * divisor + p_afterwards; |
---|
1787 | - if needResult == TRUE, then the method computes and returns 'result', |
---|
1788 | otherwise NULL is returned (This parametrization can be used when |
---|
1789 | one is only interested in the remainder of the division. In this |
---|
1790 | case, the method will be slightly faster.) |
---|
1791 | leaves divisor unmodified */ |
---|
1792 | poly p_PolyDiv(poly &p, const poly divisor, const BOOLEAN needResult, const ring r) |
---|
1793 | { |
---|
1794 | assume(divisor != NULL); |
---|
1795 | if (p == NULL) return NULL; |
---|
1796 | |
---|
1797 | poly result = NULL; |
---|
1798 | number divisorLC = p_GetCoeff(divisor, r); |
---|
1799 | int divisorLE = p_GetExp(divisor, 1, r); |
---|
1800 | while ((p != NULL) && (p_Deg(p, r) >= p_Deg(divisor, r))) |
---|
1801 | { |
---|
1802 | /* determine t = LT(p) / LT(divisor) */ |
---|
1803 | poly t = p_ISet(1, r); |
---|
1804 | number c = n_Div(p_GetCoeff(p, r), divisorLC, r->cf); |
---|
1805 | n_Normalize(c,r->cf); |
---|
1806 | p_SetCoeff(t, c, r); |
---|
1807 | int e = p_GetExp(p, 1, r) - divisorLE; |
---|
1808 | p_SetExp(t, 1, e, r); |
---|
1809 | p_Setm(t, r); |
---|
1810 | if (needResult) result = p_Add_q(result, p_Copy(t, r), r); |
---|
1811 | p = p_Add_q(p, p_Neg(p_Mult_q(t, p_Copy(divisor, r), r), r), r); |
---|
1812 | } |
---|
1813 | return result; |
---|
1814 | } |
---|
1815 | |
---|
1816 | /*2 |
---|
1817 | * returns the partial differentiate of a by the k-th variable |
---|
1818 | * does not destroy the input |
---|
1819 | */ |
---|
1820 | poly p_Diff(poly a, int k, const ring r) |
---|
1821 | { |
---|
1822 | poly res, f, last; |
---|
1823 | number t; |
---|
1824 | |
---|
1825 | last = res = NULL; |
---|
1826 | while (a!=NULL) |
---|
1827 | { |
---|
1828 | if (p_GetExp(a,k,r)!=0) |
---|
1829 | { |
---|
1830 | f = p_LmInit(a,r); |
---|
1831 | t = n_Init(p_GetExp(a,k,r),r->cf); |
---|
1832 | pSetCoeff0(f,n_Mult(t,pGetCoeff(a),r->cf)); |
---|
1833 | n_Delete(&t,r->cf); |
---|
1834 | if (n_IsZero(pGetCoeff(f),r->cf)) |
---|
1835 | p_LmDelete(&f,r); |
---|
1836 | else |
---|
1837 | { |
---|
1838 | p_DecrExp(f,k,r); |
---|
1839 | p_Setm(f,r); |
---|
1840 | if (res==NULL) |
---|
1841 | { |
---|
1842 | res=last=f; |
---|
1843 | } |
---|
1844 | else |
---|
1845 | { |
---|
1846 | pNext(last)=f; |
---|
1847 | last=f; |
---|
1848 | } |
---|
1849 | } |
---|
1850 | } |
---|
1851 | pIter(a); |
---|
1852 | } |
---|
1853 | return res; |
---|
1854 | } |
---|
1855 | |
---|
1856 | static poly p_DiffOpM(poly a, poly b,BOOLEAN multiply, const ring r) |
---|
1857 | { |
---|
1858 | int i,j,s; |
---|
1859 | number n,h,hh; |
---|
1860 | poly p=p_One(r); |
---|
1861 | n=n_Mult(pGetCoeff(a),pGetCoeff(b),r->cf); |
---|
1862 | for(i=rVar(r);i>0;i--) |
---|
1863 | { |
---|
1864 | s=p_GetExp(b,i,r); |
---|
1865 | if (s<p_GetExp(a,i,r)) |
---|
1866 | { |
---|
1867 | n_Delete(&n,r->cf); |
---|
1868 | p_LmDelete(&p,r); |
---|
1869 | return NULL; |
---|
1870 | } |
---|
1871 | if (multiply) |
---|
1872 | { |
---|
1873 | for(j=p_GetExp(a,i,r); j>0;j--) |
---|
1874 | { |
---|
1875 | h = n_Init(s,r->cf); |
---|
1876 | hh=n_Mult(n,h,r->cf); |
---|
1877 | n_Delete(&h,r->cf); |
---|
1878 | n_Delete(&n,r->cf); |
---|
1879 | n=hh; |
---|
1880 | s--; |
---|
1881 | } |
---|
1882 | p_SetExp(p,i,s,r); |
---|
1883 | } |
---|
1884 | else |
---|
1885 | { |
---|
1886 | p_SetExp(p,i,s-p_GetExp(a,i,r),r); |
---|
1887 | } |
---|
1888 | } |
---|
1889 | p_Setm(p,r); |
---|
1890 | /*if (multiply)*/ p_SetCoeff(p,n,r); |
---|
1891 | if (n_IsZero(n,r->cf)) p=p_LmDeleteAndNext(p,r); // return NULL as p is a monomial |
---|
1892 | return p; |
---|
1893 | } |
---|
1894 | |
---|
1895 | poly p_DiffOp(poly a, poly b,BOOLEAN multiply, const ring r) |
---|
1896 | { |
---|
1897 | poly result=NULL; |
---|
1898 | poly h; |
---|
1899 | for(;a!=NULL;pIter(a)) |
---|
1900 | { |
---|
1901 | for(h=b;h!=NULL;pIter(h)) |
---|
1902 | { |
---|
1903 | result=p_Add_q(result,p_DiffOpM(a,h,multiply,r),r); |
---|
1904 | } |
---|
1905 | } |
---|
1906 | return result; |
---|
1907 | } |
---|
1908 | /*2 |
---|
1909 | * subtract p2 from p1, p1 and p2 are destroyed |
---|
1910 | * do not put attention on speed: the procedure is only used in the interpreter |
---|
1911 | */ |
---|
1912 | poly p_Sub(poly p1, poly p2, const ring r) |
---|
1913 | { |
---|
1914 | return p_Add_q(p1, p_Neg(p2,r),r); |
---|
1915 | } |
---|
1916 | |
---|
1917 | /*3 |
---|
1918 | * compute for a monomial m |
---|
1919 | * the power m^exp, exp > 1 |
---|
1920 | * destroys p |
---|
1921 | */ |
---|
1922 | static poly p_MonPower(poly p, int exp, const ring r) |
---|
1923 | { |
---|
1924 | int i; |
---|
1925 | |
---|
1926 | if(!n_IsOne(pGetCoeff(p),r->cf)) |
---|
1927 | { |
---|
1928 | number x, y; |
---|
1929 | y = pGetCoeff(p); |
---|
1930 | n_Power(y,exp,&x,r->cf); |
---|
1931 | n_Delete(&y,r->cf); |
---|
1932 | pSetCoeff0(p,x); |
---|
1933 | } |
---|
1934 | for (i=rVar(r); i!=0; i--) |
---|
1935 | { |
---|
1936 | p_MultExp(p,i, exp,r); |
---|
1937 | } |
---|
1938 | p_Setm(p,r); |
---|
1939 | return p; |
---|
1940 | } |
---|
1941 | |
---|
1942 | /*3 |
---|
1943 | * compute for monomials p*q |
---|
1944 | * destroys p, keeps q |
---|
1945 | */ |
---|
1946 | static void p_MonMult(poly p, poly q, const ring r) |
---|
1947 | { |
---|
1948 | number x, y; |
---|
1949 | |
---|
1950 | y = pGetCoeff(p); |
---|
1951 | x = n_Mult(y,pGetCoeff(q),r->cf); |
---|
1952 | n_Delete(&y,r->cf); |
---|
1953 | pSetCoeff0(p,x); |
---|
1954 | //for (int i=pVariables; i!=0; i--) |
---|
1955 | //{ |
---|
1956 | // pAddExp(p,i, pGetExp(q,i)); |
---|
1957 | //} |
---|
1958 | //p->Order += q->Order; |
---|
1959 | p_ExpVectorAdd(p,q,r); |
---|
1960 | } |
---|
1961 | |
---|
1962 | /*3 |
---|
1963 | * compute for monomials p*q |
---|
1964 | * keeps p, q |
---|
1965 | */ |
---|
1966 | static poly p_MonMultC(poly p, poly q, const ring rr) |
---|
1967 | { |
---|
1968 | number x; |
---|
1969 | poly r = p_Init(rr); |
---|
1970 | |
---|
1971 | x = n_Mult(pGetCoeff(p),pGetCoeff(q),rr->cf); |
---|
1972 | pSetCoeff0(r,x); |
---|
1973 | p_ExpVectorSum(r,p, q, rr); |
---|
1974 | return r; |
---|
1975 | } |
---|
1976 | |
---|
1977 | /*3 |
---|
1978 | * create binomial coef. |
---|
1979 | */ |
---|
1980 | static number* pnBin(int exp, const ring r) |
---|
1981 | { |
---|
1982 | int e, i, h; |
---|
1983 | number x, y, *bin=NULL; |
---|
1984 | |
---|
1985 | x = n_Init(exp,r->cf); |
---|
1986 | if (n_IsZero(x,r->cf)) |
---|
1987 | { |
---|
1988 | n_Delete(&x,r->cf); |
---|
1989 | return bin; |
---|
1990 | } |
---|
1991 | h = (exp >> 1) + 1; |
---|
1992 | bin = (number *)omAlloc0(h*sizeof(number)); |
---|
1993 | bin[1] = x; |
---|
1994 | if (exp < 4) |
---|
1995 | return bin; |
---|
1996 | i = exp - 1; |
---|
1997 | for (e=2; e<h; e++) |
---|
1998 | { |
---|
1999 | x = n_Init(i,r->cf); |
---|
2000 | i--; |
---|
2001 | y = n_Mult(x,bin[e-1],r->cf); |
---|
2002 | n_Delete(&x,r->cf); |
---|
2003 | x = n_Init(e,r->cf); |
---|
2004 | bin[e] = n_ExactDiv(y,x,r->cf); |
---|
2005 | n_Delete(&x,r->cf); |
---|
2006 | n_Delete(&y,r->cf); |
---|
2007 | } |
---|
2008 | return bin; |
---|
2009 | } |
---|
2010 | |
---|
2011 | static void pnFreeBin(number *bin, int exp,const coeffs r) |
---|
2012 | { |
---|
2013 | int e, h = (exp >> 1) + 1; |
---|
2014 | |
---|
2015 | if (bin[1] != NULL) |
---|
2016 | { |
---|
2017 | for (e=1; e<h; e++) |
---|
2018 | n_Delete(&(bin[e]),r); |
---|
2019 | } |
---|
2020 | omFreeSize((ADDRESS)bin, h*sizeof(number)); |
---|
2021 | } |
---|
2022 | |
---|
2023 | /* |
---|
2024 | * compute for a poly p = head+tail, tail is monomial |
---|
2025 | * (head + tail)^exp, exp > 1 |
---|
2026 | * with binomial coef. |
---|
2027 | */ |
---|
2028 | static poly p_TwoMonPower(poly p, int exp, const ring r) |
---|
2029 | { |
---|
2030 | int eh, e; |
---|
2031 | long al; |
---|
2032 | poly *a; |
---|
2033 | poly tail, b, res, h; |
---|
2034 | number x; |
---|
2035 | number *bin = pnBin(exp,r); |
---|
2036 | |
---|
2037 | tail = pNext(p); |
---|
2038 | if (bin == NULL) |
---|
2039 | { |
---|
2040 | p_MonPower(p,exp,r); |
---|
2041 | p_MonPower(tail,exp,r); |
---|
2042 | #ifdef PDEBUG |
---|
2043 | p_Test(p,r); |
---|
2044 | #endif |
---|
2045 | return p; |
---|
2046 | } |
---|
2047 | eh = exp >> 1; |
---|
2048 | al = (exp + 1) * sizeof(poly); |
---|
2049 | a = (poly *)omAlloc(al); |
---|
2050 | a[1] = p; |
---|
2051 | for (e=1; e<exp; e++) |
---|
2052 | { |
---|
2053 | a[e+1] = p_MonMultC(a[e],p,r); |
---|
2054 | } |
---|
2055 | res = a[exp]; |
---|
2056 | b = p_Head(tail,r); |
---|
2057 | for (e=exp-1; e>eh; e--) |
---|
2058 | { |
---|
2059 | h = a[e]; |
---|
2060 | x = n_Mult(bin[exp-e],pGetCoeff(h),r->cf); |
---|
2061 | p_SetCoeff(h,x,r); |
---|
2062 | p_MonMult(h,b,r); |
---|
2063 | res = pNext(res) = h; |
---|
2064 | p_MonMult(b,tail,r); |
---|
2065 | } |
---|
2066 | for (e=eh; e!=0; e--) |
---|
2067 | { |
---|
2068 | h = a[e]; |
---|
2069 | x = n_Mult(bin[e],pGetCoeff(h),r->cf); |
---|
2070 | p_SetCoeff(h,x,r); |
---|
2071 | p_MonMult(h,b,r); |
---|
2072 | res = pNext(res) = h; |
---|
2073 | p_MonMult(b,tail,r); |
---|
2074 | } |
---|
2075 | p_LmDelete(&tail,r); |
---|
2076 | pNext(res) = b; |
---|
2077 | pNext(b) = NULL; |
---|
2078 | res = a[exp]; |
---|
2079 | omFreeSize((ADDRESS)a, al); |
---|
2080 | pnFreeBin(bin, exp, r->cf); |
---|
2081 | // tail=res; |
---|
2082 | // while((tail!=NULL)&&(pNext(tail)!=NULL)) |
---|
2083 | // { |
---|
2084 | // if(nIsZero(pGetCoeff(pNext(tail)))) |
---|
2085 | // { |
---|
2086 | // pLmDelete(&pNext(tail)); |
---|
2087 | // } |
---|
2088 | // else |
---|
2089 | // pIter(tail); |
---|
2090 | // } |
---|
2091 | #ifdef PDEBUG |
---|
2092 | p_Test(res,r); |
---|
2093 | #endif |
---|
2094 | return res; |
---|
2095 | } |
---|
2096 | |
---|
2097 | static poly p_Pow(poly p, int i, const ring r) |
---|
2098 | { |
---|
2099 | poly rc = p_Copy(p,r); |
---|
2100 | i -= 2; |
---|
2101 | do |
---|
2102 | { |
---|
2103 | rc = p_Mult_q(rc,p_Copy(p,r),r); |
---|
2104 | p_Normalize(rc,r); |
---|
2105 | i--; |
---|
2106 | } |
---|
2107 | while (i != 0); |
---|
2108 | return p_Mult_q(rc,p,r); |
---|
2109 | } |
---|
2110 | |
---|
2111 | /*2 |
---|
2112 | * returns the i-th power of p |
---|
2113 | * p will be destroyed |
---|
2114 | */ |
---|
2115 | poly p_Power(poly p, int i, const ring r) |
---|
2116 | { |
---|
2117 | poly rc=NULL; |
---|
2118 | |
---|
2119 | if (i==0) |
---|
2120 | { |
---|
2121 | p_Delete(&p,r); |
---|
2122 | return p_One(r); |
---|
2123 | } |
---|
2124 | |
---|
2125 | if(p!=NULL) |
---|
2126 | { |
---|
2127 | if ( (i > 0) && ((unsigned long ) i > (r->bitmask))) |
---|
2128 | { |
---|
2129 | Werror("exponent %d is too large, max. is %ld",i,r->bitmask); |
---|
2130 | return NULL; |
---|
2131 | } |
---|
2132 | switch (i) |
---|
2133 | { |
---|
2134 | // cannot happen, see above |
---|
2135 | // case 0: |
---|
2136 | // { |
---|
2137 | // rc=pOne(); |
---|
2138 | // pDelete(&p); |
---|
2139 | // break; |
---|
2140 | // } |
---|
2141 | case 1: |
---|
2142 | rc=p; |
---|
2143 | break; |
---|
2144 | case 2: |
---|
2145 | rc=p_Mult_q(p_Copy(p,r),p,r); |
---|
2146 | break; |
---|
2147 | default: |
---|
2148 | if (i < 0) |
---|
2149 | { |
---|
2150 | p_Delete(&p,r); |
---|
2151 | return NULL; |
---|
2152 | } |
---|
2153 | else |
---|
2154 | { |
---|
2155 | #ifdef HAVE_PLURAL |
---|
2156 | if (rIsPluralRing(r)) /* in the NC case nothing helps :-( */ |
---|
2157 | { |
---|
2158 | int j=i; |
---|
2159 | rc = p_Copy(p,r); |
---|
2160 | while (j>1) |
---|
2161 | { |
---|
2162 | rc = p_Mult_q(p_Copy(p,r),rc,r); |
---|
2163 | j--; |
---|
2164 | } |
---|
2165 | p_Delete(&p,r); |
---|
2166 | return rc; |
---|
2167 | } |
---|
2168 | #endif |
---|
2169 | rc = pNext(p); |
---|
2170 | if (rc == NULL) |
---|
2171 | return p_MonPower(p,i,r); |
---|
2172 | /* else: binom ?*/ |
---|
2173 | int char_p=rChar(r); |
---|
2174 | if ((pNext(rc) != NULL) |
---|
2175 | #ifdef HAVE_RINGS |
---|
2176 | || rField_is_Ring(r) |
---|
2177 | #endif |
---|
2178 | ) |
---|
2179 | return p_Pow(p,i,r); |
---|
2180 | if ((char_p==0) || (i<=char_p)) |
---|
2181 | return p_TwoMonPower(p,i,r); |
---|
2182 | return p_Pow(p,i,r); |
---|
2183 | } |
---|
2184 | /*end default:*/ |
---|
2185 | } |
---|
2186 | } |
---|
2187 | return rc; |
---|
2188 | } |
---|
2189 | |
---|
2190 | /* --------------------------------------------------------------------------------*/ |
---|
2191 | /* content suff */ |
---|
2192 | |
---|
2193 | static number p_InitContent(poly ph, const ring r); |
---|
2194 | |
---|
2195 | #define CLEARENUMERATORS 1 |
---|
2196 | |
---|
2197 | void p_Content(poly ph, const ring r) |
---|
2198 | { |
---|
2199 | assume( ph != NULL ); |
---|
2200 | |
---|
2201 | assume( r != NULL ); assume( r->cf != NULL ); |
---|
2202 | |
---|
2203 | |
---|
2204 | #if CLEARENUMERATORS |
---|
2205 | if( 0 ) |
---|
2206 | { |
---|
2207 | const coeffs C = r->cf; |
---|
2208 | // experimentall (recursive enumerator treatment) of alg. Ext! |
---|
2209 | CPolyCoeffsEnumerator itr(ph); |
---|
2210 | n_ClearContent(itr, r->cf); |
---|
2211 | |
---|
2212 | p_Test(ph, r); n_Test(pGetCoeff(ph), C); |
---|
2213 | assume(n_GreaterZero(pGetCoeff(ph), C)); // ?? |
---|
2214 | |
---|
2215 | // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2216 | return; |
---|
2217 | } |
---|
2218 | #endif |
---|
2219 | |
---|
2220 | |
---|
2221 | #ifdef HAVE_RINGS |
---|
2222 | if (rField_is_Ring(r)) |
---|
2223 | { |
---|
2224 | if (rField_has_Units(r)) |
---|
2225 | { |
---|
2226 | number k = n_GetUnit(pGetCoeff(ph),r->cf); |
---|
2227 | if (!n_IsOne(k,r->cf)) |
---|
2228 | { |
---|
2229 | number tmpGMP = k; |
---|
2230 | k = n_Invers(k,r->cf); |
---|
2231 | n_Delete(&tmpGMP,r->cf); |
---|
2232 | poly h = pNext(ph); |
---|
2233 | p_SetCoeff(ph, n_Mult(pGetCoeff(ph), k,r->cf),r); |
---|
2234 | while (h != NULL) |
---|
2235 | { |
---|
2236 | p_SetCoeff(h, n_Mult(pGetCoeff(h), k,r->cf),r); |
---|
2237 | pIter(h); |
---|
2238 | } |
---|
2239 | // assume( n_GreaterZero(pGetCoeff(ph),r->cf) ); |
---|
2240 | // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2241 | } |
---|
2242 | n_Delete(&k,r->cf); |
---|
2243 | } |
---|
2244 | return; |
---|
2245 | } |
---|
2246 | #endif |
---|
2247 | number h,d; |
---|
2248 | poly p; |
---|
2249 | |
---|
2250 | if(TEST_OPT_CONTENTSB) return; |
---|
2251 | if(pNext(ph)==NULL) |
---|
2252 | { |
---|
2253 | p_SetCoeff(ph,n_Init(1,r->cf),r); |
---|
2254 | } |
---|
2255 | else |
---|
2256 | { |
---|
2257 | assume( pNext(ph) != NULL ); |
---|
2258 | #if CLEARENUMERATORS |
---|
2259 | if( nCoeff_is_Q(r->cf) ) |
---|
2260 | { |
---|
2261 | // experimentall (recursive enumerator treatment) of alg. Ext! |
---|
2262 | CPolyCoeffsEnumerator itr(ph); |
---|
2263 | n_ClearContent(itr, r->cf); |
---|
2264 | |
---|
2265 | p_Test(ph, r); n_Test(pGetCoeff(ph), r->cf); |
---|
2266 | assume(n_GreaterZero(pGetCoeff(ph), r->cf)); // ?? |
---|
2267 | |
---|
2268 | // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2269 | return; |
---|
2270 | } |
---|
2271 | #endif |
---|
2272 | |
---|
2273 | n_Normalize(pGetCoeff(ph),r->cf); |
---|
2274 | if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2275 | if (rField_is_Q(r)) // should not be used anymore if CLEARENUMERATORS is 1 |
---|
2276 | { |
---|
2277 | h=p_InitContent(ph,r); |
---|
2278 | p=ph; |
---|
2279 | } |
---|
2280 | else |
---|
2281 | { |
---|
2282 | h=n_Copy(pGetCoeff(ph),r->cf); |
---|
2283 | p = pNext(ph); |
---|
2284 | } |
---|
2285 | while (p!=NULL) |
---|
2286 | { |
---|
2287 | n_Normalize(pGetCoeff(p),r->cf); |
---|
2288 | d=n_SubringGcd(h,pGetCoeff(p),r->cf); |
---|
2289 | n_Delete(&h,r->cf); |
---|
2290 | h = d; |
---|
2291 | if(n_IsOne(h,r->cf)) |
---|
2292 | { |
---|
2293 | break; |
---|
2294 | } |
---|
2295 | pIter(p); |
---|
2296 | } |
---|
2297 | p = ph; |
---|
2298 | //number tmp; |
---|
2299 | if(!n_IsOne(h,r->cf)) |
---|
2300 | { |
---|
2301 | while (p!=NULL) |
---|
2302 | { |
---|
2303 | //d = nDiv(pGetCoeff(p),h); |
---|
2304 | //tmp = nExactDiv(pGetCoeff(p),h); |
---|
2305 | //if (!nEqual(d,tmp)) |
---|
2306 | //{ |
---|
2307 | // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/"); |
---|
2308 | // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:"); |
---|
2309 | // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s); |
---|
2310 | //} |
---|
2311 | //nDelete(&tmp); |
---|
2312 | d = n_ExactDiv(pGetCoeff(p),h,r->cf); |
---|
2313 | p_SetCoeff(p,d,r); |
---|
2314 | pIter(p); |
---|
2315 | } |
---|
2316 | } |
---|
2317 | n_Delete(&h,r->cf); |
---|
2318 | if (rField_is_Q_a(r)) |
---|
2319 | { |
---|
2320 | // special handling for alg. ext.: |
---|
2321 | if (getCoeffType(r->cf)==n_algExt) |
---|
2322 | { |
---|
2323 | h = n_Init(1, r->cf->extRing->cf); |
---|
2324 | p=ph; |
---|
2325 | while (p!=NULL) |
---|
2326 | { // each monom: coeff in Q_a |
---|
2327 | poly c_n_n=(poly)pGetCoeff(p); |
---|
2328 | poly c_n=c_n_n; |
---|
2329 | while (c_n!=NULL) |
---|
2330 | { // each monom: coeff in Q |
---|
2331 | d=n_NormalizeHelper(h,pGetCoeff(c_n),r->cf->extRing->cf); |
---|
2332 | n_Delete(&h,r->cf->extRing->cf); |
---|
2333 | h=d; |
---|
2334 | pIter(c_n); |
---|
2335 | } |
---|
2336 | pIter(p); |
---|
2337 | } |
---|
2338 | /* h contains the 1/lcm of all denominators in c_n_n*/ |
---|
2339 | //n_Normalize(h,r->cf->extRing->cf); |
---|
2340 | if(!n_IsOne(h,r->cf->extRing->cf)) |
---|
2341 | { |
---|
2342 | p=ph; |
---|
2343 | while (p!=NULL) |
---|
2344 | { // each monom: coeff in Q_a |
---|
2345 | poly c_n=(poly)pGetCoeff(p); |
---|
2346 | while (c_n!=NULL) |
---|
2347 | { // each monom: coeff in Q |
---|
2348 | d=n_Mult(h,pGetCoeff(c_n),r->cf->extRing->cf); |
---|
2349 | n_Normalize(d,r->cf->extRing->cf); |
---|
2350 | n_Delete(&pGetCoeff(c_n),r->cf->extRing->cf); |
---|
2351 | pGetCoeff(c_n)=d; |
---|
2352 | pIter(c_n); |
---|
2353 | } |
---|
2354 | pIter(p); |
---|
2355 | } |
---|
2356 | } |
---|
2357 | n_Delete(&h,r->cf->extRing->cf); |
---|
2358 | } |
---|
2359 | /*else |
---|
2360 | { |
---|
2361 | // special handling for rat. functions.: |
---|
2362 | number hzz =NULL; |
---|
2363 | p=ph; |
---|
2364 | while (p!=NULL) |
---|
2365 | { // each monom: coeff in Q_a (Z_a) |
---|
2366 | fraction f=(fraction)pGetCoeff(p); |
---|
2367 | poly c_n=NUM(f); |
---|
2368 | if (hzz==NULL) |
---|
2369 | { |
---|
2370 | hzz=n_Copy(pGetCoeff(c_n),r->cf->extRing->cf); |
---|
2371 | pIter(c_n); |
---|
2372 | } |
---|
2373 | while ((c_n!=NULL)&&(!n_IsOne(hzz,r->cf->extRing->cf))) |
---|
2374 | { // each monom: coeff in Q (Z) |
---|
2375 | d=n_Gcd(hzz,pGetCoeff(c_n),r->cf->extRing->cf); |
---|
2376 | n_Delete(&hzz,r->cf->extRing->cf); |
---|
2377 | hzz=d; |
---|
2378 | pIter(c_n); |
---|
2379 | } |
---|
2380 | pIter(p); |
---|
2381 | } |
---|
2382 | // hzz contains the gcd of all numerators in f |
---|
2383 | h=n_Invers(hzz,r->cf->extRing->cf); |
---|
2384 | n_Delete(&hzz,r->cf->extRing->cf); |
---|
2385 | n_Normalize(h,r->cf->extRing->cf); |
---|
2386 | if(!n_IsOne(h,r->cf->extRing->cf)) |
---|
2387 | { |
---|
2388 | p=ph; |
---|
2389 | while (p!=NULL) |
---|
2390 | { // each monom: coeff in Q_a (Z_a) |
---|
2391 | fraction f=(fraction)pGetCoeff(p); |
---|
2392 | NUM(f)=p_Mult_nn(NUM(f),h,r->cf->extRing); |
---|
2393 | p_Normalize(NUM(f),r->cf->extRing); |
---|
2394 | pIter(p); |
---|
2395 | } |
---|
2396 | } |
---|
2397 | n_Delete(&h,r->cf->extRing->cf); |
---|
2398 | }*/ |
---|
2399 | } |
---|
2400 | } |
---|
2401 | if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2402 | } |
---|
2403 | |
---|
2404 | // Not yet? |
---|
2405 | #if 1 // currently only used by Singular/janet |
---|
2406 | void p_SimpleContent(poly ph, int smax, const ring r) |
---|
2407 | { |
---|
2408 | if(TEST_OPT_CONTENTSB) return; |
---|
2409 | if (ph==NULL) return; |
---|
2410 | if (pNext(ph)==NULL) |
---|
2411 | { |
---|
2412 | p_SetCoeff(ph,n_Init(1,r->cf),r); |
---|
2413 | return; |
---|
2414 | } |
---|
2415 | if ((pNext(pNext(ph))==NULL)||(!rField_is_Q(r))) |
---|
2416 | { |
---|
2417 | return; |
---|
2418 | } |
---|
2419 | number d=p_InitContent(ph,r); |
---|
2420 | if (n_Size(d,r->cf)<=smax) |
---|
2421 | { |
---|
2422 | //if (TEST_OPT_PROT) PrintS("G"); |
---|
2423 | return; |
---|
2424 | } |
---|
2425 | |
---|
2426 | |
---|
2427 | poly p=ph; |
---|
2428 | number h=d; |
---|
2429 | if (smax==1) smax=2; |
---|
2430 | while (p!=NULL) |
---|
2431 | { |
---|
2432 | #if 0 |
---|
2433 | d=nlGcd(h,pGetCoeff(p),r->cf); |
---|
2434 | nlDelete(&h,r->cf); |
---|
2435 | h = d; |
---|
2436 | #else |
---|
2437 | nlInpGcd(h,pGetCoeff(p),r->cf); |
---|
2438 | #endif |
---|
2439 | if(nlSize(h,r->cf)<smax) |
---|
2440 | { |
---|
2441 | //if (TEST_OPT_PROT) PrintS("g"); |
---|
2442 | return; |
---|
2443 | } |
---|
2444 | pIter(p); |
---|
2445 | } |
---|
2446 | p = ph; |
---|
2447 | if (!nlGreaterZero(pGetCoeff(p),r->cf)) h=nlNeg(h,r->cf); |
---|
2448 | if(nlIsOne(h,r->cf)) return; |
---|
2449 | //if (TEST_OPT_PROT) PrintS("c"); |
---|
2450 | while (p!=NULL) |
---|
2451 | { |
---|
2452 | #if 1 |
---|
2453 | d = nlExactDiv(pGetCoeff(p),h,r->cf); |
---|
2454 | p_SetCoeff(p,d,r); |
---|
2455 | #else |
---|
2456 | nlInpExactDiv(pGetCoeff(p),h,r->cf); |
---|
2457 | #endif |
---|
2458 | pIter(p); |
---|
2459 | } |
---|
2460 | nlDelete(&h,r->cf); |
---|
2461 | } |
---|
2462 | #endif |
---|
2463 | |
---|
2464 | static number p_InitContent(poly ph, const ring r) |
---|
2465 | // only for coefficients in Q |
---|
2466 | #if 0 |
---|
2467 | { |
---|
2468 | assume(!TEST_OPT_CONTENTSB); |
---|
2469 | assume(ph!=NULL); |
---|
2470 | assume(pNext(ph)!=NULL); |
---|
2471 | assume(rField_is_Q(r)); |
---|
2472 | if (pNext(pNext(ph))==NULL) |
---|
2473 | { |
---|
2474 | return nlGetNom(pGetCoeff(pNext(ph)),r->cf); |
---|
2475 | } |
---|
2476 | poly p=ph; |
---|
2477 | number n1=nlGetNom(pGetCoeff(p),r->cf); |
---|
2478 | pIter(p); |
---|
2479 | number n2=nlGetNom(pGetCoeff(p),r->cf); |
---|
2480 | pIter(p); |
---|
2481 | number d; |
---|
2482 | number t; |
---|
2483 | loop |
---|
2484 | { |
---|
2485 | nlNormalize(pGetCoeff(p),r->cf); |
---|
2486 | t=nlGetNom(pGetCoeff(p),r->cf); |
---|
2487 | if (nlGreaterZero(t,r->cf)) |
---|
2488 | d=nlAdd(n1,t,r->cf); |
---|
2489 | else |
---|
2490 | d=nlSub(n1,t,r->cf); |
---|
2491 | nlDelete(&t,r->cf); |
---|
2492 | nlDelete(&n1,r->cf); |
---|
2493 | n1=d; |
---|
2494 | pIter(p); |
---|
2495 | if (p==NULL) break; |
---|
2496 | nlNormalize(pGetCoeff(p),r->cf); |
---|
2497 | t=nlGetNom(pGetCoeff(p),r->cf); |
---|
2498 | if (nlGreaterZero(t,r->cf)) |
---|
2499 | d=nlAdd(n2,t,r->cf); |
---|
2500 | else |
---|
2501 | d=nlSub(n2,t,r->cf); |
---|
2502 | nlDelete(&t,r->cf); |
---|
2503 | nlDelete(&n2,r->cf); |
---|
2504 | n2=d; |
---|
2505 | pIter(p); |
---|
2506 | if (p==NULL) break; |
---|
2507 | } |
---|
2508 | d=nlGcd(n1,n2,r->cf); |
---|
2509 | nlDelete(&n1,r->cf); |
---|
2510 | nlDelete(&n2,r->cf); |
---|
2511 | return d; |
---|
2512 | } |
---|
2513 | #else |
---|
2514 | { |
---|
2515 | number d=pGetCoeff(ph); |
---|
2516 | if(SR_HDL(d)&SR_INT) return d; |
---|
2517 | int s=mpz_size1(d->z); |
---|
2518 | int s2=-1; |
---|
2519 | number d2; |
---|
2520 | loop |
---|
2521 | { |
---|
2522 | pIter(ph); |
---|
2523 | if(ph==NULL) |
---|
2524 | { |
---|
2525 | if (s2==-1) return nlCopy(d,r->cf); |
---|
2526 | break; |
---|
2527 | } |
---|
2528 | if (SR_HDL(pGetCoeff(ph))&SR_INT) |
---|
2529 | { |
---|
2530 | s2=s; |
---|
2531 | d2=d; |
---|
2532 | s=0; |
---|
2533 | d=pGetCoeff(ph); |
---|
2534 | if (s2==0) break; |
---|
2535 | } |
---|
2536 | else |
---|
2537 | if (mpz_size1((pGetCoeff(ph)->z))<=s) |
---|
2538 | { |
---|
2539 | s2=s; |
---|
2540 | d2=d; |
---|
2541 | d=pGetCoeff(ph); |
---|
2542 | s=mpz_size1(d->z); |
---|
2543 | } |
---|
2544 | } |
---|
2545 | return nlGcd(d,d2,r->cf); |
---|
2546 | } |
---|
2547 | #endif |
---|
2548 | |
---|
2549 | //void pContent(poly ph) |
---|
2550 | //{ |
---|
2551 | // number h,d; |
---|
2552 | // poly p; |
---|
2553 | // |
---|
2554 | // p = ph; |
---|
2555 | // if(pNext(p)==NULL) |
---|
2556 | // { |
---|
2557 | // pSetCoeff(p,nInit(1)); |
---|
2558 | // } |
---|
2559 | // else |
---|
2560 | // { |
---|
2561 | //#ifdef PDEBUG |
---|
2562 | // if (!pTest(p)) return; |
---|
2563 | //#endif |
---|
2564 | // nNormalize(pGetCoeff(p)); |
---|
2565 | // if(!nGreaterZero(pGetCoeff(ph))) |
---|
2566 | // { |
---|
2567 | // ph = pNeg(ph); |
---|
2568 | // nNormalize(pGetCoeff(p)); |
---|
2569 | // } |
---|
2570 | // h=pGetCoeff(p); |
---|
2571 | // pIter(p); |
---|
2572 | // while (p!=NULL) |
---|
2573 | // { |
---|
2574 | // nNormalize(pGetCoeff(p)); |
---|
2575 | // if (nGreater(h,pGetCoeff(p))) h=pGetCoeff(p); |
---|
2576 | // pIter(p); |
---|
2577 | // } |
---|
2578 | // h=nCopy(h); |
---|
2579 | // p=ph; |
---|
2580 | // while (p!=NULL) |
---|
2581 | // { |
---|
2582 | // d=n_Gcd(h,pGetCoeff(p)); |
---|
2583 | // nDelete(&h); |
---|
2584 | // h = d; |
---|
2585 | // if(nIsOne(h)) |
---|
2586 | // { |
---|
2587 | // break; |
---|
2588 | // } |
---|
2589 | // pIter(p); |
---|
2590 | // } |
---|
2591 | // p = ph; |
---|
2592 | // //number tmp; |
---|
2593 | // if(!nIsOne(h)) |
---|
2594 | // { |
---|
2595 | // while (p!=NULL) |
---|
2596 | // { |
---|
2597 | // d = nExactDiv(pGetCoeff(p),h); |
---|
2598 | // pSetCoeff(p,d); |
---|
2599 | // pIter(p); |
---|
2600 | // } |
---|
2601 | // } |
---|
2602 | // nDelete(&h); |
---|
2603 | // if ( (nGetChar() == 1) || (nGetChar() < 0) ) /* Q[a],Q(a),Zp[a],Z/p(a) */ |
---|
2604 | // { |
---|
2605 | // pTest(ph); |
---|
2606 | // singclap_divide_content(ph); |
---|
2607 | // pTest(ph); |
---|
2608 | // } |
---|
2609 | // } |
---|
2610 | //} |
---|
2611 | #if 0 |
---|
2612 | void p_Content(poly ph, const ring r) |
---|
2613 | { |
---|
2614 | number h,d; |
---|
2615 | poly p; |
---|
2616 | |
---|
2617 | if(pNext(ph)==NULL) |
---|
2618 | { |
---|
2619 | p_SetCoeff(ph,n_Init(1,r->cf),r); |
---|
2620 | } |
---|
2621 | else |
---|
2622 | { |
---|
2623 | n_Normalize(pGetCoeff(ph),r->cf); |
---|
2624 | if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2625 | h=n_Copy(pGetCoeff(ph),r->cf); |
---|
2626 | p = pNext(ph); |
---|
2627 | while (p!=NULL) |
---|
2628 | { |
---|
2629 | n_Normalize(pGetCoeff(p),r->cf); |
---|
2630 | d=n_Gcd(h,pGetCoeff(p),r->cf); |
---|
2631 | n_Delete(&h,r->cf); |
---|
2632 | h = d; |
---|
2633 | if(n_IsOne(h,r->cf)) |
---|
2634 | { |
---|
2635 | break; |
---|
2636 | } |
---|
2637 | pIter(p); |
---|
2638 | } |
---|
2639 | p = ph; |
---|
2640 | //number tmp; |
---|
2641 | if(!n_IsOne(h,r->cf)) |
---|
2642 | { |
---|
2643 | while (p!=NULL) |
---|
2644 | { |
---|
2645 | //d = nDiv(pGetCoeff(p),h); |
---|
2646 | //tmp = nExactDiv(pGetCoeff(p),h); |
---|
2647 | //if (!nEqual(d,tmp)) |
---|
2648 | //{ |
---|
2649 | // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/"); |
---|
2650 | // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:"); |
---|
2651 | // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s); |
---|
2652 | //} |
---|
2653 | //nDelete(&tmp); |
---|
2654 | d = n_ExactDiv(pGetCoeff(p),h,r->cf); |
---|
2655 | p_SetCoeff(p,d,r->cf); |
---|
2656 | pIter(p); |
---|
2657 | } |
---|
2658 | } |
---|
2659 | n_Delete(&h,r->cf); |
---|
2660 | //if ( (n_GetChar(r) == 1) || (n_GetChar(r) < 0) ) /* Q[a],Q(a),Zp[a],Z/p(a) */ |
---|
2661 | //{ |
---|
2662 | // singclap_divide_content(ph); |
---|
2663 | // if(!n_GreaterZero(pGetCoeff(ph),r)) ph = p_Neg(ph,r); |
---|
2664 | //} |
---|
2665 | } |
---|
2666 | } |
---|
2667 | #endif |
---|
2668 | /* ---------------------------------------------------------------------------*/ |
---|
2669 | /* cleardenom suff */ |
---|
2670 | poly p_Cleardenom(poly p, const ring r) |
---|
2671 | { |
---|
2672 | if( p == NULL ) |
---|
2673 | return NULL; |
---|
2674 | |
---|
2675 | assume( r != NULL ); assume( r->cf != NULL ); const coeffs C = r->cf; |
---|
2676 | |
---|
2677 | #if CLEARENUMERATORS |
---|
2678 | if( 0 ) |
---|
2679 | { |
---|
2680 | CPolyCoeffsEnumerator itr(p); |
---|
2681 | |
---|
2682 | n_ClearDenominators(itr, C); |
---|
2683 | |
---|
2684 | n_ClearContent(itr, C); // divide out the content |
---|
2685 | |
---|
2686 | p_Test(p, r); n_Test(pGetCoeff(p), C); |
---|
2687 | assume(n_GreaterZero(pGetCoeff(p), C)); // ?? |
---|
2688 | // if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r); |
---|
2689 | |
---|
2690 | return p; |
---|
2691 | } |
---|
2692 | #endif |
---|
2693 | |
---|
2694 | |
---|
2695 | number d, h; |
---|
2696 | |
---|
2697 | #ifdef HAVE_RINGS |
---|
2698 | if (rField_is_Ring(r)) |
---|
2699 | { |
---|
2700 | p_Content(p,r); |
---|
2701 | if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r); |
---|
2702 | return p; |
---|
2703 | } |
---|
2704 | #endif |
---|
2705 | |
---|
2706 | if (rField_is_Zp(r) && TEST_OPT_INTSTRATEGY) |
---|
2707 | { |
---|
2708 | if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r); |
---|
2709 | return p; |
---|
2710 | } |
---|
2711 | |
---|
2712 | assume(p != NULL); |
---|
2713 | |
---|
2714 | if(pNext(p)==NULL) |
---|
2715 | { |
---|
2716 | /* |
---|
2717 | if (TEST_OPT_CONTENTSB) |
---|
2718 | { |
---|
2719 | number n=n_GetDenom(pGetCoeff(p),r->cf); |
---|
2720 | if (!n_IsOne(n,r->cf)) |
---|
2721 | { |
---|
2722 | number nn=n_Mult(pGetCoeff(p),n,r->cf); |
---|
2723 | n_Normalize(nn,r->cf); |
---|
2724 | p_SetCoeff(p,nn,r); |
---|
2725 | } |
---|
2726 | n_Delete(&n,r->cf); |
---|
2727 | } |
---|
2728 | else |
---|
2729 | */ |
---|
2730 | p_SetCoeff(p,n_Init(1,r->cf),r); |
---|
2731 | |
---|
2732 | /*assume( n_GreaterZero(pGetCoeff(p),C) ); |
---|
2733 | if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r); |
---|
2734 | */ |
---|
2735 | return p; |
---|
2736 | } |
---|
2737 | |
---|
2738 | assume(pNext(p)!=NULL); |
---|
2739 | poly start=p; |
---|
2740 | |
---|
2741 | #if 0 && CLEARENUMERATORS |
---|
2742 | //CF: does not seem to work that well.. |
---|
2743 | |
---|
2744 | if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) ) |
---|
2745 | { |
---|
2746 | CPolyCoeffsEnumerator itr(p); |
---|
2747 | |
---|
2748 | n_ClearDenominators(itr, C); |
---|
2749 | |
---|
2750 | n_ClearContent(itr, C); // divide out the content |
---|
2751 | |
---|
2752 | p_Test(p, r); n_Test(pGetCoeff(p), C); |
---|
2753 | assume(n_GreaterZero(pGetCoeff(p), C)); // ?? |
---|
2754 | // if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r); |
---|
2755 | |
---|
2756 | return start; |
---|
2757 | } |
---|
2758 | #endif |
---|
2759 | |
---|
2760 | if(1) |
---|
2761 | { |
---|
2762 | h = n_Init(1,r->cf); |
---|
2763 | while (p!=NULL) |
---|
2764 | { |
---|
2765 | n_Normalize(pGetCoeff(p),r->cf); |
---|
2766 | d=n_NormalizeHelper(h,pGetCoeff(p),r->cf); |
---|
2767 | n_Delete(&h,r->cf); |
---|
2768 | h=d; |
---|
2769 | pIter(p); |
---|
2770 | } |
---|
2771 | /* contains the 1/lcm of all denominators */ |
---|
2772 | if(!n_IsOne(h,r->cf)) |
---|
2773 | { |
---|
2774 | p = start; |
---|
2775 | while (p!=NULL) |
---|
2776 | { |
---|
2777 | /* should be: |
---|
2778 | * number hh; |
---|
2779 | * nGetDenom(p->coef,&hh); |
---|
2780 | * nMult(&h,&hh,&d); |
---|
2781 | * nNormalize(d); |
---|
2782 | * nDelete(&hh); |
---|
2783 | * nMult(d,p->coef,&hh); |
---|
2784 | * nDelete(&d); |
---|
2785 | * nDelete(&(p->coef)); |
---|
2786 | * p->coef =hh; |
---|
2787 | */ |
---|
2788 | d=n_Mult(h,pGetCoeff(p),r->cf); |
---|
2789 | n_Normalize(d,r->cf); |
---|
2790 | p_SetCoeff(p,d,r); |
---|
2791 | pIter(p); |
---|
2792 | } |
---|
2793 | n_Delete(&h,r->cf); |
---|
2794 | } |
---|
2795 | n_Delete(&h,r->cf); |
---|
2796 | p=start; |
---|
2797 | |
---|
2798 | p_Content(p,r); |
---|
2799 | #ifdef HAVE_RATGRING |
---|
2800 | if (rIsRatGRing(r)) |
---|
2801 | { |
---|
2802 | /* quick unit detection in the rational case is done in gr_nc_bba */ |
---|
2803 | p_ContentRat(p, r); |
---|
2804 | start=p; |
---|
2805 | } |
---|
2806 | #endif |
---|
2807 | } |
---|
2808 | |
---|
2809 | if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r); |
---|
2810 | |
---|
2811 | return start; |
---|
2812 | } |
---|
2813 | |
---|
2814 | void p_Cleardenom_n(poly ph,const ring r,number &c) |
---|
2815 | { |
---|
2816 | const coeffs C = r->cf; |
---|
2817 | number d, h; |
---|
2818 | |
---|
2819 | assume( ph != NULL ); |
---|
2820 | |
---|
2821 | poly p = ph; |
---|
2822 | |
---|
2823 | #if CLEARENUMERATORS |
---|
2824 | if( 0 ) |
---|
2825 | { |
---|
2826 | CPolyCoeffsEnumerator itr(ph); |
---|
2827 | |
---|
2828 | n_ClearDenominators(itr, d, C); // multiply with common denom. d |
---|
2829 | n_ClearContent(itr, h, C); // divide by the content h |
---|
2830 | |
---|
2831 | c = n_Div(d, h, C); // d/h |
---|
2832 | |
---|
2833 | n_Delete(&d, C); |
---|
2834 | n_Delete(&h, C); |
---|
2835 | |
---|
2836 | n_Test(c, C); |
---|
2837 | |
---|
2838 | p_Test(ph, r); n_Test(pGetCoeff(ph), C); |
---|
2839 | assume(n_GreaterZero(pGetCoeff(ph), C)); // ?? |
---|
2840 | /* |
---|
2841 | if(!n_GreaterZero(pGetCoeff(ph),C)) |
---|
2842 | { |
---|
2843 | ph = p_Neg(ph,r); |
---|
2844 | c = n_InpNeg(c, C); |
---|
2845 | } |
---|
2846 | */ |
---|
2847 | return; |
---|
2848 | } |
---|
2849 | #endif |
---|
2850 | |
---|
2851 | |
---|
2852 | if( pNext(p) == NULL ) |
---|
2853 | { |
---|
2854 | c=n_Invers(pGetCoeff(p), C); |
---|
2855 | p_SetCoeff(p, n_Init(1, C), r); |
---|
2856 | |
---|
2857 | assume( n_GreaterZero(pGetCoeff(ph),C) ); |
---|
2858 | if(!n_GreaterZero(pGetCoeff(ph),C)) |
---|
2859 | { |
---|
2860 | ph = p_Neg(ph,r); |
---|
2861 | c = n_InpNeg(c, C); |
---|
2862 | } |
---|
2863 | |
---|
2864 | return; |
---|
2865 | } |
---|
2866 | |
---|
2867 | assume( pNext(p) != NULL ); |
---|
2868 | |
---|
2869 | #if CLEARENUMERATORS |
---|
2870 | if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) ) |
---|
2871 | { |
---|
2872 | CPolyCoeffsEnumerator itr(ph); |
---|
2873 | |
---|
2874 | n_ClearDenominators(itr, d, C); // multiply with common denom. d |
---|
2875 | n_ClearContent(itr, h, C); // divide by the content h |
---|
2876 | |
---|
2877 | c = n_Div(d, h, C); // d/h |
---|
2878 | |
---|
2879 | n_Delete(&d, C); |
---|
2880 | n_Delete(&h, C); |
---|
2881 | |
---|
2882 | n_Test(c, C); |
---|
2883 | |
---|
2884 | p_Test(ph, r); n_Test(pGetCoeff(ph), C); |
---|
2885 | assume(n_GreaterZero(pGetCoeff(ph), C)); // ?? |
---|
2886 | /* |
---|
2887 | if(!n_GreaterZero(pGetCoeff(ph),C)) |
---|
2888 | { |
---|
2889 | ph = p_Neg(ph,r); |
---|
2890 | c = n_InpNeg(c, C); |
---|
2891 | } |
---|
2892 | */ |
---|
2893 | return; |
---|
2894 | } |
---|
2895 | #endif |
---|
2896 | |
---|
2897 | |
---|
2898 | |
---|
2899 | |
---|
2900 | if(1) |
---|
2901 | { |
---|
2902 | h = n_Init(1,r->cf); |
---|
2903 | while (p!=NULL) |
---|
2904 | { |
---|
2905 | n_Normalize(pGetCoeff(p),r->cf); |
---|
2906 | d=n_NormalizeHelper(h,pGetCoeff(p),r->cf); |
---|
2907 | n_Delete(&h,r->cf); |
---|
2908 | h=d; |
---|
2909 | pIter(p); |
---|
2910 | } |
---|
2911 | c=h; |
---|
2912 | /* contains the 1/lcm of all denominators */ |
---|
2913 | if(!n_IsOne(h,r->cf)) |
---|
2914 | { |
---|
2915 | p = ph; |
---|
2916 | while (p!=NULL) |
---|
2917 | { |
---|
2918 | /* should be: |
---|
2919 | * number hh; |
---|
2920 | * nGetDenom(p->coef,&hh); |
---|
2921 | * nMult(&h,&hh,&d); |
---|
2922 | * nNormalize(d); |
---|
2923 | * nDelete(&hh); |
---|
2924 | * nMult(d,p->coef,&hh); |
---|
2925 | * nDelete(&d); |
---|
2926 | * nDelete(&(p->coef)); |
---|
2927 | * p->coef =hh; |
---|
2928 | */ |
---|
2929 | d=n_Mult(h,pGetCoeff(p),r->cf); |
---|
2930 | n_Normalize(d,r->cf); |
---|
2931 | p_SetCoeff(p,d,r); |
---|
2932 | pIter(p); |
---|
2933 | } |
---|
2934 | if (rField_is_Q_a(r)) |
---|
2935 | { |
---|
2936 | loop |
---|
2937 | { |
---|
2938 | h = n_Init(1,r->cf); |
---|
2939 | p=ph; |
---|
2940 | while (p!=NULL) |
---|
2941 | { |
---|
2942 | d=n_NormalizeHelper(h,pGetCoeff(p),r->cf); |
---|
2943 | n_Delete(&h,r->cf); |
---|
2944 | h=d; |
---|
2945 | pIter(p); |
---|
2946 | } |
---|
2947 | /* contains the 1/lcm of all denominators */ |
---|
2948 | if(!n_IsOne(h,r->cf)) |
---|
2949 | { |
---|
2950 | p = ph; |
---|
2951 | while (p!=NULL) |
---|
2952 | { |
---|
2953 | /* should be: |
---|
2954 | * number hh; |
---|
2955 | * nGetDenom(p->coef,&hh); |
---|
2956 | * nMult(&h,&hh,&d); |
---|
2957 | * nNormalize(d); |
---|
2958 | * nDelete(&hh); |
---|
2959 | * nMult(d,p->coef,&hh); |
---|
2960 | * nDelete(&d); |
---|
2961 | * nDelete(&(p->coef)); |
---|
2962 | * p->coef =hh; |
---|
2963 | */ |
---|
2964 | d=n_Mult(h,pGetCoeff(p),r->cf); |
---|
2965 | n_Normalize(d,r->cf); |
---|
2966 | p_SetCoeff(p,d,r); |
---|
2967 | pIter(p); |
---|
2968 | } |
---|
2969 | number t=n_Mult(c,h,r->cf); |
---|
2970 | n_Delete(&c,r->cf); |
---|
2971 | c=t; |
---|
2972 | } |
---|
2973 | else |
---|
2974 | { |
---|
2975 | break; |
---|
2976 | } |
---|
2977 | n_Delete(&h,r->cf); |
---|
2978 | } |
---|
2979 | } |
---|
2980 | } |
---|
2981 | } |
---|
2982 | |
---|
2983 | if(!n_GreaterZero(pGetCoeff(ph),C)) |
---|
2984 | { |
---|
2985 | ph = p_Neg(ph,r); |
---|
2986 | c = n_InpNeg(c, C); |
---|
2987 | } |
---|
2988 | |
---|
2989 | } |
---|
2990 | |
---|
2991 | // normalization: for poly over Q: make poly primitive, integral |
---|
2992 | // Qa make poly integral with leading |
---|
2993 | // coefficient minimal in N |
---|
2994 | // Q(t) make poly primitive, integral |
---|
2995 | |
---|
2996 | void p_ProjectiveUnique(poly ph, const ring r) |
---|
2997 | { |
---|
2998 | if( ph == NULL ) |
---|
2999 | return; |
---|
3000 | |
---|
3001 | assume( r != NULL ); assume( r->cf != NULL ); const coeffs C = r->cf; |
---|
3002 | |
---|
3003 | number h; |
---|
3004 | poly p; |
---|
3005 | |
---|
3006 | #ifdef HAVE_RINGS |
---|
3007 | if (rField_is_Ring(r)) |
---|
3008 | { |
---|
3009 | p_Content(ph,r); |
---|
3010 | if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r); |
---|
3011 | assume( n_GreaterZero(pGetCoeff(ph),C) ); |
---|
3012 | return; |
---|
3013 | } |
---|
3014 | #endif |
---|
3015 | |
---|
3016 | if (rField_is_Zp(r) && TEST_OPT_INTSTRATEGY) |
---|
3017 | { |
---|
3018 | assume( n_GreaterZero(pGetCoeff(ph),C) ); |
---|
3019 | if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r); |
---|
3020 | return; |
---|
3021 | } |
---|
3022 | p = ph; |
---|
3023 | |
---|
3024 | assume(p != NULL); |
---|
3025 | |
---|
3026 | if(pNext(p)==NULL) // a monomial |
---|
3027 | { |
---|
3028 | p_SetCoeff(p, n_Init(1, C), r); |
---|
3029 | return; |
---|
3030 | } |
---|
3031 | |
---|
3032 | assume(pNext(p)!=NULL); |
---|
3033 | |
---|
3034 | if(!rField_is_Q(r) && !nCoeff_is_transExt(C)) |
---|
3035 | { |
---|
3036 | h = p_GetCoeff(p, C); |
---|
3037 | number hInv = n_Invers(h, C); |
---|
3038 | pIter(p); |
---|
3039 | while (p!=NULL) |
---|
3040 | { |
---|
3041 | p_SetCoeff(p, n_Mult(p_GetCoeff(p, C), hInv, C), r); |
---|
3042 | pIter(p); |
---|
3043 | } |
---|
3044 | n_Delete(&hInv, C); |
---|
3045 | p = ph; |
---|
3046 | p_SetCoeff(p, n_Init(1, C), r); |
---|
3047 | } |
---|
3048 | |
---|
3049 | p_Cleardenom(ph, r); //performs also a p_Content |
---|
3050 | |
---|
3051 | |
---|
3052 | /* normalize ph over a transcendental extension s.t. |
---|
3053 | lead (ph) is > 0 if extRing->cf == Q |
---|
3054 | or lead (ph) is monic if extRing->cf == Zp*/ |
---|
3055 | if (nCoeff_is_transExt(C)) |
---|
3056 | { |
---|
3057 | p= ph; |
---|
3058 | h= p_GetCoeff (p, C); |
---|
3059 | fraction f = (fraction) h; |
---|
3060 | number n=p_GetCoeff (NUM (f),C->extRing->cf); |
---|
3061 | if (rField_is_Q (C->extRing)) |
---|
3062 | { |
---|
3063 | if (!n_GreaterZero(n,C->extRing->cf)) |
---|
3064 | { |
---|
3065 | p=p_Neg (p,r); |
---|
3066 | } |
---|
3067 | } |
---|
3068 | else if (rField_is_Zp(C->extRing)) |
---|
3069 | { |
---|
3070 | if (!n_IsOne (n, C->extRing->cf)) |
---|
3071 | { |
---|
3072 | n=n_Invers (n,C->extRing->cf); |
---|
3073 | nMapFunc nMap; |
---|
3074 | nMap= n_SetMap (C->extRing->cf, C); |
---|
3075 | number ninv= nMap (n,C->extRing->cf, C); |
---|
3076 | p=p_Mult_nn (p, ninv, r); |
---|
3077 | n_Delete (&ninv, C); |
---|
3078 | n_Delete (&n, C->extRing->cf); |
---|
3079 | } |
---|
3080 | } |
---|
3081 | p= ph; |
---|
3082 | } |
---|
3083 | |
---|
3084 | return; |
---|
3085 | } |
---|
3086 | |
---|
3087 | #if 0 /*unused*/ |
---|
3088 | number p_GetAllDenom(poly ph, const ring r) |
---|
3089 | { |
---|
3090 | number d=n_Init(1,r->cf); |
---|
3091 | poly p = ph; |
---|
3092 | |
---|
3093 | while (p!=NULL) |
---|
3094 | { |
---|
3095 | number h=n_GetDenom(pGetCoeff(p),r->cf); |
---|
3096 | if (!n_IsOne(h,r->cf)) |
---|
3097 | { |
---|
3098 | number dd=n_Mult(d,h,r->cf); |
---|
3099 | n_Delete(&d,r->cf); |
---|
3100 | d=dd; |
---|
3101 | } |
---|
3102 | n_Delete(&h,r->cf); |
---|
3103 | pIter(p); |
---|
3104 | } |
---|
3105 | return d; |
---|
3106 | } |
---|
3107 | #endif |
---|
3108 | |
---|
3109 | int p_Size(poly p, const ring r) |
---|
3110 | { |
---|
3111 | int count = 0; |
---|
3112 | while ( p != NULL ) |
---|
3113 | { |
---|
3114 | count+= n_Size( pGetCoeff( p ), r->cf ); |
---|
3115 | pIter( p ); |
---|
3116 | } |
---|
3117 | return count; |
---|
3118 | } |
---|
3119 | |
---|
3120 | /*2 |
---|
3121 | *make p homogeneous by multiplying the monomials by powers of x_varnum |
---|
3122 | *assume: deg(var(varnum))==1 |
---|
3123 | */ |
---|
3124 | poly p_Homogen (poly p, int varnum, const ring r) |
---|
3125 | { |
---|
3126 | pFDegProc deg; |
---|
3127 | if (r->pLexOrder && (r->order[0]==ringorder_lp)) |
---|
3128 | deg=p_Totaldegree; |
---|
3129 | else |
---|
3130 | deg=r->pFDeg; |
---|
3131 | |
---|
3132 | poly q=NULL, qn; |
---|
3133 | int o,ii; |
---|
3134 | sBucket_pt bp; |
---|
3135 | |
---|
3136 | if (p!=NULL) |
---|
3137 | { |
---|
3138 | if ((varnum < 1) || (varnum > rVar(r))) |
---|
3139 | { |
---|
3140 | return NULL; |
---|
3141 | } |
---|
3142 | o=deg(p,r); |
---|
3143 | q=pNext(p); |
---|
3144 | while (q != NULL) |
---|
3145 | { |
---|
3146 | ii=deg(q,r); |
---|
3147 | if (ii>o) o=ii; |
---|
3148 | pIter(q); |
---|
3149 | } |
---|
3150 | q = p_Copy(p,r); |
---|
3151 | bp = sBucketCreate(r); |
---|
3152 | while (q != NULL) |
---|
3153 | { |
---|
3154 | ii = o-deg(q,r); |
---|
3155 | if (ii!=0) |
---|
3156 | { |
---|
3157 | p_AddExp(q,varnum, (long)ii,r); |
---|
3158 | p_Setm(q,r); |
---|
3159 | } |
---|
3160 | qn = pNext(q); |
---|
3161 | pNext(q) = NULL; |
---|
3162 | sBucket_Add_p(bp, q, 1); |
---|
3163 | q = qn; |
---|
3164 | } |
---|
3165 | sBucketDestroyAdd(bp, &q, &ii); |
---|
3166 | } |
---|
3167 | return q; |
---|
3168 | } |
---|
3169 | |
---|
3170 | /*2 |
---|
3171 | *tests if p is homogeneous with respect to the actual weigths |
---|
3172 | */ |
---|
3173 | BOOLEAN p_IsHomogeneous (poly p, const ring r) |
---|
3174 | { |
---|
3175 | poly qp=p; |
---|
3176 | int o; |
---|
3177 | |
---|
3178 | if ((p == NULL) || (pNext(p) == NULL)) return TRUE; |
---|
3179 | pFDegProc d; |
---|
3180 | if (r->pLexOrder && (r->order[0]==ringorder_lp)) |
---|
3181 | d=p_Totaldegree; |
---|
3182 | else |
---|
3183 | d=r->pFDeg; |
---|
3184 | o = d(p,r); |
---|
3185 | do |
---|
3186 | { |
---|
3187 | if (d(qp,r) != o) return FALSE; |
---|
3188 | pIter(qp); |
---|
3189 | } |
---|
3190 | while (qp != NULL); |
---|
3191 | return TRUE; |
---|
3192 | } |
---|
3193 | |
---|
3194 | /*----------utilities for syzygies--------------*/ |
---|
3195 | BOOLEAN p_VectorHasUnitB(poly p, int * k, const ring r) |
---|
3196 | { |
---|
3197 | poly q=p,qq; |
---|
3198 | int i; |
---|
3199 | |
---|
3200 | while (q!=NULL) |
---|
3201 | { |
---|
3202 | if (p_LmIsConstantComp(q,r)) |
---|
3203 | { |
---|
3204 | i = p_GetComp(q,r); |
---|
3205 | qq = p; |
---|
3206 | while ((qq != q) && (p_GetComp(qq,r) != i)) pIter(qq); |
---|
3207 | if (qq == q) |
---|
3208 | { |
---|
3209 | *k = i; |
---|
3210 | return TRUE; |
---|
3211 | } |
---|
3212 | else |
---|
3213 | pIter(q); |
---|
3214 | } |
---|
3215 | else pIter(q); |
---|
3216 | } |
---|
3217 | return FALSE; |
---|
3218 | } |
---|
3219 | |
---|
3220 | void p_VectorHasUnit(poly p, int * k, int * len, const ring r) |
---|
3221 | { |
---|
3222 | poly q=p,qq; |
---|
3223 | int i,j=0; |
---|
3224 | |
---|
3225 | *len = 0; |
---|
3226 | while (q!=NULL) |
---|
3227 | { |
---|
3228 | if (p_LmIsConstantComp(q,r)) |
---|
3229 | { |
---|
3230 | i = p_GetComp(q,r); |
---|
3231 | qq = p; |
---|
3232 | while ((qq != q) && (p_GetComp(qq,r) != i)) pIter(qq); |
---|
3233 | if (qq == q) |
---|
3234 | { |
---|
3235 | j = 0; |
---|
3236 | while (qq!=NULL) |
---|
3237 | { |
---|
3238 | if (p_GetComp(qq,r)==i) j++; |
---|
3239 | pIter(qq); |
---|
3240 | } |
---|
3241 | if ((*len == 0) || (j<*len)) |
---|
3242 | { |
---|
3243 | *len = j; |
---|
3244 | *k = i; |
---|
3245 | } |
---|
3246 | } |
---|
3247 | } |
---|
3248 | pIter(q); |
---|
3249 | } |
---|
3250 | } |
---|
3251 | |
---|
3252 | poly p_TakeOutComp1(poly * p, int k, const ring r) |
---|
3253 | { |
---|
3254 | poly q = *p; |
---|
3255 | |
---|
3256 | if (q==NULL) return NULL; |
---|
3257 | |
---|
3258 | poly qq=NULL,result = NULL; |
---|
3259 | |
---|
3260 | if (p_GetComp(q,r)==k) |
---|
3261 | { |
---|
3262 | result = q; /* *p */ |
---|
3263 | while ((q!=NULL) && (p_GetComp(q,r)==k)) |
---|
3264 | { |
---|
3265 | p_SetComp(q,0,r); |
---|
3266 | p_SetmComp(q,r); |
---|
3267 | qq = q; |
---|
3268 | pIter(q); |
---|
3269 | } |
---|
3270 | *p = q; |
---|
3271 | pNext(qq) = NULL; |
---|
3272 | } |
---|
3273 | if (q==NULL) return result; |
---|
3274 | // if (pGetComp(q) > k) pGetComp(q)--; |
---|
3275 | while (pNext(q)!=NULL) |
---|
3276 | { |
---|
3277 | if (p_GetComp(pNext(q),r)==k) |
---|
3278 | { |
---|
3279 | if (result==NULL) |
---|
3280 | { |
---|
3281 | result = pNext(q); |
---|
3282 | qq = result; |
---|
3283 | } |
---|
3284 | else |
---|
3285 | { |
---|
3286 | pNext(qq) = pNext(q); |
---|
3287 | pIter(qq); |
---|
3288 | } |
---|
3289 | pNext(q) = pNext(pNext(q)); |
---|
3290 | pNext(qq) =NULL; |
---|
3291 | p_SetComp(qq,0,r); |
---|
3292 | p_SetmComp(qq,r); |
---|
3293 | } |
---|
3294 | else |
---|
3295 | { |
---|
3296 | pIter(q); |
---|
3297 | // if (pGetComp(q) > k) pGetComp(q)--; |
---|
3298 | } |
---|
3299 | } |
---|
3300 | return result; |
---|
3301 | } |
---|
3302 | |
---|
3303 | poly p_TakeOutComp(poly * p, int k, const ring r) |
---|
3304 | { |
---|
3305 | poly q = *p,qq=NULL,result = NULL; |
---|
3306 | |
---|
3307 | if (q==NULL) return NULL; |
---|
3308 | BOOLEAN use_setmcomp=rOrd_SetCompRequiresSetm(r); |
---|
3309 | if (p_GetComp(q,r)==k) |
---|
3310 | { |
---|
3311 | result = q; |
---|
3312 | do |
---|
3313 | { |
---|
3314 | p_SetComp(q,0,r); |
---|
3315 | if (use_setmcomp) p_SetmComp(q,r); |
---|
3316 | qq = q; |
---|
3317 | pIter(q); |
---|
3318 | } |
---|
3319 | while ((q!=NULL) && (p_GetComp(q,r)==k)); |
---|
3320 | *p = q; |
---|
3321 | pNext(qq) = NULL; |
---|
3322 | } |
---|
3323 | if (q==NULL) return result; |
---|
3324 | if (p_GetComp(q,r) > k) |
---|
3325 | { |
---|
3326 | p_SubComp(q,1,r); |
---|
3327 | if (use_setmcomp) p_SetmComp(q,r); |
---|
3328 | } |
---|
3329 | poly pNext_q; |
---|
3330 | while ((pNext_q=pNext(q))!=NULL) |
---|
3331 | { |
---|
3332 | if (p_GetComp(pNext_q,r)==k) |
---|
3333 | { |
---|
3334 | if (result==NULL) |
---|
3335 | { |
---|
3336 | result = pNext_q; |
---|
3337 | qq = result; |
---|
3338 | } |
---|
3339 | else |
---|
3340 | { |
---|
3341 | pNext(qq) = pNext_q; |
---|
3342 | pIter(qq); |
---|
3343 | } |
---|
3344 | pNext(q) = pNext(pNext_q); |
---|
3345 | pNext(qq) =NULL; |
---|
3346 | p_SetComp(qq,0,r); |
---|
3347 | if (use_setmcomp) p_SetmComp(qq,r); |
---|
3348 | } |
---|
3349 | else |
---|
3350 | { |
---|
3351 | /*pIter(q);*/ q=pNext_q; |
---|
3352 | if (p_GetComp(q,r) > k) |
---|
3353 | { |
---|
3354 | p_SubComp(q,1,r); |
---|
3355 | if (use_setmcomp) p_SetmComp(q,r); |
---|
3356 | } |
---|
3357 | } |
---|
3358 | } |
---|
3359 | return result; |
---|
3360 | } |
---|
3361 | |
---|
3362 | // Splits *p into two polys: *q which consists of all monoms with |
---|
3363 | // component == comp and *p of all other monoms *lq == pLength(*q) |
---|
3364 | void p_TakeOutComp(poly *r_p, long comp, poly *r_q, int *lq, const ring r) |
---|
3365 | { |
---|
3366 | spolyrec pp, qq; |
---|
3367 | poly p, q, p_prev; |
---|
3368 | int l = 0; |
---|
3369 | |
---|
3370 | #ifdef HAVE_ASSUME |
---|
3371 | int lp = pLength(*r_p); |
---|
3372 | #endif |
---|
3373 | |
---|
3374 | pNext(&pp) = *r_p; |
---|
3375 | p = *r_p; |
---|
3376 | p_prev = &pp; |
---|
3377 | q = &qq; |
---|
3378 | |
---|
3379 | while(p != NULL) |
---|
3380 | { |
---|
3381 | while (p_GetComp(p,r) == comp) |
---|
3382 | { |
---|
3383 | pNext(q) = p; |
---|
3384 | pIter(q); |
---|
3385 | p_SetComp(p, 0,r); |
---|
3386 | p_SetmComp(p,r); |
---|
3387 | pIter(p); |
---|
3388 | l++; |
---|
3389 | if (p == NULL) |
---|
3390 | { |
---|
3391 | pNext(p_prev) = NULL; |
---|
3392 | goto Finish; |
---|
3393 | } |
---|
3394 | } |
---|
3395 | pNext(p_prev) = p; |
---|
3396 | p_prev = p; |
---|
3397 | pIter(p); |
---|
3398 | } |
---|
3399 | |
---|
3400 | Finish: |
---|
3401 | pNext(q) = NULL; |
---|
3402 | *r_p = pNext(&pp); |
---|
3403 | *r_q = pNext(&qq); |
---|
3404 | *lq = l; |
---|
3405 | #ifdef HAVE_ASSUME |
---|
3406 | assume(pLength(*r_p) + pLength(*r_q) == lp); |
---|
3407 | #endif |
---|
3408 | p_Test(*r_p,r); |
---|
3409 | p_Test(*r_q,r); |
---|
3410 | } |
---|
3411 | |
---|
3412 | void p_DeleteComp(poly * p,int k, const ring r) |
---|
3413 | { |
---|
3414 | poly q; |
---|
3415 | |
---|
3416 | while ((*p!=NULL) && (p_GetComp(*p,r)==k)) p_LmDelete(p,r); |
---|
3417 | if (*p==NULL) return; |
---|
3418 | q = *p; |
---|
3419 | if (p_GetComp(q,r)>k) |
---|
3420 | { |
---|
3421 | p_SubComp(q,1,r); |
---|
3422 | p_SetmComp(q,r); |
---|
3423 | } |
---|
3424 | while (pNext(q)!=NULL) |
---|
3425 | { |
---|
3426 | if (p_GetComp(pNext(q),r)==k) |
---|
3427 | p_LmDelete(&(pNext(q)),r); |
---|
3428 | else |
---|
3429 | { |
---|
3430 | pIter(q); |
---|
3431 | if (p_GetComp(q,r)>k) |
---|
3432 | { |
---|
3433 | p_SubComp(q,1,r); |
---|
3434 | p_SetmComp(q,r); |
---|
3435 | } |
---|
3436 | } |
---|
3437 | } |
---|
3438 | } |
---|
3439 | |
---|
3440 | /*2 |
---|
3441 | * convert a vector to a set of polys, |
---|
3442 | * allocates the polyset, (entries 0..(*len)-1) |
---|
3443 | * the vector will not be changed |
---|
3444 | */ |
---|
3445 | void p_Vec2Polys(poly v, poly* *p, int *len, const ring r) |
---|
3446 | { |
---|
3447 | poly h; |
---|
3448 | int k; |
---|
3449 | |
---|
3450 | *len=p_MaxComp(v,r); |
---|
3451 | if (*len==0) *len=1; |
---|
3452 | *p=(poly*)omAlloc0((*len)*sizeof(poly)); |
---|
3453 | while (v!=NULL) |
---|
3454 | { |
---|
3455 | h=p_Head(v,r); |
---|
3456 | k=p_GetComp(h,r); |
---|
3457 | p_SetComp(h,0,r); |
---|
3458 | (*p)[k-1]=p_Add_q((*p)[k-1],h,r); |
---|
3459 | pIter(v); |
---|
3460 | } |
---|
3461 | } |
---|
3462 | |
---|
3463 | // |
---|
3464 | // resets the pFDeg and pLDeg: if pLDeg is not given, it is |
---|
3465 | // set to currRing->pLDegOrig, i.e. to the respective LDegProc which |
---|
3466 | // only uses pFDeg (and not p_Deg, or pTotalDegree, etc) |
---|
3467 | void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg) |
---|
3468 | { |
---|
3469 | assume(new_FDeg != NULL); |
---|
3470 | r->pFDeg = new_FDeg; |
---|
3471 | |
---|
3472 | if (new_lDeg == NULL) |
---|
3473 | new_lDeg = r->pLDegOrig; |
---|
3474 | |
---|
3475 | r->pLDeg = new_lDeg; |
---|
3476 | } |
---|
3477 | |
---|
3478 | // restores pFDeg and pLDeg: |
---|
3479 | void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg) |
---|
3480 | { |
---|
3481 | assume(old_FDeg != NULL && old_lDeg != NULL); |
---|
3482 | r->pFDeg = old_FDeg; |
---|
3483 | r->pLDeg = old_lDeg; |
---|
3484 | } |
---|
3485 | |
---|
3486 | /*-------- several access procedures to monomials -------------------- */ |
---|
3487 | /* |
---|
3488 | * the module weights for std |
---|
3489 | */ |
---|
3490 | static pFDegProc pOldFDeg; |
---|
3491 | static pLDegProc pOldLDeg; |
---|
3492 | static BOOLEAN pOldLexOrder; |
---|
3493 | |
---|
3494 | static long pModDeg(poly p, ring r) |
---|
3495 | { |
---|
3496 | long d=pOldFDeg(p, r); |
---|
3497 | int c=p_GetComp(p, r); |
---|
3498 | if ((c>0) && ((r->pModW)->range(c-1))) d+= (*(r->pModW))[c-1]; |
---|
3499 | return d; |
---|
3500 | //return pOldFDeg(p, r)+(*pModW)[p_GetComp(p, r)-1]; |
---|
3501 | } |
---|
3502 | |
---|
3503 | void p_SetModDeg(intvec *w, ring r) |
---|
3504 | { |
---|
3505 | if (w!=NULL) |
---|
3506 | { |
---|
3507 | r->pModW = w; |
---|
3508 | pOldFDeg = r->pFDeg; |
---|
3509 | pOldLDeg = r->pLDeg; |
---|
3510 | pOldLexOrder = r->pLexOrder; |
---|
3511 | pSetDegProcs(r,pModDeg); |
---|
3512 | r->pLexOrder = TRUE; |
---|
3513 | } |
---|
3514 | else |
---|
3515 | { |
---|
3516 | r->pModW = NULL; |
---|
3517 | pRestoreDegProcs(r,pOldFDeg, pOldLDeg); |
---|
3518 | r->pLexOrder = pOldLexOrder; |
---|
3519 | } |
---|
3520 | } |
---|
3521 | |
---|
3522 | /*2 |
---|
3523 | * handle memory request for sets of polynomials (ideals) |
---|
3524 | * l is the length of *p, increment is the difference (may be negative) |
---|
3525 | */ |
---|
3526 | void pEnlargeSet(poly* *p, int l, int increment) |
---|
3527 | { |
---|
3528 | poly* h; |
---|
3529 | |
---|
3530 | h=(poly*)omReallocSize((poly*)*p,l*sizeof(poly),(l+increment)*sizeof(poly)); |
---|
3531 | if (increment>0) |
---|
3532 | { |
---|
3533 | //for (i=l; i<l+increment; i++) |
---|
3534 | // h[i]=NULL; |
---|
3535 | memset(&(h[l]),0,increment*sizeof(poly)); |
---|
3536 | } |
---|
3537 | *p=h; |
---|
3538 | } |
---|
3539 | |
---|
3540 | /*2 |
---|
3541 | *divides p1 by its leading coefficient |
---|
3542 | */ |
---|
3543 | void p_Norm(poly p1, const ring r) |
---|
3544 | { |
---|
3545 | #ifdef HAVE_RINGS |
---|
3546 | if (rField_is_Ring(r)) |
---|
3547 | { |
---|
3548 | if (!n_IsUnit(pGetCoeff(p1), r->cf)) return; |
---|
3549 | // Werror("p_Norm not possible in the case of coefficient rings."); |
---|
3550 | } |
---|
3551 | else |
---|
3552 | #endif |
---|
3553 | if (p1!=NULL) |
---|
3554 | { |
---|
3555 | if (pNext(p1)==NULL) |
---|
3556 | { |
---|
3557 | p_SetCoeff(p1,n_Init(1,r->cf),r); |
---|
3558 | return; |
---|
3559 | } |
---|
3560 | poly h; |
---|
3561 | if (!n_IsOne(pGetCoeff(p1),r->cf)) |
---|
3562 | { |
---|
3563 | number k, c; |
---|
3564 | n_Normalize(pGetCoeff(p1),r->cf); |
---|
3565 | k = pGetCoeff(p1); |
---|
3566 | c = n_Init(1,r->cf); |
---|
3567 | pSetCoeff0(p1,c); |
---|
3568 | h = pNext(p1); |
---|
3569 | while (h!=NULL) |
---|
3570 | { |
---|
3571 | c=n_Div(pGetCoeff(h),k,r->cf); |
---|
3572 | // no need to normalize: Z/p, R |
---|
3573 | // normalize already in nDiv: Q_a, Z/p_a |
---|
3574 | // remains: Q |
---|
3575 | if (rField_is_Q(r) && (!n_IsOne(c,r->cf))) n_Normalize(c,r->cf); |
---|
3576 | p_SetCoeff(h,c,r); |
---|
3577 | pIter(h); |
---|
3578 | } |
---|
3579 | n_Delete(&k,r->cf); |
---|
3580 | } |
---|
3581 | else |
---|
3582 | { |
---|
3583 | //if (r->cf->cfNormalize != nDummy2) //TODO: OPTIMIZE |
---|
3584 | { |
---|
3585 | h = pNext(p1); |
---|
3586 | while (h!=NULL) |
---|
3587 | { |
---|
3588 | n_Normalize(pGetCoeff(h),r->cf); |
---|
3589 | pIter(h); |
---|
3590 | } |
---|
3591 | } |
---|
3592 | } |
---|
3593 | } |
---|
3594 | } |
---|
3595 | |
---|
3596 | /*2 |
---|
3597 | *normalize all coefficients |
---|
3598 | */ |
---|
3599 | void p_Normalize(poly p,const ring r) |
---|
3600 | { |
---|
3601 | if (rField_has_simple_inverse(r)) return; /* Z/p, GF(p,n), R, long R/C */ |
---|
3602 | while (p!=NULL) |
---|
3603 | { |
---|
3604 | #ifdef LDEBUG |
---|
3605 | n_Test(pGetCoeff(p), r->cf); |
---|
3606 | #endif |
---|
3607 | n_Normalize(pGetCoeff(p),r->cf); |
---|
3608 | pIter(p); |
---|
3609 | } |
---|
3610 | } |
---|
3611 | |
---|
3612 | // splits p into polys with Exp(n) == 0 and Exp(n) != 0 |
---|
3613 | // Poly with Exp(n) != 0 is reversed |
---|
3614 | static void p_SplitAndReversePoly(poly p, int n, poly *non_zero, poly *zero, const ring r) |
---|
3615 | { |
---|
3616 | if (p == NULL) |
---|
3617 | { |
---|
3618 | *non_zero = NULL; |
---|
3619 | *zero = NULL; |
---|
3620 | return; |
---|
3621 | } |
---|
3622 | spolyrec sz; |
---|
3623 | poly z, n_z, next; |
---|
3624 | z = &sz; |
---|
3625 | n_z = NULL; |
---|
3626 | |
---|
3627 | while(p != NULL) |
---|
3628 | { |
---|
3629 | next = pNext(p); |
---|
3630 | if (p_GetExp(p, n,r) == 0) |
---|
3631 | { |
---|
3632 | pNext(z) = p; |
---|
3633 | pIter(z); |
---|
3634 | } |
---|
3635 | else |
---|
3636 | { |
---|
3637 | pNext(p) = n_z; |
---|
3638 | n_z = p; |
---|
3639 | } |
---|
3640 | p = next; |
---|
3641 | } |
---|
3642 | pNext(z) = NULL; |
---|
3643 | *zero = pNext(&sz); |
---|
3644 | *non_zero = n_z; |
---|
3645 | } |
---|
3646 | /*3 |
---|
3647 | * substitute the n-th variable by 1 in p |
---|
3648 | * destroy p |
---|
3649 | */ |
---|
3650 | static poly p_Subst1 (poly p,int n, const ring r) |
---|
3651 | { |
---|
3652 | poly qq=NULL, result = NULL; |
---|
3653 | poly zero=NULL, non_zero=NULL; |
---|
3654 | |
---|
3655 | // reverse, so that add is likely to be linear |
---|
3656 | p_SplitAndReversePoly(p, n, &non_zero, &zero,r); |
---|
3657 | |
---|
3658 | while (non_zero != NULL) |
---|
3659 | { |
---|
3660 | assume(p_GetExp(non_zero, n,r) != 0); |
---|
3661 | qq = non_zero; |
---|
3662 | pIter(non_zero); |
---|
3663 | qq->next = NULL; |
---|
3664 | p_SetExp(qq,n,0,r); |
---|
3665 | p_Setm(qq,r); |
---|
3666 | result = p_Add_q(result,qq,r); |
---|
3667 | } |
---|
3668 | p = p_Add_q(result, zero,r); |
---|
3669 | p_Test(p,r); |
---|
3670 | return p; |
---|
3671 | } |
---|
3672 | |
---|
3673 | /*3 |
---|
3674 | * substitute the n-th variable by number e in p |
---|
3675 | * destroy p |
---|
3676 | */ |
---|
3677 | static poly p_Subst2 (poly p,int n, number e, const ring r) |
---|
3678 | { |
---|
3679 | assume( ! n_IsZero(e,r->cf) ); |
---|
3680 | poly qq,result = NULL; |
---|
3681 | number nn, nm; |
---|
3682 | poly zero, non_zero; |
---|
3683 | |
---|
3684 | // reverse, so that add is likely to be linear |
---|
3685 | p_SplitAndReversePoly(p, n, &non_zero, &zero,r); |
---|
3686 | |
---|
3687 | while (non_zero != NULL) |
---|
3688 | { |
---|
3689 | assume(p_GetExp(non_zero, n, r) != 0); |
---|
3690 | qq = non_zero; |
---|
3691 | pIter(non_zero); |
---|
3692 | qq->next = NULL; |
---|
3693 | n_Power(e, p_GetExp(qq, n, r), &nn,r->cf); |
---|
3694 | nm = n_Mult(nn, pGetCoeff(qq),r->cf); |
---|
3695 | #ifdef HAVE_RINGS |
---|
3696 | if (n_IsZero(nm,r->cf)) |
---|
3697 | { |
---|
3698 | p_LmFree(&qq,r); |
---|
3699 | n_Delete(&nm,r->cf); |
---|
3700 | } |
---|
3701 | else |
---|
3702 | #endif |
---|
3703 | { |
---|
3704 | p_SetCoeff(qq, nm,r); |
---|
3705 | p_SetExp(qq, n, 0,r); |
---|
3706 | p_Setm(qq,r); |
---|
3707 | result = p_Add_q(result,qq,r); |
---|
3708 | } |
---|
3709 | n_Delete(&nn,r->cf); |
---|
3710 | } |
---|
3711 | p = p_Add_q(result, zero,r); |
---|
3712 | p_Test(p,r); |
---|
3713 | return p; |
---|
3714 | } |
---|
3715 | |
---|
3716 | |
---|
3717 | /* delete monoms whose n-th exponent is different from zero */ |
---|
3718 | static poly p_Subst0(poly p, int n, const ring r) |
---|
3719 | { |
---|
3720 | spolyrec res; |
---|
3721 | poly h = &res; |
---|
3722 | pNext(h) = p; |
---|
3723 | |
---|
3724 | while (pNext(h)!=NULL) |
---|
3725 | { |
---|
3726 | if (p_GetExp(pNext(h),n,r)!=0) |
---|
3727 | { |
---|
3728 | p_LmDelete(&pNext(h),r); |
---|
3729 | } |
---|
3730 | else |
---|
3731 | { |
---|
3732 | pIter(h); |
---|
3733 | } |
---|
3734 | } |
---|
3735 | p_Test(pNext(&res),r); |
---|
3736 | return pNext(&res); |
---|
3737 | } |
---|
3738 | |
---|
3739 | /*2 |
---|
3740 | * substitute the n-th variable by e in p |
---|
3741 | * destroy p |
---|
3742 | */ |
---|
3743 | poly p_Subst(poly p, int n, poly e, const ring r) |
---|
3744 | { |
---|
3745 | if (e == NULL) return p_Subst0(p, n,r); |
---|
3746 | |
---|
3747 | if (p_IsConstant(e,r)) |
---|
3748 | { |
---|
3749 | if (n_IsOne(pGetCoeff(e),r->cf)) return p_Subst1(p,n,r); |
---|
3750 | else return p_Subst2(p, n, pGetCoeff(e),r); |
---|
3751 | } |
---|
3752 | |
---|
3753 | #ifdef HAVE_PLURAL |
---|
3754 | if (rIsPluralRing(r)) |
---|
3755 | { |
---|
3756 | return nc_pSubst(p,n,e,r); |
---|
3757 | } |
---|
3758 | #endif |
---|
3759 | |
---|
3760 | int exponent,i; |
---|
3761 | poly h, res, m; |
---|
3762 | int *me,*ee; |
---|
3763 | number nu,nu1; |
---|
3764 | |
---|
3765 | me=(int *)omAlloc((rVar(r)+1)*sizeof(int)); |
---|
3766 | ee=(int *)omAlloc((rVar(r)+1)*sizeof(int)); |
---|
3767 | if (e!=NULL) p_GetExpV(e,ee,r); |
---|
3768 | res=NULL; |
---|
3769 | h=p; |
---|
3770 | while (h!=NULL) |
---|
3771 | { |
---|
3772 | if ((e!=NULL) || (p_GetExp(h,n,r)==0)) |
---|
3773 | { |
---|
3774 | m=p_Head(h,r); |
---|
3775 | p_GetExpV(m,me,r); |
---|
3776 | exponent=me[n]; |
---|
3777 | me[n]=0; |
---|
3778 | for(i=rVar(r);i>0;i--) |
---|
3779 | me[i]+=exponent*ee[i]; |
---|
3780 | p_SetExpV(m,me,r); |
---|
3781 | if (e!=NULL) |
---|
3782 | { |
---|
3783 | n_Power(pGetCoeff(e),exponent,&nu,r->cf); |
---|
3784 | nu1=n_Mult(pGetCoeff(m),nu,r->cf); |
---|
3785 | n_Delete(&nu,r->cf); |
---|
3786 | p_SetCoeff(m,nu1,r); |
---|
3787 | } |
---|
3788 | res=p_Add_q(res,m,r); |
---|
3789 | } |
---|
3790 | p_LmDelete(&h,r); |
---|
3791 | } |
---|
3792 | omFreeSize((ADDRESS)me,(rVar(r)+1)*sizeof(int)); |
---|
3793 | omFreeSize((ADDRESS)ee,(rVar(r)+1)*sizeof(int)); |
---|
3794 | return res; |
---|
3795 | } |
---|
3796 | |
---|
3797 | /*2 |
---|
3798 | * returns a re-ordered convertion of a number as a polynomial, |
---|
3799 | * with permutation of parameters |
---|
3800 | * NOTE: this only works for Frank's alg. & trans. fields |
---|
3801 | */ |
---|
3802 | poly n_PermNumber(const number z, const int *par_perm, const int , const ring src, const ring dst) |
---|
3803 | { |
---|
3804 | #if 0 |
---|
3805 | PrintS("\nSource Ring: \n"); |
---|
3806 | rWrite(src); |
---|
3807 | |
---|
3808 | if(0) |
---|
3809 | { |
---|
3810 | number zz = n_Copy(z, src->cf); |
---|
3811 | PrintS("z: "); n_Write(zz, src); |
---|
3812 | n_Delete(&zz, src->cf); |
---|
3813 | } |
---|
3814 | |
---|
3815 | PrintS("\nDestination Ring: \n"); |
---|
3816 | rWrite(dst); |
---|
3817 | |
---|
3818 | /*Print("\nOldPar: %d\n", OldPar); |
---|
3819 | for( int i = 1; i <= OldPar; i++ ) |
---|
3820 | { |
---|
3821 | Print("par(%d) -> par/var (%d)\n", i, par_perm[i-1]); |
---|
3822 | }*/ |
---|
3823 | #endif |
---|
3824 | if( z == NULL ) |
---|
3825 | return NULL; |
---|
3826 | |
---|
3827 | const coeffs srcCf = src->cf; |
---|
3828 | assume( srcCf != NULL ); |
---|
3829 | |
---|
3830 | assume( !nCoeff_is_GF(srcCf) ); |
---|
3831 | assume( src->cf->extRing!=NULL ); |
---|
3832 | |
---|
3833 | poly zz = NULL; |
---|
3834 | |
---|
3835 | const ring srcExtRing = srcCf->extRing; |
---|
3836 | assume( srcExtRing != NULL ); |
---|
3837 | |
---|
3838 | const coeffs dstCf = dst->cf; |
---|
3839 | assume( dstCf != NULL ); |
---|
3840 | |
---|
3841 | if( nCoeff_is_algExt(srcCf) ) // nCoeff_is_GF(srcCf)? |
---|
3842 | { |
---|
3843 | zz = (poly) z; |
---|
3844 | if( zz == NULL ) return NULL; |
---|
3845 | } |
---|
3846 | else if (nCoeff_is_transExt(srcCf)) |
---|
3847 | { |
---|
3848 | assume( !IS0(z) ); |
---|
3849 | |
---|
3850 | zz = NUM(z); |
---|
3851 | p_Test (zz, srcExtRing); |
---|
3852 | |
---|
3853 | if( zz == NULL ) return NULL; |
---|
3854 | if( !DENIS1(z) ) |
---|
3855 | { |
---|
3856 | if (p_IsConstant(DEN(z),srcExtRing)) |
---|
3857 | { |
---|
3858 | number n=pGetCoeff(DEN(z)); |
---|
3859 | zz=p_Div_nn(zz,n,srcExtRing); |
---|
3860 | p_Normalize(zz,srcExtRing); |
---|
3861 | } |
---|
3862 | else |
---|
3863 | WarnS("Not defined: Cannot map a rational fraction and make a polynomial out of it! Ignoring the denumerator."); |
---|
3864 | } |
---|
3865 | } |
---|
3866 | else |
---|
3867 | { |
---|
3868 | assume (FALSE); |
---|
3869 | Werror("Number permutation is not implemented for this data yet!"); |
---|
3870 | return NULL; |
---|
3871 | } |
---|
3872 | |
---|
3873 | assume( zz != NULL ); |
---|
3874 | p_Test (zz, srcExtRing); |
---|
3875 | |
---|
3876 | nMapFunc nMap = n_SetMap(srcExtRing->cf, dstCf); |
---|
3877 | |
---|
3878 | assume( nMap != NULL ); |
---|
3879 | |
---|
3880 | poly qq; |
---|
3881 | if ((par_perm == NULL) && (rPar(dst) != 0 && rVar (srcExtRing) > 0)) |
---|
3882 | { |
---|
3883 | int* perm; |
---|
3884 | perm=(int *)omAlloc0((rVar(srcExtRing)+1)*sizeof(int)); |
---|
3885 | perm[0]= 0; |
---|
3886 | for(int i=si_min(rVar(srcExtRing),rPar(dst));i>0;i--) |
---|
3887 | perm[i]=-i; |
---|
3888 | qq = p_PermPoly(zz, perm, srcExtRing, dst, nMap, NULL, rVar(srcExtRing)-1); |
---|
3889 | omFreeSize ((ADDRESS)perm, (rVar(srcExtRing)+1)*sizeof(int)); |
---|
3890 | } |
---|
3891 | else |
---|
3892 | qq = p_PermPoly(zz, par_perm-1, srcExtRing, dst, nMap, NULL, rVar (srcExtRing)-1); |
---|
3893 | |
---|
3894 | assume (p_Test (qq, dst)); |
---|
3895 | |
---|
3896 | // poly p_PermPoly (poly p, int * perm, const ring oldRing, const ring dst, nMapFunc nMap, int *par_perm, int OldPar) |
---|
3897 | |
---|
3898 | // assume( FALSE ); WarnS("longalg missing 2"); |
---|
3899 | |
---|
3900 | return qq; |
---|
3901 | } |
---|
3902 | |
---|
3903 | |
---|
3904 | /*2 |
---|
3905 | *returns a re-ordered copy of a polynomial, with permutation of the variables |
---|
3906 | */ |
---|
3907 | poly p_PermPoly (poly p, const int * perm, const ring oldRing, const ring dst, |
---|
3908 | nMapFunc nMap, const int *par_perm, int OldPar) |
---|
3909 | { |
---|
3910 | #if 0 |
---|
3911 | p_Test(p, oldRing); |
---|
3912 | PrintS("\np_PermPoly::p: "); p_Write(p, oldRing, oldRing); PrintLn(); |
---|
3913 | #endif |
---|
3914 | |
---|
3915 | const int OldpVariables = rVar(oldRing); |
---|
3916 | poly result = NULL; |
---|
3917 | poly result_last = NULL; |
---|
3918 | poly aq = NULL; /* the map coefficient */ |
---|
3919 | poly qq; /* the mapped monomial */ |
---|
3920 | |
---|
3921 | assume(dst != NULL); |
---|
3922 | assume(dst->cf != NULL); |
---|
3923 | |
---|
3924 | while (p != NULL) |
---|
3925 | { |
---|
3926 | // map the coefficient |
---|
3927 | if ( ((OldPar == 0) || (par_perm == NULL) || rField_is_GF(oldRing)) && (nMap != NULL) ) |
---|
3928 | { |
---|
3929 | qq = p_Init(dst); |
---|
3930 | assume( nMap != NULL ); |
---|
3931 | |
---|
3932 | number n = nMap(p_GetCoeff(p, oldRing), oldRing->cf, dst->cf); |
---|
3933 | |
---|
3934 | assume (n_Test (n,dst->cf)); |
---|
3935 | |
---|
3936 | if ( nCoeff_is_algExt(dst->cf) ) |
---|
3937 | n_Normalize(n, dst->cf); |
---|
3938 | |
---|
3939 | p_GetCoeff(qq, dst) = n;// Note: n can be a ZERO!!! |
---|
3940 | // coef may be zero: |
---|
3941 | // p_Test(qq, dst); |
---|
3942 | } |
---|
3943 | else |
---|
3944 | { |
---|
3945 | qq = p_One(dst); |
---|
3946 | |
---|
3947 | // aq = naPermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing); // no dst??? |
---|
3948 | // poly n_PermNumber(const number z, const int *par_perm, const int P, const ring src, const ring dst) |
---|
3949 | aq = n_PermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing, dst); |
---|
3950 | |
---|
3951 | p_Test(aq, dst); |
---|
3952 | |
---|
3953 | if ( nCoeff_is_algExt(dst->cf) ) |
---|
3954 | p_Normalize(aq,dst); |
---|
3955 | |
---|
3956 | if (aq == NULL) |
---|
3957 | p_SetCoeff(qq, n_Init(0, dst->cf),dst); // Very dirty trick!!! |
---|
3958 | |
---|
3959 | p_Test(aq, dst); |
---|
3960 | } |
---|
3961 | |
---|
3962 | if (rRing_has_Comp(dst)) |
---|
3963 | p_SetComp(qq, p_GetComp(p, oldRing), dst); |
---|
3964 | |
---|
3965 | if ( n_IsZero(pGetCoeff(qq), dst->cf) ) |
---|
3966 | { |
---|
3967 | p_LmDelete(&qq,dst); |
---|
3968 | qq = NULL; |
---|
3969 | } |
---|
3970 | else |
---|
3971 | { |
---|
3972 | // map pars: |
---|
3973 | int mapped_to_par = 0; |
---|
3974 | for(int i = 1; i <= OldpVariables; i++) |
---|
3975 | { |
---|
3976 | int e = p_GetExp(p, i, oldRing); |
---|
3977 | if (e != 0) |
---|
3978 | { |
---|
3979 | if (perm==NULL) |
---|
3980 | p_SetExp(qq, i, e, dst); |
---|
3981 | else if (perm[i]>0) |
---|
3982 | p_AddExp(qq,perm[i], e/*p_GetExp( p,i,oldRing)*/, dst); |
---|
3983 | else if (perm[i]<0) |
---|
3984 | { |
---|
3985 | number c = p_GetCoeff(qq, dst); |
---|
3986 | if (rField_is_GF(dst)) |
---|
3987 | { |
---|
3988 | assume( dst->cf->extRing == NULL ); |
---|
3989 | number ee = n_Param(1, dst); |
---|
3990 | |
---|
3991 | number eee; |
---|
3992 | n_Power(ee, e, &eee, dst->cf); //nfDelete(ee,dst); |
---|
3993 | |
---|
3994 | ee = n_Mult(c, eee, dst->cf); |
---|
3995 | //nfDelete(c,dst);nfDelete(eee,dst); |
---|
3996 | pSetCoeff0(qq,ee); |
---|
3997 | } |
---|
3998 | else if (nCoeff_is_Extension(dst->cf)) |
---|
3999 | { |
---|
4000 | const int par = -perm[i]; |
---|
4001 | assume( par > 0 ); |
---|
4002 | |
---|
4003 | // WarnS("longalg missing 3"); |
---|
4004 | #if 1 |
---|
4005 | const coeffs C = dst->cf; |
---|
4006 | assume( C != NULL ); |
---|
4007 | |
---|
4008 | const ring R = C->extRing; |
---|
4009 | assume( R != NULL ); |
---|
4010 | |
---|
4011 | assume( par <= rVar(R) ); |
---|
4012 | |
---|
4013 | poly pcn; // = (number)c |
---|
4014 | |
---|
4015 | assume( !n_IsZero(c, C) ); |
---|
4016 | |
---|
4017 | if( nCoeff_is_algExt(C) ) |
---|
4018 | pcn = (poly) c; |
---|
4019 | else // nCoeff_is_transExt(C) |
---|
4020 | pcn = NUM(c); |
---|
4021 | |
---|
4022 | if (pNext(pcn) == NULL) // c->z |
---|
4023 | p_AddExp(pcn, -perm[i], e, R); |
---|
4024 | else /* more difficult: we have really to multiply: */ |
---|
4025 | { |
---|
4026 | poly mmc = p_ISet(1, R); |
---|
4027 | p_SetExp(mmc, -perm[i], e, R); |
---|
4028 | p_Setm(mmc, R); |
---|
4029 | |
---|
4030 | number nnc; |
---|
4031 | // convert back to a number: number nnc = mmc; |
---|
4032 | if( nCoeff_is_algExt(C) ) |
---|
4033 | nnc = (number) mmc; |
---|
4034 | else // nCoeff_is_transExt(C) |
---|
4035 | nnc = ntInit(mmc, C); |
---|
4036 | |
---|
4037 | p_GetCoeff(qq, dst) = n_Mult((number)c, nnc, C); |
---|
4038 | n_Delete((number *)&c, C); |
---|
4039 | n_Delete((number *)&nnc, C); |
---|
4040 | } |
---|
4041 | |
---|
4042 | mapped_to_par=1; |
---|
4043 | #endif |
---|
4044 | } |
---|
4045 | } |
---|
4046 | else |
---|
4047 | { |
---|
4048 | /* this variable maps to 0 !*/ |
---|
4049 | p_LmDelete(&qq, dst); |
---|
4050 | break; |
---|
4051 | } |
---|
4052 | } |
---|
4053 | } |
---|
4054 | if ( mapped_to_par && qq!= NULL && nCoeff_is_algExt(dst->cf) ) |
---|
4055 | { |
---|
4056 | number n = p_GetCoeff(qq, dst); |
---|
4057 | n_Normalize(n, dst->cf); |
---|
4058 | p_GetCoeff(qq, dst) = n; |
---|
4059 | } |
---|
4060 | } |
---|
4061 | pIter(p); |
---|
4062 | |
---|
4063 | #if 0 |
---|
4064 | p_Test(aq,dst); |
---|
4065 | PrintS("\naq: "); p_Write(aq, dst, dst); PrintLn(); |
---|
4066 | #endif |
---|
4067 | |
---|
4068 | |
---|
4069 | #if 1 |
---|
4070 | if (qq!=NULL) |
---|
4071 | { |
---|
4072 | p_Setm(qq,dst); |
---|
4073 | |
---|
4074 | p_Test(aq,dst); |
---|
4075 | p_Test(qq,dst); |
---|
4076 | |
---|
4077 | #if 0 |
---|
4078 | p_Test(qq,dst); |
---|
4079 | PrintS("\nqq: "); p_Write(qq, dst, dst); PrintLn(); |
---|
4080 | #endif |
---|
4081 | |
---|
4082 | if (aq!=NULL) |
---|
4083 | qq=p_Mult_q(aq,qq,dst); |
---|
4084 | |
---|
4085 | aq = qq; |
---|
4086 | |
---|
4087 | while (pNext(aq) != NULL) pIter(aq); |
---|
4088 | |
---|
4089 | if (result_last==NULL) |
---|
4090 | { |
---|
4091 | result=qq; |
---|
4092 | } |
---|
4093 | else |
---|
4094 | { |
---|
4095 | pNext(result_last)=qq; |
---|
4096 | } |
---|
4097 | result_last=aq; |
---|
4098 | aq = NULL; |
---|
4099 | } |
---|
4100 | else if (aq!=NULL) |
---|
4101 | { |
---|
4102 | p_Delete(&aq,dst); |
---|
4103 | } |
---|
4104 | } |
---|
4105 | |
---|
4106 | result=p_SortAdd(result,dst); |
---|
4107 | #else |
---|
4108 | // if (qq!=NULL) |
---|
4109 | // { |
---|
4110 | // pSetm(qq); |
---|
4111 | // pTest(qq); |
---|
4112 | // pTest(aq); |
---|
4113 | // if (aq!=NULL) qq=pMult(aq,qq); |
---|
4114 | // aq = qq; |
---|
4115 | // while (pNext(aq) != NULL) pIter(aq); |
---|
4116 | // pNext(aq) = result; |
---|
4117 | // aq = NULL; |
---|
4118 | // result = qq; |
---|
4119 | // } |
---|
4120 | // else if (aq!=NULL) |
---|
4121 | // { |
---|
4122 | // pDelete(&aq); |
---|
4123 | // } |
---|
4124 | //} |
---|
4125 | //p = result; |
---|
4126 | //result = NULL; |
---|
4127 | //while (p != NULL) |
---|
4128 | //{ |
---|
4129 | // qq = p; |
---|
4130 | // pIter(p); |
---|
4131 | // qq->next = NULL; |
---|
4132 | // result = pAdd(result, qq); |
---|
4133 | //} |
---|
4134 | #endif |
---|
4135 | p_Test(result,dst); |
---|
4136 | |
---|
4137 | #if 0 |
---|
4138 | p_Test(result,dst); |
---|
4139 | PrintS("\nresult: "); p_Write(result,dst,dst); PrintLn(); |
---|
4140 | #endif |
---|
4141 | return result; |
---|
4142 | } |
---|
4143 | /************************************************************** |
---|
4144 | * |
---|
4145 | * Jet |
---|
4146 | * |
---|
4147 | **************************************************************/ |
---|
4148 | |
---|
4149 | poly pp_Jet(poly p, int m, const ring R) |
---|
4150 | { |
---|
4151 | poly r=NULL; |
---|
4152 | poly t=NULL; |
---|
4153 | |
---|
4154 | while (p!=NULL) |
---|
4155 | { |
---|
4156 | if (p_Totaldegree(p,R)<=m) |
---|
4157 | { |
---|
4158 | if (r==NULL) |
---|
4159 | r=p_Head(p,R); |
---|
4160 | else |
---|
4161 | if (t==NULL) |
---|
4162 | { |
---|
4163 | pNext(r)=p_Head(p,R); |
---|
4164 | t=pNext(r); |
---|
4165 | } |
---|
4166 | else |
---|
4167 | { |
---|
4168 | pNext(t)=p_Head(p,R); |
---|
4169 | pIter(t); |
---|
4170 | } |
---|
4171 | } |
---|
4172 | pIter(p); |
---|
4173 | } |
---|
4174 | return r; |
---|
4175 | } |
---|
4176 | |
---|
4177 | poly p_Jet(poly p, int m,const ring R) |
---|
4178 | { |
---|
4179 | while((p!=NULL) && (p_Totaldegree(p,R)>m)) p_LmDelete(&p,R); |
---|
4180 | if (p==NULL) return NULL; |
---|
4181 | poly r=p; |
---|
4182 | while (pNext(p)!=NULL) |
---|
4183 | { |
---|
4184 | if (p_Totaldegree(pNext(p),R)>m) |
---|
4185 | { |
---|
4186 | p_LmDelete(&pNext(p),R); |
---|
4187 | } |
---|
4188 | else |
---|
4189 | pIter(p); |
---|
4190 | } |
---|
4191 | return r; |
---|
4192 | } |
---|
4193 | |
---|
4194 | poly pp_JetW(poly p, int m, short *w, const ring R) |
---|
4195 | { |
---|
4196 | poly r=NULL; |
---|
4197 | poly t=NULL; |
---|
4198 | while (p!=NULL) |
---|
4199 | { |
---|
4200 | if (totaldegreeWecart_IV(p,R,w)<=m) |
---|
4201 | { |
---|
4202 | if (r==NULL) |
---|
4203 | r=p_Head(p,R); |
---|
4204 | else |
---|
4205 | if (t==NULL) |
---|
4206 | { |
---|
4207 | pNext(r)=p_Head(p,R); |
---|
4208 | t=pNext(r); |
---|
4209 | } |
---|
4210 | else |
---|
4211 | { |
---|
4212 | pNext(t)=p_Head(p,R); |
---|
4213 | pIter(t); |
---|
4214 | } |
---|
4215 | } |
---|
4216 | pIter(p); |
---|
4217 | } |
---|
4218 | return r; |
---|
4219 | } |
---|
4220 | |
---|
4221 | poly p_JetW(poly p, int m, short *w, const ring R) |
---|
4222 | { |
---|
4223 | while((p!=NULL) && (totaldegreeWecart_IV(p,R,w)>m)) p_LmDelete(&p,R); |
---|
4224 | if (p==NULL) return NULL; |
---|
4225 | poly r=p; |
---|
4226 | while (pNext(p)!=NULL) |
---|
4227 | { |
---|
4228 | if (totaldegreeWecart_IV(pNext(p),R,w)>m) |
---|
4229 | { |
---|
4230 | p_LmDelete(&pNext(p),R); |
---|
4231 | } |
---|
4232 | else |
---|
4233 | pIter(p); |
---|
4234 | } |
---|
4235 | return r; |
---|
4236 | } |
---|
4237 | |
---|
4238 | /*************************************************************/ |
---|
4239 | int p_MinDeg(poly p,intvec *w, const ring R) |
---|
4240 | { |
---|
4241 | if(p==NULL) |
---|
4242 | return -1; |
---|
4243 | int d=-1; |
---|
4244 | while(p!=NULL) |
---|
4245 | { |
---|
4246 | int d0=0; |
---|
4247 | for(int j=0;j<rVar(R);j++) |
---|
4248 | if(w==NULL||j>=w->length()) |
---|
4249 | d0+=p_GetExp(p,j+1,R); |
---|
4250 | else |
---|
4251 | d0+=(*w)[j]*p_GetExp(p,j+1,R); |
---|
4252 | if(d0<d||d==-1) |
---|
4253 | d=d0; |
---|
4254 | pIter(p); |
---|
4255 | } |
---|
4256 | return d; |
---|
4257 | } |
---|
4258 | |
---|
4259 | /***************************************************************/ |
---|
4260 | |
---|
4261 | poly p_Series(int n,poly p,poly u, intvec *w, const ring R) |
---|
4262 | { |
---|
4263 | short *ww=iv2array(w,R); |
---|
4264 | if(p!=NULL) |
---|
4265 | { |
---|
4266 | if(u==NULL) |
---|
4267 | p=p_JetW(p,n,ww,R); |
---|
4268 | else |
---|
4269 | p=p_JetW(p_Mult_q(p,p_Invers(n-p_MinDeg(p,w,R),u,w,R),R),n,ww,R); |
---|
4270 | } |
---|
4271 | omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(short)); |
---|
4272 | return p; |
---|
4273 | } |
---|
4274 | |
---|
4275 | poly p_Invers(int n,poly u,intvec *w, const ring R) |
---|
4276 | { |
---|
4277 | if(n<0) |
---|
4278 | return NULL; |
---|
4279 | number u0=n_Invers(pGetCoeff(u),R->cf); |
---|
4280 | poly v=p_NSet(u0,R); |
---|
4281 | if(n==0) |
---|
4282 | return v; |
---|
4283 | short *ww=iv2array(w,R); |
---|
4284 | poly u1=p_JetW(p_Sub(p_One(R),p_Mult_nn(u,u0,R),R),n,ww,R); |
---|
4285 | if(u1==NULL) |
---|
4286 | { |
---|
4287 | omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(short)); |
---|
4288 | return v; |
---|
4289 | } |
---|
4290 | poly v1=p_Mult_nn(p_Copy(u1,R),u0,R); |
---|
4291 | v=p_Add_q(v,p_Copy(v1,R),R); |
---|
4292 | for(int i=n/p_MinDeg(u1,w,R);i>1;i--) |
---|
4293 | { |
---|
4294 | v1=p_JetW(p_Mult_q(v1,p_Copy(u1,R),R),n,ww,R); |
---|
4295 | v=p_Add_q(v,p_Copy(v1,R),R); |
---|
4296 | } |
---|
4297 | p_Delete(&u1,R); |
---|
4298 | p_Delete(&v1,R); |
---|
4299 | omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(short)); |
---|
4300 | return v; |
---|
4301 | } |
---|
4302 | |
---|
4303 | BOOLEAN p_EqualPolys(poly p1,poly p2, const ring r) |
---|
4304 | { |
---|
4305 | while ((p1 != NULL) && (p2 != NULL)) |
---|
4306 | { |
---|
4307 | if (! p_LmEqual(p1, p2,r)) |
---|
4308 | return FALSE; |
---|
4309 | if (! n_Equal(p_GetCoeff(p1,r), p_GetCoeff(p2,r),r->cf )) |
---|
4310 | return FALSE; |
---|
4311 | pIter(p1); |
---|
4312 | pIter(p2); |
---|
4313 | } |
---|
4314 | return (p1==p2); |
---|
4315 | } |
---|
4316 | |
---|
4317 | static inline BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2) |
---|
4318 | { |
---|
4319 | assume( r1 == r2 || rSamePolyRep(r1, r2) ); |
---|
4320 | |
---|
4321 | p_LmCheckPolyRing1(p1, r1); |
---|
4322 | p_LmCheckPolyRing1(p2, r2); |
---|
4323 | |
---|
4324 | int i = r1->ExpL_Size; |
---|
4325 | |
---|
4326 | assume( r1->ExpL_Size == r2->ExpL_Size ); |
---|
4327 | |
---|
4328 | unsigned long *ep = p1->exp; |
---|
4329 | unsigned long *eq = p2->exp; |
---|
4330 | |
---|
4331 | do |
---|
4332 | { |
---|
4333 | i--; |
---|
4334 | if (ep[i] != eq[i]) return FALSE; |
---|
4335 | } |
---|
4336 | while (i); |
---|
4337 | |
---|
4338 | return TRUE; |
---|
4339 | } |
---|
4340 | |
---|
4341 | BOOLEAN p_EqualPolys(poly p1,poly p2, const ring r1, const ring r2) |
---|
4342 | { |
---|
4343 | assume( r1 == r2 || rSamePolyRep(r1, r2) ); // will be used in rEqual! |
---|
4344 | assume( r1->cf == r2->cf ); |
---|
4345 | |
---|
4346 | while ((p1 != NULL) && (p2 != NULL)) |
---|
4347 | { |
---|
4348 | // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !! |
---|
4349 | // #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r) |
---|
4350 | |
---|
4351 | if (! p_ExpVectorEqual(p1, p2, r1, r2)) |
---|
4352 | return FALSE; |
---|
4353 | |
---|
4354 | if (! n_Equal(p_GetCoeff(p1,r1), p_GetCoeff(p2,r2), r1->cf )) |
---|
4355 | return FALSE; |
---|
4356 | |
---|
4357 | pIter(p1); |
---|
4358 | pIter(p2); |
---|
4359 | } |
---|
4360 | return (p1==p2); |
---|
4361 | } |
---|
4362 | |
---|
4363 | /*2 |
---|
4364 | *returns TRUE if p1 is a skalar multiple of p2 |
---|
4365 | *assume p1 != NULL and p2 != NULL |
---|
4366 | */ |
---|
4367 | BOOLEAN p_ComparePolys(poly p1,poly p2, const ring r) |
---|
4368 | { |
---|
4369 | number n,nn; |
---|
4370 | pAssume(p1 != NULL && p2 != NULL); |
---|
4371 | |
---|
4372 | if (!p_LmEqual(p1,p2,r)) //compare leading mons |
---|
4373 | return FALSE; |
---|
4374 | if ((pNext(p1)==NULL) && (pNext(p2)!=NULL)) |
---|
4375 | return FALSE; |
---|
4376 | if ((pNext(p2)==NULL) && (pNext(p1)!=NULL)) |
---|
4377 | return FALSE; |
---|
4378 | if (pLength(p1) != pLength(p2)) |
---|
4379 | return FALSE; |
---|
4380 | #ifdef HAVE_RINGS |
---|
4381 | if (rField_is_Ring(r)) |
---|
4382 | { |
---|
4383 | if (!n_DivBy(p_GetCoeff(p1, r), p_GetCoeff(p2, r), r)) return FALSE; |
---|
4384 | } |
---|
4385 | #endif |
---|
4386 | n=n_Div(p_GetCoeff(p1,r),p_GetCoeff(p2,r),r); |
---|
4387 | while ((p1 != NULL) /*&& (p2 != NULL)*/) |
---|
4388 | { |
---|
4389 | if ( ! p_LmEqual(p1, p2,r)) |
---|
4390 | { |
---|
4391 | n_Delete(&n, r); |
---|
4392 | return FALSE; |
---|
4393 | } |
---|
4394 | if (!n_Equal(p_GetCoeff(p1, r), nn = n_Mult(p_GetCoeff(p2, r),n, r->cf), r->cf)) |
---|
4395 | { |
---|
4396 | n_Delete(&n, r); |
---|
4397 | n_Delete(&nn, r); |
---|
4398 | return FALSE; |
---|
4399 | } |
---|
4400 | n_Delete(&nn, r); |
---|
4401 | pIter(p1); |
---|
4402 | pIter(p2); |
---|
4403 | } |
---|
4404 | n_Delete(&n, r); |
---|
4405 | return TRUE; |
---|
4406 | } |
---|
4407 | |
---|
4408 | /*2 |
---|
4409 | * returns the length of a (numbers of monomials) |
---|
4410 | * respect syzComp |
---|
4411 | */ |
---|
4412 | poly p_Last(const poly p, int &l, const ring r) |
---|
4413 | { |
---|
4414 | if (p == NULL) |
---|
4415 | { |
---|
4416 | l = 0; |
---|
4417 | return NULL; |
---|
4418 | } |
---|
4419 | l = 1; |
---|
4420 | poly a = p; |
---|
4421 | if (! rIsSyzIndexRing(r)) |
---|
4422 | { |
---|
4423 | poly next = pNext(a); |
---|
4424 | while (next!=NULL) |
---|
4425 | { |
---|
4426 | a = next; |
---|
4427 | next = pNext(a); |
---|
4428 | l++; |
---|
4429 | } |
---|
4430 | } |
---|
4431 | else |
---|
4432 | { |
---|
4433 | int curr_limit = rGetCurrSyzLimit(r); |
---|
4434 | poly pp = a; |
---|
4435 | while ((a=pNext(a))!=NULL) |
---|
4436 | { |
---|
4437 | if (p_GetComp(a,r)<=curr_limit/*syzComp*/) |
---|
4438 | l++; |
---|
4439 | else break; |
---|
4440 | pp = a; |
---|
4441 | } |
---|
4442 | a=pp; |
---|
4443 | } |
---|
4444 | return a; |
---|
4445 | } |
---|
4446 | |
---|
4447 | int p_Var(poly m,const ring r) |
---|
4448 | { |
---|
4449 | if (m==NULL) return 0; |
---|
4450 | if (pNext(m)!=NULL) return 0; |
---|
4451 | int i,e=0; |
---|
4452 | for (i=rVar(r); i>0; i--) |
---|
4453 | { |
---|
4454 | int exp=p_GetExp(m,i,r); |
---|
4455 | if (exp==1) |
---|
4456 | { |
---|
4457 | if (e==0) e=i; |
---|
4458 | else return 0; |
---|
4459 | } |
---|
4460 | else if (exp!=0) |
---|
4461 | { |
---|
4462 | return 0; |
---|
4463 | } |
---|
4464 | } |
---|
4465 | return e; |
---|
4466 | } |
---|
4467 | |
---|
4468 | /*2 |
---|
4469 | *the minimal index of used variables - 1 |
---|
4470 | */ |
---|
4471 | int p_LowVar (poly p, const ring r) |
---|
4472 | { |
---|
4473 | int k,l,lex; |
---|
4474 | |
---|
4475 | if (p == NULL) return -1; |
---|
4476 | |
---|
4477 | k = 32000;/*a very large dummy value*/ |
---|
4478 | while (p != NULL) |
---|
4479 | { |
---|
4480 | l = 1; |
---|
4481 | lex = p_GetExp(p,l,r); |
---|
4482 | while ((l < (rVar(r))) && (lex == 0)) |
---|
4483 | { |
---|
4484 | l++; |
---|
4485 | lex = p_GetExp(p,l,r); |
---|
4486 | } |
---|
4487 | l--; |
---|
4488 | if (l < k) k = l; |
---|
4489 | pIter(p); |
---|
4490 | } |
---|
4491 | return k; |
---|
4492 | } |
---|
4493 | |
---|
4494 | /*2 |
---|
4495 | * verschiebt die Indizees der Modulerzeugenden um i |
---|
4496 | */ |
---|
4497 | void p_Shift (poly * p,int i, const ring r) |
---|
4498 | { |
---|
4499 | poly qp1 = *p,qp2 = *p;/*working pointers*/ |
---|
4500 | int j = p_MaxComp(*p,r),k = p_MinComp(*p,r); |
---|
4501 | |
---|
4502 | if (j+i < 0) return ; |
---|
4503 | while (qp1 != NULL) |
---|
4504 | { |
---|
4505 | if ((p_GetComp(qp1,r)+i > 0) || ((j == -i) && (j == k))) |
---|
4506 | { |
---|
4507 | p_AddComp(qp1,i,r); |
---|
4508 | p_SetmComp(qp1,r); |
---|
4509 | qp2 = qp1; |
---|
4510 | pIter(qp1); |
---|
4511 | } |
---|
4512 | else |
---|
4513 | { |
---|
4514 | if (qp2 == *p) |
---|
4515 | { |
---|
4516 | pIter(*p); |
---|
4517 | p_LmDelete(&qp2,r); |
---|
4518 | qp2 = *p; |
---|
4519 | qp1 = *p; |
---|
4520 | } |
---|
4521 | else |
---|
4522 | { |
---|
4523 | qp2->next = qp1->next; |
---|
4524 | if (qp1!=NULL) p_LmDelete(&qp1,r); |
---|
4525 | qp1 = qp2->next; |
---|
4526 | } |
---|
4527 | } |
---|
4528 | } |
---|
4529 | } |
---|
4530 | |
---|
4531 | /*************************************************************** |
---|
4532 | * |
---|
4533 | * Storage Managament Routines |
---|
4534 | * |
---|
4535 | ***************************************************************/ |
---|
4536 | |
---|
4537 | |
---|
4538 | static inline unsigned long GetBitFields(long e, |
---|
4539 | unsigned int s, unsigned int n) |
---|
4540 | { |
---|
4541 | #define Sy_bit_L(x) (((unsigned long)1L)<<(x)) |
---|
4542 | unsigned int i = 0; |
---|
4543 | unsigned long ev = 0L; |
---|
4544 | assume(n > 0 && s < BIT_SIZEOF_LONG); |
---|
4545 | do |
---|
4546 | { |
---|
4547 | assume(s+i < BIT_SIZEOF_LONG); |
---|
4548 | if (e > (long) i) ev |= Sy_bit_L(s+i); |
---|
4549 | else break; |
---|
4550 | i++; |
---|
4551 | } |
---|
4552 | while (i < n); |
---|
4553 | return ev; |
---|
4554 | } |
---|
4555 | |
---|
4556 | // Short Exponent Vectors are used for fast divisibility tests |
---|
4557 | // ShortExpVectors "squeeze" an exponent vector into one word as follows: |
---|
4558 | // Let n = BIT_SIZEOF_LONG / pVariables. |
---|
4559 | // If n == 0 (i.e. pVariables > BIT_SIZE_OF_LONG), let m == the number |
---|
4560 | // of non-zero exponents. If (m>BIT_SIZEOF_LONG), then sev = ~0, else |
---|
4561 | // first m bits of sev are set to 1. |
---|
4562 | // Otherwise (i.e. pVariables <= BIT_SIZE_OF_LONG) |
---|
4563 | // represented by a bit-field of length n (resp. n+1 for some |
---|
4564 | // exponents). If the value of an exponent is greater or equal to n, then |
---|
4565 | // all of its respective n bits are set to 1. If the value of an exponent |
---|
4566 | // is smaller than n, say m, then only the first m bits of the respective |
---|
4567 | // n bits are set to 1, the others are set to 0. |
---|
4568 | // This way, we have: |
---|
4569 | // exp1 / exp2 ==> (ev1 & ~ev2) == 0, i.e., |
---|
4570 | // if (ev1 & ~ev2) then exp1 does not divide exp2 |
---|
4571 | unsigned long p_GetShortExpVector(poly p, const ring r) |
---|
4572 | { |
---|
4573 | assume(p != NULL); |
---|
4574 | if (p == NULL) return 0; |
---|
4575 | unsigned long ev = 0; // short exponent vector |
---|
4576 | unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp |
---|
4577 | unsigned int m1; // highest bit which is filled with (n+1) |
---|
4578 | unsigned int i = 0, j=1; |
---|
4579 | |
---|
4580 | if (n == 0) |
---|
4581 | { |
---|
4582 | if (r->N <2*BIT_SIZEOF_LONG) |
---|
4583 | { |
---|
4584 | n=1; |
---|
4585 | m1=0; |
---|
4586 | } |
---|
4587 | else |
---|
4588 | { |
---|
4589 | for (; j<=(unsigned long) r->N; j++) |
---|
4590 | { |
---|
4591 | if (p_GetExp(p,j,r) > 0) i++; |
---|
4592 | if (i == BIT_SIZEOF_LONG) break; |
---|
4593 | } |
---|
4594 | if (i>0) |
---|
4595 | ev = ~((unsigned long)0) >> ((unsigned long) (BIT_SIZEOF_LONG - i)); |
---|
4596 | return ev; |
---|
4597 | } |
---|
4598 | } |
---|
4599 | else |
---|
4600 | { |
---|
4601 | m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N); |
---|
4602 | } |
---|
4603 | |
---|
4604 | n++; |
---|
4605 | while (i<m1) |
---|
4606 | { |
---|
4607 | ev |= GetBitFields(p_GetExp(p, j,r), i, n); |
---|
4608 | i += n; |
---|
4609 | j++; |
---|
4610 | } |
---|
4611 | |
---|
4612 | n--; |
---|
4613 | while (i<BIT_SIZEOF_LONG) |
---|
4614 | { |
---|
4615 | ev |= GetBitFields(p_GetExp(p, j,r), i, n); |
---|
4616 | i += n; |
---|
4617 | j++; |
---|
4618 | } |
---|
4619 | return ev; |
---|
4620 | } |
---|
4621 | |
---|
4622 | |
---|
4623 | unsigned long p_GetShortExpVector(const poly p, const poly pp, const ring r) |
---|
4624 | { |
---|
4625 | assume(p != NULL); |
---|
4626 | assume(pp != NULL); |
---|
4627 | if (p == NULL || pp == NULL) return 0; |
---|
4628 | |
---|
4629 | unsigned long ev = 0; // short exponent vector |
---|
4630 | unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp |
---|
4631 | unsigned int m1; // highest bit which is filled with (n+1) |
---|
4632 | unsigned int i = 0, j=1; |
---|
4633 | |
---|
4634 | if (n == 0) |
---|
4635 | { |
---|
4636 | if (r->N <2*BIT_SIZEOF_LONG) |
---|
4637 | { |
---|
4638 | n=1; |
---|
4639 | m1=0; |
---|
4640 | } |
---|
4641 | else |
---|
4642 | { |
---|
4643 | for (; j<=(unsigned long) r->N; j++) |
---|
4644 | { |
---|
4645 | if (p_GetExp(p,j,r) > 0 || p_GetExp(pp,j,r) > 0) i++; |
---|
4646 | if (i == BIT_SIZEOF_LONG) break; |
---|
4647 | } |
---|
4648 | if (i>0) |
---|
4649 | ev = ~((unsigned long)0) >> ((unsigned long) (BIT_SIZEOF_LONG - i)); |
---|
4650 | return ev; |
---|
4651 | } |
---|
4652 | } |
---|
4653 | else |
---|
4654 | { |
---|
4655 | m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N); |
---|
4656 | } |
---|
4657 | |
---|
4658 | n++; |
---|
4659 | while (i<m1) |
---|
4660 | { |
---|
4661 | ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n); |
---|
4662 | i += n; |
---|
4663 | j++; |
---|
4664 | } |
---|
4665 | |
---|
4666 | n--; |
---|
4667 | while (i<BIT_SIZEOF_LONG) |
---|
4668 | { |
---|
4669 | ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n); |
---|
4670 | i += n; |
---|
4671 | j++; |
---|
4672 | } |
---|
4673 | return ev; |
---|
4674 | } |
---|
4675 | |
---|
4676 | |
---|
4677 | |
---|
4678 | /*************************************************************** |
---|
4679 | * |
---|
4680 | * p_ShallowDelete |
---|
4681 | * |
---|
4682 | ***************************************************************/ |
---|
4683 | #undef LINKAGE |
---|
4684 | #define LINKAGE |
---|
4685 | #undef p_Delete__T |
---|
4686 | #define p_Delete__T p_ShallowDelete |
---|
4687 | #undef n_Delete__T |
---|
4688 | #define n_Delete__T(n, r) do {} while (0) |
---|
4689 | |
---|
4690 | #include <polys/templates/p_Delete__T.cc> |
---|
4691 | |
---|