1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /*************************************************************** |
---|
5 | * File: p_polys.cc |
---|
6 | * Purpose: implementation of ring independent poly procedures? |
---|
7 | * Author: obachman (Olaf Bachmann) |
---|
8 | * Created: 8/00 |
---|
9 | *******************************************************************/ |
---|
10 | |
---|
11 | #include <ctype.h> |
---|
12 | |
---|
13 | #include "misc/auxiliary.h" |
---|
14 | |
---|
15 | #include "misc/options.h" |
---|
16 | #include "misc/intvec.h" |
---|
17 | |
---|
18 | |
---|
19 | #include "coeffs/longrat.h" // snumber is needed... |
---|
20 | #include "coeffs/numbers.h" // ndCopyMap |
---|
21 | |
---|
22 | #include "polys/PolyEnumerator.h" |
---|
23 | |
---|
24 | #define TRANSEXT_PRIVATES |
---|
25 | |
---|
26 | #include "polys/ext_fields/transext.h" |
---|
27 | #include "polys/ext_fields/algext.h" |
---|
28 | |
---|
29 | #include "polys/weight.h" |
---|
30 | #include "polys/simpleideals.h" |
---|
31 | |
---|
32 | #include "ring.h" |
---|
33 | #include "p_polys.h" |
---|
34 | |
---|
35 | #include "polys/templates/p_MemCmp.h" |
---|
36 | #include "polys/templates/p_MemAdd.h" |
---|
37 | #include "polys/templates/p_MemCopy.h" |
---|
38 | |
---|
39 | |
---|
40 | #ifdef HAVE_PLURAL |
---|
41 | #include "nc/nc.h" |
---|
42 | #include "nc/sca.h" |
---|
43 | #endif |
---|
44 | |
---|
45 | #include "clapsing.h" |
---|
46 | |
---|
47 | /* |
---|
48 | * lift ideal with coeffs over Z (mod N) to Q via Farey |
---|
49 | */ |
---|
50 | poly p_Farey(poly p, number N, const ring r) |
---|
51 | { |
---|
52 | poly h=p_Copy(p,r); |
---|
53 | poly hh=h; |
---|
54 | while(h!=NULL) |
---|
55 | { |
---|
56 | number c=pGetCoeff(h); |
---|
57 | pSetCoeff0(h,n_Farey(c,N,r->cf)); |
---|
58 | n_Delete(&c,r->cf); |
---|
59 | pIter(h); |
---|
60 | } |
---|
61 | while((hh!=NULL)&&(n_IsZero(pGetCoeff(hh),r->cf))) |
---|
62 | { |
---|
63 | p_LmDelete(&hh,r); |
---|
64 | } |
---|
65 | h=hh; |
---|
66 | while((h!=NULL) && (pNext(h)!=NULL)) |
---|
67 | { |
---|
68 | if(n_IsZero(pGetCoeff(pNext(h)),r->cf)) |
---|
69 | { |
---|
70 | p_LmDelete(&pNext(h),r); |
---|
71 | } |
---|
72 | else pIter(h); |
---|
73 | } |
---|
74 | return hh; |
---|
75 | } |
---|
76 | /*2 |
---|
77 | * xx,q: arrays of length 0..rl-1 |
---|
78 | * xx[i]: SB mod q[i] |
---|
79 | * assume: char=0 |
---|
80 | * assume: q[i]!=0 |
---|
81 | * destroys xx |
---|
82 | */ |
---|
83 | poly p_ChineseRemainder(poly *xx, number *x,number *q, int rl, CFArray &inv_cache,const ring R) |
---|
84 | { |
---|
85 | poly r,h,hh; |
---|
86 | int j; |
---|
87 | poly res_p=NULL; |
---|
88 | loop |
---|
89 | { |
---|
90 | /* search the lead term */ |
---|
91 | r=NULL; |
---|
92 | for(j=rl-1;j>=0;j--) |
---|
93 | { |
---|
94 | h=xx[j]; |
---|
95 | if ((h!=NULL) |
---|
96 | &&((r==NULL)||(p_LmCmp(r,h,R)==-1))) |
---|
97 | r=h; |
---|
98 | } |
---|
99 | /* nothing found -> return */ |
---|
100 | if (r==NULL) break; |
---|
101 | /* create the monomial in h */ |
---|
102 | h=p_Head(r,R); |
---|
103 | /* collect the coeffs in x[..]*/ |
---|
104 | for(j=rl-1;j>=0;j--) |
---|
105 | { |
---|
106 | hh=xx[j]; |
---|
107 | if ((hh!=NULL) && (p_LmCmp(h,hh,R)==0)) |
---|
108 | { |
---|
109 | x[j]=pGetCoeff(hh); |
---|
110 | hh=p_LmFreeAndNext(hh,R); |
---|
111 | xx[j]=hh; |
---|
112 | } |
---|
113 | else |
---|
114 | x[j]=n_Init(0, R->cf); |
---|
115 | } |
---|
116 | number n=n_ChineseRemainderSym(x,q,rl,TRUE,inv_cache,R->cf); |
---|
117 | for(j=rl-1;j>=0;j--) |
---|
118 | { |
---|
119 | x[j]=NULL; // n_Init(0...) takes no memory |
---|
120 | } |
---|
121 | if (n_IsZero(n,R->cf)) p_Delete(&h,R); |
---|
122 | else |
---|
123 | { |
---|
124 | //Print("new mon:");pWrite(h); |
---|
125 | p_SetCoeff(h,n,R); |
---|
126 | pNext(h)=res_p; |
---|
127 | res_p=h; // building res_p in reverse order! |
---|
128 | } |
---|
129 | } |
---|
130 | res_p=pReverse(res_p); |
---|
131 | p_Test(res_p, R); |
---|
132 | return res_p; |
---|
133 | } |
---|
134 | /*************************************************************** |
---|
135 | * |
---|
136 | * Completing what needs to be set for the monomial |
---|
137 | * |
---|
138 | ***************************************************************/ |
---|
139 | // this is special for the syz stuff |
---|
140 | STATIC_VAR int* _components = NULL; |
---|
141 | STATIC_VAR long* _componentsShifted = NULL; |
---|
142 | STATIC_VAR int _componentsExternal = 0; |
---|
143 | |
---|
144 | VAR BOOLEAN pSetm_error=0; |
---|
145 | |
---|
146 | #ifndef SING_NDEBUG |
---|
147 | # define MYTEST 0 |
---|
148 | #else /* ifndef SING_NDEBUG */ |
---|
149 | # define MYTEST 0 |
---|
150 | #endif /* ifndef SING_NDEBUG */ |
---|
151 | |
---|
152 | void p_Setm_General(poly p, const ring r) |
---|
153 | { |
---|
154 | p_LmCheckPolyRing(p, r); |
---|
155 | int pos=0; |
---|
156 | if (r->typ!=NULL) |
---|
157 | { |
---|
158 | loop |
---|
159 | { |
---|
160 | unsigned long ord=0; |
---|
161 | sro_ord* o=&(r->typ[pos]); |
---|
162 | switch(o->ord_typ) |
---|
163 | { |
---|
164 | case ro_dp: |
---|
165 | { |
---|
166 | int a,e; |
---|
167 | a=o->data.dp.start; |
---|
168 | e=o->data.dp.end; |
---|
169 | for(int i=a;i<=e;i++) ord+=p_GetExp(p,i,r); |
---|
170 | p->exp[o->data.dp.place]=ord; |
---|
171 | break; |
---|
172 | } |
---|
173 | case ro_wp_neg: |
---|
174 | ord=POLY_NEGWEIGHT_OFFSET; |
---|
175 | // no break; |
---|
176 | case ro_wp: |
---|
177 | { |
---|
178 | int a,e; |
---|
179 | a=o->data.wp.start; |
---|
180 | e=o->data.wp.end; |
---|
181 | int *w=o->data.wp.weights; |
---|
182 | #if 1 |
---|
183 | for(int i=a;i<=e;i++) ord+=((unsigned long)p_GetExp(p,i,r))*((unsigned long)w[i-a]); |
---|
184 | #else |
---|
185 | long ai; |
---|
186 | int ei,wi; |
---|
187 | for(int i=a;i<=e;i++) |
---|
188 | { |
---|
189 | ei=p_GetExp(p,i,r); |
---|
190 | wi=w[i-a]; |
---|
191 | ai=ei*wi; |
---|
192 | if (ai/ei!=wi) pSetm_error=TRUE; |
---|
193 | ord+=ai; |
---|
194 | if (ord<ai) pSetm_error=TRUE; |
---|
195 | } |
---|
196 | #endif |
---|
197 | p->exp[o->data.wp.place]=ord; |
---|
198 | break; |
---|
199 | } |
---|
200 | case ro_am: |
---|
201 | { |
---|
202 | ord = POLY_NEGWEIGHT_OFFSET; |
---|
203 | const short a=o->data.am.start; |
---|
204 | const short e=o->data.am.end; |
---|
205 | const int * w=o->data.am.weights; |
---|
206 | #if 1 |
---|
207 | for(short i=a; i<=e; i++, w++) |
---|
208 | ord += ((*w) * p_GetExp(p,i,r)); |
---|
209 | #else |
---|
210 | long ai; |
---|
211 | int ei,wi; |
---|
212 | for(short i=a;i<=e;i++) |
---|
213 | { |
---|
214 | ei=p_GetExp(p,i,r); |
---|
215 | wi=w[i-a]; |
---|
216 | ai=ei*wi; |
---|
217 | if (ai/ei!=wi) pSetm_error=TRUE; |
---|
218 | ord += ai; |
---|
219 | if (ord<ai) pSetm_error=TRUE; |
---|
220 | } |
---|
221 | #endif |
---|
222 | const int c = p_GetComp(p,r); |
---|
223 | |
---|
224 | const short len_gen= o->data.am.len_gen; |
---|
225 | |
---|
226 | if ((c > 0) && (c <= len_gen)) |
---|
227 | { |
---|
228 | assume( w == o->data.am.weights_m ); |
---|
229 | assume( w[0] == len_gen ); |
---|
230 | ord += w[c]; |
---|
231 | } |
---|
232 | |
---|
233 | p->exp[o->data.am.place] = ord; |
---|
234 | break; |
---|
235 | } |
---|
236 | case ro_wp64: |
---|
237 | { |
---|
238 | int64 ord=0; |
---|
239 | int a,e; |
---|
240 | a=o->data.wp64.start; |
---|
241 | e=o->data.wp64.end; |
---|
242 | int64 *w=o->data.wp64.weights64; |
---|
243 | int64 ei,wi,ai; |
---|
244 | for(int i=a;i<=e;i++) |
---|
245 | { |
---|
246 | //Print("exp %d w %d \n",p_GetExp(p,i,r),(int)w[i-a]); |
---|
247 | //ord+=((int64)p_GetExp(p,i,r))*w[i-a]; |
---|
248 | ei=(int64)p_GetExp(p,i,r); |
---|
249 | wi=w[i-a]; |
---|
250 | ai=ei*wi; |
---|
251 | if(ei!=0 && ai/ei!=wi) |
---|
252 | { |
---|
253 | pSetm_error=TRUE; |
---|
254 | #if SIZEOF_LONG == 4 |
---|
255 | Print("ai %lld, wi %lld\n",ai,wi); |
---|
256 | #else |
---|
257 | Print("ai %ld, wi %ld\n",ai,wi); |
---|
258 | #endif |
---|
259 | } |
---|
260 | ord+=ai; |
---|
261 | if (ord<ai) |
---|
262 | { |
---|
263 | pSetm_error=TRUE; |
---|
264 | #if SIZEOF_LONG == 4 |
---|
265 | Print("ai %lld, ord %lld\n",ai,ord); |
---|
266 | #else |
---|
267 | Print("ai %ld, ord %ld\n",ai,ord); |
---|
268 | #endif |
---|
269 | } |
---|
270 | } |
---|
271 | int64 mask=(int64)0x7fffffff; |
---|
272 | long a_0=(long)(ord&mask); //2^31 |
---|
273 | long a_1=(long)(ord >>31 ); /*(ord/(mask+1));*/ |
---|
274 | |
---|
275 | //Print("mask: %x, ord: %d, a_0: %d, a_1: %d\n" |
---|
276 | //,(int)mask,(int)ord,(int)a_0,(int)a_1); |
---|
277 | //Print("mask: %d",mask); |
---|
278 | |
---|
279 | p->exp[o->data.wp64.place]=a_1; |
---|
280 | p->exp[o->data.wp64.place+1]=a_0; |
---|
281 | // if(p_Setm_error) PrintS("***************************\n" |
---|
282 | // "***************************\n" |
---|
283 | // "**WARNING: overflow error**\n" |
---|
284 | // "***************************\n" |
---|
285 | // "***************************\n"); |
---|
286 | break; |
---|
287 | } |
---|
288 | case ro_cp: |
---|
289 | { |
---|
290 | int a,e; |
---|
291 | a=o->data.cp.start; |
---|
292 | e=o->data.cp.end; |
---|
293 | int pl=o->data.cp.place; |
---|
294 | for(int i=a;i<=e;i++) { p->exp[pl]=p_GetExp(p,i,r); pl++; } |
---|
295 | break; |
---|
296 | } |
---|
297 | case ro_syzcomp: |
---|
298 | { |
---|
299 | long c=__p_GetComp(p,r); |
---|
300 | long sc = c; |
---|
301 | int* Components = (_componentsExternal ? _components : |
---|
302 | o->data.syzcomp.Components); |
---|
303 | long* ShiftedComponents = (_componentsExternal ? _componentsShifted: |
---|
304 | o->data.syzcomp.ShiftedComponents); |
---|
305 | if (ShiftedComponents != NULL) |
---|
306 | { |
---|
307 | assume(Components != NULL); |
---|
308 | assume(c == 0 || Components[c] != 0); |
---|
309 | sc = ShiftedComponents[Components[c]]; |
---|
310 | assume(c == 0 || sc != 0); |
---|
311 | } |
---|
312 | p->exp[o->data.syzcomp.place]=sc; |
---|
313 | break; |
---|
314 | } |
---|
315 | case ro_syz: |
---|
316 | { |
---|
317 | const unsigned long c = __p_GetComp(p, r); |
---|
318 | const short place = o->data.syz.place; |
---|
319 | const int limit = o->data.syz.limit; |
---|
320 | |
---|
321 | if (c > (unsigned long)limit) |
---|
322 | p->exp[place] = o->data.syz.curr_index; |
---|
323 | else if (c > 0) |
---|
324 | { |
---|
325 | assume( (1 <= c) && (c <= (unsigned long)limit) ); |
---|
326 | p->exp[place]= o->data.syz.syz_index[c]; |
---|
327 | } |
---|
328 | else |
---|
329 | { |
---|
330 | assume(c == 0); |
---|
331 | p->exp[place]= 0; |
---|
332 | } |
---|
333 | break; |
---|
334 | } |
---|
335 | // Prefix for Induced Schreyer ordering |
---|
336 | case ro_isTemp: // Do nothing?? (to be removed into suffix later on...?) |
---|
337 | { |
---|
338 | assume(p != NULL); |
---|
339 | |
---|
340 | #ifndef SING_NDEBUG |
---|
341 | #if MYTEST |
---|
342 | Print("p_Setm_General: ro_isTemp ord: pos: %d, p: ", pos); p_wrp(p, r); |
---|
343 | #endif |
---|
344 | #endif |
---|
345 | int c = p_GetComp(p, r); |
---|
346 | |
---|
347 | assume( c >= 0 ); |
---|
348 | |
---|
349 | // Let's simulate case ro_syz above.... |
---|
350 | // Should accumulate (by Suffix) and be a level indicator |
---|
351 | const int* const pVarOffset = o->data.isTemp.pVarOffset; |
---|
352 | |
---|
353 | assume( pVarOffset != NULL ); |
---|
354 | |
---|
355 | // TODO: Can this be done in the suffix??? |
---|
356 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
357 | { |
---|
358 | const int vo = pVarOffset[i]; |
---|
359 | if( vo != -1) // TODO: optimize: can be done once! |
---|
360 | { |
---|
361 | // Hans! Please don't break it again! p_SetExp(p, ..., r, vo) is correct: |
---|
362 | p_SetExp(p, p_GetExp(p, i, r), r, vo); // copy put them verbatim |
---|
363 | // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct: |
---|
364 | assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim |
---|
365 | } |
---|
366 | } |
---|
367 | #ifndef SING_NDEBUG |
---|
368 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
369 | { |
---|
370 | const int vo = pVarOffset[i]; |
---|
371 | if( vo != -1) // TODO: optimize: can be done once! |
---|
372 | { |
---|
373 | // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct: |
---|
374 | assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim |
---|
375 | } |
---|
376 | } |
---|
377 | #if MYTEST |
---|
378 | // if( p->exp[o->data.isTemp.start] > 0 ) |
---|
379 | PrintS("after Values: "); p_wrp(p, r); |
---|
380 | #endif |
---|
381 | #endif |
---|
382 | break; |
---|
383 | } |
---|
384 | |
---|
385 | // Suffix for Induced Schreyer ordering |
---|
386 | case ro_is: |
---|
387 | { |
---|
388 | #ifndef SING_NDEBUG |
---|
389 | #if MYTEST |
---|
390 | Print("p_Setm_General: ro_is ord: pos: %d, p: ", pos); p_wrp(p, r); |
---|
391 | #endif |
---|
392 | #endif |
---|
393 | |
---|
394 | assume(p != NULL); |
---|
395 | |
---|
396 | int c = p_GetComp(p, r); |
---|
397 | |
---|
398 | assume( c >= 0 ); |
---|
399 | const ideal F = o->data.is.F; |
---|
400 | const int limit = o->data.is.limit; |
---|
401 | assume( limit >= 0 ); |
---|
402 | const int start = o->data.is.start; |
---|
403 | |
---|
404 | if( F != NULL && c > limit ) |
---|
405 | { |
---|
406 | #ifndef SING_NDEBUG |
---|
407 | #if MYTEST |
---|
408 | Print("p_Setm_General: ro_is : in rSetm: pos: %d, c: %d > limit: %d\n", c, pos, limit); |
---|
409 | PrintS("preComputed Values: "); |
---|
410 | p_wrp(p, r); |
---|
411 | #endif |
---|
412 | #endif |
---|
413 | // if( c > limit ) // BUG??? |
---|
414 | p->exp[start] = 1; |
---|
415 | // else |
---|
416 | // p->exp[start] = 0; |
---|
417 | |
---|
418 | |
---|
419 | c -= limit; |
---|
420 | assume( c > 0 ); |
---|
421 | c--; |
---|
422 | |
---|
423 | if( c >= IDELEMS(F) ) |
---|
424 | break; |
---|
425 | |
---|
426 | assume( c < IDELEMS(F) ); // What about others??? |
---|
427 | |
---|
428 | const poly pp = F->m[c]; // get reference monomial!!! |
---|
429 | |
---|
430 | if(pp == NULL) |
---|
431 | break; |
---|
432 | |
---|
433 | assume(pp != NULL); |
---|
434 | |
---|
435 | #ifndef SING_NDEBUG |
---|
436 | #if MYTEST |
---|
437 | Print("Respective F[c - %d: %d] pp: ", limit, c); |
---|
438 | p_wrp(pp, r); |
---|
439 | #endif |
---|
440 | #endif |
---|
441 | |
---|
442 | const int end = o->data.is.end; |
---|
443 | assume(start <= end); |
---|
444 | |
---|
445 | |
---|
446 | // const int st = o->data.isTemp.start; |
---|
447 | |
---|
448 | #ifndef SING_NDEBUG |
---|
449 | #if MYTEST |
---|
450 | Print("p_Setm_General: is(-Temp-) :: c: %d, limit: %d, [st:%d] ===>>> %ld\n", c, limit, start, p->exp[start]); |
---|
451 | #endif |
---|
452 | #endif |
---|
453 | |
---|
454 | // p_ExpVectorAdd(p, pp, r); |
---|
455 | |
---|
456 | for( int i = start; i <= end; i++) // v[0] may be here... |
---|
457 | p->exp[i] += pp->exp[i]; // !!!!!!!! ADD corresponding LT(F) |
---|
458 | |
---|
459 | // p_MemAddAdjust(p, ri); |
---|
460 | if (r->NegWeightL_Offset != NULL) |
---|
461 | { |
---|
462 | for (int i=r->NegWeightL_Size-1; i>=0; i--) |
---|
463 | { |
---|
464 | const int _i = r->NegWeightL_Offset[i]; |
---|
465 | if( start <= _i && _i <= end ) |
---|
466 | p->exp[_i] -= POLY_NEGWEIGHT_OFFSET; |
---|
467 | } |
---|
468 | } |
---|
469 | |
---|
470 | |
---|
471 | #ifndef SING_NDEBUG |
---|
472 | const int* const pVarOffset = o->data.is.pVarOffset; |
---|
473 | |
---|
474 | assume( pVarOffset != NULL ); |
---|
475 | |
---|
476 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
477 | { |
---|
478 | const int vo = pVarOffset[i]; |
---|
479 | if( vo != -1) // TODO: optimize: can be done once! |
---|
480 | // Hans! Please don't break it again! p_GetExp(p/pp, r, vo) is correct: |
---|
481 | assume( p_GetExp(p, r, vo) == (p_GetExp(p, i, r) + p_GetExp(pp, r, vo)) ); |
---|
482 | } |
---|
483 | // TODO: how to check this for computed values??? |
---|
484 | #if MYTEST |
---|
485 | PrintS("Computed Values: "); p_wrp(p, r); |
---|
486 | #endif |
---|
487 | #endif |
---|
488 | } else |
---|
489 | { |
---|
490 | p->exp[start] = 0; //!!!!????? where????? |
---|
491 | |
---|
492 | const int* const pVarOffset = o->data.is.pVarOffset; |
---|
493 | |
---|
494 | // What about v[0] - component: it will be added later by |
---|
495 | // suffix!!! |
---|
496 | // TODO: Test it! |
---|
497 | const int vo = pVarOffset[0]; |
---|
498 | if( vo != -1 ) |
---|
499 | p->exp[vo] = c; // initial component v[0]! |
---|
500 | |
---|
501 | #ifndef SING_NDEBUG |
---|
502 | #if MYTEST |
---|
503 | Print("ELSE p_Setm_General: ro_is :: c: %d <= limit: %d, vo: %d, exp: %d\n", c, limit, vo, p->exp[vo]); |
---|
504 | p_wrp(p, r); |
---|
505 | #endif |
---|
506 | #endif |
---|
507 | } |
---|
508 | |
---|
509 | break; |
---|
510 | } |
---|
511 | default: |
---|
512 | dReportError("wrong ord in rSetm:%d\n",o->ord_typ); |
---|
513 | return; |
---|
514 | } |
---|
515 | pos++; |
---|
516 | if (pos == r->OrdSize) return; |
---|
517 | } |
---|
518 | } |
---|
519 | } |
---|
520 | |
---|
521 | void p_Setm_Syz(poly p, ring r, int* Components, long* ShiftedComponents) |
---|
522 | { |
---|
523 | _components = Components; |
---|
524 | _componentsShifted = ShiftedComponents; |
---|
525 | _componentsExternal = 1; |
---|
526 | p_Setm_General(p, r); |
---|
527 | _componentsExternal = 0; |
---|
528 | } |
---|
529 | |
---|
530 | // dummy for lp, ls, etc |
---|
531 | void p_Setm_Dummy(poly p, const ring r) |
---|
532 | { |
---|
533 | p_LmCheckPolyRing(p, r); |
---|
534 | } |
---|
535 | |
---|
536 | // for dp, Dp, ds, etc |
---|
537 | void p_Setm_TotalDegree(poly p, const ring r) |
---|
538 | { |
---|
539 | p_LmCheckPolyRing(p, r); |
---|
540 | p->exp[r->pOrdIndex] = p_Totaldegree(p, r); |
---|
541 | } |
---|
542 | |
---|
543 | // for wp, Wp, ws, etc |
---|
544 | void p_Setm_WFirstTotalDegree(poly p, const ring r) |
---|
545 | { |
---|
546 | p_LmCheckPolyRing(p, r); |
---|
547 | p->exp[r->pOrdIndex] = p_WFirstTotalDegree(p, r); |
---|
548 | } |
---|
549 | |
---|
550 | p_SetmProc p_GetSetmProc(const ring r) |
---|
551 | { |
---|
552 | // covers lp, rp, ls, |
---|
553 | if (r->typ == NULL) return p_Setm_Dummy; |
---|
554 | |
---|
555 | if (r->OrdSize == 1) |
---|
556 | { |
---|
557 | if (r->typ[0].ord_typ == ro_dp && |
---|
558 | r->typ[0].data.dp.start == 1 && |
---|
559 | r->typ[0].data.dp.end == r->N && |
---|
560 | r->typ[0].data.dp.place == r->pOrdIndex) |
---|
561 | return p_Setm_TotalDegree; |
---|
562 | if (r->typ[0].ord_typ == ro_wp && |
---|
563 | r->typ[0].data.wp.start == 1 && |
---|
564 | r->typ[0].data.wp.end == r->N && |
---|
565 | r->typ[0].data.wp.place == r->pOrdIndex && |
---|
566 | r->typ[0].data.wp.weights == r->firstwv) |
---|
567 | return p_Setm_WFirstTotalDegree; |
---|
568 | } |
---|
569 | return p_Setm_General; |
---|
570 | } |
---|
571 | |
---|
572 | |
---|
573 | /* -------------------------------------------------------------------*/ |
---|
574 | /* several possibilities for pFDeg: the degree of the head term */ |
---|
575 | |
---|
576 | /* comptible with ordering */ |
---|
577 | long p_Deg(poly a, const ring r) |
---|
578 | { |
---|
579 | p_LmCheckPolyRing(a, r); |
---|
580 | // assume(p_GetOrder(a, r) == p_WTotaldegree(a, r)); // WRONG assume! |
---|
581 | return p_GetOrder(a, r); |
---|
582 | } |
---|
583 | |
---|
584 | // p_WTotalDegree for weighted orderings |
---|
585 | // whose first block covers all variables |
---|
586 | long p_WFirstTotalDegree(poly p, const ring r) |
---|
587 | { |
---|
588 | int i; |
---|
589 | long sum = 0; |
---|
590 | |
---|
591 | for (i=1; i<= r->firstBlockEnds; i++) |
---|
592 | { |
---|
593 | sum += p_GetExp(p, i, r)*r->firstwv[i-1]; |
---|
594 | } |
---|
595 | return sum; |
---|
596 | } |
---|
597 | |
---|
598 | /*2 |
---|
599 | * compute the degree of the leading monomial of p |
---|
600 | * with respect to weigths from the ordering |
---|
601 | * the ordering is not compatible with degree so do not use p->Order |
---|
602 | */ |
---|
603 | long p_WTotaldegree(poly p, const ring r) |
---|
604 | { |
---|
605 | p_LmCheckPolyRing(p, r); |
---|
606 | int i, k; |
---|
607 | long j =0; |
---|
608 | |
---|
609 | // iterate through each block: |
---|
610 | for (i=0;r->order[i]!=0;i++) |
---|
611 | { |
---|
612 | int b0=r->block0[i]; |
---|
613 | int b1=r->block1[i]; |
---|
614 | switch(r->order[i]) |
---|
615 | { |
---|
616 | case ringorder_M: |
---|
617 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
618 | { // in jedem block: |
---|
619 | j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn; |
---|
620 | } |
---|
621 | break; |
---|
622 | case ringorder_am: |
---|
623 | b1=si_min(b1,r->N); |
---|
624 | /* no break, continue as ringorder_a*/ |
---|
625 | case ringorder_a: |
---|
626 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
627 | { // only one line |
---|
628 | j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]; |
---|
629 | } |
---|
630 | return j*r->OrdSgn; |
---|
631 | case ringorder_wp: |
---|
632 | case ringorder_ws: |
---|
633 | case ringorder_Wp: |
---|
634 | case ringorder_Ws: |
---|
635 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
636 | { // in jedem block: |
---|
637 | j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]; |
---|
638 | } |
---|
639 | break; |
---|
640 | case ringorder_lp: |
---|
641 | case ringorder_ls: |
---|
642 | case ringorder_rs: |
---|
643 | case ringorder_dp: |
---|
644 | case ringorder_ds: |
---|
645 | case ringorder_Dp: |
---|
646 | case ringorder_Ds: |
---|
647 | case ringorder_rp: |
---|
648 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
649 | { |
---|
650 | j+= p_GetExp(p,k,r); |
---|
651 | } |
---|
652 | break; |
---|
653 | case ringorder_a64: |
---|
654 | { |
---|
655 | int64* w=(int64*)r->wvhdl[i]; |
---|
656 | for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++) |
---|
657 | { |
---|
658 | //there should be added a line which checks if w[k]>2^31 |
---|
659 | j+= p_GetExp(p,k+1, r)*(long)w[k]; |
---|
660 | } |
---|
661 | //break; |
---|
662 | return j; |
---|
663 | } |
---|
664 | case ringorder_c: /* nothing to do*/ |
---|
665 | case ringorder_C: /* nothing to do*/ |
---|
666 | case ringorder_S: /* nothing to do*/ |
---|
667 | case ringorder_s: /* nothing to do*/ |
---|
668 | case ringorder_IS: /* nothing to do */ |
---|
669 | case ringorder_unspec: /* to make clang happy, does not occur*/ |
---|
670 | case ringorder_no: /* to make clang happy, does not occur*/ |
---|
671 | case ringorder_L: /* to make clang happy, does not occur*/ |
---|
672 | case ringorder_aa: /* ignored by p_WTotaldegree*/ |
---|
673 | break; |
---|
674 | /* no default: all orderings covered */ |
---|
675 | } |
---|
676 | } |
---|
677 | return j; |
---|
678 | } |
---|
679 | |
---|
680 | long p_DegW(poly p, const short *w, const ring R) |
---|
681 | { |
---|
682 | p_Test(p, R); |
---|
683 | assume( w != NULL ); |
---|
684 | long r=-LONG_MAX; |
---|
685 | |
---|
686 | while (p!=NULL) |
---|
687 | { |
---|
688 | long t=totaldegreeWecart_IV(p,R,w); |
---|
689 | if (t>r) r=t; |
---|
690 | pIter(p); |
---|
691 | } |
---|
692 | return r; |
---|
693 | } |
---|
694 | |
---|
695 | int p_Weight(int i, const ring r) |
---|
696 | { |
---|
697 | if ((r->firstwv==NULL) || (i>r->firstBlockEnds)) |
---|
698 | { |
---|
699 | return 1; |
---|
700 | } |
---|
701 | return r->firstwv[i-1]; |
---|
702 | } |
---|
703 | |
---|
704 | long p_WDegree(poly p, const ring r) |
---|
705 | { |
---|
706 | if (r->firstwv==NULL) return p_Totaldegree(p, r); |
---|
707 | p_LmCheckPolyRing(p, r); |
---|
708 | int i; |
---|
709 | long j =0; |
---|
710 | |
---|
711 | for(i=1;i<=r->firstBlockEnds;i++) |
---|
712 | j+=p_GetExp(p, i, r)*r->firstwv[i-1]; |
---|
713 | |
---|
714 | for (;i<=rVar(r);i++) |
---|
715 | j+=p_GetExp(p,i, r)*p_Weight(i, r); |
---|
716 | |
---|
717 | return j; |
---|
718 | } |
---|
719 | |
---|
720 | |
---|
721 | /* ---------------------------------------------------------------------*/ |
---|
722 | /* several possibilities for pLDeg: the maximal degree of a monomial in p*/ |
---|
723 | /* compute in l also the pLength of p */ |
---|
724 | |
---|
725 | /*2 |
---|
726 | * compute the length of a polynomial (in l) |
---|
727 | * and the degree of the monomial with maximal degree: the last one |
---|
728 | */ |
---|
729 | long pLDeg0(poly p,int *l, const ring r) |
---|
730 | { |
---|
731 | p_CheckPolyRing(p, r); |
---|
732 | long k= p_GetComp(p, r); |
---|
733 | int ll=1; |
---|
734 | |
---|
735 | if (k > 0) |
---|
736 | { |
---|
737 | while ((pNext(p)!=NULL) && (__p_GetComp(pNext(p), r)==k)) |
---|
738 | { |
---|
739 | pIter(p); |
---|
740 | ll++; |
---|
741 | } |
---|
742 | } |
---|
743 | else |
---|
744 | { |
---|
745 | while (pNext(p)!=NULL) |
---|
746 | { |
---|
747 | pIter(p); |
---|
748 | ll++; |
---|
749 | } |
---|
750 | } |
---|
751 | *l=ll; |
---|
752 | return r->pFDeg(p, r); |
---|
753 | } |
---|
754 | |
---|
755 | /*2 |
---|
756 | * compute the length of a polynomial (in l) |
---|
757 | * and the degree of the monomial with maximal degree: the last one |
---|
758 | * but search in all components before syzcomp |
---|
759 | */ |
---|
760 | long pLDeg0c(poly p,int *l, const ring r) |
---|
761 | { |
---|
762 | assume(p!=NULL); |
---|
763 | p_Test(p,r); |
---|
764 | p_CheckPolyRing(p, r); |
---|
765 | long o; |
---|
766 | int ll=1; |
---|
767 | |
---|
768 | if (! rIsSyzIndexRing(r)) |
---|
769 | { |
---|
770 | while (pNext(p) != NULL) |
---|
771 | { |
---|
772 | pIter(p); |
---|
773 | ll++; |
---|
774 | } |
---|
775 | o = r->pFDeg(p, r); |
---|
776 | } |
---|
777 | else |
---|
778 | { |
---|
779 | int curr_limit = rGetCurrSyzLimit(r); |
---|
780 | poly pp = p; |
---|
781 | while ((p=pNext(p))!=NULL) |
---|
782 | { |
---|
783 | if (__p_GetComp(p, r)<=curr_limit/*syzComp*/) |
---|
784 | ll++; |
---|
785 | else break; |
---|
786 | pp = p; |
---|
787 | } |
---|
788 | p_Test(pp,r); |
---|
789 | o = r->pFDeg(pp, r); |
---|
790 | } |
---|
791 | *l=ll; |
---|
792 | return o; |
---|
793 | } |
---|
794 | |
---|
795 | /*2 |
---|
796 | * compute the length of a polynomial (in l) |
---|
797 | * and the degree of the monomial with maximal degree: the first one |
---|
798 | * this works for the polynomial case with degree orderings |
---|
799 | * (both c,dp and dp,c) |
---|
800 | */ |
---|
801 | long pLDegb(poly p,int *l, const ring r) |
---|
802 | { |
---|
803 | p_CheckPolyRing(p, r); |
---|
804 | long k= p_GetComp(p, r); |
---|
805 | long o = r->pFDeg(p, r); |
---|
806 | int ll=1; |
---|
807 | |
---|
808 | if (k != 0) |
---|
809 | { |
---|
810 | while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k)) |
---|
811 | { |
---|
812 | ll++; |
---|
813 | } |
---|
814 | } |
---|
815 | else |
---|
816 | { |
---|
817 | while ((p=pNext(p)) !=NULL) |
---|
818 | { |
---|
819 | ll++; |
---|
820 | } |
---|
821 | } |
---|
822 | *l=ll; |
---|
823 | return o; |
---|
824 | } |
---|
825 | |
---|
826 | /*2 |
---|
827 | * compute the length of a polynomial (in l) |
---|
828 | * and the degree of the monomial with maximal degree: |
---|
829 | * this is NOT the last one, we have to look for it |
---|
830 | */ |
---|
831 | long pLDeg1(poly p,int *l, const ring r) |
---|
832 | { |
---|
833 | p_CheckPolyRing(p, r); |
---|
834 | long k= p_GetComp(p, r); |
---|
835 | int ll=1; |
---|
836 | long t,max; |
---|
837 | |
---|
838 | max=r->pFDeg(p, r); |
---|
839 | if (k > 0) |
---|
840 | { |
---|
841 | while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k)) |
---|
842 | { |
---|
843 | t=r->pFDeg(p, r); |
---|
844 | if (t>max) max=t; |
---|
845 | ll++; |
---|
846 | } |
---|
847 | } |
---|
848 | else |
---|
849 | { |
---|
850 | while ((p=pNext(p))!=NULL) |
---|
851 | { |
---|
852 | t=r->pFDeg(p, r); |
---|
853 | if (t>max) max=t; |
---|
854 | ll++; |
---|
855 | } |
---|
856 | } |
---|
857 | *l=ll; |
---|
858 | return max; |
---|
859 | } |
---|
860 | |
---|
861 | /*2 |
---|
862 | * compute the length of a polynomial (in l) |
---|
863 | * and the degree of the monomial with maximal degree: |
---|
864 | * this is NOT the last one, we have to look for it |
---|
865 | * in all components |
---|
866 | */ |
---|
867 | long pLDeg1c(poly p,int *l, const ring r) |
---|
868 | { |
---|
869 | p_CheckPolyRing(p, r); |
---|
870 | int ll=1; |
---|
871 | long t,max; |
---|
872 | |
---|
873 | max=r->pFDeg(p, r); |
---|
874 | if (rIsSyzIndexRing(r)) |
---|
875 | { |
---|
876 | long limit = rGetCurrSyzLimit(r); |
---|
877 | while ((p=pNext(p))!=NULL) |
---|
878 | { |
---|
879 | if (__p_GetComp(p, r)<=limit) |
---|
880 | { |
---|
881 | if ((t=r->pFDeg(p, r))>max) max=t; |
---|
882 | ll++; |
---|
883 | } |
---|
884 | else break; |
---|
885 | } |
---|
886 | } |
---|
887 | else |
---|
888 | { |
---|
889 | while ((p=pNext(p))!=NULL) |
---|
890 | { |
---|
891 | if ((t=r->pFDeg(p, r))>max) max=t; |
---|
892 | ll++; |
---|
893 | } |
---|
894 | } |
---|
895 | *l=ll; |
---|
896 | return max; |
---|
897 | } |
---|
898 | |
---|
899 | // like pLDeg1, only pFDeg == pDeg |
---|
900 | long pLDeg1_Deg(poly p,int *l, const ring r) |
---|
901 | { |
---|
902 | assume(r->pFDeg == p_Deg); |
---|
903 | p_CheckPolyRing(p, r); |
---|
904 | long k= p_GetComp(p, r); |
---|
905 | int ll=1; |
---|
906 | long t,max; |
---|
907 | |
---|
908 | max=p_GetOrder(p, r); |
---|
909 | if (k > 0) |
---|
910 | { |
---|
911 | while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k)) |
---|
912 | { |
---|
913 | t=p_GetOrder(p, r); |
---|
914 | if (t>max) max=t; |
---|
915 | ll++; |
---|
916 | } |
---|
917 | } |
---|
918 | else |
---|
919 | { |
---|
920 | while ((p=pNext(p))!=NULL) |
---|
921 | { |
---|
922 | t=p_GetOrder(p, r); |
---|
923 | if (t>max) max=t; |
---|
924 | ll++; |
---|
925 | } |
---|
926 | } |
---|
927 | *l=ll; |
---|
928 | return max; |
---|
929 | } |
---|
930 | |
---|
931 | long pLDeg1c_Deg(poly p,int *l, const ring r) |
---|
932 | { |
---|
933 | assume(r->pFDeg == p_Deg); |
---|
934 | p_CheckPolyRing(p, r); |
---|
935 | int ll=1; |
---|
936 | long t,max; |
---|
937 | |
---|
938 | max=p_GetOrder(p, r); |
---|
939 | if (rIsSyzIndexRing(r)) |
---|
940 | { |
---|
941 | long limit = rGetCurrSyzLimit(r); |
---|
942 | while ((p=pNext(p))!=NULL) |
---|
943 | { |
---|
944 | if (__p_GetComp(p, r)<=limit) |
---|
945 | { |
---|
946 | if ((t=p_GetOrder(p, r))>max) max=t; |
---|
947 | ll++; |
---|
948 | } |
---|
949 | else break; |
---|
950 | } |
---|
951 | } |
---|
952 | else |
---|
953 | { |
---|
954 | while ((p=pNext(p))!=NULL) |
---|
955 | { |
---|
956 | if ((t=p_GetOrder(p, r))>max) max=t; |
---|
957 | ll++; |
---|
958 | } |
---|
959 | } |
---|
960 | *l=ll; |
---|
961 | return max; |
---|
962 | } |
---|
963 | |
---|
964 | // like pLDeg1, only pFDeg == pTotoalDegree |
---|
965 | long pLDeg1_Totaldegree(poly p,int *l, const ring r) |
---|
966 | { |
---|
967 | p_CheckPolyRing(p, r); |
---|
968 | long k= p_GetComp(p, r); |
---|
969 | int ll=1; |
---|
970 | long t,max; |
---|
971 | |
---|
972 | max=p_Totaldegree(p, r); |
---|
973 | if (k > 0) |
---|
974 | { |
---|
975 | while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k)) |
---|
976 | { |
---|
977 | t=p_Totaldegree(p, r); |
---|
978 | if (t>max) max=t; |
---|
979 | ll++; |
---|
980 | } |
---|
981 | } |
---|
982 | else |
---|
983 | { |
---|
984 | while ((p=pNext(p))!=NULL) |
---|
985 | { |
---|
986 | t=p_Totaldegree(p, r); |
---|
987 | if (t>max) max=t; |
---|
988 | ll++; |
---|
989 | } |
---|
990 | } |
---|
991 | *l=ll; |
---|
992 | return max; |
---|
993 | } |
---|
994 | |
---|
995 | long pLDeg1c_Totaldegree(poly p,int *l, const ring r) |
---|
996 | { |
---|
997 | p_CheckPolyRing(p, r); |
---|
998 | int ll=1; |
---|
999 | long t,max; |
---|
1000 | |
---|
1001 | max=p_Totaldegree(p, r); |
---|
1002 | if (rIsSyzIndexRing(r)) |
---|
1003 | { |
---|
1004 | long limit = rGetCurrSyzLimit(r); |
---|
1005 | while ((p=pNext(p))!=NULL) |
---|
1006 | { |
---|
1007 | if (__p_GetComp(p, r)<=limit) |
---|
1008 | { |
---|
1009 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
1010 | ll++; |
---|
1011 | } |
---|
1012 | else break; |
---|
1013 | } |
---|
1014 | } |
---|
1015 | else |
---|
1016 | { |
---|
1017 | while ((p=pNext(p))!=NULL) |
---|
1018 | { |
---|
1019 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
1020 | ll++; |
---|
1021 | } |
---|
1022 | } |
---|
1023 | *l=ll; |
---|
1024 | return max; |
---|
1025 | } |
---|
1026 | |
---|
1027 | // like pLDeg1, only pFDeg == p_WFirstTotalDegree |
---|
1028 | long pLDeg1_WFirstTotalDegree(poly p,int *l, const ring r) |
---|
1029 | { |
---|
1030 | p_CheckPolyRing(p, r); |
---|
1031 | long k= p_GetComp(p, r); |
---|
1032 | int ll=1; |
---|
1033 | long t,max; |
---|
1034 | |
---|
1035 | max=p_WFirstTotalDegree(p, r); |
---|
1036 | if (k > 0) |
---|
1037 | { |
---|
1038 | while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k)) |
---|
1039 | { |
---|
1040 | t=p_WFirstTotalDegree(p, r); |
---|
1041 | if (t>max) max=t; |
---|
1042 | ll++; |
---|
1043 | } |
---|
1044 | } |
---|
1045 | else |
---|
1046 | { |
---|
1047 | while ((p=pNext(p))!=NULL) |
---|
1048 | { |
---|
1049 | t=p_WFirstTotalDegree(p, r); |
---|
1050 | if (t>max) max=t; |
---|
1051 | ll++; |
---|
1052 | } |
---|
1053 | } |
---|
1054 | *l=ll; |
---|
1055 | return max; |
---|
1056 | } |
---|
1057 | |
---|
1058 | long pLDeg1c_WFirstTotalDegree(poly p,int *l, const ring r) |
---|
1059 | { |
---|
1060 | p_CheckPolyRing(p, r); |
---|
1061 | int ll=1; |
---|
1062 | long t,max; |
---|
1063 | |
---|
1064 | max=p_WFirstTotalDegree(p, r); |
---|
1065 | if (rIsSyzIndexRing(r)) |
---|
1066 | { |
---|
1067 | long limit = rGetCurrSyzLimit(r); |
---|
1068 | while ((p=pNext(p))!=NULL) |
---|
1069 | { |
---|
1070 | if (__p_GetComp(p, r)<=limit) |
---|
1071 | { |
---|
1072 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
1073 | ll++; |
---|
1074 | } |
---|
1075 | else break; |
---|
1076 | } |
---|
1077 | } |
---|
1078 | else |
---|
1079 | { |
---|
1080 | while ((p=pNext(p))!=NULL) |
---|
1081 | { |
---|
1082 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
1083 | ll++; |
---|
1084 | } |
---|
1085 | } |
---|
1086 | *l=ll; |
---|
1087 | return max; |
---|
1088 | } |
---|
1089 | |
---|
1090 | /*************************************************************** |
---|
1091 | * |
---|
1092 | * Maximal Exponent business |
---|
1093 | * |
---|
1094 | ***************************************************************/ |
---|
1095 | |
---|
1096 | static inline unsigned long |
---|
1097 | p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, |
---|
1098 | unsigned long number_of_exp) |
---|
1099 | { |
---|
1100 | const unsigned long bitmask = r->bitmask; |
---|
1101 | unsigned long ml1 = l1 & bitmask; |
---|
1102 | unsigned long ml2 = l2 & bitmask; |
---|
1103 | unsigned long max = (ml1 > ml2 ? ml1 : ml2); |
---|
1104 | unsigned long j = number_of_exp - 1; |
---|
1105 | |
---|
1106 | if (j > 0) |
---|
1107 | { |
---|
1108 | unsigned long mask = bitmask << r->BitsPerExp; |
---|
1109 | while (1) |
---|
1110 | { |
---|
1111 | ml1 = l1 & mask; |
---|
1112 | ml2 = l2 & mask; |
---|
1113 | max |= ((ml1 > ml2 ? ml1 : ml2) & mask); |
---|
1114 | j--; |
---|
1115 | if (j == 0) break; |
---|
1116 | mask = mask << r->BitsPerExp; |
---|
1117 | } |
---|
1118 | } |
---|
1119 | return max; |
---|
1120 | } |
---|
1121 | |
---|
1122 | static inline unsigned long |
---|
1123 | p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r) |
---|
1124 | { |
---|
1125 | return p_GetMaxExpL2(l1, l2, r, r->ExpPerLong); |
---|
1126 | } |
---|
1127 | |
---|
1128 | poly p_GetMaxExpP(poly p, const ring r) |
---|
1129 | { |
---|
1130 | p_CheckPolyRing(p, r); |
---|
1131 | if (p == NULL) return p_Init(r); |
---|
1132 | poly max = p_LmInit(p, r); |
---|
1133 | pIter(p); |
---|
1134 | if (p == NULL) return max; |
---|
1135 | int i, offset; |
---|
1136 | unsigned long l_p, l_max; |
---|
1137 | unsigned long divmask = r->divmask; |
---|
1138 | |
---|
1139 | do |
---|
1140 | { |
---|
1141 | offset = r->VarL_Offset[0]; |
---|
1142 | l_p = p->exp[offset]; |
---|
1143 | l_max = max->exp[offset]; |
---|
1144 | // do the divisibility trick to find out whether l has an exponent |
---|
1145 | if (l_p > l_max || |
---|
1146 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1147 | max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r); |
---|
1148 | |
---|
1149 | for (i=1; i<r->VarL_Size; i++) |
---|
1150 | { |
---|
1151 | offset = r->VarL_Offset[i]; |
---|
1152 | l_p = p->exp[offset]; |
---|
1153 | l_max = max->exp[offset]; |
---|
1154 | // do the divisibility trick to find out whether l has an exponent |
---|
1155 | if (l_p > l_max || |
---|
1156 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1157 | max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r); |
---|
1158 | } |
---|
1159 | pIter(p); |
---|
1160 | } |
---|
1161 | while (p != NULL); |
---|
1162 | return max; |
---|
1163 | } |
---|
1164 | |
---|
1165 | unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max) |
---|
1166 | { |
---|
1167 | unsigned long l_p, divmask = r->divmask; |
---|
1168 | int i; |
---|
1169 | |
---|
1170 | while (p != NULL) |
---|
1171 | { |
---|
1172 | l_p = p->exp[r->VarL_Offset[0]]; |
---|
1173 | if (l_p > l_max || |
---|
1174 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1175 | l_max = p_GetMaxExpL2(l_max, l_p, r); |
---|
1176 | for (i=1; i<r->VarL_Size; i++) |
---|
1177 | { |
---|
1178 | l_p = p->exp[r->VarL_Offset[i]]; |
---|
1179 | // do the divisibility trick to find out whether l has an exponent |
---|
1180 | if (l_p > l_max || |
---|
1181 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1182 | l_max = p_GetMaxExpL2(l_max, l_p, r); |
---|
1183 | } |
---|
1184 | pIter(p); |
---|
1185 | } |
---|
1186 | return l_max; |
---|
1187 | } |
---|
1188 | |
---|
1189 | |
---|
1190 | |
---|
1191 | |
---|
1192 | /*************************************************************** |
---|
1193 | * |
---|
1194 | * Misc things |
---|
1195 | * |
---|
1196 | ***************************************************************/ |
---|
1197 | // returns TRUE, if all monoms have the same component |
---|
1198 | BOOLEAN p_OneComp(poly p, const ring r) |
---|
1199 | { |
---|
1200 | if(p!=NULL) |
---|
1201 | { |
---|
1202 | long i = p_GetComp(p, r); |
---|
1203 | while (pNext(p)!=NULL) |
---|
1204 | { |
---|
1205 | pIter(p); |
---|
1206 | if(i != p_GetComp(p, r)) return FALSE; |
---|
1207 | } |
---|
1208 | } |
---|
1209 | return TRUE; |
---|
1210 | } |
---|
1211 | |
---|
1212 | /*2 |
---|
1213 | *test if a monomial /head term is a pure power, |
---|
1214 | * i.e. depends on only one variable |
---|
1215 | */ |
---|
1216 | int p_IsPurePower(const poly p, const ring r) |
---|
1217 | { |
---|
1218 | int i,k=0; |
---|
1219 | |
---|
1220 | for (i=r->N;i;i--) |
---|
1221 | { |
---|
1222 | if (p_GetExp(p,i, r)!=0) |
---|
1223 | { |
---|
1224 | if(k!=0) return 0; |
---|
1225 | k=i; |
---|
1226 | } |
---|
1227 | } |
---|
1228 | return k; |
---|
1229 | } |
---|
1230 | |
---|
1231 | /*2 |
---|
1232 | *test if a polynomial is univariate |
---|
1233 | * return -1 for constant, |
---|
1234 | * 0 for not univariate,s |
---|
1235 | * i if dep. on var(i) |
---|
1236 | */ |
---|
1237 | int p_IsUnivariate(poly p, const ring r) |
---|
1238 | { |
---|
1239 | int i,k=-1; |
---|
1240 | |
---|
1241 | while (p!=NULL) |
---|
1242 | { |
---|
1243 | for (i=r->N;i;i--) |
---|
1244 | { |
---|
1245 | if (p_GetExp(p,i, r)!=0) |
---|
1246 | { |
---|
1247 | if((k!=-1)&&(k!=i)) return 0; |
---|
1248 | k=i; |
---|
1249 | } |
---|
1250 | } |
---|
1251 | pIter(p); |
---|
1252 | } |
---|
1253 | return k; |
---|
1254 | } |
---|
1255 | |
---|
1256 | // set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 |
---|
1257 | int p_GetVariables(poly p, int * e, const ring r) |
---|
1258 | { |
---|
1259 | int i; |
---|
1260 | int n=0; |
---|
1261 | while(p!=NULL) |
---|
1262 | { |
---|
1263 | n=0; |
---|
1264 | for(i=r->N; i>0; i--) |
---|
1265 | { |
---|
1266 | if(e[i]==0) |
---|
1267 | { |
---|
1268 | if (p_GetExp(p,i,r)>0) |
---|
1269 | { |
---|
1270 | e[i]=1; |
---|
1271 | n++; |
---|
1272 | } |
---|
1273 | } |
---|
1274 | else |
---|
1275 | n++; |
---|
1276 | } |
---|
1277 | if (n==r->N) break; |
---|
1278 | pIter(p); |
---|
1279 | } |
---|
1280 | return n; |
---|
1281 | } |
---|
1282 | |
---|
1283 | |
---|
1284 | /*2 |
---|
1285 | * returns a polynomial representing the integer i |
---|
1286 | */ |
---|
1287 | poly p_ISet(long i, const ring r) |
---|
1288 | { |
---|
1289 | poly rc = NULL; |
---|
1290 | if (i!=0) |
---|
1291 | { |
---|
1292 | rc = p_Init(r); |
---|
1293 | pSetCoeff0(rc,n_Init(i,r->cf)); |
---|
1294 | if (n_IsZero(pGetCoeff(rc),r->cf)) |
---|
1295 | p_LmDelete(&rc,r); |
---|
1296 | } |
---|
1297 | return rc; |
---|
1298 | } |
---|
1299 | |
---|
1300 | /*2 |
---|
1301 | * an optimized version of p_ISet for the special case 1 |
---|
1302 | */ |
---|
1303 | poly p_One(const ring r) |
---|
1304 | { |
---|
1305 | poly rc = p_Init(r); |
---|
1306 | pSetCoeff0(rc,n_Init(1,r->cf)); |
---|
1307 | return rc; |
---|
1308 | } |
---|
1309 | |
---|
1310 | void p_Split(poly p, poly *h) |
---|
1311 | { |
---|
1312 | *h=pNext(p); |
---|
1313 | pNext(p)=NULL; |
---|
1314 | } |
---|
1315 | |
---|
1316 | /*2 |
---|
1317 | * pair has no common factor ? or is no polynomial |
---|
1318 | */ |
---|
1319 | BOOLEAN p_HasNotCF(poly p1, poly p2, const ring r) |
---|
1320 | { |
---|
1321 | |
---|
1322 | if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0) |
---|
1323 | return FALSE; |
---|
1324 | int i = rVar(r); |
---|
1325 | loop |
---|
1326 | { |
---|
1327 | if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0)) |
---|
1328 | return FALSE; |
---|
1329 | i--; |
---|
1330 | if (i == 0) |
---|
1331 | return TRUE; |
---|
1332 | } |
---|
1333 | } |
---|
1334 | |
---|
1335 | BOOLEAN p_HasNotCFRing(poly p1, poly p2, const ring r) |
---|
1336 | { |
---|
1337 | |
---|
1338 | if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0) |
---|
1339 | return FALSE; |
---|
1340 | int i = rVar(r); |
---|
1341 | loop |
---|
1342 | { |
---|
1343 | if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0)) |
---|
1344 | return FALSE; |
---|
1345 | i--; |
---|
1346 | if (i == 0) { |
---|
1347 | if (n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf) || |
---|
1348 | n_DivBy(pGetCoeff(p2), pGetCoeff(p1), r->cf)) { |
---|
1349 | return FALSE; |
---|
1350 | } else { |
---|
1351 | return TRUE; |
---|
1352 | } |
---|
1353 | } |
---|
1354 | } |
---|
1355 | } |
---|
1356 | |
---|
1357 | /*2 |
---|
1358 | * convert monomial given as string to poly, e.g. 1x3y5z |
---|
1359 | */ |
---|
1360 | const char * p_Read(const char *st, poly &rc, const ring r) |
---|
1361 | { |
---|
1362 | if (r==NULL) { rc=NULL;return st;} |
---|
1363 | int i,j; |
---|
1364 | rc = p_Init(r); |
---|
1365 | const char *s = n_Read(st,&(p_GetCoeff(rc, r)),r->cf); |
---|
1366 | if (s==st) |
---|
1367 | /* i.e. it does not start with a coeff: test if it is a ringvar*/ |
---|
1368 | { |
---|
1369 | j = r_IsRingVar(s,r->names,r->N); |
---|
1370 | if (j >= 0) |
---|
1371 | { |
---|
1372 | p_IncrExp(rc,1+j,r); |
---|
1373 | while (*s!='\0') s++; |
---|
1374 | goto done; |
---|
1375 | } |
---|
1376 | } |
---|
1377 | while (*s!='\0') |
---|
1378 | { |
---|
1379 | char ss[2]; |
---|
1380 | ss[0] = *s++; |
---|
1381 | ss[1] = '\0'; |
---|
1382 | j = r_IsRingVar(ss,r->names,r->N); |
---|
1383 | if (j >= 0) |
---|
1384 | { |
---|
1385 | const char *s_save=s; |
---|
1386 | s = eati(s,&i); |
---|
1387 | if (((unsigned long)i) > r->bitmask/2) |
---|
1388 | { |
---|
1389 | // exponent to large: it is not a monomial |
---|
1390 | p_LmDelete(&rc,r); |
---|
1391 | return s_save; |
---|
1392 | } |
---|
1393 | p_AddExp(rc,1+j, (long)i, r); |
---|
1394 | } |
---|
1395 | else |
---|
1396 | { |
---|
1397 | // 1st char of is not a varname |
---|
1398 | // We return the parsed polynomial nevertheless. This is needed when |
---|
1399 | // we are parsing coefficients in a rational function field. |
---|
1400 | s--; |
---|
1401 | break; |
---|
1402 | } |
---|
1403 | } |
---|
1404 | done: |
---|
1405 | if (n_IsZero(pGetCoeff(rc),r->cf)) p_LmDelete(&rc,r); |
---|
1406 | else |
---|
1407 | { |
---|
1408 | #ifdef HAVE_PLURAL |
---|
1409 | // in super-commutative ring |
---|
1410 | // squares of anti-commutative variables are zeroes! |
---|
1411 | if(rIsSCA(r)) |
---|
1412 | { |
---|
1413 | const unsigned int iFirstAltVar = scaFirstAltVar(r); |
---|
1414 | const unsigned int iLastAltVar = scaLastAltVar(r); |
---|
1415 | |
---|
1416 | assume(rc != NULL); |
---|
1417 | |
---|
1418 | for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++) |
---|
1419 | if( p_GetExp(rc, k, r) > 1 ) |
---|
1420 | { |
---|
1421 | p_LmDelete(&rc, r); |
---|
1422 | goto finish; |
---|
1423 | } |
---|
1424 | } |
---|
1425 | #endif |
---|
1426 | |
---|
1427 | p_Setm(rc,r); |
---|
1428 | } |
---|
1429 | finish: |
---|
1430 | return s; |
---|
1431 | } |
---|
1432 | poly p_mInit(const char *st, BOOLEAN &ok, const ring r) |
---|
1433 | { |
---|
1434 | poly p; |
---|
1435 | const char *s=p_Read(st,p,r); |
---|
1436 | if (*s!='\0') |
---|
1437 | { |
---|
1438 | if ((s!=st)&&isdigit(st[0])) |
---|
1439 | { |
---|
1440 | errorreported=TRUE; |
---|
1441 | } |
---|
1442 | ok=FALSE; |
---|
1443 | p_Delete(&p,r); |
---|
1444 | return NULL; |
---|
1445 | } |
---|
1446 | p_Test(p,r); |
---|
1447 | ok=!errorreported; |
---|
1448 | return p; |
---|
1449 | } |
---|
1450 | |
---|
1451 | /*2 |
---|
1452 | * returns a polynomial representing the number n |
---|
1453 | * destroys n |
---|
1454 | */ |
---|
1455 | poly p_NSet(number n, const ring r) |
---|
1456 | { |
---|
1457 | if (n_IsZero(n,r->cf)) |
---|
1458 | { |
---|
1459 | n_Delete(&n, r->cf); |
---|
1460 | return NULL; |
---|
1461 | } |
---|
1462 | else |
---|
1463 | { |
---|
1464 | poly rc = p_Init(r); |
---|
1465 | pSetCoeff0(rc,n); |
---|
1466 | return rc; |
---|
1467 | } |
---|
1468 | } |
---|
1469 | /*2 |
---|
1470 | * assumes that LM(a) = LM(b)*m, for some monomial m, |
---|
1471 | * returns the multiplicant m, |
---|
1472 | * leaves a and b unmodified |
---|
1473 | */ |
---|
1474 | poly p_MDivide(poly a, poly b, const ring r) |
---|
1475 | { |
---|
1476 | assume((p_GetComp(a,r)==p_GetComp(b,r)) || (p_GetComp(b,r)==0)); |
---|
1477 | int i; |
---|
1478 | poly result = p_Init(r); |
---|
1479 | |
---|
1480 | for(i=(int)r->N; i; i--) |
---|
1481 | p_SetExp(result,i, p_GetExp(a,i,r)- p_GetExp(b,i,r),r); |
---|
1482 | p_SetComp(result, p_GetComp(a,r) - p_GetComp(b,r),r); |
---|
1483 | p_Setm(result,r); |
---|
1484 | return result; |
---|
1485 | } |
---|
1486 | |
---|
1487 | poly p_Div_nn(poly p, const number n, const ring r) |
---|
1488 | { |
---|
1489 | pAssume(!n_IsZero(n,r->cf)); |
---|
1490 | p_Test(p, r); |
---|
1491 | poly result = p; |
---|
1492 | poly prev = NULL; |
---|
1493 | while (p!=NULL) |
---|
1494 | { |
---|
1495 | number nc = n_Div(pGetCoeff(p),n,r->cf); |
---|
1496 | if (!n_IsZero(nc,r->cf)) |
---|
1497 | { |
---|
1498 | p_SetCoeff(p,nc,r); |
---|
1499 | prev=p; |
---|
1500 | pIter(p); |
---|
1501 | } |
---|
1502 | else |
---|
1503 | { |
---|
1504 | if (prev==NULL) |
---|
1505 | { |
---|
1506 | p_LmDelete(&result,r); |
---|
1507 | p=result; |
---|
1508 | } |
---|
1509 | else |
---|
1510 | { |
---|
1511 | p_LmDelete(&pNext(prev),r); |
---|
1512 | p=pNext(prev); |
---|
1513 | } |
---|
1514 | } |
---|
1515 | } |
---|
1516 | p_Test(result,r); |
---|
1517 | return(result); |
---|
1518 | } |
---|
1519 | |
---|
1520 | poly p_Div_mm(poly p, const poly m, const ring r) |
---|
1521 | { |
---|
1522 | p_Test(p, r); |
---|
1523 | p_Test(m, r); |
---|
1524 | poly result = p; |
---|
1525 | poly prev = NULL; |
---|
1526 | number n=pGetCoeff(m); |
---|
1527 | while (p!=NULL) |
---|
1528 | { |
---|
1529 | number nc = n_Div(pGetCoeff(p),n,r->cf); |
---|
1530 | n_Normalize(nc,r->cf); |
---|
1531 | if (!n_IsZero(nc,r->cf)) |
---|
1532 | { |
---|
1533 | p_SetCoeff(p,nc,r); |
---|
1534 | prev=p; |
---|
1535 | p_ExpVectorSub(p,m,r); |
---|
1536 | pIter(p); |
---|
1537 | } |
---|
1538 | else |
---|
1539 | { |
---|
1540 | if (prev==NULL) |
---|
1541 | { |
---|
1542 | p_LmDelete(&result,r); |
---|
1543 | p=result; |
---|
1544 | } |
---|
1545 | else |
---|
1546 | { |
---|
1547 | p_LmDelete(&pNext(prev),r); |
---|
1548 | p=pNext(prev); |
---|
1549 | } |
---|
1550 | } |
---|
1551 | } |
---|
1552 | p_Test(result,r); |
---|
1553 | return(result); |
---|
1554 | } |
---|
1555 | |
---|
1556 | /*2 |
---|
1557 | * divides a by the monomial b, ignores monomials which are not divisible |
---|
1558 | * assumes that b is not NULL, destroyes b |
---|
1559 | */ |
---|
1560 | poly p_DivideM(poly a, poly b, const ring r) |
---|
1561 | { |
---|
1562 | if (a==NULL) { p_Delete(&b,r); return NULL; } |
---|
1563 | poly result=a; |
---|
1564 | |
---|
1565 | if(!p_IsConstant(b,r)) |
---|
1566 | { |
---|
1567 | if (rIsLPRing(r)) |
---|
1568 | { |
---|
1569 | WerrorS("not implemented for letterplace rings"); |
---|
1570 | return NULL; |
---|
1571 | } |
---|
1572 | poly prev=NULL; |
---|
1573 | while (a!=NULL) |
---|
1574 | { |
---|
1575 | if (p_DivisibleBy(b,a,r)) |
---|
1576 | { |
---|
1577 | p_ExpVectorSub(a,b,r); |
---|
1578 | prev=a; |
---|
1579 | pIter(a); |
---|
1580 | } |
---|
1581 | else |
---|
1582 | { |
---|
1583 | if (prev==NULL) |
---|
1584 | { |
---|
1585 | p_LmDelete(&result,r); |
---|
1586 | a=result; |
---|
1587 | } |
---|
1588 | else |
---|
1589 | { |
---|
1590 | p_LmDelete(&pNext(prev),r); |
---|
1591 | a=pNext(prev); |
---|
1592 | } |
---|
1593 | } |
---|
1594 | } |
---|
1595 | } |
---|
1596 | if (result!=NULL) |
---|
1597 | { |
---|
1598 | number inv=pGetCoeff(b); |
---|
1599 | //if ((!rField_is_Ring(r)) || n_IsUnit(inv,r->cf)) |
---|
1600 | if (rField_is_Zp(r)) |
---|
1601 | { |
---|
1602 | inv = n_Invers(inv,r->cf); |
---|
1603 | __p_Mult_nn(result,inv,r); |
---|
1604 | n_Delete(&inv, r->cf); |
---|
1605 | } |
---|
1606 | else |
---|
1607 | { |
---|
1608 | result = p_Div_nn(result,inv,r); |
---|
1609 | } |
---|
1610 | } |
---|
1611 | p_Delete(&b, r); |
---|
1612 | return result; |
---|
1613 | } |
---|
1614 | |
---|
1615 | #ifdef HAVE_RINGS |
---|
1616 | /* TRUE iff LT(f) | LT(g) */ |
---|
1617 | BOOLEAN p_DivisibleByRingCase(poly f, poly g, const ring r) |
---|
1618 | { |
---|
1619 | int exponent; |
---|
1620 | for(int i = (int)rVar(r); i>0; i--) |
---|
1621 | { |
---|
1622 | exponent = p_GetExp(g, i, r) - p_GetExp(f, i, r); |
---|
1623 | if (exponent < 0) return FALSE; |
---|
1624 | } |
---|
1625 | return n_DivBy(pGetCoeff(g), pGetCoeff(f), r->cf); |
---|
1626 | } |
---|
1627 | #endif |
---|
1628 | |
---|
1629 | // returns the LCM of the head terms of a and b in *m |
---|
1630 | void p_Lcm(const poly a, const poly b, poly m, const ring r) |
---|
1631 | { |
---|
1632 | for (int i=r->N; i; --i) |
---|
1633 | p_SetExp(m,i, si_max( p_GetExp(a,i,r), p_GetExp(b,i,r)),r); |
---|
1634 | |
---|
1635 | p_SetComp(m, si_max(p_GetComp(a,r), p_GetComp(b,r)),r); |
---|
1636 | /* Don't do a pSetm here, otherwise hres/lres chockes */ |
---|
1637 | } |
---|
1638 | |
---|
1639 | poly p_Lcm(const poly a, const poly b, const ring r) |
---|
1640 | { |
---|
1641 | poly m=p_Init(r); |
---|
1642 | p_Lcm(a, b, m, r); |
---|
1643 | p_Setm(m,r); |
---|
1644 | return(m); |
---|
1645 | } |
---|
1646 | |
---|
1647 | #ifdef HAVE_RATGRING |
---|
1648 | /*2 |
---|
1649 | * returns the rational LCM of the head terms of a and b |
---|
1650 | * without coefficient!!! |
---|
1651 | */ |
---|
1652 | poly p_LcmRat(const poly a, const poly b, const long lCompM, const ring r) |
---|
1653 | { |
---|
1654 | poly m = // p_One( r); |
---|
1655 | p_Init(r); |
---|
1656 | |
---|
1657 | // const int (currRing->N) = r->N; |
---|
1658 | |
---|
1659 | // for (int i = (currRing->N); i>=r->real_var_start; i--) |
---|
1660 | for (int i = r->real_var_end; i>=r->real_var_start; i--) |
---|
1661 | { |
---|
1662 | const int lExpA = p_GetExp (a, i, r); |
---|
1663 | const int lExpB = p_GetExp (b, i, r); |
---|
1664 | |
---|
1665 | p_SetExp (m, i, si_max(lExpA, lExpB), r); |
---|
1666 | } |
---|
1667 | |
---|
1668 | p_SetComp (m, lCompM, r); |
---|
1669 | p_Setm(m,r); |
---|
1670 | n_New(&(p_GetCoeff(m, r)), r); |
---|
1671 | |
---|
1672 | return(m); |
---|
1673 | }; |
---|
1674 | |
---|
1675 | void p_LmDeleteAndNextRat(poly *p, int ishift, ring r) |
---|
1676 | { |
---|
1677 | /* modifies p*/ |
---|
1678 | // Print("start: "); Print(" "); p_wrp(*p,r); |
---|
1679 | p_LmCheckPolyRing2(*p, r); |
---|
1680 | poly q = p_Head(*p,r); |
---|
1681 | const long cmp = p_GetComp(*p, r); |
---|
1682 | while ( ( (*p)!=NULL ) && ( p_Comp_k_n(*p, q, ishift+1, r) ) && (p_GetComp(*p, r) == cmp) ) |
---|
1683 | { |
---|
1684 | p_LmDelete(p,r); |
---|
1685 | // Print("while: ");p_wrp(*p,r);Print(" "); |
---|
1686 | } |
---|
1687 | // p_wrp(*p,r);Print(" "); |
---|
1688 | // PrintS("end\n"); |
---|
1689 | p_LmDelete(&q,r); |
---|
1690 | } |
---|
1691 | |
---|
1692 | |
---|
1693 | /* returns x-coeff of p, i.e. a poly in x, s.t. corresponding xd-monomials |
---|
1694 | have the same D-part and the component 0 |
---|
1695 | does not destroy p |
---|
1696 | */ |
---|
1697 | poly p_GetCoeffRat(poly p, int ishift, ring r) |
---|
1698 | { |
---|
1699 | poly q = pNext(p); |
---|
1700 | poly res; // = p_Head(p,r); |
---|
1701 | res = p_GetExp_k_n(p, ishift+1, r->N, r); // does pSetm internally |
---|
1702 | p_SetCoeff(res,n_Copy(p_GetCoeff(p,r),r),r); |
---|
1703 | poly s; |
---|
1704 | long cmp = p_GetComp(p, r); |
---|
1705 | while ( (q!= NULL) && (p_Comp_k_n(p, q, ishift+1, r)) && (p_GetComp(q, r) == cmp) ) |
---|
1706 | { |
---|
1707 | s = p_GetExp_k_n(q, ishift+1, r->N, r); |
---|
1708 | p_SetCoeff(s,n_Copy(p_GetCoeff(q,r),r),r); |
---|
1709 | res = p_Add_q(res,s,r); |
---|
1710 | q = pNext(q); |
---|
1711 | } |
---|
1712 | cmp = 0; |
---|
1713 | p_SetCompP(res,cmp,r); |
---|
1714 | return res; |
---|
1715 | } |
---|
1716 | |
---|
1717 | |
---|
1718 | |
---|
1719 | void p_ContentRat(poly &ph, const ring r) |
---|
1720 | // changes ph |
---|
1721 | // for rat coefficients in K(x1,..xN) |
---|
1722 | { |
---|
1723 | // init array of RatLeadCoeffs |
---|
1724 | // poly p_GetCoeffRat(poly p, int ishift, ring r); |
---|
1725 | |
---|
1726 | int len=pLength(ph); |
---|
1727 | poly *C = (poly *)omAlloc0((len+1)*sizeof(poly)); //rat coeffs |
---|
1728 | poly *LM = (poly *)omAlloc0((len+1)*sizeof(poly)); // rat lead terms |
---|
1729 | int *D = (int *)omAlloc0((len+1)*sizeof(int)); //degrees of coeffs |
---|
1730 | int *L = (int *)omAlloc0((len+1)*sizeof(int)); //lengths of coeffs |
---|
1731 | int k = 0; |
---|
1732 | poly p = p_Copy(ph, r); // ph will be needed below |
---|
1733 | int mintdeg = p_Totaldegree(p, r); |
---|
1734 | int minlen = len; |
---|
1735 | int dd = 0; int i; |
---|
1736 | int HasConstantCoef = 0; |
---|
1737 | int is = r->real_var_start - 1; |
---|
1738 | while (p!=NULL) |
---|
1739 | { |
---|
1740 | LM[k] = p_GetExp_k_n(p,1,is, r); // need LmRat istead of p_HeadRat(p, is, currRing); ! |
---|
1741 | C[k] = p_GetCoeffRat(p, is, r); |
---|
1742 | D[k] = p_Totaldegree(C[k], r); |
---|
1743 | mintdeg = si_min(mintdeg,D[k]); |
---|
1744 | L[k] = pLength(C[k]); |
---|
1745 | minlen = si_min(minlen,L[k]); |
---|
1746 | if (p_IsConstant(C[k], r)) |
---|
1747 | { |
---|
1748 | // C[k] = const, so the content will be numerical |
---|
1749 | HasConstantCoef = 1; |
---|
1750 | // smth like goto cleanup and return(pContent(p)); |
---|
1751 | } |
---|
1752 | p_LmDeleteAndNextRat(&p, is, r); |
---|
1753 | k++; |
---|
1754 | } |
---|
1755 | |
---|
1756 | // look for 1 element of minimal degree and of minimal length |
---|
1757 | k--; |
---|
1758 | poly d; |
---|
1759 | int mindeglen = len; |
---|
1760 | if (k<=0) // this poly is not a ratgring poly -> pContent |
---|
1761 | { |
---|
1762 | p_Delete(&C[0], r); |
---|
1763 | p_Delete(&LM[0], r); |
---|
1764 | p_ContentForGB(ph, r); |
---|
1765 | goto cleanup; |
---|
1766 | } |
---|
1767 | |
---|
1768 | int pmindeglen; |
---|
1769 | for(i=0; i<=k; i++) |
---|
1770 | { |
---|
1771 | if (D[i] == mintdeg) |
---|
1772 | { |
---|
1773 | if (L[i] < mindeglen) |
---|
1774 | { |
---|
1775 | mindeglen=L[i]; |
---|
1776 | pmindeglen = i; |
---|
1777 | } |
---|
1778 | } |
---|
1779 | } |
---|
1780 | d = p_Copy(C[pmindeglen], r); |
---|
1781 | // there are dd>=1 mindeg elements |
---|
1782 | // and pmideglen is the coordinate of one of the smallest among them |
---|
1783 | |
---|
1784 | // poly g = singclap_gcd(p_Copy(p,r),p_Copy(q,r)); |
---|
1785 | // return naGcd(d,d2,currRing); |
---|
1786 | |
---|
1787 | // adjoin pContentRat here? |
---|
1788 | for(i=0; i<=k; i++) |
---|
1789 | { |
---|
1790 | d=singclap_gcd(d,p_Copy(C[i], r), r); |
---|
1791 | if (p_Totaldegree(d, r)==0) |
---|
1792 | { |
---|
1793 | // cleanup, pContent, return |
---|
1794 | p_Delete(&d, r); |
---|
1795 | for(;k>=0;k--) |
---|
1796 | { |
---|
1797 | p_Delete(&C[k], r); |
---|
1798 | p_Delete(&LM[k], r); |
---|
1799 | } |
---|
1800 | p_ContentForGB(ph, r); |
---|
1801 | goto cleanup; |
---|
1802 | } |
---|
1803 | } |
---|
1804 | for(i=0; i<=k; i++) |
---|
1805 | { |
---|
1806 | poly h=singclap_pdivide(C[i],d, r); |
---|
1807 | p_Delete(&C[i], r); |
---|
1808 | C[i]=h; |
---|
1809 | } |
---|
1810 | |
---|
1811 | // zusammensetzen, |
---|
1812 | p=NULL; // just to be sure |
---|
1813 | for(i=0; i<=k; i++) |
---|
1814 | { |
---|
1815 | p = p_Add_q(p, p_Mult_q(C[i],LM[i], r), r); |
---|
1816 | C[i]=NULL; LM[i]=NULL; |
---|
1817 | } |
---|
1818 | p_Delete(&ph, r); // do not need it anymore |
---|
1819 | ph = p; |
---|
1820 | // aufraeumen, return |
---|
1821 | cleanup: |
---|
1822 | omFree(C); |
---|
1823 | omFree(LM); |
---|
1824 | omFree(D); |
---|
1825 | omFree(L); |
---|
1826 | } |
---|
1827 | |
---|
1828 | |
---|
1829 | #endif |
---|
1830 | |
---|
1831 | |
---|
1832 | /* assumes that p and divisor are univariate polynomials in r, |
---|
1833 | mentioning the same variable; |
---|
1834 | assumes divisor != NULL; |
---|
1835 | p may be NULL; |
---|
1836 | assumes a global monomial ordering in r; |
---|
1837 | performs polynomial division of p by divisor: |
---|
1838 | - afterwards p contains the remainder of the division, i.e., |
---|
1839 | p_before = result * divisor + p_afterwards; |
---|
1840 | - if needResult == TRUE, then the method computes and returns 'result', |
---|
1841 | otherwise NULL is returned (This parametrization can be used when |
---|
1842 | one is only interested in the remainder of the division. In this |
---|
1843 | case, the method will be slightly faster.) |
---|
1844 | leaves divisor unmodified */ |
---|
1845 | poly p_PolyDiv(poly &p, const poly divisor, const BOOLEAN needResult, const ring r) |
---|
1846 | { |
---|
1847 | assume(divisor != NULL); |
---|
1848 | if (p == NULL) return NULL; |
---|
1849 | |
---|
1850 | poly result = NULL; |
---|
1851 | number divisorLC = p_GetCoeff(divisor, r); |
---|
1852 | int divisorLE = p_GetExp(divisor, 1, r); |
---|
1853 | while ((p != NULL) && (p_Deg(p, r) >= p_Deg(divisor, r))) |
---|
1854 | { |
---|
1855 | /* determine t = LT(p) / LT(divisor) */ |
---|
1856 | poly t = p_ISet(1, r); |
---|
1857 | number c = n_Div(p_GetCoeff(p, r), divisorLC, r->cf); |
---|
1858 | n_Normalize(c,r->cf); |
---|
1859 | p_SetCoeff(t, c, r); |
---|
1860 | int e = p_GetExp(p, 1, r) - divisorLE; |
---|
1861 | p_SetExp(t, 1, e, r); |
---|
1862 | p_Setm(t, r); |
---|
1863 | if (needResult) result = p_Add_q(result, p_Copy(t, r), r); |
---|
1864 | p = p_Add_q(p, p_Neg(p_Mult_q(t, p_Copy(divisor, r), r), r), r); |
---|
1865 | } |
---|
1866 | return result; |
---|
1867 | } |
---|
1868 | |
---|
1869 | /*2 |
---|
1870 | * returns the partial differentiate of a by the k-th variable |
---|
1871 | * does not destroy the input |
---|
1872 | */ |
---|
1873 | poly p_Diff(poly a, int k, const ring r) |
---|
1874 | { |
---|
1875 | poly res, f, last; |
---|
1876 | number t; |
---|
1877 | |
---|
1878 | last = res = NULL; |
---|
1879 | while (a!=NULL) |
---|
1880 | { |
---|
1881 | if (p_GetExp(a,k,r)!=0) |
---|
1882 | { |
---|
1883 | f = p_LmInit(a,r); |
---|
1884 | t = n_Init(p_GetExp(a,k,r),r->cf); |
---|
1885 | pSetCoeff0(f,n_Mult(t,pGetCoeff(a),r->cf)); |
---|
1886 | n_Delete(&t,r->cf); |
---|
1887 | if (n_IsZero(pGetCoeff(f),r->cf)) |
---|
1888 | p_LmDelete(&f,r); |
---|
1889 | else |
---|
1890 | { |
---|
1891 | p_DecrExp(f,k,r); |
---|
1892 | p_Setm(f,r); |
---|
1893 | if (res==NULL) |
---|
1894 | { |
---|
1895 | res=last=f; |
---|
1896 | } |
---|
1897 | else |
---|
1898 | { |
---|
1899 | pNext(last)=f; |
---|
1900 | last=f; |
---|
1901 | } |
---|
1902 | } |
---|
1903 | } |
---|
1904 | pIter(a); |
---|
1905 | } |
---|
1906 | return res; |
---|
1907 | } |
---|
1908 | |
---|
1909 | static poly p_DiffOpM(poly a, poly b,BOOLEAN multiply, const ring r) |
---|
1910 | { |
---|
1911 | int i,j,s; |
---|
1912 | number n,h,hh; |
---|
1913 | poly p=p_One(r); |
---|
1914 | n=n_Mult(pGetCoeff(a),pGetCoeff(b),r->cf); |
---|
1915 | for(i=rVar(r);i>0;i--) |
---|
1916 | { |
---|
1917 | s=p_GetExp(b,i,r); |
---|
1918 | if (s<p_GetExp(a,i,r)) |
---|
1919 | { |
---|
1920 | n_Delete(&n,r->cf); |
---|
1921 | p_LmDelete(&p,r); |
---|
1922 | return NULL; |
---|
1923 | } |
---|
1924 | if (multiply) |
---|
1925 | { |
---|
1926 | for(j=p_GetExp(a,i,r); j>0;j--) |
---|
1927 | { |
---|
1928 | h = n_Init(s,r->cf); |
---|
1929 | hh=n_Mult(n,h,r->cf); |
---|
1930 | n_Delete(&h,r->cf); |
---|
1931 | n_Delete(&n,r->cf); |
---|
1932 | n=hh; |
---|
1933 | s--; |
---|
1934 | } |
---|
1935 | p_SetExp(p,i,s,r); |
---|
1936 | } |
---|
1937 | else |
---|
1938 | { |
---|
1939 | p_SetExp(p,i,s-p_GetExp(a,i,r),r); |
---|
1940 | } |
---|
1941 | } |
---|
1942 | p_Setm(p,r); |
---|
1943 | /*if (multiply)*/ p_SetCoeff(p,n,r); |
---|
1944 | if (n_IsZero(n,r->cf)) p=p_LmDeleteAndNext(p,r); // return NULL as p is a monomial |
---|
1945 | return p; |
---|
1946 | } |
---|
1947 | |
---|
1948 | poly p_DiffOp(poly a, poly b,BOOLEAN multiply, const ring r) |
---|
1949 | { |
---|
1950 | poly result=NULL; |
---|
1951 | poly h; |
---|
1952 | for(;a!=NULL;pIter(a)) |
---|
1953 | { |
---|
1954 | for(h=b;h!=NULL;pIter(h)) |
---|
1955 | { |
---|
1956 | result=p_Add_q(result,p_DiffOpM(a,h,multiply,r),r); |
---|
1957 | } |
---|
1958 | } |
---|
1959 | return result; |
---|
1960 | } |
---|
1961 | /*2 |
---|
1962 | * subtract p2 from p1, p1 and p2 are destroyed |
---|
1963 | * do not put attention on speed: the procedure is only used in the interpreter |
---|
1964 | */ |
---|
1965 | poly p_Sub(poly p1, poly p2, const ring r) |
---|
1966 | { |
---|
1967 | return p_Add_q(p1, p_Neg(p2,r),r); |
---|
1968 | } |
---|
1969 | |
---|
1970 | /*3 |
---|
1971 | * compute for a monomial m |
---|
1972 | * the power m^exp, exp > 1 |
---|
1973 | * destroys p |
---|
1974 | */ |
---|
1975 | static poly p_MonPower(poly p, int exp, const ring r) |
---|
1976 | { |
---|
1977 | int i; |
---|
1978 | |
---|
1979 | if(!n_IsOne(pGetCoeff(p),r->cf)) |
---|
1980 | { |
---|
1981 | number x, y; |
---|
1982 | y = pGetCoeff(p); |
---|
1983 | n_Power(y,exp,&x,r->cf); |
---|
1984 | n_Delete(&y,r->cf); |
---|
1985 | pSetCoeff0(p,x); |
---|
1986 | } |
---|
1987 | for (i=rVar(r); i!=0; i--) |
---|
1988 | { |
---|
1989 | p_MultExp(p,i, exp,r); |
---|
1990 | } |
---|
1991 | p_Setm(p,r); |
---|
1992 | return p; |
---|
1993 | } |
---|
1994 | |
---|
1995 | /*3 |
---|
1996 | * compute for monomials p*q |
---|
1997 | * destroys p, keeps q |
---|
1998 | */ |
---|
1999 | static void p_MonMult(poly p, poly q, const ring r) |
---|
2000 | { |
---|
2001 | number x, y; |
---|
2002 | |
---|
2003 | y = pGetCoeff(p); |
---|
2004 | x = n_Mult(y,pGetCoeff(q),r->cf); |
---|
2005 | n_Delete(&y,r->cf); |
---|
2006 | pSetCoeff0(p,x); |
---|
2007 | //for (int i=pVariables; i!=0; i--) |
---|
2008 | //{ |
---|
2009 | // pAddExp(p,i, pGetExp(q,i)); |
---|
2010 | //} |
---|
2011 | //p->Order += q->Order; |
---|
2012 | p_ExpVectorAdd(p,q,r); |
---|
2013 | } |
---|
2014 | |
---|
2015 | /*3 |
---|
2016 | * compute for monomials p*q |
---|
2017 | * keeps p, q |
---|
2018 | */ |
---|
2019 | static poly p_MonMultC(poly p, poly q, const ring rr) |
---|
2020 | { |
---|
2021 | number x; |
---|
2022 | poly r = p_Init(rr); |
---|
2023 | |
---|
2024 | x = n_Mult(pGetCoeff(p),pGetCoeff(q),rr->cf); |
---|
2025 | pSetCoeff0(r,x); |
---|
2026 | p_ExpVectorSum(r,p, q, rr); |
---|
2027 | return r; |
---|
2028 | } |
---|
2029 | |
---|
2030 | /*3 |
---|
2031 | * create binomial coef. |
---|
2032 | */ |
---|
2033 | static number* pnBin(int exp, const ring r) |
---|
2034 | { |
---|
2035 | int e, i, h; |
---|
2036 | number x, y, *bin=NULL; |
---|
2037 | |
---|
2038 | x = n_Init(exp,r->cf); |
---|
2039 | if (n_IsZero(x,r->cf)) |
---|
2040 | { |
---|
2041 | n_Delete(&x,r->cf); |
---|
2042 | return bin; |
---|
2043 | } |
---|
2044 | h = (exp >> 1) + 1; |
---|
2045 | bin = (number *)omAlloc0(h*sizeof(number)); |
---|
2046 | bin[1] = x; |
---|
2047 | if (exp < 4) |
---|
2048 | return bin; |
---|
2049 | i = exp - 1; |
---|
2050 | for (e=2; e<h; e++) |
---|
2051 | { |
---|
2052 | x = n_Init(i,r->cf); |
---|
2053 | i--; |
---|
2054 | y = n_Mult(x,bin[e-1],r->cf); |
---|
2055 | n_Delete(&x,r->cf); |
---|
2056 | x = n_Init(e,r->cf); |
---|
2057 | bin[e] = n_ExactDiv(y,x,r->cf); |
---|
2058 | n_Delete(&x,r->cf); |
---|
2059 | n_Delete(&y,r->cf); |
---|
2060 | } |
---|
2061 | return bin; |
---|
2062 | } |
---|
2063 | |
---|
2064 | static void pnFreeBin(number *bin, int exp,const coeffs r) |
---|
2065 | { |
---|
2066 | int e, h = (exp >> 1) + 1; |
---|
2067 | |
---|
2068 | if (bin[1] != NULL) |
---|
2069 | { |
---|
2070 | for (e=1; e<h; e++) |
---|
2071 | n_Delete(&(bin[e]),r); |
---|
2072 | } |
---|
2073 | omFreeSize((ADDRESS)bin, h*sizeof(number)); |
---|
2074 | } |
---|
2075 | |
---|
2076 | /* |
---|
2077 | * compute for a poly p = head+tail, tail is monomial |
---|
2078 | * (head + tail)^exp, exp > 1 |
---|
2079 | * with binomial coef. |
---|
2080 | */ |
---|
2081 | static poly p_TwoMonPower(poly p, int exp, const ring r) |
---|
2082 | { |
---|
2083 | int eh, e; |
---|
2084 | long al; |
---|
2085 | poly *a; |
---|
2086 | poly tail, b, res, h; |
---|
2087 | number x; |
---|
2088 | number *bin = pnBin(exp,r); |
---|
2089 | |
---|
2090 | tail = pNext(p); |
---|
2091 | if (bin == NULL) |
---|
2092 | { |
---|
2093 | p_MonPower(p,exp,r); |
---|
2094 | p_MonPower(tail,exp,r); |
---|
2095 | p_Test(p,r); |
---|
2096 | return p; |
---|
2097 | } |
---|
2098 | eh = exp >> 1; |
---|
2099 | al = (exp + 1) * sizeof(poly); |
---|
2100 | a = (poly *)omAlloc(al); |
---|
2101 | a[1] = p; |
---|
2102 | for (e=1; e<exp; e++) |
---|
2103 | { |
---|
2104 | a[e+1] = p_MonMultC(a[e],p,r); |
---|
2105 | } |
---|
2106 | res = a[exp]; |
---|
2107 | b = p_Head(tail,r); |
---|
2108 | for (e=exp-1; e>eh; e--) |
---|
2109 | { |
---|
2110 | h = a[e]; |
---|
2111 | x = n_Mult(bin[exp-e],pGetCoeff(h),r->cf); |
---|
2112 | p_SetCoeff(h,x,r); |
---|
2113 | p_MonMult(h,b,r); |
---|
2114 | res = pNext(res) = h; |
---|
2115 | p_MonMult(b,tail,r); |
---|
2116 | } |
---|
2117 | for (e=eh; e!=0; e--) |
---|
2118 | { |
---|
2119 | h = a[e]; |
---|
2120 | x = n_Mult(bin[e],pGetCoeff(h),r->cf); |
---|
2121 | p_SetCoeff(h,x,r); |
---|
2122 | p_MonMult(h,b,r); |
---|
2123 | res = pNext(res) = h; |
---|
2124 | p_MonMult(b,tail,r); |
---|
2125 | } |
---|
2126 | p_LmDelete(&tail,r); |
---|
2127 | pNext(res) = b; |
---|
2128 | pNext(b) = NULL; |
---|
2129 | res = a[exp]; |
---|
2130 | omFreeSize((ADDRESS)a, al); |
---|
2131 | pnFreeBin(bin, exp, r->cf); |
---|
2132 | // tail=res; |
---|
2133 | // while((tail!=NULL)&&(pNext(tail)!=NULL)) |
---|
2134 | // { |
---|
2135 | // if(nIsZero(pGetCoeff(pNext(tail)))) |
---|
2136 | // { |
---|
2137 | // pLmDelete(&pNext(tail)); |
---|
2138 | // } |
---|
2139 | // else |
---|
2140 | // pIter(tail); |
---|
2141 | // } |
---|
2142 | p_Test(res,r); |
---|
2143 | return res; |
---|
2144 | } |
---|
2145 | |
---|
2146 | static poly p_Pow(poly p, int i, const ring r) |
---|
2147 | { |
---|
2148 | poly rc = p_Copy(p,r); |
---|
2149 | i -= 2; |
---|
2150 | do |
---|
2151 | { |
---|
2152 | rc = p_Mult_q(rc,p_Copy(p,r),r); |
---|
2153 | p_Normalize(rc,r); |
---|
2154 | i--; |
---|
2155 | } |
---|
2156 | while (i != 0); |
---|
2157 | return p_Mult_q(rc,p,r); |
---|
2158 | } |
---|
2159 | |
---|
2160 | static poly p_Pow_charp(poly p, int i, const ring r) |
---|
2161 | { |
---|
2162 | //assume char_p == i |
---|
2163 | poly h=p; |
---|
2164 | while(h!=NULL) { p_MonPower(h,i,r);pIter(h);} |
---|
2165 | return p; |
---|
2166 | } |
---|
2167 | |
---|
2168 | /*2 |
---|
2169 | * returns the i-th power of p |
---|
2170 | * p will be destroyed |
---|
2171 | */ |
---|
2172 | poly p_Power(poly p, int i, const ring r) |
---|
2173 | { |
---|
2174 | poly rc=NULL; |
---|
2175 | |
---|
2176 | if (i==0) |
---|
2177 | { |
---|
2178 | p_Delete(&p,r); |
---|
2179 | return p_One(r); |
---|
2180 | } |
---|
2181 | |
---|
2182 | if(p!=NULL) |
---|
2183 | { |
---|
2184 | if ( (i > 0) && ((unsigned long ) i > (r->bitmask)) |
---|
2185 | #ifdef HAVE_SHIFTBBA |
---|
2186 | && (!rIsLPRing(r)) |
---|
2187 | #endif |
---|
2188 | ) |
---|
2189 | { |
---|
2190 | Werror("exponent %d is too large, max. is %ld",i,r->bitmask); |
---|
2191 | return NULL; |
---|
2192 | } |
---|
2193 | switch (i) |
---|
2194 | { |
---|
2195 | // cannot happen, see above |
---|
2196 | // case 0: |
---|
2197 | // { |
---|
2198 | // rc=pOne(); |
---|
2199 | // pDelete(&p); |
---|
2200 | // break; |
---|
2201 | // } |
---|
2202 | case 1: |
---|
2203 | rc=p; |
---|
2204 | break; |
---|
2205 | case 2: |
---|
2206 | rc=p_Mult_q(p_Copy(p,r),p,r); |
---|
2207 | break; |
---|
2208 | default: |
---|
2209 | if (i < 0) |
---|
2210 | { |
---|
2211 | p_Delete(&p,r); |
---|
2212 | return NULL; |
---|
2213 | } |
---|
2214 | else |
---|
2215 | { |
---|
2216 | #ifdef HAVE_PLURAL |
---|
2217 | if (rIsNCRing(r)) /* in the NC case nothing helps :-( */ |
---|
2218 | { |
---|
2219 | int j=i; |
---|
2220 | rc = p_Copy(p,r); |
---|
2221 | while (j>1) |
---|
2222 | { |
---|
2223 | rc = p_Mult_q(p_Copy(p,r),rc,r); |
---|
2224 | j--; |
---|
2225 | } |
---|
2226 | p_Delete(&p,r); |
---|
2227 | return rc; |
---|
2228 | } |
---|
2229 | #endif |
---|
2230 | rc = pNext(p); |
---|
2231 | if (rc == NULL) |
---|
2232 | return p_MonPower(p,i,r); |
---|
2233 | /* else: binom ?*/ |
---|
2234 | int char_p=rChar(r); |
---|
2235 | if ((char_p>0) && (i>char_p) |
---|
2236 | && ((rField_is_Zp(r,char_p) |
---|
2237 | || (rField_is_Zp_a(r,char_p))))) |
---|
2238 | { |
---|
2239 | poly h=p_Pow_charp(p_Copy(p,r),char_p,r); |
---|
2240 | int rest=i-char_p; |
---|
2241 | while (rest>=char_p) |
---|
2242 | { |
---|
2243 | rest-=char_p; |
---|
2244 | h=p_Mult_q(h,p_Pow_charp(p_Copy(p,r),char_p,r),r); |
---|
2245 | } |
---|
2246 | poly res=h; |
---|
2247 | if (rest>0) |
---|
2248 | res=p_Mult_q(p_Power(p_Copy(p,r),rest,r),h,r); |
---|
2249 | p_Delete(&p,r); |
---|
2250 | return res; |
---|
2251 | } |
---|
2252 | if ((pNext(rc) != NULL) |
---|
2253 | || rField_is_Ring(r) |
---|
2254 | ) |
---|
2255 | return p_Pow(p,i,r); |
---|
2256 | if ((char_p==0) || (i<=char_p)) |
---|
2257 | return p_TwoMonPower(p,i,r); |
---|
2258 | return p_Pow(p,i,r); |
---|
2259 | } |
---|
2260 | /*end default:*/ |
---|
2261 | } |
---|
2262 | } |
---|
2263 | return rc; |
---|
2264 | } |
---|
2265 | |
---|
2266 | /* --------------------------------------------------------------------------------*/ |
---|
2267 | /* content suff */ |
---|
2268 | //number p_InitContent(poly ph, const ring r); |
---|
2269 | |
---|
2270 | void p_Content(poly ph, const ring r) |
---|
2271 | { |
---|
2272 | if (ph==NULL) return; |
---|
2273 | const coeffs cf=r->cf; |
---|
2274 | if (pNext(ph)==NULL) |
---|
2275 | { |
---|
2276 | p_SetCoeff(ph,n_Init(1,cf),r); |
---|
2277 | } |
---|
2278 | if (cf->cfSubringGcd==ndGcd) /* trivial gcd*/ return; |
---|
2279 | number h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */ |
---|
2280 | poly p; |
---|
2281 | if(n_IsOne(h,cf)) |
---|
2282 | { |
---|
2283 | goto content_finish; |
---|
2284 | } |
---|
2285 | p=ph; |
---|
2286 | // take the SubringGcd of all coeffs |
---|
2287 | while (p!=NULL) |
---|
2288 | { |
---|
2289 | n_Normalize(pGetCoeff(p),cf); |
---|
2290 | number d=n_SubringGcd(h,pGetCoeff(p),cf); |
---|
2291 | n_Delete(&h,cf); |
---|
2292 | h = d; |
---|
2293 | if(n_IsOne(h,cf)) |
---|
2294 | { |
---|
2295 | goto content_finish; |
---|
2296 | } |
---|
2297 | pIter(p); |
---|
2298 | } |
---|
2299 | // if found<>1, divide by it |
---|
2300 | p = ph; |
---|
2301 | while (p!=NULL) |
---|
2302 | { |
---|
2303 | number d = n_ExactDiv(pGetCoeff(p),h,cf); |
---|
2304 | p_SetCoeff(p,d,r); |
---|
2305 | pIter(p); |
---|
2306 | } |
---|
2307 | content_finish: |
---|
2308 | n_Delete(&h,r->cf); |
---|
2309 | // and last: check leading sign: |
---|
2310 | if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2311 | } |
---|
2312 | |
---|
2313 | #define CLEARENUMERATORS 1 |
---|
2314 | |
---|
2315 | void p_ContentForGB(poly ph, const ring r) |
---|
2316 | { |
---|
2317 | if(TEST_OPT_CONTENTSB) return; |
---|
2318 | assume( ph != NULL ); |
---|
2319 | |
---|
2320 | assume( r != NULL ); assume( r->cf != NULL ); |
---|
2321 | |
---|
2322 | |
---|
2323 | #if CLEARENUMERATORS |
---|
2324 | if( 0 ) |
---|
2325 | { |
---|
2326 | const coeffs C = r->cf; |
---|
2327 | // experimentall (recursive enumerator treatment) of alg. Ext! |
---|
2328 | CPolyCoeffsEnumerator itr(ph); |
---|
2329 | n_ClearContent(itr, r->cf); |
---|
2330 | |
---|
2331 | p_Test(ph, r); n_Test(pGetCoeff(ph), C); |
---|
2332 | assume(n_GreaterZero(pGetCoeff(ph), C)); // ?? |
---|
2333 | |
---|
2334 | // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2335 | return; |
---|
2336 | } |
---|
2337 | #endif |
---|
2338 | |
---|
2339 | |
---|
2340 | #ifdef HAVE_RINGS |
---|
2341 | if (rField_is_Ring(r)) |
---|
2342 | { |
---|
2343 | if (rField_has_Units(r)) |
---|
2344 | { |
---|
2345 | number k = n_GetUnit(pGetCoeff(ph),r->cf); |
---|
2346 | if (!n_IsOne(k,r->cf)) |
---|
2347 | { |
---|
2348 | number tmpGMP = k; |
---|
2349 | k = n_Invers(k,r->cf); |
---|
2350 | n_Delete(&tmpGMP,r->cf); |
---|
2351 | poly h = pNext(ph); |
---|
2352 | p_SetCoeff(ph, n_Mult(pGetCoeff(ph), k,r->cf),r); |
---|
2353 | while (h != NULL) |
---|
2354 | { |
---|
2355 | p_SetCoeff(h, n_Mult(pGetCoeff(h), k,r->cf),r); |
---|
2356 | pIter(h); |
---|
2357 | } |
---|
2358 | // assume( n_GreaterZero(pGetCoeff(ph),r->cf) ); |
---|
2359 | // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2360 | } |
---|
2361 | n_Delete(&k,r->cf); |
---|
2362 | } |
---|
2363 | return; |
---|
2364 | } |
---|
2365 | #endif |
---|
2366 | number h,d; |
---|
2367 | poly p; |
---|
2368 | |
---|
2369 | if(pNext(ph)==NULL) |
---|
2370 | { |
---|
2371 | p_SetCoeff(ph,n_Init(1,r->cf),r); |
---|
2372 | } |
---|
2373 | else |
---|
2374 | { |
---|
2375 | assume( pNext(ph) != NULL ); |
---|
2376 | #if CLEARENUMERATORS |
---|
2377 | if( nCoeff_is_Q(r->cf) ) |
---|
2378 | { |
---|
2379 | // experimentall (recursive enumerator treatment) of alg. Ext! |
---|
2380 | CPolyCoeffsEnumerator itr(ph); |
---|
2381 | n_ClearContent(itr, r->cf); |
---|
2382 | |
---|
2383 | p_Test(ph, r); n_Test(pGetCoeff(ph), r->cf); |
---|
2384 | assume(n_GreaterZero(pGetCoeff(ph), r->cf)); // ?? |
---|
2385 | |
---|
2386 | // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2387 | return; |
---|
2388 | } |
---|
2389 | #endif |
---|
2390 | |
---|
2391 | n_Normalize(pGetCoeff(ph),r->cf); |
---|
2392 | if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2393 | if (rField_is_Q(r)||(getCoeffType(r->cf)==n_transExt)) // should not be used anymore if CLEARENUMERATORS is 1 |
---|
2394 | { |
---|
2395 | h=p_InitContent(ph,r); |
---|
2396 | p=ph; |
---|
2397 | } |
---|
2398 | else |
---|
2399 | { |
---|
2400 | h=n_Copy(pGetCoeff(ph),r->cf); |
---|
2401 | p = pNext(ph); |
---|
2402 | } |
---|
2403 | while (p!=NULL) |
---|
2404 | { |
---|
2405 | n_Normalize(pGetCoeff(p),r->cf); |
---|
2406 | d=n_SubringGcd(h,pGetCoeff(p),r->cf); |
---|
2407 | n_Delete(&h,r->cf); |
---|
2408 | h = d; |
---|
2409 | if(n_IsOne(h,r->cf)) |
---|
2410 | { |
---|
2411 | break; |
---|
2412 | } |
---|
2413 | pIter(p); |
---|
2414 | } |
---|
2415 | //number tmp; |
---|
2416 | if(!n_IsOne(h,r->cf)) |
---|
2417 | { |
---|
2418 | p = ph; |
---|
2419 | while (p!=NULL) |
---|
2420 | { |
---|
2421 | //d = nDiv(pGetCoeff(p),h); |
---|
2422 | //tmp = nExactDiv(pGetCoeff(p),h); |
---|
2423 | //if (!nEqual(d,tmp)) |
---|
2424 | //{ |
---|
2425 | // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/"); |
---|
2426 | // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:"); |
---|
2427 | // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s); |
---|
2428 | //} |
---|
2429 | //nDelete(&tmp); |
---|
2430 | d = n_ExactDiv(pGetCoeff(p),h,r->cf); |
---|
2431 | p_SetCoeff(p,d,r); |
---|
2432 | pIter(p); |
---|
2433 | } |
---|
2434 | } |
---|
2435 | n_Delete(&h,r->cf); |
---|
2436 | if (rField_is_Q_a(r)) |
---|
2437 | { |
---|
2438 | // special handling for alg. ext.: |
---|
2439 | if (getCoeffType(r->cf)==n_algExt) |
---|
2440 | { |
---|
2441 | h = n_Init(1, r->cf->extRing->cf); |
---|
2442 | p=ph; |
---|
2443 | while (p!=NULL) |
---|
2444 | { // each monom: coeff in Q_a |
---|
2445 | poly c_n_n=(poly)pGetCoeff(p); |
---|
2446 | poly c_n=c_n_n; |
---|
2447 | while (c_n!=NULL) |
---|
2448 | { // each monom: coeff in Q |
---|
2449 | d=n_NormalizeHelper(h,pGetCoeff(c_n),r->cf->extRing->cf); |
---|
2450 | n_Delete(&h,r->cf->extRing->cf); |
---|
2451 | h=d; |
---|
2452 | pIter(c_n); |
---|
2453 | } |
---|
2454 | pIter(p); |
---|
2455 | } |
---|
2456 | /* h contains the 1/lcm of all denominators in c_n_n*/ |
---|
2457 | //n_Normalize(h,r->cf->extRing->cf); |
---|
2458 | if(!n_IsOne(h,r->cf->extRing->cf)) |
---|
2459 | { |
---|
2460 | p=ph; |
---|
2461 | while (p!=NULL) |
---|
2462 | { // each monom: coeff in Q_a |
---|
2463 | poly c_n=(poly)pGetCoeff(p); |
---|
2464 | while (c_n!=NULL) |
---|
2465 | { // each monom: coeff in Q |
---|
2466 | d=n_Mult(h,pGetCoeff(c_n),r->cf->extRing->cf); |
---|
2467 | n_Normalize(d,r->cf->extRing->cf); |
---|
2468 | n_Delete(&pGetCoeff(c_n),r->cf->extRing->cf); |
---|
2469 | pGetCoeff(c_n)=d; |
---|
2470 | pIter(c_n); |
---|
2471 | } |
---|
2472 | pIter(p); |
---|
2473 | } |
---|
2474 | } |
---|
2475 | n_Delete(&h,r->cf->extRing->cf); |
---|
2476 | } |
---|
2477 | /*else |
---|
2478 | { |
---|
2479 | // special handling for rat. functions.: |
---|
2480 | number hzz =NULL; |
---|
2481 | p=ph; |
---|
2482 | while (p!=NULL) |
---|
2483 | { // each monom: coeff in Q_a (Z_a) |
---|
2484 | fraction f=(fraction)pGetCoeff(p); |
---|
2485 | poly c_n=NUM(f); |
---|
2486 | if (hzz==NULL) |
---|
2487 | { |
---|
2488 | hzz=n_Copy(pGetCoeff(c_n),r->cf->extRing->cf); |
---|
2489 | pIter(c_n); |
---|
2490 | } |
---|
2491 | while ((c_n!=NULL)&&(!n_IsOne(hzz,r->cf->extRing->cf))) |
---|
2492 | { // each monom: coeff in Q (Z) |
---|
2493 | d=n_Gcd(hzz,pGetCoeff(c_n),r->cf->extRing->cf); |
---|
2494 | n_Delete(&hzz,r->cf->extRing->cf); |
---|
2495 | hzz=d; |
---|
2496 | pIter(c_n); |
---|
2497 | } |
---|
2498 | pIter(p); |
---|
2499 | } |
---|
2500 | // hzz contains the gcd of all numerators in f |
---|
2501 | h=n_Invers(hzz,r->cf->extRing->cf); |
---|
2502 | n_Delete(&hzz,r->cf->extRing->cf); |
---|
2503 | n_Normalize(h,r->cf->extRing->cf); |
---|
2504 | if(!n_IsOne(h,r->cf->extRing->cf)) |
---|
2505 | { |
---|
2506 | p=ph; |
---|
2507 | while (p!=NULL) |
---|
2508 | { // each monom: coeff in Q_a (Z_a) |
---|
2509 | fraction f=(fraction)pGetCoeff(p); |
---|
2510 | NUM(f)=__p_Mult_nn(NUM(f),h,r->cf->extRing); |
---|
2511 | p_Normalize(NUM(f),r->cf->extRing); |
---|
2512 | pIter(p); |
---|
2513 | } |
---|
2514 | } |
---|
2515 | n_Delete(&h,r->cf->extRing->cf); |
---|
2516 | }*/ |
---|
2517 | } |
---|
2518 | } |
---|
2519 | if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2520 | } |
---|
2521 | |
---|
2522 | // Not yet? |
---|
2523 | #if 1 // currently only used by Singular/janet |
---|
2524 | void p_SimpleContent(poly ph, int smax, const ring r) |
---|
2525 | { |
---|
2526 | if(TEST_OPT_CONTENTSB) return; |
---|
2527 | if (ph==NULL) return; |
---|
2528 | if (pNext(ph)==NULL) |
---|
2529 | { |
---|
2530 | p_SetCoeff(ph,n_Init(1,r->cf),r); |
---|
2531 | return; |
---|
2532 | } |
---|
2533 | if ((pNext(pNext(ph))==NULL)||(!rField_is_Q(r))) |
---|
2534 | { |
---|
2535 | return; |
---|
2536 | } |
---|
2537 | number d=p_InitContent(ph,r); |
---|
2538 | if (n_Size(d,r->cf)<=smax) |
---|
2539 | { |
---|
2540 | //if (TEST_OPT_PROT) PrintS("G"); |
---|
2541 | return; |
---|
2542 | } |
---|
2543 | |
---|
2544 | poly p=ph; |
---|
2545 | number h=d; |
---|
2546 | if (smax==1) smax=2; |
---|
2547 | while (p!=NULL) |
---|
2548 | { |
---|
2549 | #if 0 |
---|
2550 | d=n_Gcd(h,pGetCoeff(p),r->cf); |
---|
2551 | n_Delete(&h,r->cf); |
---|
2552 | h = d; |
---|
2553 | #else |
---|
2554 | STATISTIC(n_Gcd); nlInpGcd(h,pGetCoeff(p),r->cf); |
---|
2555 | #endif |
---|
2556 | if(n_Size(h,r->cf)<smax) |
---|
2557 | { |
---|
2558 | //if (TEST_OPT_PROT) PrintS("g"); |
---|
2559 | return; |
---|
2560 | } |
---|
2561 | pIter(p); |
---|
2562 | } |
---|
2563 | p = ph; |
---|
2564 | if (!n_GreaterZero(pGetCoeff(p),r->cf)) h=n_InpNeg(h,r->cf); |
---|
2565 | if(n_IsOne(h,r->cf)) return; |
---|
2566 | //if (TEST_OPT_PROT) PrintS("c"); |
---|
2567 | while (p!=NULL) |
---|
2568 | { |
---|
2569 | #if 1 |
---|
2570 | d = n_ExactDiv(pGetCoeff(p),h,r->cf); |
---|
2571 | p_SetCoeff(p,d,r); |
---|
2572 | #else |
---|
2573 | STATISTIC(n_ExactDiv); nlInpExactDiv(pGetCoeff(p),h,r->cf); // no such function... ? |
---|
2574 | #endif |
---|
2575 | pIter(p); |
---|
2576 | } |
---|
2577 | n_Delete(&h,r->cf); |
---|
2578 | } |
---|
2579 | #endif |
---|
2580 | |
---|
2581 | number p_InitContent(poly ph, const ring r) |
---|
2582 | // only for coefficients in Q and rational functions |
---|
2583 | #if 0 |
---|
2584 | { |
---|
2585 | assume(!TEST_OPT_CONTENTSB); |
---|
2586 | assume(ph!=NULL); |
---|
2587 | assume(pNext(ph)!=NULL); |
---|
2588 | assume(rField_is_Q(r)); |
---|
2589 | if (pNext(pNext(ph))==NULL) |
---|
2590 | { |
---|
2591 | return n_GetNumerator(pGetCoeff(pNext(ph)),r->cf); |
---|
2592 | } |
---|
2593 | poly p=ph; |
---|
2594 | number n1=n_GetNumerator(pGetCoeff(p),r->cf); |
---|
2595 | pIter(p); |
---|
2596 | number n2=n_GetNumerator(pGetCoeff(p),r->cf); |
---|
2597 | pIter(p); |
---|
2598 | number d; |
---|
2599 | number t; |
---|
2600 | loop |
---|
2601 | { |
---|
2602 | nlNormalize(pGetCoeff(p),r->cf); |
---|
2603 | t=n_GetNumerator(pGetCoeff(p),r->cf); |
---|
2604 | if (nlGreaterZero(t,r->cf)) |
---|
2605 | d=nlAdd(n1,t,r->cf); |
---|
2606 | else |
---|
2607 | d=nlSub(n1,t,r->cf); |
---|
2608 | nlDelete(&t,r->cf); |
---|
2609 | nlDelete(&n1,r->cf); |
---|
2610 | n1=d; |
---|
2611 | pIter(p); |
---|
2612 | if (p==NULL) break; |
---|
2613 | nlNormalize(pGetCoeff(p),r->cf); |
---|
2614 | t=n_GetNumerator(pGetCoeff(p),r->cf); |
---|
2615 | if (nlGreaterZero(t,r->cf)) |
---|
2616 | d=nlAdd(n2,t,r->cf); |
---|
2617 | else |
---|
2618 | d=nlSub(n2,t,r->cf); |
---|
2619 | nlDelete(&t,r->cf); |
---|
2620 | nlDelete(&n2,r->cf); |
---|
2621 | n2=d; |
---|
2622 | pIter(p); |
---|
2623 | if (p==NULL) break; |
---|
2624 | } |
---|
2625 | d=nlGcd(n1,n2,r->cf); |
---|
2626 | nlDelete(&n1,r->cf); |
---|
2627 | nlDelete(&n2,r->cf); |
---|
2628 | return d; |
---|
2629 | } |
---|
2630 | #else |
---|
2631 | { |
---|
2632 | /* ph has al least 2 terms */ |
---|
2633 | number d=pGetCoeff(ph); |
---|
2634 | int s=n_Size(d,r->cf); |
---|
2635 | pIter(ph); |
---|
2636 | number d2=pGetCoeff(ph); |
---|
2637 | int s2=n_Size(d2,r->cf); |
---|
2638 | pIter(ph); |
---|
2639 | if (ph==NULL) |
---|
2640 | { |
---|
2641 | if (s<s2) return n_Copy(d,r->cf); |
---|
2642 | else return n_Copy(d2,r->cf); |
---|
2643 | } |
---|
2644 | do |
---|
2645 | { |
---|
2646 | number nd=pGetCoeff(ph); |
---|
2647 | int ns=n_Size(nd,r->cf); |
---|
2648 | if (ns<=2) |
---|
2649 | { |
---|
2650 | s2=s; |
---|
2651 | d2=d; |
---|
2652 | d=nd; |
---|
2653 | s=ns; |
---|
2654 | break; |
---|
2655 | } |
---|
2656 | else if (ns<s) |
---|
2657 | { |
---|
2658 | s2=s; |
---|
2659 | d2=d; |
---|
2660 | d=nd; |
---|
2661 | s=ns; |
---|
2662 | } |
---|
2663 | pIter(ph); |
---|
2664 | } |
---|
2665 | while(ph!=NULL); |
---|
2666 | return n_SubringGcd(d,d2,r->cf); |
---|
2667 | } |
---|
2668 | #endif |
---|
2669 | |
---|
2670 | //void pContent(poly ph) |
---|
2671 | //{ |
---|
2672 | // number h,d; |
---|
2673 | // poly p; |
---|
2674 | // |
---|
2675 | // p = ph; |
---|
2676 | // if(pNext(p)==NULL) |
---|
2677 | // { |
---|
2678 | // pSetCoeff(p,nInit(1)); |
---|
2679 | // } |
---|
2680 | // else |
---|
2681 | // { |
---|
2682 | //#ifdef PDEBUG |
---|
2683 | // if (!pTest(p)) return; |
---|
2684 | //#endif |
---|
2685 | // nNormalize(pGetCoeff(p)); |
---|
2686 | // if(!nGreaterZero(pGetCoeff(ph))) |
---|
2687 | // { |
---|
2688 | // ph = pNeg(ph); |
---|
2689 | // nNormalize(pGetCoeff(p)); |
---|
2690 | // } |
---|
2691 | // h=pGetCoeff(p); |
---|
2692 | // pIter(p); |
---|
2693 | // while (p!=NULL) |
---|
2694 | // { |
---|
2695 | // nNormalize(pGetCoeff(p)); |
---|
2696 | // if (nGreater(h,pGetCoeff(p))) h=pGetCoeff(p); |
---|
2697 | // pIter(p); |
---|
2698 | // } |
---|
2699 | // h=nCopy(h); |
---|
2700 | // p=ph; |
---|
2701 | // while (p!=NULL) |
---|
2702 | // { |
---|
2703 | // d=n_Gcd(h,pGetCoeff(p)); |
---|
2704 | // nDelete(&h); |
---|
2705 | // h = d; |
---|
2706 | // if(nIsOne(h)) |
---|
2707 | // { |
---|
2708 | // break; |
---|
2709 | // } |
---|
2710 | // pIter(p); |
---|
2711 | // } |
---|
2712 | // p = ph; |
---|
2713 | // //number tmp; |
---|
2714 | // if(!nIsOne(h)) |
---|
2715 | // { |
---|
2716 | // while (p!=NULL) |
---|
2717 | // { |
---|
2718 | // d = nExactDiv(pGetCoeff(p),h); |
---|
2719 | // pSetCoeff(p,d); |
---|
2720 | // pIter(p); |
---|
2721 | // } |
---|
2722 | // } |
---|
2723 | // nDelete(&h); |
---|
2724 | // if ( (nGetChar() == 1) || (nGetChar() < 0) ) /* Q[a],Q(a),Zp[a],Z/p(a) */ |
---|
2725 | // { |
---|
2726 | // pTest(ph); |
---|
2727 | // singclap_divide_content(ph); |
---|
2728 | // pTest(ph); |
---|
2729 | // } |
---|
2730 | // } |
---|
2731 | //} |
---|
2732 | #if 0 |
---|
2733 | void p_Content(poly ph, const ring r) |
---|
2734 | { |
---|
2735 | number h,d; |
---|
2736 | poly p; |
---|
2737 | |
---|
2738 | if(pNext(ph)==NULL) |
---|
2739 | { |
---|
2740 | p_SetCoeff(ph,n_Init(1,r->cf),r); |
---|
2741 | } |
---|
2742 | else |
---|
2743 | { |
---|
2744 | n_Normalize(pGetCoeff(ph),r->cf); |
---|
2745 | if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r); |
---|
2746 | h=n_Copy(pGetCoeff(ph),r->cf); |
---|
2747 | p = pNext(ph); |
---|
2748 | while (p!=NULL) |
---|
2749 | { |
---|
2750 | n_Normalize(pGetCoeff(p),r->cf); |
---|
2751 | d=n_Gcd(h,pGetCoeff(p),r->cf); |
---|
2752 | n_Delete(&h,r->cf); |
---|
2753 | h = d; |
---|
2754 | if(n_IsOne(h,r->cf)) |
---|
2755 | { |
---|
2756 | break; |
---|
2757 | } |
---|
2758 | pIter(p); |
---|
2759 | } |
---|
2760 | p = ph; |
---|
2761 | //number tmp; |
---|
2762 | if(!n_IsOne(h,r->cf)) |
---|
2763 | { |
---|
2764 | while (p!=NULL) |
---|
2765 | { |
---|
2766 | //d = nDiv(pGetCoeff(p),h); |
---|
2767 | //tmp = nExactDiv(pGetCoeff(p),h); |
---|
2768 | //if (!nEqual(d,tmp)) |
---|
2769 | //{ |
---|
2770 | // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/"); |
---|
2771 | // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:"); |
---|
2772 | // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s); |
---|
2773 | //} |
---|
2774 | //nDelete(&tmp); |
---|
2775 | d = n_ExactDiv(pGetCoeff(p),h,r->cf); |
---|
2776 | p_SetCoeff(p,d,r->cf); |
---|
2777 | pIter(p); |
---|
2778 | } |
---|
2779 | } |
---|
2780 | n_Delete(&h,r->cf); |
---|
2781 | //if ( (n_GetChar(r) == 1) || (n_GetChar(r) < 0) ) /* Q[a],Q(a),Zp[a],Z/p(a) */ |
---|
2782 | //{ |
---|
2783 | // singclap_divide_content(ph); |
---|
2784 | // if(!n_GreaterZero(pGetCoeff(ph),r)) ph = p_Neg(ph,r); |
---|
2785 | //} |
---|
2786 | } |
---|
2787 | } |
---|
2788 | #endif |
---|
2789 | /* ---------------------------------------------------------------------------*/ |
---|
2790 | /* cleardenom suff */ |
---|
2791 | poly p_Cleardenom(poly p, const ring r) |
---|
2792 | { |
---|
2793 | if( p == NULL ) |
---|
2794 | return NULL; |
---|
2795 | |
---|
2796 | assume( r != NULL ); assume( r->cf != NULL ); const coeffs C = r->cf; |
---|
2797 | |
---|
2798 | #if CLEARENUMERATORS |
---|
2799 | if( 0 ) |
---|
2800 | { |
---|
2801 | CPolyCoeffsEnumerator itr(p); |
---|
2802 | n_ClearDenominators(itr, C); |
---|
2803 | n_ClearContent(itr, C); // divide out the content |
---|
2804 | p_Test(p, r); n_Test(pGetCoeff(p), C); |
---|
2805 | assume(n_GreaterZero(pGetCoeff(p), C)); // ?? |
---|
2806 | // if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r); |
---|
2807 | return p; |
---|
2808 | } |
---|
2809 | #endif |
---|
2810 | |
---|
2811 | number d, h; |
---|
2812 | |
---|
2813 | if (rField_is_Ring(r)) |
---|
2814 | { |
---|
2815 | p_ContentForGB(p,r); |
---|
2816 | if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r); |
---|
2817 | return p; |
---|
2818 | } |
---|
2819 | |
---|
2820 | if (rField_is_Zp(r) && TEST_OPT_INTSTRATEGY) |
---|
2821 | { |
---|
2822 | if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r); |
---|
2823 | return p; |
---|
2824 | } |
---|
2825 | |
---|
2826 | assume(p != NULL); |
---|
2827 | |
---|
2828 | if(pNext(p)==NULL) |
---|
2829 | { |
---|
2830 | if (!TEST_OPT_CONTENTSB |
---|
2831 | && !rField_is_Ring(r)) |
---|
2832 | p_SetCoeff(p,n_Init(1,r->cf),r); |
---|
2833 | else if(!n_GreaterZero(pGetCoeff(p),C)) |
---|
2834 | p = p_Neg(p,r); |
---|
2835 | return p; |
---|
2836 | } |
---|
2837 | |
---|
2838 | assume(pNext(p)!=NULL); |
---|
2839 | poly start=p; |
---|
2840 | |
---|
2841 | #if 0 && CLEARENUMERATORS |
---|
2842 | //CF: does not seem to work that well.. |
---|
2843 | |
---|
2844 | if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) ) |
---|
2845 | { |
---|
2846 | CPolyCoeffsEnumerator itr(p); |
---|
2847 | n_ClearDenominators(itr, C); |
---|
2848 | n_ClearContent(itr, C); // divide out the content |
---|
2849 | p_Test(p, r); n_Test(pGetCoeff(p), C); |
---|
2850 | assume(n_GreaterZero(pGetCoeff(p), C)); // ?? |
---|
2851 | // if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r); |
---|
2852 | return start; |
---|
2853 | } |
---|
2854 | #endif |
---|
2855 | |
---|
2856 | if(1) |
---|
2857 | { |
---|
2858 | // get lcm of all denominators ---------------------------------- |
---|
2859 | h = n_Init(1,r->cf); |
---|
2860 | while (p!=NULL) |
---|
2861 | { |
---|
2862 | n_Normalize(pGetCoeff(p),r->cf); |
---|
2863 | d=n_NormalizeHelper(h,pGetCoeff(p),r->cf); |
---|
2864 | n_Delete(&h,r->cf); |
---|
2865 | h=d; |
---|
2866 | pIter(p); |
---|
2867 | } |
---|
2868 | /* h now contains the 1/lcm of all denominators */ |
---|
2869 | if(!n_IsOne(h,r->cf)) |
---|
2870 | { |
---|
2871 | // multiply by the lcm of all denominators |
---|
2872 | p = start; |
---|
2873 | while (p!=NULL) |
---|
2874 | { |
---|
2875 | d=n_Mult(h,pGetCoeff(p),r->cf); |
---|
2876 | n_Normalize(d,r->cf); |
---|
2877 | p_SetCoeff(p,d,r); |
---|
2878 | pIter(p); |
---|
2879 | } |
---|
2880 | } |
---|
2881 | n_Delete(&h,r->cf); |
---|
2882 | p=start; |
---|
2883 | |
---|
2884 | p_ContentForGB(p,r); |
---|
2885 | #ifdef HAVE_RATGRING |
---|
2886 | if (rIsRatGRing(r)) |
---|
2887 | { |
---|
2888 | /* quick unit detection in the rational case is done in gr_nc_bba */ |
---|
2889 | p_ContentRat(p, r); |
---|
2890 | start=p; |
---|
2891 | } |
---|
2892 | #endif |
---|
2893 | } |
---|
2894 | |
---|
2895 | if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r); |
---|
2896 | |
---|
2897 | return start; |
---|
2898 | } |
---|
2899 | |
---|
2900 | void p_Cleardenom_n(poly ph,const ring r,number &c) |
---|
2901 | { |
---|
2902 | const coeffs C = r->cf; |
---|
2903 | number d, h; |
---|
2904 | |
---|
2905 | assume( ph != NULL ); |
---|
2906 | |
---|
2907 | poly p = ph; |
---|
2908 | |
---|
2909 | #if CLEARENUMERATORS |
---|
2910 | if( 0 ) |
---|
2911 | { |
---|
2912 | CPolyCoeffsEnumerator itr(ph); |
---|
2913 | |
---|
2914 | n_ClearDenominators(itr, d, C); // multiply with common denom. d |
---|
2915 | n_ClearContent(itr, h, C); // divide by the content h |
---|
2916 | |
---|
2917 | c = n_Div(d, h, C); // d/h |
---|
2918 | |
---|
2919 | n_Delete(&d, C); |
---|
2920 | n_Delete(&h, C); |
---|
2921 | |
---|
2922 | n_Test(c, C); |
---|
2923 | |
---|
2924 | p_Test(ph, r); n_Test(pGetCoeff(ph), C); |
---|
2925 | assume(n_GreaterZero(pGetCoeff(ph), C)); // ?? |
---|
2926 | /* |
---|
2927 | if(!n_GreaterZero(pGetCoeff(ph),C)) |
---|
2928 | { |
---|
2929 | ph = p_Neg(ph,r); |
---|
2930 | c = n_InpNeg(c, C); |
---|
2931 | } |
---|
2932 | */ |
---|
2933 | return; |
---|
2934 | } |
---|
2935 | #endif |
---|
2936 | |
---|
2937 | |
---|
2938 | if( pNext(p) == NULL ) |
---|
2939 | { |
---|
2940 | if(!TEST_OPT_CONTENTSB) |
---|
2941 | { |
---|
2942 | c=n_Invers(pGetCoeff(p), C); |
---|
2943 | p_SetCoeff(p, n_Init(1, C), r); |
---|
2944 | } |
---|
2945 | else |
---|
2946 | { |
---|
2947 | c=n_Init(1,C); |
---|
2948 | } |
---|
2949 | |
---|
2950 | if(!n_GreaterZero(pGetCoeff(ph),C)) |
---|
2951 | { |
---|
2952 | ph = p_Neg(ph,r); |
---|
2953 | c = n_InpNeg(c, C); |
---|
2954 | } |
---|
2955 | |
---|
2956 | return; |
---|
2957 | } |
---|
2958 | if (TEST_OPT_CONTENTSB) { c=n_Init(1,C); return; } |
---|
2959 | |
---|
2960 | assume( pNext(p) != NULL ); |
---|
2961 | |
---|
2962 | #if CLEARENUMERATORS |
---|
2963 | if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) ) |
---|
2964 | { |
---|
2965 | CPolyCoeffsEnumerator itr(ph); |
---|
2966 | |
---|
2967 | n_ClearDenominators(itr, d, C); // multiply with common denom. d |
---|
2968 | n_ClearContent(itr, h, C); // divide by the content h |
---|
2969 | |
---|
2970 | c = n_Div(d, h, C); // d/h |
---|
2971 | |
---|
2972 | n_Delete(&d, C); |
---|
2973 | n_Delete(&h, C); |
---|
2974 | |
---|
2975 | n_Test(c, C); |
---|
2976 | |
---|
2977 | p_Test(ph, r); n_Test(pGetCoeff(ph), C); |
---|
2978 | assume(n_GreaterZero(pGetCoeff(ph), C)); // ?? |
---|
2979 | /* |
---|
2980 | if(!n_GreaterZero(pGetCoeff(ph),C)) |
---|
2981 | { |
---|
2982 | ph = p_Neg(ph,r); |
---|
2983 | c = n_InpNeg(c, C); |
---|
2984 | } |
---|
2985 | */ |
---|
2986 | return; |
---|
2987 | } |
---|
2988 | #endif |
---|
2989 | |
---|
2990 | |
---|
2991 | |
---|
2992 | |
---|
2993 | if(1) |
---|
2994 | { |
---|
2995 | h = n_Init(1,r->cf); |
---|
2996 | while (p!=NULL) |
---|
2997 | { |
---|
2998 | n_Normalize(pGetCoeff(p),r->cf); |
---|
2999 | d=n_NormalizeHelper(h,pGetCoeff(p),r->cf); |
---|
3000 | n_Delete(&h,r->cf); |
---|
3001 | h=d; |
---|
3002 | pIter(p); |
---|
3003 | } |
---|
3004 | c=h; |
---|
3005 | /* contains the 1/lcm of all denominators */ |
---|
3006 | if(!n_IsOne(h,r->cf)) |
---|
3007 | { |
---|
3008 | p = ph; |
---|
3009 | while (p!=NULL) |
---|
3010 | { |
---|
3011 | /* should be: // NOTE: don't use ->coef!!!! |
---|
3012 | * number hh; |
---|
3013 | * nGetDenom(p->coef,&hh); |
---|
3014 | * nMult(&h,&hh,&d); |
---|
3015 | * nNormalize(d); |
---|
3016 | * nDelete(&hh); |
---|
3017 | * nMult(d,p->coef,&hh); |
---|
3018 | * nDelete(&d); |
---|
3019 | * nDelete(&(p->coef)); |
---|
3020 | * p->coef =hh; |
---|
3021 | */ |
---|
3022 | d=n_Mult(h,pGetCoeff(p),r->cf); |
---|
3023 | n_Normalize(d,r->cf); |
---|
3024 | p_SetCoeff(p,d,r); |
---|
3025 | pIter(p); |
---|
3026 | } |
---|
3027 | if (rField_is_Q_a(r)) |
---|
3028 | { |
---|
3029 | loop |
---|
3030 | { |
---|
3031 | h = n_Init(1,r->cf); |
---|
3032 | p=ph; |
---|
3033 | while (p!=NULL) |
---|
3034 | { |
---|
3035 | d=n_NormalizeHelper(h,pGetCoeff(p),r->cf); |
---|
3036 | n_Delete(&h,r->cf); |
---|
3037 | h=d; |
---|
3038 | pIter(p); |
---|
3039 | } |
---|
3040 | /* contains the 1/lcm of all denominators */ |
---|
3041 | if(!n_IsOne(h,r->cf)) |
---|
3042 | { |
---|
3043 | p = ph; |
---|
3044 | while (p!=NULL) |
---|
3045 | { |
---|
3046 | /* should be: // NOTE: don't use ->coef!!!! |
---|
3047 | * number hh; |
---|
3048 | * nGetDenom(p->coef,&hh); |
---|
3049 | * nMult(&h,&hh,&d); |
---|
3050 | * nNormalize(d); |
---|
3051 | * nDelete(&hh); |
---|
3052 | * nMult(d,p->coef,&hh); |
---|
3053 | * nDelete(&d); |
---|
3054 | * nDelete(&(p->coef)); |
---|
3055 | * p->coef =hh; |
---|
3056 | */ |
---|
3057 | d=n_Mult(h,pGetCoeff(p),r->cf); |
---|
3058 | n_Normalize(d,r->cf); |
---|
3059 | p_SetCoeff(p,d,r); |
---|
3060 | pIter(p); |
---|
3061 | } |
---|
3062 | number t=n_Mult(c,h,r->cf); |
---|
3063 | n_Delete(&c,r->cf); |
---|
3064 | c=t; |
---|
3065 | } |
---|
3066 | else |
---|
3067 | { |
---|
3068 | break; |
---|
3069 | } |
---|
3070 | n_Delete(&h,r->cf); |
---|
3071 | } |
---|
3072 | } |
---|
3073 | } |
---|
3074 | } |
---|
3075 | |
---|
3076 | if(!n_GreaterZero(pGetCoeff(ph),C)) |
---|
3077 | { |
---|
3078 | ph = p_Neg(ph,r); |
---|
3079 | c = n_InpNeg(c, C); |
---|
3080 | } |
---|
3081 | |
---|
3082 | } |
---|
3083 | |
---|
3084 | // normalization: for poly over Q: make poly primitive, integral |
---|
3085 | // Qa make poly integral with leading |
---|
3086 | // coefficient minimal in N |
---|
3087 | // Q(t) make poly primitive, integral |
---|
3088 | |
---|
3089 | void p_ProjectiveUnique(poly ph, const ring r) |
---|
3090 | { |
---|
3091 | if( ph == NULL ) |
---|
3092 | return; |
---|
3093 | |
---|
3094 | assume( r != NULL ); assume( r->cf != NULL ); const coeffs C = r->cf; |
---|
3095 | |
---|
3096 | number h; |
---|
3097 | poly p; |
---|
3098 | |
---|
3099 | if (rField_is_Ring(r)) |
---|
3100 | { |
---|
3101 | p_ContentForGB(ph,r); |
---|
3102 | if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r); |
---|
3103 | assume( n_GreaterZero(pGetCoeff(ph),C) ); |
---|
3104 | return; |
---|
3105 | } |
---|
3106 | |
---|
3107 | if (rField_is_Zp(r) && TEST_OPT_INTSTRATEGY) |
---|
3108 | { |
---|
3109 | assume( n_GreaterZero(pGetCoeff(ph),C) ); |
---|
3110 | if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r); |
---|
3111 | return; |
---|
3112 | } |
---|
3113 | p = ph; |
---|
3114 | |
---|
3115 | assume(p != NULL); |
---|
3116 | |
---|
3117 | if(pNext(p)==NULL) // a monomial |
---|
3118 | { |
---|
3119 | p_SetCoeff(p, n_Init(1, C), r); |
---|
3120 | return; |
---|
3121 | } |
---|
3122 | |
---|
3123 | assume(pNext(p)!=NULL); |
---|
3124 | |
---|
3125 | if(!rField_is_Q(r) && !nCoeff_is_transExt(C)) |
---|
3126 | { |
---|
3127 | h = p_GetCoeff(p, C); |
---|
3128 | number hInv = n_Invers(h, C); |
---|
3129 | pIter(p); |
---|
3130 | while (p!=NULL) |
---|
3131 | { |
---|
3132 | p_SetCoeff(p, n_Mult(p_GetCoeff(p, C), hInv, C), r); |
---|
3133 | pIter(p); |
---|
3134 | } |
---|
3135 | n_Delete(&hInv, C); |
---|
3136 | p = ph; |
---|
3137 | p_SetCoeff(p, n_Init(1, C), r); |
---|
3138 | } |
---|
3139 | |
---|
3140 | p_Cleardenom(ph, r); //removes also Content |
---|
3141 | |
---|
3142 | |
---|
3143 | /* normalize ph over a transcendental extension s.t. |
---|
3144 | lead (ph) is > 0 if extRing->cf == Q |
---|
3145 | or lead (ph) is monic if extRing->cf == Zp*/ |
---|
3146 | if (nCoeff_is_transExt(C)) |
---|
3147 | { |
---|
3148 | p= ph; |
---|
3149 | h= p_GetCoeff (p, C); |
---|
3150 | fraction f = (fraction) h; |
---|
3151 | number n=p_GetCoeff (NUM (f),C->extRing->cf); |
---|
3152 | if (rField_is_Q (C->extRing)) |
---|
3153 | { |
---|
3154 | if (!n_GreaterZero(n,C->extRing->cf)) |
---|
3155 | { |
---|
3156 | p=p_Neg (p,r); |
---|
3157 | } |
---|
3158 | } |
---|
3159 | else if (rField_is_Zp(C->extRing)) |
---|
3160 | { |
---|
3161 | if (!n_IsOne (n, C->extRing->cf)) |
---|
3162 | { |
---|
3163 | n=n_Invers (n,C->extRing->cf); |
---|
3164 | nMapFunc nMap; |
---|
3165 | nMap= n_SetMap (C->extRing->cf, C); |
---|
3166 | number ninv= nMap (n,C->extRing->cf, C); |
---|
3167 | p=__p_Mult_nn (p, ninv, r); |
---|
3168 | n_Delete (&ninv, C); |
---|
3169 | n_Delete (&n, C->extRing->cf); |
---|
3170 | } |
---|
3171 | } |
---|
3172 | p= ph; |
---|
3173 | } |
---|
3174 | |
---|
3175 | return; |
---|
3176 | } |
---|
3177 | |
---|
3178 | #if 0 /*unused*/ |
---|
3179 | number p_GetAllDenom(poly ph, const ring r) |
---|
3180 | { |
---|
3181 | number d=n_Init(1,r->cf); |
---|
3182 | poly p = ph; |
---|
3183 | |
---|
3184 | while (p!=NULL) |
---|
3185 | { |
---|
3186 | number h=n_GetDenom(pGetCoeff(p),r->cf); |
---|
3187 | if (!n_IsOne(h,r->cf)) |
---|
3188 | { |
---|
3189 | number dd=n_Mult(d,h,r->cf); |
---|
3190 | n_Delete(&d,r->cf); |
---|
3191 | d=dd; |
---|
3192 | } |
---|
3193 | n_Delete(&h,r->cf); |
---|
3194 | pIter(p); |
---|
3195 | } |
---|
3196 | return d; |
---|
3197 | } |
---|
3198 | #endif |
---|
3199 | |
---|
3200 | int p_Size(poly p, const ring r) |
---|
3201 | { |
---|
3202 | int count = 0; |
---|
3203 | if (r->cf->has_simple_Alloc) |
---|
3204 | return pLength(p); |
---|
3205 | while ( p != NULL ) |
---|
3206 | { |
---|
3207 | count+= n_Size( pGetCoeff( p ), r->cf ); |
---|
3208 | pIter( p ); |
---|
3209 | } |
---|
3210 | return count; |
---|
3211 | } |
---|
3212 | |
---|
3213 | /*2 |
---|
3214 | *make p homogeneous by multiplying the monomials by powers of x_varnum |
---|
3215 | *assume: deg(var(varnum))==1 |
---|
3216 | */ |
---|
3217 | poly p_Homogen (poly p, int varnum, const ring r) |
---|
3218 | { |
---|
3219 | pFDegProc deg; |
---|
3220 | if (r->pLexOrder && (r->order[0]==ringorder_lp)) |
---|
3221 | deg=p_Totaldegree; |
---|
3222 | else |
---|
3223 | deg=r->pFDeg; |
---|
3224 | |
---|
3225 | poly q=NULL, qn; |
---|
3226 | int o,ii; |
---|
3227 | sBucket_pt bp; |
---|
3228 | |
---|
3229 | if (p!=NULL) |
---|
3230 | { |
---|
3231 | if ((varnum < 1) || (varnum > rVar(r))) |
---|
3232 | { |
---|
3233 | return NULL; |
---|
3234 | } |
---|
3235 | o=deg(p,r); |
---|
3236 | q=pNext(p); |
---|
3237 | while (q != NULL) |
---|
3238 | { |
---|
3239 | ii=deg(q,r); |
---|
3240 | if (ii>o) o=ii; |
---|
3241 | pIter(q); |
---|
3242 | } |
---|
3243 | q = p_Copy(p,r); |
---|
3244 | bp = sBucketCreate(r); |
---|
3245 | while (q != NULL) |
---|
3246 | { |
---|
3247 | ii = o-deg(q,r); |
---|
3248 | if (ii!=0) |
---|
3249 | { |
---|
3250 | p_AddExp(q,varnum, (long)ii,r); |
---|
3251 | p_Setm(q,r); |
---|
3252 | } |
---|
3253 | qn = pNext(q); |
---|
3254 | pNext(q) = NULL; |
---|
3255 | sBucket_Add_m(bp, q); |
---|
3256 | q = qn; |
---|
3257 | } |
---|
3258 | sBucketDestroyAdd(bp, &q, &ii); |
---|
3259 | } |
---|
3260 | return q; |
---|
3261 | } |
---|
3262 | |
---|
3263 | /*2 |
---|
3264 | *tests if p is homogeneous with respect to the actual weigths |
---|
3265 | */ |
---|
3266 | BOOLEAN p_IsHomogeneous (poly p, const ring r) |
---|
3267 | { |
---|
3268 | poly qp=p; |
---|
3269 | int o; |
---|
3270 | |
---|
3271 | if ((p == NULL) || (pNext(p) == NULL)) return TRUE; |
---|
3272 | pFDegProc d; |
---|
3273 | if (r->pLexOrder && (r->order[0]==ringorder_lp)) |
---|
3274 | d=p_Totaldegree; |
---|
3275 | else |
---|
3276 | d=r->pFDeg; |
---|
3277 | o = d(p,r); |
---|
3278 | do |
---|
3279 | { |
---|
3280 | if (d(qp,r) != o) return FALSE; |
---|
3281 | pIter(qp); |
---|
3282 | } |
---|
3283 | while (qp != NULL); |
---|
3284 | return TRUE; |
---|
3285 | } |
---|
3286 | |
---|
3287 | /*----------utilities for syzygies--------------*/ |
---|
3288 | BOOLEAN p_VectorHasUnitB(poly p, int * k, const ring r) |
---|
3289 | { |
---|
3290 | poly q=p,qq; |
---|
3291 | int i; |
---|
3292 | |
---|
3293 | while (q!=NULL) |
---|
3294 | { |
---|
3295 | if (p_LmIsConstantComp(q,r)) |
---|
3296 | { |
---|
3297 | i = __p_GetComp(q,r); |
---|
3298 | qq = p; |
---|
3299 | while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq); |
---|
3300 | if (qq == q) |
---|
3301 | { |
---|
3302 | *k = i; |
---|
3303 | return TRUE; |
---|
3304 | } |
---|
3305 | } |
---|
3306 | pIter(q); |
---|
3307 | } |
---|
3308 | return FALSE; |
---|
3309 | } |
---|
3310 | |
---|
3311 | void p_VectorHasUnit(poly p, int * k, int * len, const ring r) |
---|
3312 | { |
---|
3313 | poly q=p,qq; |
---|
3314 | int i,j=0; |
---|
3315 | |
---|
3316 | *len = 0; |
---|
3317 | while (q!=NULL) |
---|
3318 | { |
---|
3319 | if (p_LmIsConstantComp(q,r)) |
---|
3320 | { |
---|
3321 | i = __p_GetComp(q,r); |
---|
3322 | qq = p; |
---|
3323 | while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq); |
---|
3324 | if (qq == q) |
---|
3325 | { |
---|
3326 | j = 0; |
---|
3327 | while (qq!=NULL) |
---|
3328 | { |
---|
3329 | if (__p_GetComp(qq,r)==i) j++; |
---|
3330 | pIter(qq); |
---|
3331 | } |
---|
3332 | if ((*len == 0) || (j<*len)) |
---|
3333 | { |
---|
3334 | *len = j; |
---|
3335 | *k = i; |
---|
3336 | } |
---|
3337 | } |
---|
3338 | } |
---|
3339 | pIter(q); |
---|
3340 | } |
---|
3341 | } |
---|
3342 | |
---|
3343 | poly p_TakeOutComp1(poly * p, int k, const ring r) |
---|
3344 | { |
---|
3345 | poly q = *p; |
---|
3346 | |
---|
3347 | if (q==NULL) return NULL; |
---|
3348 | |
---|
3349 | poly qq=NULL,result = NULL; |
---|
3350 | |
---|
3351 | if (__p_GetComp(q,r)==k) |
---|
3352 | { |
---|
3353 | result = q; /* *p */ |
---|
3354 | while ((q!=NULL) && (__p_GetComp(q,r)==k)) |
---|
3355 | { |
---|
3356 | p_SetComp(q,0,r); |
---|
3357 | p_SetmComp(q,r); |
---|
3358 | qq = q; |
---|
3359 | pIter(q); |
---|
3360 | } |
---|
3361 | *p = q; |
---|
3362 | pNext(qq) = NULL; |
---|
3363 | } |
---|
3364 | if (q==NULL) return result; |
---|
3365 | // if (pGetComp(q) > k) pGetComp(q)--; |
---|
3366 | while (pNext(q)!=NULL) |
---|
3367 | { |
---|
3368 | if (__p_GetComp(pNext(q),r)==k) |
---|
3369 | { |
---|
3370 | if (result==NULL) |
---|
3371 | { |
---|
3372 | result = pNext(q); |
---|
3373 | qq = result; |
---|
3374 | } |
---|
3375 | else |
---|
3376 | { |
---|
3377 | pNext(qq) = pNext(q); |
---|
3378 | pIter(qq); |
---|
3379 | } |
---|
3380 | pNext(q) = pNext(pNext(q)); |
---|
3381 | pNext(qq) =NULL; |
---|
3382 | p_SetComp(qq,0,r); |
---|
3383 | p_SetmComp(qq,r); |
---|
3384 | } |
---|
3385 | else |
---|
3386 | { |
---|
3387 | pIter(q); |
---|
3388 | // if (pGetComp(q) > k) pGetComp(q)--; |
---|
3389 | } |
---|
3390 | } |
---|
3391 | return result; |
---|
3392 | } |
---|
3393 | |
---|
3394 | poly p_TakeOutComp(poly * p, int k, const ring r) |
---|
3395 | { |
---|
3396 | poly q = *p,qq=NULL,result = NULL; |
---|
3397 | |
---|
3398 | if (q==NULL) return NULL; |
---|
3399 | BOOLEAN use_setmcomp=rOrd_SetCompRequiresSetm(r); |
---|
3400 | if (__p_GetComp(q,r)==k) |
---|
3401 | { |
---|
3402 | result = q; |
---|
3403 | do |
---|
3404 | { |
---|
3405 | p_SetComp(q,0,r); |
---|
3406 | if (use_setmcomp) p_SetmComp(q,r); |
---|
3407 | qq = q; |
---|
3408 | pIter(q); |
---|
3409 | } |
---|
3410 | while ((q!=NULL) && (__p_GetComp(q,r)==k)); |
---|
3411 | *p = q; |
---|
3412 | pNext(qq) = NULL; |
---|
3413 | } |
---|
3414 | if (q==NULL) return result; |
---|
3415 | if (__p_GetComp(q,r) > k) |
---|
3416 | { |
---|
3417 | p_SubComp(q,1,r); |
---|
3418 | if (use_setmcomp) p_SetmComp(q,r); |
---|
3419 | } |
---|
3420 | poly pNext_q; |
---|
3421 | while ((pNext_q=pNext(q))!=NULL) |
---|
3422 | { |
---|
3423 | if (__p_GetComp(pNext_q,r)==k) |
---|
3424 | { |
---|
3425 | if (result==NULL) |
---|
3426 | { |
---|
3427 | result = pNext_q; |
---|
3428 | qq = result; |
---|
3429 | } |
---|
3430 | else |
---|
3431 | { |
---|
3432 | pNext(qq) = pNext_q; |
---|
3433 | pIter(qq); |
---|
3434 | } |
---|
3435 | pNext(q) = pNext(pNext_q); |
---|
3436 | pNext(qq) =NULL; |
---|
3437 | p_SetComp(qq,0,r); |
---|
3438 | if (use_setmcomp) p_SetmComp(qq,r); |
---|
3439 | } |
---|
3440 | else |
---|
3441 | { |
---|
3442 | /*pIter(q);*/ q=pNext_q; |
---|
3443 | if (__p_GetComp(q,r) > k) |
---|
3444 | { |
---|
3445 | p_SubComp(q,1,r); |
---|
3446 | if (use_setmcomp) p_SetmComp(q,r); |
---|
3447 | } |
---|
3448 | } |
---|
3449 | } |
---|
3450 | return result; |
---|
3451 | } |
---|
3452 | |
---|
3453 | // Splits *p into two polys: *q which consists of all monoms with |
---|
3454 | // component == comp and *p of all other monoms *lq == pLength(*q) |
---|
3455 | void p_TakeOutComp(poly *r_p, long comp, poly *r_q, int *lq, const ring r) |
---|
3456 | { |
---|
3457 | spolyrec pp, qq; |
---|
3458 | poly p, q, p_prev; |
---|
3459 | int l = 0; |
---|
3460 | |
---|
3461 | #ifndef SING_NDEBUG |
---|
3462 | int lp = pLength(*r_p); |
---|
3463 | #endif |
---|
3464 | |
---|
3465 | pNext(&pp) = *r_p; |
---|
3466 | p = *r_p; |
---|
3467 | p_prev = &pp; |
---|
3468 | q = &qq; |
---|
3469 | |
---|
3470 | while(p != NULL) |
---|
3471 | { |
---|
3472 | while (__p_GetComp(p,r) == comp) |
---|
3473 | { |
---|
3474 | pNext(q) = p; |
---|
3475 | pIter(q); |
---|
3476 | p_SetComp(p, 0,r); |
---|
3477 | p_SetmComp(p,r); |
---|
3478 | pIter(p); |
---|
3479 | l++; |
---|
3480 | if (p == NULL) |
---|
3481 | { |
---|
3482 | pNext(p_prev) = NULL; |
---|
3483 | goto Finish; |
---|
3484 | } |
---|
3485 | } |
---|
3486 | pNext(p_prev) = p; |
---|
3487 | p_prev = p; |
---|
3488 | pIter(p); |
---|
3489 | } |
---|
3490 | |
---|
3491 | Finish: |
---|
3492 | pNext(q) = NULL; |
---|
3493 | *r_p = pNext(&pp); |
---|
3494 | *r_q = pNext(&qq); |
---|
3495 | *lq = l; |
---|
3496 | #ifndef SING_NDEBUG |
---|
3497 | assume(pLength(*r_p) + pLength(*r_q) == lp); |
---|
3498 | #endif |
---|
3499 | p_Test(*r_p,r); |
---|
3500 | p_Test(*r_q,r); |
---|
3501 | } |
---|
3502 | |
---|
3503 | void p_DeleteComp(poly * p,int k, const ring r) |
---|
3504 | { |
---|
3505 | poly q; |
---|
3506 | |
---|
3507 | while ((*p!=NULL) && (__p_GetComp(*p,r)==k)) p_LmDelete(p,r); |
---|
3508 | if (*p==NULL) return; |
---|
3509 | q = *p; |
---|
3510 | if (__p_GetComp(q,r)>k) |
---|
3511 | { |
---|
3512 | p_SubComp(q,1,r); |
---|
3513 | p_SetmComp(q,r); |
---|
3514 | } |
---|
3515 | while (pNext(q)!=NULL) |
---|
3516 | { |
---|
3517 | if (__p_GetComp(pNext(q),r)==k) |
---|
3518 | p_LmDelete(&(pNext(q)),r); |
---|
3519 | else |
---|
3520 | { |
---|
3521 | pIter(q); |
---|
3522 | if (__p_GetComp(q,r)>k) |
---|
3523 | { |
---|
3524 | p_SubComp(q,1,r); |
---|
3525 | p_SetmComp(q,r); |
---|
3526 | } |
---|
3527 | } |
---|
3528 | } |
---|
3529 | } |
---|
3530 | |
---|
3531 | poly p_Vec2Poly(poly v, int k, const ring r) |
---|
3532 | { |
---|
3533 | poly h; |
---|
3534 | poly res=NULL; |
---|
3535 | |
---|
3536 | while (v!=NULL) |
---|
3537 | { |
---|
3538 | if (__p_GetComp(v,r)==k) |
---|
3539 | { |
---|
3540 | h=p_Head(v,r); |
---|
3541 | p_SetComp(h,0,r); |
---|
3542 | pNext(h)=res;res=h; |
---|
3543 | } |
---|
3544 | pIter(v); |
---|
3545 | } |
---|
3546 | if (res!=NULL) res=pReverse(res); |
---|
3547 | return res; |
---|
3548 | } |
---|
3549 | |
---|
3550 | /// vector to already allocated array (len>=p_MaxComp(v,r)) |
---|
3551 | // also used for p_Vec2Polys |
---|
3552 | void p_Vec2Array(poly v, poly *p, int len, const ring r) |
---|
3553 | { |
---|
3554 | poly h; |
---|
3555 | int k; |
---|
3556 | |
---|
3557 | for(int i=len-1;i>=0;i--) p[i]=NULL; |
---|
3558 | while (v!=NULL) |
---|
3559 | { |
---|
3560 | h=p_Head(v,r); |
---|
3561 | k=__p_GetComp(h,r); |
---|
3562 | if (k>len) { Werror("wrong rank:%d, should be %d",len,k); } |
---|
3563 | else |
---|
3564 | { |
---|
3565 | p_SetComp(h,0,r); |
---|
3566 | p_Setm(h,r); |
---|
3567 | pNext(h)=p[k-1];p[k-1]=h; |
---|
3568 | } |
---|
3569 | pIter(v); |
---|
3570 | } |
---|
3571 | for(int i=len-1;i>=0;i--) |
---|
3572 | { |
---|
3573 | if (p[i]!=NULL) p[i]=pReverse(p[i]); |
---|
3574 | } |
---|
3575 | } |
---|
3576 | |
---|
3577 | /*2 |
---|
3578 | * convert a vector to a set of polys, |
---|
3579 | * allocates the polyset, (entries 0..(*len)-1) |
---|
3580 | * the vector will not be changed |
---|
3581 | */ |
---|
3582 | void p_Vec2Polys(poly v, poly* *p, int *len, const ring r) |
---|
3583 | { |
---|
3584 | poly h; |
---|
3585 | int k; |
---|
3586 | |
---|
3587 | *len=p_MaxComp(v,r); |
---|
3588 | if (*len==0) *len=1; |
---|
3589 | *p=(poly*)omAlloc((*len)*sizeof(poly)); |
---|
3590 | p_Vec2Array(v,*p,*len,r); |
---|
3591 | } |
---|
3592 | |
---|
3593 | // |
---|
3594 | // resets the pFDeg and pLDeg: if pLDeg is not given, it is |
---|
3595 | // set to currRing->pLDegOrig, i.e. to the respective LDegProc which |
---|
3596 | // only uses pFDeg (and not p_Deg, or pTotalDegree, etc) |
---|
3597 | void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg) |
---|
3598 | { |
---|
3599 | assume(new_FDeg != NULL); |
---|
3600 | r->pFDeg = new_FDeg; |
---|
3601 | |
---|
3602 | if (new_lDeg == NULL) |
---|
3603 | new_lDeg = r->pLDegOrig; |
---|
3604 | |
---|
3605 | r->pLDeg = new_lDeg; |
---|
3606 | } |
---|
3607 | |
---|
3608 | // restores pFDeg and pLDeg: |
---|
3609 | void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg) |
---|
3610 | { |
---|
3611 | assume(old_FDeg != NULL && old_lDeg != NULL); |
---|
3612 | r->pFDeg = old_FDeg; |
---|
3613 | r->pLDeg = old_lDeg; |
---|
3614 | } |
---|
3615 | |
---|
3616 | /*-------- several access procedures to monomials -------------------- */ |
---|
3617 | /* |
---|
3618 | * the module weights for std |
---|
3619 | */ |
---|
3620 | STATIC_VAR pFDegProc pOldFDeg; |
---|
3621 | STATIC_VAR pLDegProc pOldLDeg; |
---|
3622 | STATIC_VAR BOOLEAN pOldLexOrder; |
---|
3623 | |
---|
3624 | static long pModDeg(poly p, ring r) |
---|
3625 | { |
---|
3626 | long d=pOldFDeg(p, r); |
---|
3627 | int c=__p_GetComp(p, r); |
---|
3628 | if ((c>0) && ((r->pModW)->range(c-1))) d+= (*(r->pModW))[c-1]; |
---|
3629 | return d; |
---|
3630 | //return pOldFDeg(p, r)+(*pModW)[p_GetComp(p, r)-1]; |
---|
3631 | } |
---|
3632 | |
---|
3633 | void p_SetModDeg(intvec *w, ring r) |
---|
3634 | { |
---|
3635 | if (w!=NULL) |
---|
3636 | { |
---|
3637 | r->pModW = w; |
---|
3638 | pOldFDeg = r->pFDeg; |
---|
3639 | pOldLDeg = r->pLDeg; |
---|
3640 | pOldLexOrder = r->pLexOrder; |
---|
3641 | pSetDegProcs(r,pModDeg); |
---|
3642 | r->pLexOrder = TRUE; |
---|
3643 | } |
---|
3644 | else |
---|
3645 | { |
---|
3646 | r->pModW = NULL; |
---|
3647 | pRestoreDegProcs(r,pOldFDeg, pOldLDeg); |
---|
3648 | r->pLexOrder = pOldLexOrder; |
---|
3649 | } |
---|
3650 | } |
---|
3651 | |
---|
3652 | /*2 |
---|
3653 | * handle memory request for sets of polynomials (ideals) |
---|
3654 | * l is the length of *p, increment is the difference (may be negative) |
---|
3655 | */ |
---|
3656 | void pEnlargeSet(poly* *p, int l, int increment) |
---|
3657 | { |
---|
3658 | poly* h; |
---|
3659 | |
---|
3660 | if (*p==NULL) |
---|
3661 | { |
---|
3662 | if (increment==0) return; |
---|
3663 | h=(poly*)omAlloc0(increment*sizeof(poly)); |
---|
3664 | } |
---|
3665 | else |
---|
3666 | { |
---|
3667 | h=(poly*)omReallocSize((poly*)*p,l*sizeof(poly),(l+increment)*sizeof(poly)); |
---|
3668 | if (increment>0) |
---|
3669 | { |
---|
3670 | memset(&(h[l]),0,increment*sizeof(poly)); |
---|
3671 | } |
---|
3672 | } |
---|
3673 | *p=h; |
---|
3674 | } |
---|
3675 | |
---|
3676 | /*2 |
---|
3677 | *divides p1 by its leading coefficient |
---|
3678 | */ |
---|
3679 | void p_Norm(poly p1, const ring r) |
---|
3680 | { |
---|
3681 | if (rField_is_Ring(r)) |
---|
3682 | { |
---|
3683 | if (!n_IsUnit(pGetCoeff(p1), r->cf)) return; |
---|
3684 | // Werror("p_Norm not possible in the case of coefficient rings."); |
---|
3685 | } |
---|
3686 | else if (p1!=NULL) |
---|
3687 | { |
---|
3688 | if (pNext(p1)==NULL) |
---|
3689 | { |
---|
3690 | p_SetCoeff(p1,n_Init(1,r->cf),r); |
---|
3691 | return; |
---|
3692 | } |
---|
3693 | poly h; |
---|
3694 | if (!n_IsOne(pGetCoeff(p1),r->cf)) |
---|
3695 | { |
---|
3696 | number k, c; |
---|
3697 | n_Normalize(pGetCoeff(p1),r->cf); |
---|
3698 | k = pGetCoeff(p1); |
---|
3699 | c = n_Init(1,r->cf); |
---|
3700 | pSetCoeff0(p1,c); |
---|
3701 | h = pNext(p1); |
---|
3702 | while (h!=NULL) |
---|
3703 | { |
---|
3704 | c=n_Div(pGetCoeff(h),k,r->cf); |
---|
3705 | // no need to normalize: Z/p, R |
---|
3706 | // normalize already in nDiv: Q_a, Z/p_a |
---|
3707 | // remains: Q |
---|
3708 | if (rField_is_Q(r) && (!n_IsOne(c,r->cf))) n_Normalize(c,r->cf); |
---|
3709 | p_SetCoeff(h,c,r); |
---|
3710 | pIter(h); |
---|
3711 | } |
---|
3712 | n_Delete(&k,r->cf); |
---|
3713 | } |
---|
3714 | else |
---|
3715 | { |
---|
3716 | //if (r->cf->cfNormalize != nDummy2) //TODO: OPTIMIZE |
---|
3717 | { |
---|
3718 | h = pNext(p1); |
---|
3719 | while (h!=NULL) |
---|
3720 | { |
---|
3721 | n_Normalize(pGetCoeff(h),r->cf); |
---|
3722 | pIter(h); |
---|
3723 | } |
---|
3724 | } |
---|
3725 | } |
---|
3726 | } |
---|
3727 | } |
---|
3728 | |
---|
3729 | /*2 |
---|
3730 | *normalize all coefficients |
---|
3731 | */ |
---|
3732 | void p_Normalize(poly p,const ring r) |
---|
3733 | { |
---|
3734 | if (rField_has_simple_inverse(r)) return; /* Z/p, GF(p,n), R, long R/C */ |
---|
3735 | while (p!=NULL) |
---|
3736 | { |
---|
3737 | // no test befor n_Normalize: n_Normalize should fix problems |
---|
3738 | n_Normalize(pGetCoeff(p),r->cf); |
---|
3739 | pIter(p); |
---|
3740 | } |
---|
3741 | } |
---|
3742 | |
---|
3743 | // splits p into polys with Exp(n) == 0 and Exp(n) != 0 |
---|
3744 | // Poly with Exp(n) != 0 is reversed |
---|
3745 | static void p_SplitAndReversePoly(poly p, int n, poly *non_zero, poly *zero, const ring r) |
---|
3746 | { |
---|
3747 | if (p == NULL) |
---|
3748 | { |
---|
3749 | *non_zero = NULL; |
---|
3750 | *zero = NULL; |
---|
3751 | return; |
---|
3752 | } |
---|
3753 | spolyrec sz; |
---|
3754 | poly z, n_z, next; |
---|
3755 | z = &sz; |
---|
3756 | n_z = NULL; |
---|
3757 | |
---|
3758 | while(p != NULL) |
---|
3759 | { |
---|
3760 | next = pNext(p); |
---|
3761 | if (p_GetExp(p, n,r) == 0) |
---|
3762 | { |
---|
3763 | pNext(z) = p; |
---|
3764 | pIter(z); |
---|
3765 | } |
---|
3766 | else |
---|
3767 | { |
---|
3768 | pNext(p) = n_z; |
---|
3769 | n_z = p; |
---|
3770 | } |
---|
3771 | p = next; |
---|
3772 | } |
---|
3773 | pNext(z) = NULL; |
---|
3774 | *zero = pNext(&sz); |
---|
3775 | *non_zero = n_z; |
---|
3776 | } |
---|
3777 | /*3 |
---|
3778 | * substitute the n-th variable by 1 in p |
---|
3779 | * destroy p |
---|
3780 | */ |
---|
3781 | static poly p_Subst1 (poly p,int n, const ring r) |
---|
3782 | { |
---|
3783 | poly qq=NULL, result = NULL; |
---|
3784 | poly zero=NULL, non_zero=NULL; |
---|
3785 | |
---|
3786 | // reverse, so that add is likely to be linear |
---|
3787 | p_SplitAndReversePoly(p, n, &non_zero, &zero,r); |
---|
3788 | |
---|
3789 | while (non_zero != NULL) |
---|
3790 | { |
---|
3791 | assume(p_GetExp(non_zero, n,r) != 0); |
---|
3792 | qq = non_zero; |
---|
3793 | pIter(non_zero); |
---|
3794 | qq->next = NULL; |
---|
3795 | p_SetExp(qq,n,0,r); |
---|
3796 | p_Setm(qq,r); |
---|
3797 | result = p_Add_q(result,qq,r); |
---|
3798 | } |
---|
3799 | p = p_Add_q(result, zero,r); |
---|
3800 | p_Test(p,r); |
---|
3801 | return p; |
---|
3802 | } |
---|
3803 | |
---|
3804 | /*3 |
---|
3805 | * substitute the n-th variable by number e in p |
---|
3806 | * destroy p |
---|
3807 | */ |
---|
3808 | static poly p_Subst2 (poly p,int n, number e, const ring r) |
---|
3809 | { |
---|
3810 | assume( ! n_IsZero(e,r->cf) ); |
---|
3811 | poly qq,result = NULL; |
---|
3812 | number nn, nm; |
---|
3813 | poly zero, non_zero; |
---|
3814 | |
---|
3815 | // reverse, so that add is likely to be linear |
---|
3816 | p_SplitAndReversePoly(p, n, &non_zero, &zero,r); |
---|
3817 | |
---|
3818 | while (non_zero != NULL) |
---|
3819 | { |
---|
3820 | assume(p_GetExp(non_zero, n, r) != 0); |
---|
3821 | qq = non_zero; |
---|
3822 | pIter(non_zero); |
---|
3823 | qq->next = NULL; |
---|
3824 | n_Power(e, p_GetExp(qq, n, r), &nn,r->cf); |
---|
3825 | nm = n_Mult(nn, pGetCoeff(qq),r->cf); |
---|
3826 | #ifdef HAVE_RINGS |
---|
3827 | if (n_IsZero(nm,r->cf)) |
---|
3828 | { |
---|
3829 | p_LmFree(&qq,r); |
---|
3830 | n_Delete(&nm,r->cf); |
---|
3831 | } |
---|
3832 | else |
---|
3833 | #endif |
---|
3834 | { |
---|
3835 | p_SetCoeff(qq, nm,r); |
---|
3836 | p_SetExp(qq, n, 0,r); |
---|
3837 | p_Setm(qq,r); |
---|
3838 | result = p_Add_q(result,qq,r); |
---|
3839 | } |
---|
3840 | n_Delete(&nn,r->cf); |
---|
3841 | } |
---|
3842 | p = p_Add_q(result, zero,r); |
---|
3843 | p_Test(p,r); |
---|
3844 | return p; |
---|
3845 | } |
---|
3846 | |
---|
3847 | |
---|
3848 | /* delete monoms whose n-th exponent is different from zero */ |
---|
3849 | static poly p_Subst0(poly p, int n, const ring r) |
---|
3850 | { |
---|
3851 | spolyrec res; |
---|
3852 | poly h = &res; |
---|
3853 | pNext(h) = p; |
---|
3854 | |
---|
3855 | while (pNext(h)!=NULL) |
---|
3856 | { |
---|
3857 | if (p_GetExp(pNext(h),n,r)!=0) |
---|
3858 | { |
---|
3859 | p_LmDelete(&pNext(h),r); |
---|
3860 | } |
---|
3861 | else |
---|
3862 | { |
---|
3863 | pIter(h); |
---|
3864 | } |
---|
3865 | } |
---|
3866 | p_Test(pNext(&res),r); |
---|
3867 | return pNext(&res); |
---|
3868 | } |
---|
3869 | |
---|
3870 | /*2 |
---|
3871 | * substitute the n-th variable by e in p |
---|
3872 | * destroy p |
---|
3873 | */ |
---|
3874 | poly p_Subst(poly p, int n, poly e, const ring r) |
---|
3875 | { |
---|
3876 | if (e == NULL) return p_Subst0(p, n,r); |
---|
3877 | |
---|
3878 | if (p_IsConstant(e,r)) |
---|
3879 | { |
---|
3880 | if (n_IsOne(pGetCoeff(e),r->cf)) return p_Subst1(p,n,r); |
---|
3881 | else return p_Subst2(p, n, pGetCoeff(e),r); |
---|
3882 | } |
---|
3883 | |
---|
3884 | #ifdef HAVE_PLURAL |
---|
3885 | if (rIsPluralRing(r)) |
---|
3886 | { |
---|
3887 | return nc_pSubst(p,n,e,r); |
---|
3888 | } |
---|
3889 | #endif |
---|
3890 | |
---|
3891 | int exponent,i; |
---|
3892 | poly h, res, m; |
---|
3893 | int *me,*ee; |
---|
3894 | number nu,nu1; |
---|
3895 | |
---|
3896 | me=(int *)omAlloc((rVar(r)+1)*sizeof(int)); |
---|
3897 | ee=(int *)omAlloc((rVar(r)+1)*sizeof(int)); |
---|
3898 | if (e!=NULL) p_GetExpV(e,ee,r); |
---|
3899 | res=NULL; |
---|
3900 | h=p; |
---|
3901 | while (h!=NULL) |
---|
3902 | { |
---|
3903 | if ((e!=NULL) || (p_GetExp(h,n,r)==0)) |
---|
3904 | { |
---|
3905 | m=p_Head(h,r); |
---|
3906 | p_GetExpV(m,me,r); |
---|
3907 | exponent=me[n]; |
---|
3908 | me[n]=0; |
---|
3909 | for(i=rVar(r);i>0;i--) |
---|
3910 | me[i]+=exponent*ee[i]; |
---|
3911 | p_SetExpV(m,me,r); |
---|
3912 | if (e!=NULL) |
---|
3913 | { |
---|
3914 | n_Power(pGetCoeff(e),exponent,&nu,r->cf); |
---|
3915 | nu1=n_Mult(pGetCoeff(m),nu,r->cf); |
---|
3916 | n_Delete(&nu,r->cf); |
---|
3917 | p_SetCoeff(m,nu1,r); |
---|
3918 | } |
---|
3919 | res=p_Add_q(res,m,r); |
---|
3920 | } |
---|
3921 | p_LmDelete(&h,r); |
---|
3922 | } |
---|
3923 | omFreeSize((ADDRESS)me,(rVar(r)+1)*sizeof(int)); |
---|
3924 | omFreeSize((ADDRESS)ee,(rVar(r)+1)*sizeof(int)); |
---|
3925 | return res; |
---|
3926 | } |
---|
3927 | |
---|
3928 | /*2 |
---|
3929 | * returns a re-ordered convertion of a number as a polynomial, |
---|
3930 | * with permutation of parameters |
---|
3931 | * NOTE: this only works for Frank's alg. & trans. fields |
---|
3932 | */ |
---|
3933 | poly n_PermNumber(const number z, const int *par_perm, const int , const ring src, const ring dst) |
---|
3934 | { |
---|
3935 | #if 0 |
---|
3936 | PrintS("\nSource Ring: \n"); |
---|
3937 | rWrite(src); |
---|
3938 | |
---|
3939 | if(0) |
---|
3940 | { |
---|
3941 | number zz = n_Copy(z, src->cf); |
---|
3942 | PrintS("z: "); n_Write(zz, src); |
---|
3943 | n_Delete(&zz, src->cf); |
---|
3944 | } |
---|
3945 | |
---|
3946 | PrintS("\nDestination Ring: \n"); |
---|
3947 | rWrite(dst); |
---|
3948 | |
---|
3949 | /*Print("\nOldPar: %d\n", OldPar); |
---|
3950 | for( int i = 1; i <= OldPar; i++ ) |
---|
3951 | { |
---|
3952 | Print("par(%d) -> par/var (%d)\n", i, par_perm[i-1]); |
---|
3953 | }*/ |
---|
3954 | #endif |
---|
3955 | if( z == NULL ) |
---|
3956 | return NULL; |
---|
3957 | |
---|
3958 | const coeffs srcCf = src->cf; |
---|
3959 | assume( srcCf != NULL ); |
---|
3960 | |
---|
3961 | assume( !nCoeff_is_GF(srcCf) ); |
---|
3962 | assume( src->cf->extRing!=NULL ); |
---|
3963 | |
---|
3964 | poly zz = NULL; |
---|
3965 | |
---|
3966 | const ring srcExtRing = srcCf->extRing; |
---|
3967 | assume( srcExtRing != NULL ); |
---|
3968 | |
---|
3969 | const coeffs dstCf = dst->cf; |
---|
3970 | assume( dstCf != NULL ); |
---|
3971 | |
---|
3972 | if( nCoeff_is_algExt(srcCf) ) // nCoeff_is_GF(srcCf)? |
---|
3973 | { |
---|
3974 | zz = (poly) z; |
---|
3975 | if( zz == NULL ) return NULL; |
---|
3976 | } |
---|
3977 | else if (nCoeff_is_transExt(srcCf)) |
---|
3978 | { |
---|
3979 | assume( !IS0(z) ); |
---|
3980 | |
---|
3981 | zz = NUM((fraction)z); |
---|
3982 | p_Test (zz, srcExtRing); |
---|
3983 | |
---|
3984 | if( zz == NULL ) return NULL; |
---|
3985 | if( !DENIS1((fraction)z) ) |
---|
3986 | { |
---|
3987 | if (!p_IsConstant(DEN((fraction)z),srcExtRing)) |
---|
3988 | WarnS("Not defined: Cannot map a rational fraction and make a polynomial out of it! Ignoring the denominator."); |
---|
3989 | } |
---|
3990 | } |
---|
3991 | else |
---|
3992 | { |
---|
3993 | assume (FALSE); |
---|
3994 | WerrorS("Number permutation is not implemented for this data yet!"); |
---|
3995 | return NULL; |
---|
3996 | } |
---|
3997 | |
---|
3998 | assume( zz != NULL ); |
---|
3999 | p_Test (zz, srcExtRing); |
---|
4000 | |
---|
4001 | nMapFunc nMap = n_SetMap(srcExtRing->cf, dstCf); |
---|
4002 | |
---|
4003 | assume( nMap != NULL ); |
---|
4004 | |
---|
4005 | poly qq; |
---|
4006 | if ((par_perm == NULL) && (rPar(dst) != 0 && rVar (srcExtRing) > 0)) |
---|
4007 | { |
---|
4008 | int* perm; |
---|
4009 | perm=(int *)omAlloc0((rVar(srcExtRing)+1)*sizeof(int)); |
---|
4010 | for(int i=si_min(rVar(srcExtRing),rPar(dst));i>0;i--) |
---|
4011 | perm[i]=-i; |
---|
4012 | qq = p_PermPoly(zz, perm, srcExtRing, dst, nMap, NULL, rVar(srcExtRing)-1); |
---|
4013 | omFreeSize ((ADDRESS)perm, (rVar(srcExtRing)+1)*sizeof(int)); |
---|
4014 | } |
---|
4015 | else |
---|
4016 | qq = p_PermPoly(zz, par_perm-1, srcExtRing, dst, nMap, NULL, rVar (srcExtRing)-1); |
---|
4017 | |
---|
4018 | if(nCoeff_is_transExt(srcCf) |
---|
4019 | && (!DENIS1((fraction)z)) |
---|
4020 | && p_IsConstant(DEN((fraction)z),srcExtRing)) |
---|
4021 | { |
---|
4022 | number n=nMap(pGetCoeff(DEN((fraction)z)),srcExtRing->cf, dstCf); |
---|
4023 | qq=p_Div_nn(qq,n,dst); |
---|
4024 | n_Delete(&n,dstCf); |
---|
4025 | p_Normalize(qq,dst); |
---|
4026 | } |
---|
4027 | p_Test (qq, dst); |
---|
4028 | |
---|
4029 | return qq; |
---|
4030 | } |
---|
4031 | |
---|
4032 | |
---|
4033 | /*2 |
---|
4034 | *returns a re-ordered copy of a polynomial, with permutation of the variables |
---|
4035 | */ |
---|
4036 | poly p_PermPoly (poly p, const int * perm, const ring oldRing, const ring dst, |
---|
4037 | nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult) |
---|
4038 | { |
---|
4039 | #if 0 |
---|
4040 | p_Test(p, oldRing); |
---|
4041 | PrintS("p_PermPoly::p: "); p_Write(p, oldRing, oldRing); |
---|
4042 | #endif |
---|
4043 | const int OldpVariables = rVar(oldRing); |
---|
4044 | poly result = NULL; |
---|
4045 | poly result_last = NULL; |
---|
4046 | poly aq = NULL; /* the map coefficient */ |
---|
4047 | poly qq; /* the mapped monomial */ |
---|
4048 | assume(dst != NULL); |
---|
4049 | assume(dst->cf != NULL); |
---|
4050 | #ifdef HAVE_PLURAL |
---|
4051 | poly tmp_mm=p_One(dst); |
---|
4052 | #endif |
---|
4053 | while (p != NULL) |
---|
4054 | { |
---|
4055 | // map the coefficient |
---|
4056 | if ( ((OldPar == 0) || (par_perm == NULL) || rField_is_GF(oldRing) || (nMap==ndCopyMap)) |
---|
4057 | && (nMap != NULL) ) |
---|
4058 | { |
---|
4059 | qq = p_Init(dst); |
---|
4060 | assume( nMap != NULL ); |
---|
4061 | number n = nMap(p_GetCoeff(p, oldRing), oldRing->cf, dst->cf); |
---|
4062 | n_Test (n,dst->cf); |
---|
4063 | if ( nCoeff_is_algExt(dst->cf) ) |
---|
4064 | n_Normalize(n, dst->cf); |
---|
4065 | p_GetCoeff(qq, dst) = n;// Note: n can be a ZERO!!! |
---|
4066 | } |
---|
4067 | else |
---|
4068 | { |
---|
4069 | qq = p_One(dst); |
---|
4070 | // aq = naPermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing); // no dst??? |
---|
4071 | // poly n_PermNumber(const number z, const int *par_perm, const int P, const ring src, const ring dst) |
---|
4072 | aq = n_PermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing, dst); |
---|
4073 | p_Test(aq, dst); |
---|
4074 | if ( nCoeff_is_algExt(dst->cf) ) |
---|
4075 | p_Normalize(aq,dst); |
---|
4076 | if (aq == NULL) |
---|
4077 | p_SetCoeff(qq, n_Init(0, dst->cf),dst); // Very dirty trick!!! |
---|
4078 | p_Test(aq, dst); |
---|
4079 | } |
---|
4080 | if (rRing_has_Comp(dst)) |
---|
4081 | p_SetComp(qq, p_GetComp(p, oldRing), dst); |
---|
4082 | if ( n_IsZero(pGetCoeff(qq), dst->cf) ) |
---|
4083 | { |
---|
4084 | p_LmDelete(&qq,dst); |
---|
4085 | qq = NULL; |
---|
4086 | } |
---|
4087 | else |
---|
4088 | { |
---|
4089 | // map pars: |
---|
4090 | int mapped_to_par = 0; |
---|
4091 | for(int i = 1; i <= OldpVariables; i++) |
---|
4092 | { |
---|
4093 | int e = p_GetExp(p, i, oldRing); |
---|
4094 | if (e != 0) |
---|
4095 | { |
---|
4096 | if (perm==NULL) |
---|
4097 | p_SetExp(qq, i, e, dst); |
---|
4098 | else if (perm[i]>0) |
---|
4099 | { |
---|
4100 | #ifdef HAVE_PLURAL |
---|
4101 | if(use_mult) |
---|
4102 | { |
---|
4103 | p_SetExp(tmp_mm,perm[i],e,dst); |
---|
4104 | p_Setm(tmp_mm,dst); |
---|
4105 | qq=p_Mult_mm(qq,tmp_mm,dst); |
---|
4106 | p_SetExp(tmp_mm,perm[i],0,dst); |
---|
4107 | |
---|
4108 | } |
---|
4109 | else |
---|
4110 | #endif |
---|
4111 | p_AddExp(qq,perm[i], e/*p_GetExp( p,i,oldRing)*/, dst); |
---|
4112 | } |
---|
4113 | else if (perm[i]<0) |
---|
4114 | { |
---|
4115 | number c = p_GetCoeff(qq, dst); |
---|
4116 | if (rField_is_GF(dst)) |
---|
4117 | { |
---|
4118 | assume( dst->cf->extRing == NULL ); |
---|
4119 | number ee = n_Param(1, dst); |
---|
4120 | number eee; |
---|
4121 | n_Power(ee, e, &eee, dst->cf); //nfDelete(ee,dst); |
---|
4122 | ee = n_Mult(c, eee, dst->cf); |
---|
4123 | //nfDelete(c,dst);nfDelete(eee,dst); |
---|
4124 | pSetCoeff0(qq,ee); |
---|
4125 | } |
---|
4126 | else if (nCoeff_is_Extension(dst->cf)) |
---|
4127 | { |
---|
4128 | const int par = -perm[i]; |
---|
4129 | assume( par > 0 ); |
---|
4130 | // WarnS("longalg missing 3"); |
---|
4131 | #if 1 |
---|
4132 | const coeffs C = dst->cf; |
---|
4133 | assume( C != NULL ); |
---|
4134 | const ring R = C->extRing; |
---|
4135 | assume( R != NULL ); |
---|
4136 | assume( par <= rVar(R) ); |
---|
4137 | poly pcn; // = (number)c |
---|
4138 | assume( !n_IsZero(c, C) ); |
---|
4139 | if( nCoeff_is_algExt(C) ) |
---|
4140 | pcn = (poly) c; |
---|
4141 | else // nCoeff_is_transExt(C) |
---|
4142 | pcn = NUM((fraction)c); |
---|
4143 | if (pNext(pcn) == NULL) // c->z |
---|
4144 | p_AddExp(pcn, -perm[i], e, R); |
---|
4145 | else /* more difficult: we have really to multiply: */ |
---|
4146 | { |
---|
4147 | poly mmc = p_ISet(1, R); |
---|
4148 | p_SetExp(mmc, -perm[i], e, R); |
---|
4149 | p_Setm(mmc, R); |
---|
4150 | number nnc; |
---|
4151 | // convert back to a number: number nnc = mmc; |
---|
4152 | if( nCoeff_is_algExt(C) ) |
---|
4153 | nnc = (number) mmc; |
---|
4154 | else // nCoeff_is_transExt(C) |
---|
4155 | nnc = ntInit(mmc, C); |
---|
4156 | p_GetCoeff(qq, dst) = n_Mult((number)c, nnc, C); |
---|
4157 | n_Delete((number *)&c, C); |
---|
4158 | n_Delete((number *)&nnc, C); |
---|
4159 | } |
---|
4160 | mapped_to_par=1; |
---|
4161 | #endif |
---|
4162 | } |
---|
4163 | } |
---|
4164 | else |
---|
4165 | { |
---|
4166 | /* this variable maps to 0 !*/ |
---|
4167 | p_LmDelete(&qq, dst); |
---|
4168 | break; |
---|
4169 | } |
---|
4170 | } |
---|
4171 | } |
---|
4172 | if ( mapped_to_par && (qq!= NULL) && nCoeff_is_algExt(dst->cf) ) |
---|
4173 | { |
---|
4174 | number n = p_GetCoeff(qq, dst); |
---|
4175 | n_Normalize(n, dst->cf); |
---|
4176 | p_GetCoeff(qq, dst) = n; |
---|
4177 | } |
---|
4178 | } |
---|
4179 | pIter(p); |
---|
4180 | |
---|
4181 | #if 0 |
---|
4182 | p_Test(aq,dst); |
---|
4183 | PrintS("aq: "); p_Write(aq, dst, dst); |
---|
4184 | #endif |
---|
4185 | |
---|
4186 | |
---|
4187 | #if 1 |
---|
4188 | if (qq!=NULL) |
---|
4189 | { |
---|
4190 | p_Setm(qq,dst); |
---|
4191 | |
---|
4192 | p_Test(aq,dst); |
---|
4193 | p_Test(qq,dst); |
---|
4194 | |
---|
4195 | #if 0 |
---|
4196 | PrintS("qq: "); p_Write(qq, dst, dst); |
---|
4197 | #endif |
---|
4198 | |
---|
4199 | if (aq!=NULL) |
---|
4200 | qq=p_Mult_q(aq,qq,dst); |
---|
4201 | aq = qq; |
---|
4202 | while (pNext(aq) != NULL) pIter(aq); |
---|
4203 | if (result_last==NULL) |
---|
4204 | { |
---|
4205 | result=qq; |
---|
4206 | } |
---|
4207 | else |
---|
4208 | { |
---|
4209 | pNext(result_last)=qq; |
---|
4210 | } |
---|
4211 | result_last=aq; |
---|
4212 | aq = NULL; |
---|
4213 | } |
---|
4214 | else if (aq!=NULL) |
---|
4215 | { |
---|
4216 | p_Delete(&aq,dst); |
---|
4217 | } |
---|
4218 | } |
---|
4219 | result=p_SortAdd(result,dst); |
---|
4220 | #else |
---|
4221 | // if (qq!=NULL) |
---|
4222 | // { |
---|
4223 | // pSetm(qq); |
---|
4224 | // pTest(qq); |
---|
4225 | // pTest(aq); |
---|
4226 | // if (aq!=NULL) qq=pMult(aq,qq); |
---|
4227 | // aq = qq; |
---|
4228 | // while (pNext(aq) != NULL) pIter(aq); |
---|
4229 | // pNext(aq) = result; |
---|
4230 | // aq = NULL; |
---|
4231 | // result = qq; |
---|
4232 | // } |
---|
4233 | // else if (aq!=NULL) |
---|
4234 | // { |
---|
4235 | // pDelete(&aq); |
---|
4236 | // } |
---|
4237 | //} |
---|
4238 | //p = result; |
---|
4239 | //result = NULL; |
---|
4240 | //while (p != NULL) |
---|
4241 | //{ |
---|
4242 | // qq = p; |
---|
4243 | // pIter(p); |
---|
4244 | // qq->next = NULL; |
---|
4245 | // result = pAdd(result, qq); |
---|
4246 | //} |
---|
4247 | #endif |
---|
4248 | p_Test(result,dst); |
---|
4249 | #if 0 |
---|
4250 | p_Test(result,dst); |
---|
4251 | PrintS("result: "); p_Write(result,dst,dst); |
---|
4252 | #endif |
---|
4253 | #ifdef HAVE_PLURAL |
---|
4254 | p_LmDelete(&tmp_mm,dst); |
---|
4255 | #endif |
---|
4256 | return result; |
---|
4257 | } |
---|
4258 | /************************************************************** |
---|
4259 | * |
---|
4260 | * Jet |
---|
4261 | * |
---|
4262 | **************************************************************/ |
---|
4263 | |
---|
4264 | poly pp_Jet(poly p, int m, const ring R) |
---|
4265 | { |
---|
4266 | poly r=NULL; |
---|
4267 | poly t=NULL; |
---|
4268 | |
---|
4269 | while (p!=NULL) |
---|
4270 | { |
---|
4271 | if (p_Totaldegree(p,R)<=m) |
---|
4272 | { |
---|
4273 | if (r==NULL) |
---|
4274 | r=p_Head(p,R); |
---|
4275 | else |
---|
4276 | if (t==NULL) |
---|
4277 | { |
---|
4278 | pNext(r)=p_Head(p,R); |
---|
4279 | t=pNext(r); |
---|
4280 | } |
---|
4281 | else |
---|
4282 | { |
---|
4283 | pNext(t)=p_Head(p,R); |
---|
4284 | pIter(t); |
---|
4285 | } |
---|
4286 | } |
---|
4287 | pIter(p); |
---|
4288 | } |
---|
4289 | return r; |
---|
4290 | } |
---|
4291 | |
---|
4292 | poly p_Jet(poly p, int m,const ring R) |
---|
4293 | { |
---|
4294 | while((p!=NULL) && (p_Totaldegree(p,R)>m)) p_LmDelete(&p,R); |
---|
4295 | if (p==NULL) return NULL; |
---|
4296 | poly r=p; |
---|
4297 | while (pNext(p)!=NULL) |
---|
4298 | { |
---|
4299 | if (p_Totaldegree(pNext(p),R)>m) |
---|
4300 | { |
---|
4301 | p_LmDelete(&pNext(p),R); |
---|
4302 | } |
---|
4303 | else |
---|
4304 | pIter(p); |
---|
4305 | } |
---|
4306 | return r; |
---|
4307 | } |
---|
4308 | |
---|
4309 | poly pp_JetW(poly p, int m, short *w, const ring R) |
---|
4310 | { |
---|
4311 | poly r=NULL; |
---|
4312 | poly t=NULL; |
---|
4313 | while (p!=NULL) |
---|
4314 | { |
---|
4315 | if (totaldegreeWecart_IV(p,R,w)<=m) |
---|
4316 | { |
---|
4317 | if (r==NULL) |
---|
4318 | r=p_Head(p,R); |
---|
4319 | else |
---|
4320 | if (t==NULL) |
---|
4321 | { |
---|
4322 | pNext(r)=p_Head(p,R); |
---|
4323 | t=pNext(r); |
---|
4324 | } |
---|
4325 | else |
---|
4326 | { |
---|
4327 | pNext(t)=p_Head(p,R); |
---|
4328 | pIter(t); |
---|
4329 | } |
---|
4330 | } |
---|
4331 | pIter(p); |
---|
4332 | } |
---|
4333 | return r; |
---|
4334 | } |
---|
4335 | |
---|
4336 | poly p_JetW(poly p, int m, short *w, const ring R) |
---|
4337 | { |
---|
4338 | while((p!=NULL) && (totaldegreeWecart_IV(p,R,w)>m)) p_LmDelete(&p,R); |
---|
4339 | if (p==NULL) return NULL; |
---|
4340 | poly r=p; |
---|
4341 | while (pNext(p)!=NULL) |
---|
4342 | { |
---|
4343 | if (totaldegreeWecart_IV(pNext(p),R,w)>m) |
---|
4344 | { |
---|
4345 | p_LmDelete(&pNext(p),R); |
---|
4346 | } |
---|
4347 | else |
---|
4348 | pIter(p); |
---|
4349 | } |
---|
4350 | return r; |
---|
4351 | } |
---|
4352 | |
---|
4353 | /*************************************************************/ |
---|
4354 | int p_MinDeg(poly p,intvec *w, const ring R) |
---|
4355 | { |
---|
4356 | if(p==NULL) |
---|
4357 | return -1; |
---|
4358 | int d=-1; |
---|
4359 | while(p!=NULL) |
---|
4360 | { |
---|
4361 | int d0=0; |
---|
4362 | for(int j=0;j<rVar(R);j++) |
---|
4363 | if(w==NULL||j>=w->length()) |
---|
4364 | d0+=p_GetExp(p,j+1,R); |
---|
4365 | else |
---|
4366 | d0+=(*w)[j]*p_GetExp(p,j+1,R); |
---|
4367 | if(d0<d||d==-1) |
---|
4368 | d=d0; |
---|
4369 | pIter(p); |
---|
4370 | } |
---|
4371 | return d; |
---|
4372 | } |
---|
4373 | |
---|
4374 | /***************************************************************/ |
---|
4375 | static poly p_Invers(int n,poly u,intvec *w, const ring R) |
---|
4376 | { |
---|
4377 | if(n<0) |
---|
4378 | return NULL; |
---|
4379 | number u0=n_Invers(pGetCoeff(u),R->cf); |
---|
4380 | poly v=p_NSet(u0,R); |
---|
4381 | if(n==0) |
---|
4382 | return v; |
---|
4383 | short *ww=iv2array(w,R); |
---|
4384 | poly u1=p_JetW(p_Sub(p_One(R),__p_Mult_nn(u,u0,R),R),n,ww,R); |
---|
4385 | if(u1==NULL) |
---|
4386 | { |
---|
4387 | omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(short)); |
---|
4388 | return v; |
---|
4389 | } |
---|
4390 | poly v1=__p_Mult_nn(p_Copy(u1,R),u0,R); |
---|
4391 | v=p_Add_q(v,p_Copy(v1,R),R); |
---|
4392 | for(int i=n/p_MinDeg(u1,w,R);i>1;i--) |
---|
4393 | { |
---|
4394 | v1=p_JetW(p_Mult_q(v1,p_Copy(u1,R),R),n,ww,R); |
---|
4395 | v=p_Add_q(v,p_Copy(v1,R),R); |
---|
4396 | } |
---|
4397 | p_Delete(&u1,R); |
---|
4398 | p_Delete(&v1,R); |
---|
4399 | omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(short)); |
---|
4400 | return v; |
---|
4401 | } |
---|
4402 | |
---|
4403 | |
---|
4404 | poly p_Series(int n,poly p,poly u, intvec *w, const ring R) |
---|
4405 | { |
---|
4406 | short *ww=iv2array(w,R); |
---|
4407 | if(p!=NULL) |
---|
4408 | { |
---|
4409 | if(u==NULL) |
---|
4410 | p=p_JetW(p,n,ww,R); |
---|
4411 | else |
---|
4412 | p=p_JetW(p_Mult_q(p,p_Invers(n-p_MinDeg(p,w,R),u,w,R),R),n,ww,R); |
---|
4413 | } |
---|
4414 | omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(short)); |
---|
4415 | return p; |
---|
4416 | } |
---|
4417 | |
---|
4418 | BOOLEAN p_EqualPolys(poly p1,poly p2, const ring r) |
---|
4419 | { |
---|
4420 | while ((p1 != NULL) && (p2 != NULL)) |
---|
4421 | { |
---|
4422 | if (! p_LmEqual(p1, p2,r)) |
---|
4423 | return FALSE; |
---|
4424 | if (! n_Equal(p_GetCoeff(p1,r), p_GetCoeff(p2,r),r->cf )) |
---|
4425 | return FALSE; |
---|
4426 | pIter(p1); |
---|
4427 | pIter(p2); |
---|
4428 | } |
---|
4429 | return (p1==p2); |
---|
4430 | } |
---|
4431 | |
---|
4432 | static inline BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2) |
---|
4433 | { |
---|
4434 | assume( r1 == r2 || rSamePolyRep(r1, r2) ); |
---|
4435 | |
---|
4436 | p_LmCheckPolyRing1(p1, r1); |
---|
4437 | p_LmCheckPolyRing1(p2, r2); |
---|
4438 | |
---|
4439 | int i = r1->ExpL_Size; |
---|
4440 | |
---|
4441 | assume( r1->ExpL_Size == r2->ExpL_Size ); |
---|
4442 | |
---|
4443 | unsigned long *ep = p1->exp; |
---|
4444 | unsigned long *eq = p2->exp; |
---|
4445 | |
---|
4446 | do |
---|
4447 | { |
---|
4448 | i--; |
---|
4449 | if (ep[i] != eq[i]) return FALSE; |
---|
4450 | } |
---|
4451 | while (i); |
---|
4452 | |
---|
4453 | return TRUE; |
---|
4454 | } |
---|
4455 | |
---|
4456 | BOOLEAN p_EqualPolys(poly p1,poly p2, const ring r1, const ring r2) |
---|
4457 | { |
---|
4458 | assume( r1 == r2 || rSamePolyRep(r1, r2) ); // will be used in rEqual! |
---|
4459 | assume( r1->cf == r2->cf ); |
---|
4460 | |
---|
4461 | while ((p1 != NULL) && (p2 != NULL)) |
---|
4462 | { |
---|
4463 | // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !! |
---|
4464 | // #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r) |
---|
4465 | |
---|
4466 | if (! p_ExpVectorEqual(p1, p2, r1, r2)) |
---|
4467 | return FALSE; |
---|
4468 | |
---|
4469 | if (! n_Equal(p_GetCoeff(p1,r1), p_GetCoeff(p2,r2), r1->cf )) |
---|
4470 | return FALSE; |
---|
4471 | |
---|
4472 | pIter(p1); |
---|
4473 | pIter(p2); |
---|
4474 | } |
---|
4475 | return (p1==p2); |
---|
4476 | } |
---|
4477 | |
---|
4478 | /*2 |
---|
4479 | *returns TRUE if p1 is a skalar multiple of p2 |
---|
4480 | *assume p1 != NULL and p2 != NULL |
---|
4481 | */ |
---|
4482 | BOOLEAN p_ComparePolys(poly p1,poly p2, const ring r) |
---|
4483 | { |
---|
4484 | number n,nn; |
---|
4485 | pAssume(p1 != NULL && p2 != NULL); |
---|
4486 | |
---|
4487 | if (!p_LmEqual(p1,p2,r)) //compare leading mons |
---|
4488 | return FALSE; |
---|
4489 | if ((pNext(p1)==NULL) && (pNext(p2)!=NULL)) |
---|
4490 | return FALSE; |
---|
4491 | if ((pNext(p2)==NULL) && (pNext(p1)!=NULL)) |
---|
4492 | return FALSE; |
---|
4493 | if (pLength(p1) != pLength(p2)) |
---|
4494 | return FALSE; |
---|
4495 | #ifdef HAVE_RINGS |
---|
4496 | if (rField_is_Ring(r)) |
---|
4497 | { |
---|
4498 | if (!n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf)) return FALSE; |
---|
4499 | } |
---|
4500 | #endif |
---|
4501 | n=n_Div(pGetCoeff(p1),pGetCoeff(p2),r->cf); |
---|
4502 | while ((p1 != NULL) /*&& (p2 != NULL)*/) |
---|
4503 | { |
---|
4504 | if ( ! p_LmEqual(p1, p2,r)) |
---|
4505 | { |
---|
4506 | n_Delete(&n, r->cf); |
---|
4507 | return FALSE; |
---|
4508 | } |
---|
4509 | if (!n_Equal(pGetCoeff(p1), nn = n_Mult(pGetCoeff(p2),n, r->cf), r->cf)) |
---|
4510 | { |
---|
4511 | n_Delete(&n, r->cf); |
---|
4512 | n_Delete(&nn, r->cf); |
---|
4513 | return FALSE; |
---|
4514 | } |
---|
4515 | n_Delete(&nn, r->cf); |
---|
4516 | pIter(p1); |
---|
4517 | pIter(p2); |
---|
4518 | } |
---|
4519 | n_Delete(&n, r->cf); |
---|
4520 | return TRUE; |
---|
4521 | } |
---|
4522 | |
---|
4523 | /*2 |
---|
4524 | * returns the length of a (numbers of monomials) |
---|
4525 | * respect syzComp |
---|
4526 | */ |
---|
4527 | poly p_Last(const poly p, int &l, const ring r) |
---|
4528 | { |
---|
4529 | if (p == NULL) |
---|
4530 | { |
---|
4531 | l = 0; |
---|
4532 | return NULL; |
---|
4533 | } |
---|
4534 | l = 1; |
---|
4535 | poly a = p; |
---|
4536 | if (! rIsSyzIndexRing(r)) |
---|
4537 | { |
---|
4538 | poly next = pNext(a); |
---|
4539 | while (next!=NULL) |
---|
4540 | { |
---|
4541 | a = next; |
---|
4542 | next = pNext(a); |
---|
4543 | l++; |
---|
4544 | } |
---|
4545 | } |
---|
4546 | else |
---|
4547 | { |
---|
4548 | int curr_limit = rGetCurrSyzLimit(r); |
---|
4549 | poly pp = a; |
---|
4550 | while ((a=pNext(a))!=NULL) |
---|
4551 | { |
---|
4552 | if (__p_GetComp(a,r)<=curr_limit/*syzComp*/) |
---|
4553 | l++; |
---|
4554 | else break; |
---|
4555 | pp = a; |
---|
4556 | } |
---|
4557 | a=pp; |
---|
4558 | } |
---|
4559 | return a; |
---|
4560 | } |
---|
4561 | |
---|
4562 | int p_Var(poly m,const ring r) |
---|
4563 | { |
---|
4564 | if (m==NULL) return 0; |
---|
4565 | if (pNext(m)!=NULL) return 0; |
---|
4566 | int i,e=0; |
---|
4567 | for (i=rVar(r); i>0; i--) |
---|
4568 | { |
---|
4569 | int exp=p_GetExp(m,i,r); |
---|
4570 | if (exp==1) |
---|
4571 | { |
---|
4572 | if (e==0) e=i; |
---|
4573 | else return 0; |
---|
4574 | } |
---|
4575 | else if (exp!=0) |
---|
4576 | { |
---|
4577 | return 0; |
---|
4578 | } |
---|
4579 | } |
---|
4580 | return e; |
---|
4581 | } |
---|
4582 | |
---|
4583 | /*2 |
---|
4584 | *the minimal index of used variables - 1 |
---|
4585 | */ |
---|
4586 | int p_LowVar (poly p, const ring r) |
---|
4587 | { |
---|
4588 | int k,l,lex; |
---|
4589 | |
---|
4590 | if (p == NULL) return -1; |
---|
4591 | |
---|
4592 | k = 32000;/*a very large dummy value*/ |
---|
4593 | while (p != NULL) |
---|
4594 | { |
---|
4595 | l = 1; |
---|
4596 | lex = p_GetExp(p,l,r); |
---|
4597 | while ((l < (rVar(r))) && (lex == 0)) |
---|
4598 | { |
---|
4599 | l++; |
---|
4600 | lex = p_GetExp(p,l,r); |
---|
4601 | } |
---|
4602 | l--; |
---|
4603 | if (l < k) k = l; |
---|
4604 | pIter(p); |
---|
4605 | } |
---|
4606 | return k; |
---|
4607 | } |
---|
4608 | |
---|
4609 | /*2 |
---|
4610 | * verschiebt die Indizees der Modulerzeugenden um i |
---|
4611 | */ |
---|
4612 | void p_Shift (poly * p,int i, const ring r) |
---|
4613 | { |
---|
4614 | poly qp1 = *p,qp2 = *p;/*working pointers*/ |
---|
4615 | int j = p_MaxComp(*p,r),k = p_MinComp(*p,r); |
---|
4616 | |
---|
4617 | if (j+i < 0) return ; |
---|
4618 | BOOLEAN toPoly= ((j == -i) && (j == k)); |
---|
4619 | while (qp1 != NULL) |
---|
4620 | { |
---|
4621 | if (toPoly || (__p_GetComp(qp1,r)+i > 0)) |
---|
4622 | { |
---|
4623 | p_AddComp(qp1,i,r); |
---|
4624 | p_SetmComp(qp1,r); |
---|
4625 | qp2 = qp1; |
---|
4626 | pIter(qp1); |
---|
4627 | } |
---|
4628 | else |
---|
4629 | { |
---|
4630 | if (qp2 == *p) |
---|
4631 | { |
---|
4632 | pIter(*p); |
---|
4633 | p_LmDelete(&qp2,r); |
---|
4634 | qp2 = *p; |
---|
4635 | qp1 = *p; |
---|
4636 | } |
---|
4637 | else |
---|
4638 | { |
---|
4639 | qp2->next = qp1->next; |
---|
4640 | if (qp1!=NULL) p_LmDelete(&qp1,r); |
---|
4641 | qp1 = qp2->next; |
---|
4642 | } |
---|
4643 | } |
---|
4644 | } |
---|
4645 | } |
---|
4646 | |
---|
4647 | /*************************************************************** |
---|
4648 | * |
---|
4649 | * Storage Managament Routines |
---|
4650 | * |
---|
4651 | ***************************************************************/ |
---|
4652 | |
---|
4653 | |
---|
4654 | static inline unsigned long GetBitFields(const long e, |
---|
4655 | const unsigned int s, const unsigned int n) |
---|
4656 | { |
---|
4657 | #define Sy_bit_L(x) (((unsigned long)1L)<<(x)) |
---|
4658 | unsigned int i = 0; |
---|
4659 | unsigned long ev = 0L; |
---|
4660 | assume(n > 0 && s < BIT_SIZEOF_LONG); |
---|
4661 | do |
---|
4662 | { |
---|
4663 | assume(s+i < BIT_SIZEOF_LONG); |
---|
4664 | if (e > (long) i) ev |= Sy_bit_L(s+i); |
---|
4665 | else break; |
---|
4666 | i++; |
---|
4667 | } |
---|
4668 | while (i < n); |
---|
4669 | return ev; |
---|
4670 | } |
---|
4671 | |
---|
4672 | // Short Exponent Vectors are used for fast divisibility tests |
---|
4673 | // ShortExpVectors "squeeze" an exponent vector into one word as follows: |
---|
4674 | // Let n = BIT_SIZEOF_LONG / pVariables. |
---|
4675 | // If n == 0 (i.e. pVariables > BIT_SIZE_OF_LONG), let m == the number |
---|
4676 | // of non-zero exponents. If (m>BIT_SIZEOF_LONG), then sev = ~0, else |
---|
4677 | // first m bits of sev are set to 1. |
---|
4678 | // Otherwise (i.e. pVariables <= BIT_SIZE_OF_LONG) |
---|
4679 | // represented by a bit-field of length n (resp. n+1 for some |
---|
4680 | // exponents). If the value of an exponent is greater or equal to n, then |
---|
4681 | // all of its respective n bits are set to 1. If the value of an exponent |
---|
4682 | // is smaller than n, say m, then only the first m bits of the respective |
---|
4683 | // n bits are set to 1, the others are set to 0. |
---|
4684 | // This way, we have: |
---|
4685 | // exp1 / exp2 ==> (ev1 & ~ev2) == 0, i.e., |
---|
4686 | // if (ev1 & ~ev2) then exp1 does not divide exp2 |
---|
4687 | unsigned long p_GetShortExpVector(const poly p, const ring r) |
---|
4688 | { |
---|
4689 | assume(p != NULL); |
---|
4690 | unsigned long ev = 0; // short exponent vector |
---|
4691 | unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp |
---|
4692 | unsigned int m1; // highest bit which is filled with (n+1) |
---|
4693 | int i=0,j=1; |
---|
4694 | |
---|
4695 | if (n == 0) |
---|
4696 | { |
---|
4697 | if (r->N <2*BIT_SIZEOF_LONG) |
---|
4698 | { |
---|
4699 | n=1; |
---|
4700 | m1=0; |
---|
4701 | } |
---|
4702 | else |
---|
4703 | { |
---|
4704 | for (; j<=r->N; j++) |
---|
4705 | { |
---|
4706 | if (p_GetExp(p,j,r) > 0) i++; |
---|
4707 | if (i == BIT_SIZEOF_LONG) break; |
---|
4708 | } |
---|
4709 | if (i>0) |
---|
4710 | ev = ~(0UL) >> (BIT_SIZEOF_LONG - i); |
---|
4711 | return ev; |
---|
4712 | } |
---|
4713 | } |
---|
4714 | else |
---|
4715 | { |
---|
4716 | m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N); |
---|
4717 | } |
---|
4718 | |
---|
4719 | n++; |
---|
4720 | while (i<m1) |
---|
4721 | { |
---|
4722 | ev |= GetBitFields(p_GetExp(p, j,r), i, n); |
---|
4723 | i += n; |
---|
4724 | j++; |
---|
4725 | } |
---|
4726 | |
---|
4727 | n--; |
---|
4728 | while (i<BIT_SIZEOF_LONG) |
---|
4729 | { |
---|
4730 | ev |= GetBitFields(p_GetExp(p, j,r), i, n); |
---|
4731 | i += n; |
---|
4732 | j++; |
---|
4733 | } |
---|
4734 | return ev; |
---|
4735 | } |
---|
4736 | |
---|
4737 | |
---|
4738 | /// p_GetShortExpVector of p * pp |
---|
4739 | unsigned long p_GetShortExpVector(const poly p, const poly pp, const ring r) |
---|
4740 | { |
---|
4741 | assume(p != NULL); |
---|
4742 | assume(pp != NULL); |
---|
4743 | |
---|
4744 | unsigned long ev = 0; // short exponent vector |
---|
4745 | unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp |
---|
4746 | unsigned int m1; // highest bit which is filled with (n+1) |
---|
4747 | int j=1; |
---|
4748 | unsigned long i = 0L; |
---|
4749 | |
---|
4750 | if (n == 0) |
---|
4751 | { |
---|
4752 | if (r->N <2*BIT_SIZEOF_LONG) |
---|
4753 | { |
---|
4754 | n=1; |
---|
4755 | m1=0; |
---|
4756 | } |
---|
4757 | else |
---|
4758 | { |
---|
4759 | for (; j<=r->N; j++) |
---|
4760 | { |
---|
4761 | if (p_GetExp(p,j,r) > 0 || p_GetExp(pp,j,r) > 0) i++; |
---|
4762 | if (i == BIT_SIZEOF_LONG) break; |
---|
4763 | } |
---|
4764 | if (i>0) |
---|
4765 | ev = ~(0UL) >> (BIT_SIZEOF_LONG - i); |
---|
4766 | return ev; |
---|
4767 | } |
---|
4768 | } |
---|
4769 | else |
---|
4770 | { |
---|
4771 | m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N); |
---|
4772 | } |
---|
4773 | |
---|
4774 | n++; |
---|
4775 | while (i<m1) |
---|
4776 | { |
---|
4777 | ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n); |
---|
4778 | i += n; |
---|
4779 | j++; |
---|
4780 | } |
---|
4781 | |
---|
4782 | n--; |
---|
4783 | while (i<BIT_SIZEOF_LONG) |
---|
4784 | { |
---|
4785 | ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n); |
---|
4786 | i += n; |
---|
4787 | j++; |
---|
4788 | } |
---|
4789 | return ev; |
---|
4790 | } |
---|
4791 | |
---|
4792 | |
---|
4793 | |
---|
4794 | /*************************************************************** |
---|
4795 | * |
---|
4796 | * p_ShallowDelete |
---|
4797 | * |
---|
4798 | ***************************************************************/ |
---|
4799 | #undef LINKAGE |
---|
4800 | #define LINKAGE |
---|
4801 | #undef p_Delete__T |
---|
4802 | #define p_Delete__T p_ShallowDelete |
---|
4803 | #undef n_Delete__T |
---|
4804 | #define n_Delete__T(n, r) do {} while (0) |
---|
4805 | |
---|
4806 | #include "polys/templates/p_Delete__T.cc" |
---|
4807 | |
---|
4808 | /***************************************************************/ |
---|
4809 | /* |
---|
4810 | * compare a and b |
---|
4811 | */ |
---|
4812 | int p_Compare(const poly a, const poly b, const ring R) |
---|
4813 | { |
---|
4814 | int r=p_Cmp(a,b,R); |
---|
4815 | if ((r==0)&&(a!=NULL)) |
---|
4816 | { |
---|
4817 | number h=n_Sub(pGetCoeff(a),pGetCoeff(b),R->cf); |
---|
4818 | /* compare lead coeffs */ |
---|
4819 | r = -1+n_IsZero(h,R->cf)+2*n_GreaterZero(h,R->cf); /* -1: <, 0:==, 1: > */ |
---|
4820 | n_Delete(&h,R->cf); |
---|
4821 | } |
---|
4822 | else if (a==NULL) |
---|
4823 | { |
---|
4824 | if (b==NULL) |
---|
4825 | { |
---|
4826 | /* compare 0, 0 */ |
---|
4827 | r=0; |
---|
4828 | } |
---|
4829 | else if(p_IsConstant(b,R)) |
---|
4830 | { |
---|
4831 | /* compare 0, const */ |
---|
4832 | r = 1-2*n_GreaterZero(pGetCoeff(b),R->cf); /* -1: <, 1: > */ |
---|
4833 | } |
---|
4834 | } |
---|
4835 | else if (b==NULL) |
---|
4836 | { |
---|
4837 | if (p_IsConstant(a,R)) |
---|
4838 | { |
---|
4839 | /* compare const, 0 */ |
---|
4840 | r = -1+2*n_GreaterZero(pGetCoeff(a),R->cf); /* -1: <, 1: > */ |
---|
4841 | } |
---|
4842 | } |
---|
4843 | return(r); |
---|
4844 | } |
---|
4845 | |
---|
4846 | poly p_GcdMon(poly f, poly g, const ring r) |
---|
4847 | { |
---|
4848 | assume(f!=NULL); |
---|
4849 | assume(g!=NULL); |
---|
4850 | assume(pNext(f)==NULL); |
---|
4851 | poly G=p_Head(f,r); |
---|
4852 | poly h=g; |
---|
4853 | int *mf=(int*)omAlloc((r->N+1)*sizeof(int)); |
---|
4854 | p_GetExpV(f,mf,r); |
---|
4855 | int *mh=(int*)omAlloc((r->N+1)*sizeof(int)); |
---|
4856 | BOOLEAN const_mon; |
---|
4857 | BOOLEAN one_coeff=n_IsOne(pGetCoeff(G),r->cf); |
---|
4858 | loop |
---|
4859 | { |
---|
4860 | if (h==NULL) break; |
---|
4861 | if(!one_coeff) |
---|
4862 | { |
---|
4863 | number n=n_SubringGcd(pGetCoeff(G),pGetCoeff(h),r->cf); |
---|
4864 | one_coeff=n_IsOne(n,r->cf); |
---|
4865 | p_SetCoeff(G,n,r); |
---|
4866 | } |
---|
4867 | p_GetExpV(h,mh,r); |
---|
4868 | const_mon=TRUE; |
---|
4869 | for(unsigned j=r->N;j!=0;j--) |
---|
4870 | { |
---|
4871 | if (mh[j]<mf[j]) mf[j]=mh[j]; |
---|
4872 | if (mf[j]>0) const_mon=FALSE; |
---|
4873 | } |
---|
4874 | if (one_coeff && const_mon) break; |
---|
4875 | pIter(h); |
---|
4876 | } |
---|
4877 | mf[0]=0; |
---|
4878 | p_SetExpV(G,mf,r); // included is p_SetComp, p_Setm |
---|
4879 | omFreeSize(mf,(r->N+1)*sizeof(int)); |
---|
4880 | omFreeSize(mh,(r->N+1)*sizeof(int)); |
---|
4881 | return G; |
---|
4882 | } |
---|
4883 | |
---|
4884 | poly p_CopyPowerProduct(poly p, const ring r) |
---|
4885 | { |
---|
4886 | if (p == NULL) return NULL; |
---|
4887 | p_LmCheckPolyRing1(p, r); |
---|
4888 | poly np; |
---|
4889 | omTypeAllocBin(poly, np, r->PolyBin); |
---|
4890 | p_SetRingOfLm(np, r); |
---|
4891 | memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long)); |
---|
4892 | pNext(np) = NULL; |
---|
4893 | pSetCoeff0(np, n_Init(1, r->cf)); |
---|
4894 | return np; |
---|
4895 | } |
---|
4896 | |
---|