1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /*************************************************************** |
---|
5 | * File: p_polys.h |
---|
6 | * Purpose: declaration of poly stuf which are independent of |
---|
7 | * currRing |
---|
8 | * Author: obachman (Olaf Bachmann) |
---|
9 | * Created: 9/00 |
---|
10 | * Version: $Id$ |
---|
11 | *******************************************************************/ |
---|
12 | #ifndef P_POLYS_H |
---|
13 | #define P_POLYS_H |
---|
14 | |
---|
15 | #include <polys/monomials/ring.h> |
---|
16 | #include <polys/monomials/monomials.h> |
---|
17 | #include <polys/monomials/polys-impl.h> |
---|
18 | #include <polys/templates/p_Procs.h> |
---|
19 | #include <polys/templates/p_Procs.h> |
---|
20 | #include <polys/sbuckets.h> |
---|
21 | |
---|
22 | /*************************************************************** |
---|
23 | * |
---|
24 | * Primitives for accessing and setting fields of a poly |
---|
25 | * poly must be != NULL |
---|
26 | * |
---|
27 | ***************************************************************/ |
---|
28 | // next |
---|
29 | #define pNext(p) ((p)->next) |
---|
30 | #define pIter(p) ((p) = (p)->next) |
---|
31 | |
---|
32 | // coeff |
---|
33 | #define pGetCoeff(p) ((p)->coef) |
---|
34 | // deletes old coeff before setting the new one |
---|
35 | #define pSetCoeff0(p,n) (p)->coef=(n) |
---|
36 | #define p_GetCoeff(p,r) pGetCoeff(p) |
---|
37 | #define p_SetCoeff0(p,n,r) pSetCoeff0(p,n) |
---|
38 | |
---|
39 | /*************************************************************** |
---|
40 | * |
---|
41 | * Comparisons: they are all done without regarding coeffs |
---|
42 | * |
---|
43 | ***************************************************************/ |
---|
44 | #define p_LmCmpAction(p, q, r, actionE, actionG, actionS) \ |
---|
45 | _p_LmCmpAction(p, q, r, actionE, actionG, actionS) |
---|
46 | |
---|
47 | // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !! |
---|
48 | #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r) |
---|
49 | |
---|
50 | /*************************************************************** |
---|
51 | * |
---|
52 | * Divisiblity tests, args must be != NULL, except for |
---|
53 | * pDivisbleBy |
---|
54 | * |
---|
55 | ***************************************************************/ |
---|
56 | unsigned long p_GetShortExpVector(poly a, ring r); |
---|
57 | |
---|
58 | /*************************************************************** |
---|
59 | * |
---|
60 | * Misc things on polys |
---|
61 | * |
---|
62 | ***************************************************************/ |
---|
63 | // return the maximal exponent of p in form of the maximal long var |
---|
64 | unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max = 0); |
---|
65 | // return monomial r such that GetExp(r,i) is maximum of all |
---|
66 | // monomials in p; coeff == 0, next == NULL, ord is not set |
---|
67 | poly p_GetMaxExpP(poly p, ring r); |
---|
68 | |
---|
69 | // return the TotalDegree of the long var l |
---|
70 | static inline unsigned long p_GetTotalDegree(const unsigned long l, const ring r); |
---|
71 | // return the total degree of the long var l containing number_of_exp exponents |
---|
72 | static inline unsigned long p_GetTotalDegree(const unsigned long l, const ring r, const int number_of_exps); |
---|
73 | |
---|
74 | int p_MinDeg(poly p,intvec *w, const ring R); |
---|
75 | |
---|
76 | long p_DegW(poly p, const short *w, const ring R); |
---|
77 | |
---|
78 | // return TRUE if all monoms have the same component |
---|
79 | BOOLEAN p_OneComp(poly p, ring r); |
---|
80 | |
---|
81 | // return i, if head depends only on var(i) |
---|
82 | int p_IsPurePower(const poly p, const ring r); |
---|
83 | |
---|
84 | // return i, if poly depends only on var(i) |
---|
85 | int p_IsUnivariate(poly p, const ring r); |
---|
86 | |
---|
87 | // set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 |
---|
88 | // return #(e[i]>0) |
---|
89 | int p_GetVariables(poly p, int * e, const ring r); |
---|
90 | |
---|
91 | // returns the poly representing the integer i |
---|
92 | poly p_ISet(int i, ring r); |
---|
93 | |
---|
94 | // returns the poly representing the number n, destroys n |
---|
95 | poly p_NSet(number n, ring r); |
---|
96 | |
---|
97 | /*************************************************************** |
---|
98 | * |
---|
99 | * Copying/Deletion of polys: args may be NULL |
---|
100 | * |
---|
101 | ***************************************************************/ |
---|
102 | |
---|
103 | // simply deletes monomials, does not free coeffs |
---|
104 | void p_ShallowDelete(poly *p, const ring r); |
---|
105 | |
---|
106 | |
---|
107 | |
---|
108 | /*************************************************************** |
---|
109 | * |
---|
110 | * Copying/Deleteion of polys: args may be NULL |
---|
111 | * - p/q as arg mean a poly |
---|
112 | * - m a monomial |
---|
113 | * - n a number |
---|
114 | * - pp (resp. qq, mm, nn) means arg is constant |
---|
115 | * - p (resp, q, m, n) means arg is destroyed |
---|
116 | * |
---|
117 | ***************************************************************/ |
---|
118 | |
---|
119 | poly p_Sub(poly a, poly b, const ring r); |
---|
120 | |
---|
121 | poly p_Power(poly p, int i, const ring r); |
---|
122 | /*************************************************************** |
---|
123 | * |
---|
124 | * Misc stuff |
---|
125 | * |
---|
126 | ***************************************************************/ |
---|
127 | /*2 |
---|
128 | * returns the length of a (numbers of monomials) |
---|
129 | */ |
---|
130 | static inline int pLength(poly a) |
---|
131 | { |
---|
132 | int l = 0; |
---|
133 | while (a!=NULL) |
---|
134 | { |
---|
135 | pIter(a); |
---|
136 | l++; |
---|
137 | } |
---|
138 | return l; |
---|
139 | } |
---|
140 | |
---|
141 | void p_Norm(poly p1, const ring r); |
---|
142 | void p_Normalize(poly p,const ring r); |
---|
143 | |
---|
144 | void p_Content(poly p, const ring r); |
---|
145 | //void p_SimpleContent(poly p, int s, const ring r); |
---|
146 | |
---|
147 | poly p_Cleardenom(poly p, const ring r); |
---|
148 | void p_Cleardenom_n(poly p, const ring r,number &c); |
---|
149 | number p_GetAllDenom(poly ph, const ring r); |
---|
150 | |
---|
151 | int pSize( poly p, const ring r ); |
---|
152 | |
---|
153 | // homogenizes p by multiplying certain powers of the varnum-th variable |
---|
154 | poly p_Homogen (poly p, int varnum, const ring r); |
---|
155 | |
---|
156 | BOOLEAN p_IsHomogeneous (poly p, const ring r); |
---|
157 | |
---|
158 | static inline void p_Setm(poly p, const ring r); |
---|
159 | p_SetmProc p_GetSetmProc(ring r); |
---|
160 | |
---|
161 | poly p_Subst(poly p, int n, poly e, const ring r); |
---|
162 | |
---|
163 | // TODO: |
---|
164 | #define p_SetmComp p_Setm |
---|
165 | |
---|
166 | // component |
---|
167 | static inline unsigned long p_SetComp(poly p, unsigned long c, ring r) |
---|
168 | { |
---|
169 | p_LmCheckPolyRing2(p, r); |
---|
170 | pAssume2(rRing_has_Comp(r)); |
---|
171 | __p_GetComp(p,r) = c; |
---|
172 | return c; |
---|
173 | } |
---|
174 | // sets component of poly a to i, returns length of p |
---|
175 | static inline void p_SetCompP(poly p, int i, ring r) |
---|
176 | { |
---|
177 | if (p != NULL) |
---|
178 | { |
---|
179 | #ifdef PDEBUG |
---|
180 | poly q = p; |
---|
181 | int l = 0; |
---|
182 | #endif |
---|
183 | |
---|
184 | if (rOrd_SetCompRequiresSetm(r)) |
---|
185 | { |
---|
186 | do |
---|
187 | { |
---|
188 | p_SetComp(p, i, r); |
---|
189 | p_SetmComp(p, r); |
---|
190 | #ifdef PDEBUG |
---|
191 | l++; |
---|
192 | #endif |
---|
193 | pIter(p); |
---|
194 | } |
---|
195 | while (p != NULL); |
---|
196 | } |
---|
197 | else |
---|
198 | { |
---|
199 | do |
---|
200 | { |
---|
201 | p_SetComp(p, i, r); |
---|
202 | #ifdef PDEBUG |
---|
203 | l++; |
---|
204 | #endif |
---|
205 | pIter(p); |
---|
206 | } |
---|
207 | while(p != NULL); |
---|
208 | } |
---|
209 | #ifdef PDEBUG |
---|
210 | p_Test(q, r); |
---|
211 | assume(l == pLength(q)); |
---|
212 | #endif |
---|
213 | } |
---|
214 | } |
---|
215 | |
---|
216 | static inline void p_SetCompP(poly p, int i, ring lmRing, ring tailRing) |
---|
217 | { |
---|
218 | if (p != NULL) |
---|
219 | { |
---|
220 | p_SetComp(p, i, lmRing); |
---|
221 | p_SetmComp(p, lmRing); |
---|
222 | p_SetCompP(pNext(p), i, tailRing); |
---|
223 | } |
---|
224 | } |
---|
225 | |
---|
226 | // returns maximal column number in the modul element a (or 0) |
---|
227 | static inline long p_MaxComp(poly p, ring lmRing, ring tailRing) |
---|
228 | { |
---|
229 | long result,i; |
---|
230 | |
---|
231 | if(p==NULL) return 0; |
---|
232 | result = p_GetComp(p, lmRing); |
---|
233 | if (result != 0) |
---|
234 | { |
---|
235 | loop |
---|
236 | { |
---|
237 | pIter(p); |
---|
238 | if(p==NULL) break; |
---|
239 | i = p_GetComp(p, tailRing); |
---|
240 | if (i>result) result = i; |
---|
241 | } |
---|
242 | } |
---|
243 | return result; |
---|
244 | } |
---|
245 | |
---|
246 | static inline long p_MaxComp(poly p,ring lmRing) {return p_MaxComp(p,lmRing,lmRing);} |
---|
247 | |
---|
248 | static inline long p_MinComp(poly p, ring lmRing, ring tailRing) |
---|
249 | { |
---|
250 | long result,i; |
---|
251 | |
---|
252 | if(p==NULL) return 0; |
---|
253 | result = p_GetComp(p,lmRing); |
---|
254 | if (result != 0) |
---|
255 | { |
---|
256 | loop |
---|
257 | { |
---|
258 | pIter(p); |
---|
259 | if(p==NULL) break; |
---|
260 | i = p_GetComp(p,tailRing); |
---|
261 | if (i<result) result = i; |
---|
262 | } |
---|
263 | } |
---|
264 | return result; |
---|
265 | } |
---|
266 | |
---|
267 | static inline long p_MinComp(poly p,ring lmRing) {return p_MinComp(p,lmRing,lmRing);} |
---|
268 | |
---|
269 | /*************************************************************** |
---|
270 | * |
---|
271 | * poly things which are independent of ring |
---|
272 | * |
---|
273 | ***************************************************************/ |
---|
274 | static inline poly pLast(poly a, int &length); |
---|
275 | inline poly pLast(poly a) { int l; return pLast(a, l);} |
---|
276 | static inline poly pReverse(poly p) |
---|
277 | { |
---|
278 | if (p == NULL || pNext(p) == NULL) return p; |
---|
279 | |
---|
280 | poly q = pNext(p), // == pNext(p) |
---|
281 | qn; |
---|
282 | pNext(p) = NULL; |
---|
283 | do |
---|
284 | { |
---|
285 | qn = pNext(q); |
---|
286 | pNext(q) = p; |
---|
287 | p = q; |
---|
288 | q = qn; |
---|
289 | } |
---|
290 | while (qn != NULL); |
---|
291 | return p; |
---|
292 | } |
---|
293 | void pEnlargeSet(poly**p, int length, int increment); |
---|
294 | |
---|
295 | |
---|
296 | /*************************************************************** |
---|
297 | * |
---|
298 | * I/O |
---|
299 | * |
---|
300 | ***************************************************************/ |
---|
301 | char* p_String(poly p, ring lmRing, ring tailRing); |
---|
302 | char* p_String0(poly p, ring lmRing, ring tailRing); |
---|
303 | void p_Write(poly p, ring lmRing, ring tailRing); |
---|
304 | void p_Write0(poly p, ring lmRing, ring tailRing); |
---|
305 | void p_wrp(poly p, ring lmRing, ring tailRing); |
---|
306 | |
---|
307 | static inline char* p_String(poly p, ring p_ring); |
---|
308 | static inline char* p_String0(poly p, ring p_ring); |
---|
309 | static inline void p_Write(poly p, ring p_ring); |
---|
310 | static inline void p_Write0(poly p, ring p_ring); |
---|
311 | static inline void p_wrp(poly p, ring p_ring); |
---|
312 | |
---|
313 | |
---|
314 | /*************************************************************** |
---|
315 | * |
---|
316 | * Degree stuff -- see p_polys.cc for explainations |
---|
317 | * |
---|
318 | ***************************************************************/ |
---|
319 | extern pLDegProc pLDeg; |
---|
320 | extern pFDegProc pFDeg; |
---|
321 | long p_WFirstTotalDegree(poly p, ring r); |
---|
322 | long p_WTotaldegree(poly p, const ring r); |
---|
323 | long p_WDegree(poly p,const ring r); |
---|
324 | long pLDeg0(poly p,int *l, ring r); |
---|
325 | long pLDeg0c(poly p,int *l, ring r); |
---|
326 | long pLDegb(poly p,int *l, ring r); |
---|
327 | long pLDeg1(poly p,int *l, ring r); |
---|
328 | long pLDeg1c(poly p,int *l, ring r); |
---|
329 | long pLDeg1_Deg(poly p,int *l, ring r); |
---|
330 | long pLDeg1c_Deg(poly p,int *l, ring r); |
---|
331 | long pLDeg1_Totaldegree(poly p,int *l, ring r); |
---|
332 | long pLDeg1c_Totaldegree(poly p,int *l, ring r); |
---|
333 | long pLDeg1_WFirstTotalDegree(poly p,int *l, ring r); |
---|
334 | long pLDeg1c_WFirstTotalDegree(poly p,int *l, ring r); |
---|
335 | BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r); |
---|
336 | |
---|
337 | long p_Deg(poly a, const ring r); |
---|
338 | /*************************************************************** |
---|
339 | * |
---|
340 | * PDEBUG stuff |
---|
341 | * |
---|
342 | ***************************************************************/ |
---|
343 | #ifdef PDEBUG |
---|
344 | // Returns TRUE if m is monom of p, FALSE otherwise |
---|
345 | BOOLEAN pIsMonomOf(poly p, poly m); |
---|
346 | // Returns TRUE if p and q have common monoms |
---|
347 | BOOLEAN pHaveCommonMonoms(poly p, poly q); |
---|
348 | |
---|
349 | // p_Check* routines return TRUE if everything is ok, |
---|
350 | // else, they report error message and return false |
---|
351 | |
---|
352 | // check if Lm(p) is from ring r |
---|
353 | BOOLEAN p_LmCheckIsFromRing(poly p, ring r); |
---|
354 | // check if Lm(p) != NULL, r != NULL and initialized && Lm(p) is from r |
---|
355 | BOOLEAN p_LmCheckPolyRing(poly p, ring r); |
---|
356 | // check if all monoms of p are from ring r |
---|
357 | BOOLEAN p_CheckIsFromRing(poly p, ring r); |
---|
358 | // check r != NULL and initialized && all monoms of p are from r |
---|
359 | BOOLEAN p_CheckPolyRing(poly p, ring r); |
---|
360 | // check if r != NULL and initialized |
---|
361 | BOOLEAN p_CheckRing(ring r); |
---|
362 | // only do check if cond |
---|
363 | |
---|
364 | |
---|
365 | #define pIfThen(cond, check) do {if (cond) {check;}} while (0) |
---|
366 | |
---|
367 | BOOLEAN _p_Test(poly p, ring r, int level); |
---|
368 | BOOLEAN _p_LmTest(poly p, ring r, int level); |
---|
369 | BOOLEAN _pp_Test(poly p, ring lmRing, ring tailRing, int level); |
---|
370 | |
---|
371 | #define p_Test(p,r) _p_Test(p, r, PDEBUG) |
---|
372 | #define p_LmTest(p,r) _p_LmTest(p, r, PDEBUG) |
---|
373 | #define pp_Test(p, lmRing, tailRing) _pp_Test(p, lmRing, tailRing, PDEBUG) |
---|
374 | |
---|
375 | #else // ! PDEBUG |
---|
376 | |
---|
377 | #define pIsMonomOf(p, q) (TRUE) |
---|
378 | #define pHaveCommonMonoms(p, q) (TRUE) |
---|
379 | #define p_LmCheckIsFromRing(p,r) ((void)0) |
---|
380 | #define p_LmCheckPolyRing(p,r) ((void)0) |
---|
381 | #define p_CheckIsFromRing(p,r) ((void)0) |
---|
382 | #define p_CheckPolyRing(p,r) ((void)0) |
---|
383 | #define p_CheckRing(r) ((void)0) |
---|
384 | #define P_CheckIf(cond, check) ((void)0) |
---|
385 | |
---|
386 | #define p_Test(p,r) (1) |
---|
387 | #define p_LmTest(p,r) (1) |
---|
388 | #define pp_Test(p, lmRing, tailRing) (1) |
---|
389 | |
---|
390 | #endif |
---|
391 | |
---|
392 | /*************************************************************** |
---|
393 | * |
---|
394 | * Primitives for accessing and setting fields of a poly |
---|
395 | * |
---|
396 | ***************************************************************/ |
---|
397 | |
---|
398 | static inline number p_SetCoeff(poly p, number n, ring r) |
---|
399 | { |
---|
400 | p_LmCheckPolyRing2(p, r); |
---|
401 | n_Delete(&(p->coef), r->cf); |
---|
402 | (p)->coef=n; |
---|
403 | return n; |
---|
404 | } |
---|
405 | |
---|
406 | // order |
---|
407 | static inline long p_GetOrder(poly p, ring r) |
---|
408 | { |
---|
409 | p_LmCheckPolyRing2(p, r); |
---|
410 | if (r->typ==NULL) return ((p)->exp[r->pOrdIndex]); |
---|
411 | int i=0; |
---|
412 | loop |
---|
413 | { |
---|
414 | switch(r->typ[i].ord_typ) |
---|
415 | { |
---|
416 | case ro_wp_neg: |
---|
417 | return (((long)((p)->exp[r->pOrdIndex]))-POLY_NEGWEIGHT_OFFSET); |
---|
418 | case ro_syzcomp: |
---|
419 | case ro_syz: |
---|
420 | case ro_cp: |
---|
421 | i++; |
---|
422 | break; |
---|
423 | //case ro_dp: |
---|
424 | //case ro_wp: |
---|
425 | default: |
---|
426 | return ((p)->exp[r->pOrdIndex]); |
---|
427 | } |
---|
428 | } |
---|
429 | } |
---|
430 | |
---|
431 | // Setm |
---|
432 | static inline void p_Setm(poly p, const ring r) |
---|
433 | { |
---|
434 | p_CheckRing2(r); |
---|
435 | r->p_Setm(p, r); |
---|
436 | } |
---|
437 | |
---|
438 | |
---|
439 | static inline unsigned long p_AddComp(poly p, unsigned long v, ring r) |
---|
440 | { |
---|
441 | p_LmCheckPolyRing2(p, r); |
---|
442 | pAssume2(rRing_has_Comp(r)); |
---|
443 | return __p_GetComp(p,r) += v; |
---|
444 | } |
---|
445 | static inline unsigned long p_SubComp(poly p, unsigned long v, ring r) |
---|
446 | { |
---|
447 | p_LmCheckPolyRing2(p, r); |
---|
448 | pAssume2(rRing_has_Comp(r)); |
---|
449 | _pPolyAssume2(__p_GetComp(p,r) >= v,p,r); |
---|
450 | return __p_GetComp(p,r) -= v; |
---|
451 | } |
---|
452 | static inline int p_Comp_k_n(poly a, poly b, int k, ring r) |
---|
453 | { |
---|
454 | if ((a==NULL) || (b==NULL) ) return FALSE; |
---|
455 | p_LmCheckPolyRing2(a, r); |
---|
456 | p_LmCheckPolyRing2(b, r); |
---|
457 | pAssume2(k > 0 && k <= r->N); |
---|
458 | int i=k; |
---|
459 | for(;i<=r->N;i++) |
---|
460 | { |
---|
461 | if (p_GetExp(a,i,r) != p_GetExp(b,i,r)) return FALSE; |
---|
462 | // if (a->exp[(r->VarOffset[i] & 0xffffff)] != b->exp[(r->VarOffset[i] & 0xffffff)]) return FALSE; |
---|
463 | } |
---|
464 | return TRUE; |
---|
465 | } |
---|
466 | |
---|
467 | #ifndef HAVE_EXPSIZES |
---|
468 | |
---|
469 | /// get a single variable exponent |
---|
470 | /// @Note: |
---|
471 | /// the integer VarOffset encodes: |
---|
472 | /// 1. the position of a variable in the exponent vector p->exp (lower 24 bits) |
---|
473 | /// 2. number of bits to shift to the right in the upper 8 bits (which takes at most 6 bits for 64 bit) |
---|
474 | /// Thus VarOffset always has 2 zero higher bits! |
---|
475 | static inline long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset) |
---|
476 | { |
---|
477 | pAssume2((VarOffset >> (24 + 6)) == 0); |
---|
478 | #if 0 |
---|
479 | int pos=(VarOffset & 0xffffff); |
---|
480 | int bitpos=(VarOffset >> 24); |
---|
481 | unsigned long exp=(p->exp[pos] >> bitmask) & iBitmask; |
---|
482 | return exp; |
---|
483 | #else |
---|
484 | return (long) |
---|
485 | ((p->exp[(VarOffset & 0xffffff)] >> (VarOffset >> 24)) |
---|
486 | & iBitmask); |
---|
487 | #endif |
---|
488 | } |
---|
489 | |
---|
490 | |
---|
491 | /// set a single variable exponent |
---|
492 | /// @Note: |
---|
493 | /// VarOffset encodes the position in p->exp @see p_GetExp |
---|
494 | static inline unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset) |
---|
495 | { |
---|
496 | pAssume2(e>=0); |
---|
497 | pAssume2(e<=iBitmask); |
---|
498 | pAssume2((VarOffset >> (24 + 6)) == 0); |
---|
499 | |
---|
500 | // shift e to the left: |
---|
501 | register int shift = VarOffset >> 24; |
---|
502 | unsigned long ee = e << shift /*(VarOffset >> 24)*/; |
---|
503 | // find the bits in the exponent vector |
---|
504 | register int offset = (VarOffset & 0xffffff); |
---|
505 | // clear the bits in the exponent vector: |
---|
506 | p->exp[offset] &= ~( iBitmask << shift ); |
---|
507 | // insert e with | |
---|
508 | p->exp[ offset ] |= ee; |
---|
509 | return e; |
---|
510 | } |
---|
511 | |
---|
512 | |
---|
513 | #else // #ifdef HAVE_EXPSIZES // EXPERIMENTAL!!! |
---|
514 | |
---|
515 | static inline unsigned long BitMask(unsigned long bitmask, int twobits) |
---|
516 | { |
---|
517 | // bitmask = 00000111111111111 |
---|
518 | // 0 must give bitmask! |
---|
519 | // 1, 2, 3 - anything like 00011..11 |
---|
520 | pAssume2((twobits >> 2) == 0); |
---|
521 | static const unsigned long _bitmasks[4] = {-1, 0x7fff, 0x7f, 0x3}; |
---|
522 | return bitmask & _bitmasks[twobits]; |
---|
523 | } |
---|
524 | |
---|
525 | |
---|
526 | /// @Note: we may add some more info (6 ) into VarOffset and thus encode |
---|
527 | static inline long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset) |
---|
528 | { |
---|
529 | int pos =(VarOffset & 0xffffff); |
---|
530 | int hbyte= (VarOffset >> 24); // the highest byte |
---|
531 | int bitpos = hbyte & 0x3f; // last 6 bits |
---|
532 | long bitmask = BitMask(iBitmask, hbyte >> 6); |
---|
533 | |
---|
534 | long exp=(p->exp[pos] >> bitpos) & bitmask; |
---|
535 | return exp; |
---|
536 | |
---|
537 | } |
---|
538 | |
---|
539 | static inline long p_SetExp(poly p, const long e, const unsigned long iBitmask, const int VarOffset) |
---|
540 | { |
---|
541 | pAssume2(e>=0); |
---|
542 | pAssume2(e <= BitMask(iBitmask, VarOffset >> 30)); |
---|
543 | |
---|
544 | // shift e to the left: |
---|
545 | register int hbyte = VarOffset >> 24; |
---|
546 | int bitmask = BitMask(iBitmask, hbyte >> 6); |
---|
547 | register int shift = hbyte & 0x3f; |
---|
548 | long ee = e << shift; |
---|
549 | // find the bits in the exponent vector |
---|
550 | register int offset = (VarOffset & 0xffffff); |
---|
551 | // clear the bits in the exponent vector: |
---|
552 | p->exp[offset] &= ~( bitmask << shift ); |
---|
553 | // insert e with | |
---|
554 | p->exp[ offset ] |= ee; |
---|
555 | return e; |
---|
556 | } |
---|
557 | |
---|
558 | #endif // #ifndef HAVE_EXPSIZES |
---|
559 | |
---|
560 | |
---|
561 | static inline long p_GetExp(const poly p, const ring r, const int VarOffset) |
---|
562 | { |
---|
563 | p_LmCheckPolyRing2(p, r); |
---|
564 | pAssume2(VarOffset != -1); |
---|
565 | return p_GetExp(p, r->bitmask, VarOffset); |
---|
566 | } |
---|
567 | |
---|
568 | static inline long p_SetExp(poly p, const long e, const ring r, const int VarOffset) |
---|
569 | { |
---|
570 | p_LmCheckPolyRing2(p, r); |
---|
571 | pAssume2(VarOffset != -1); |
---|
572 | return p_SetExp(p, e, r->bitmask, VarOffset); |
---|
573 | } |
---|
574 | |
---|
575 | |
---|
576 | |
---|
577 | /// get v^th exponent for a monomial |
---|
578 | static inline long p_GetExp(const poly p, const int v, const ring r) |
---|
579 | { |
---|
580 | p_LmCheckPolyRing2(p, r); |
---|
581 | pAssume2(v>0 && v <= r->N); |
---|
582 | pAssume2(r->VarOffset[v] != -1); |
---|
583 | return p_GetExp(p, r->bitmask, r->VarOffset[v]); |
---|
584 | } |
---|
585 | |
---|
586 | |
---|
587 | /// set v^th exponent for a monomial |
---|
588 | static inline long p_SetExp(poly p, const int v, const long e, const ring r) |
---|
589 | { |
---|
590 | p_LmCheckPolyRing2(p, r); |
---|
591 | pAssume2(v>0 && v <= r->N); |
---|
592 | pAssume2(r->VarOffset[v] != -1); |
---|
593 | return p_SetExp(p, e, r->bitmask, r->VarOffset[v]); |
---|
594 | } |
---|
595 | |
---|
596 | |
---|
597 | |
---|
598 | |
---|
599 | |
---|
600 | // the following should be implemented more efficiently |
---|
601 | static inline long p_IncrExp(poly p, int v, ring r) |
---|
602 | { |
---|
603 | p_LmCheckPolyRing2(p, r); |
---|
604 | int e = p_GetExp(p,v,r); |
---|
605 | e++; |
---|
606 | return p_SetExp(p,v,e,r); |
---|
607 | } |
---|
608 | static inline long p_DecrExp(poly p, int v, ring r) |
---|
609 | { |
---|
610 | p_LmCheckPolyRing2(p, r); |
---|
611 | int e = p_GetExp(p,v,r); |
---|
612 | pAssume2(e > 0); |
---|
613 | e--; |
---|
614 | return p_SetExp(p,v,e,r); |
---|
615 | } |
---|
616 | static inline long p_AddExp(poly p, int v, long ee, ring r) |
---|
617 | { |
---|
618 | p_LmCheckPolyRing2(p, r); |
---|
619 | int e = p_GetExp(p,v,r); |
---|
620 | e += ee; |
---|
621 | return p_SetExp(p,v,e,r); |
---|
622 | } |
---|
623 | static inline long p_SubExp(poly p, int v, long ee, ring r) |
---|
624 | { |
---|
625 | p_LmCheckPolyRing2(p, r); |
---|
626 | long e = p_GetExp(p,v,r); |
---|
627 | pAssume2(e >= ee); |
---|
628 | e -= ee; |
---|
629 | return p_SetExp(p,v,e,r); |
---|
630 | } |
---|
631 | static inline long p_MultExp(poly p, int v, long ee, ring r) |
---|
632 | { |
---|
633 | p_LmCheckPolyRing2(p, r); |
---|
634 | long e = p_GetExp(p,v,r); |
---|
635 | e *= ee; |
---|
636 | return p_SetExp(p,v,e,r); |
---|
637 | } |
---|
638 | |
---|
639 | static inline long p_GetExpSum(poly p1, poly p2, int i, ring r) |
---|
640 | { |
---|
641 | p_LmCheckPolyRing2(p1, r); |
---|
642 | p_LmCheckPolyRing2(p2, r); |
---|
643 | return p_GetExp(p1,i,r) + p_GetExp(p2,i,r); |
---|
644 | } |
---|
645 | static inline long p_GetExpDiff(poly p1, poly p2, int i, ring r) |
---|
646 | { |
---|
647 | return p_GetExp(p1,i,r) - p_GetExp(p2,i,r); |
---|
648 | } |
---|
649 | |
---|
650 | |
---|
651 | /*************************************************************** |
---|
652 | * |
---|
653 | * Allocation/Initalization/Deletion |
---|
654 | * |
---|
655 | ***************************************************************/ |
---|
656 | static inline poly p_New(ring r, omBin bin) |
---|
657 | { |
---|
658 | p_CheckRing2(r); |
---|
659 | pAssume2(bin != NULL && r->PolyBin->sizeW == bin->sizeW); |
---|
660 | poly p; |
---|
661 | omTypeAllocBin(poly, p, bin); |
---|
662 | p_SetRingOfLm(p, r); |
---|
663 | return p; |
---|
664 | } |
---|
665 | |
---|
666 | static inline poly p_New(ring r) |
---|
667 | { |
---|
668 | return p_New(r, r->PolyBin); |
---|
669 | } |
---|
670 | |
---|
671 | static inline void p_LmFree(poly p, ring r) |
---|
672 | { |
---|
673 | p_LmCheckPolyRing2(p, r); |
---|
674 | omFreeBinAddr(p); |
---|
675 | } |
---|
676 | static inline void p_LmFree(poly *p, ring r) |
---|
677 | { |
---|
678 | p_LmCheckPolyRing2(*p, r); |
---|
679 | poly h = *p; |
---|
680 | *p = pNext(h); |
---|
681 | omFreeBinAddr(h); |
---|
682 | } |
---|
683 | static inline poly p_LmFreeAndNext(poly p, ring r) |
---|
684 | { |
---|
685 | p_LmCheckPolyRing2(p, r); |
---|
686 | poly pnext = pNext(p); |
---|
687 | omFreeBinAddr(p); |
---|
688 | return pnext; |
---|
689 | } |
---|
690 | static inline void p_LmDelete(poly p, const ring r) |
---|
691 | { |
---|
692 | p_LmCheckPolyRing2(p, r); |
---|
693 | n_Delete(&pGetCoeff(p), r->cf); |
---|
694 | omFreeBinAddr(p); |
---|
695 | } |
---|
696 | static inline void p_LmDelete(poly *p, const ring r) |
---|
697 | { |
---|
698 | p_LmCheckPolyRing2(*p, r); |
---|
699 | poly h = *p; |
---|
700 | *p = pNext(h); |
---|
701 | n_Delete(&pGetCoeff(h), r->cf); |
---|
702 | omFreeBinAddr(h); |
---|
703 | } |
---|
704 | static inline poly p_LmDeleteAndNext(poly p, const ring r) |
---|
705 | { |
---|
706 | p_LmCheckPolyRing2(p, r); |
---|
707 | poly pnext = pNext(p); |
---|
708 | n_Delete(&pGetCoeff(p), r->cf); |
---|
709 | omFreeBinAddr(p); |
---|
710 | return pnext; |
---|
711 | } |
---|
712 | |
---|
713 | /*************************************************************** |
---|
714 | * |
---|
715 | * Misc routines |
---|
716 | * |
---|
717 | ***************************************************************/ |
---|
718 | |
---|
719 | // pCmp: args may be NULL |
---|
720 | // returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2))) |
---|
721 | static inline int p_Cmp(poly p1, poly p2, ring r) |
---|
722 | { |
---|
723 | if (p2==NULL) |
---|
724 | return 1; |
---|
725 | if (p1==NULL) |
---|
726 | return -1; |
---|
727 | return p_LmCmp(p1,p2,r); |
---|
728 | } |
---|
729 | |
---|
730 | static inline unsigned long p_GetMaxExp(const poly p, const ring r) |
---|
731 | { |
---|
732 | return p_GetMaxExp(p_GetMaxExpL(p, r), r); |
---|
733 | } |
---|
734 | |
---|
735 | static inline unsigned long p_GetMaxExp(const unsigned long l, const ring r) |
---|
736 | { |
---|
737 | unsigned long bitmask = r->bitmask; |
---|
738 | unsigned long max = (l & bitmask); |
---|
739 | unsigned long j = r->ExpPerLong - 1; |
---|
740 | |
---|
741 | if (j > 0) |
---|
742 | { |
---|
743 | unsigned long i = r->BitsPerExp; |
---|
744 | long e; |
---|
745 | loop |
---|
746 | { |
---|
747 | e = ((l >> i) & bitmask); |
---|
748 | if ((unsigned long) e > max) |
---|
749 | max = e; |
---|
750 | j--; |
---|
751 | if (j==0) break; |
---|
752 | i += r->BitsPerExp; |
---|
753 | } |
---|
754 | } |
---|
755 | return max; |
---|
756 | } |
---|
757 | |
---|
758 | static inline unsigned long |
---|
759 | p_GetTotalDegree(const unsigned long l, const ring r, const int number_of_exps) |
---|
760 | { |
---|
761 | const unsigned long bitmask = r->bitmask; |
---|
762 | unsigned long sum = (l & bitmask); |
---|
763 | unsigned long j = number_of_exps - 1; |
---|
764 | |
---|
765 | if (j > 0) |
---|
766 | { |
---|
767 | unsigned long i = r->BitsPerExp; |
---|
768 | loop |
---|
769 | { |
---|
770 | sum += ((l >> i) & bitmask); |
---|
771 | j--; |
---|
772 | if (j==0) break; |
---|
773 | i += r->BitsPerExp; |
---|
774 | } |
---|
775 | } |
---|
776 | return sum; |
---|
777 | } |
---|
778 | |
---|
779 | static inline unsigned long |
---|
780 | p_GetTotalDegree(const unsigned long l, const ring r) |
---|
781 | { |
---|
782 | return p_GetTotalDegree(l, r, r->ExpPerLong); |
---|
783 | } |
---|
784 | |
---|
785 | /*************************************************************** |
---|
786 | * |
---|
787 | * Dispatcher to r->p_Procs, they do the tests/checks |
---|
788 | * |
---|
789 | ***************************************************************/ |
---|
790 | // returns a copy of p |
---|
791 | static inline poly p_Copy(poly p, const ring r) |
---|
792 | { |
---|
793 | #ifdef PDEBUG |
---|
794 | poly pp= r->p_Procs->p_Copy(p, r); |
---|
795 | p_Test(pp,r); |
---|
796 | return pp; |
---|
797 | #else |
---|
798 | return r->p_Procs->p_Copy(p, r); |
---|
799 | #endif |
---|
800 | } |
---|
801 | |
---|
802 | static inline poly p_Head(poly p, const ring r) |
---|
803 | { |
---|
804 | if (p == NULL) return NULL; |
---|
805 | p_LmCheckPolyRing1(p, r); |
---|
806 | poly np; |
---|
807 | omTypeAllocBin(poly, np, r->PolyBin); |
---|
808 | p_SetRingOfLm(np, r); |
---|
809 | p_MemCopy_LengthGeneral(np->exp, p->exp, r->ExpL_Size); |
---|
810 | pNext(np) = NULL; |
---|
811 | pSetCoeff0(np, n_Copy(pGetCoeff(p), r->cf)); |
---|
812 | return np; |
---|
813 | } |
---|
814 | |
---|
815 | // returns a copy of p with Lm(p) from lmRing and Tail(p) from tailRing |
---|
816 | static inline poly p_Copy(poly p, const ring lmRing, const ring tailRing) |
---|
817 | { |
---|
818 | #ifndef PDEBUG |
---|
819 | if (tailRing == lmRing) |
---|
820 | return tailRing->p_Procs->p_Copy(p, tailRing); |
---|
821 | #endif |
---|
822 | if (p != NULL) |
---|
823 | { |
---|
824 | poly pres = p_Head(p, lmRing); |
---|
825 | pNext(pres) = tailRing->p_Procs->p_Copy(pNext(p), tailRing); |
---|
826 | return pres; |
---|
827 | } |
---|
828 | else |
---|
829 | return NULL; |
---|
830 | } |
---|
831 | |
---|
832 | // deletes *p, and sets *p to NULL |
---|
833 | static inline void p_Delete(poly *p, const ring r) |
---|
834 | { |
---|
835 | r->p_Procs->p_Delete(p, r); |
---|
836 | } |
---|
837 | |
---|
838 | static inline void p_Delete(poly *p, const ring lmRing, const ring tailRing) |
---|
839 | { |
---|
840 | #ifndef PDEBUG |
---|
841 | if (tailRing == lmRing) |
---|
842 | { |
---|
843 | tailRing->p_Procs->p_Delete(p, tailRing); |
---|
844 | return; |
---|
845 | } |
---|
846 | #endif |
---|
847 | if (*p != NULL) |
---|
848 | { |
---|
849 | if (pNext(*p) != NULL) |
---|
850 | tailRing->p_Procs->p_Delete(&pNext(*p), tailRing); |
---|
851 | p_LmDelete(p, lmRing); |
---|
852 | } |
---|
853 | } |
---|
854 | |
---|
855 | // copys monomials of p, allocates new monomials from bin, |
---|
856 | // deletes monomoals of p |
---|
857 | static inline poly p_ShallowCopyDelete(poly p, const ring r, omBin bin) |
---|
858 | { |
---|
859 | p_LmCheckPolyRing2(p, r); |
---|
860 | pAssume2(r->PolyBin->sizeW == bin->sizeW); |
---|
861 | return r->p_Procs->p_ShallowCopyDelete(p, r, bin); |
---|
862 | } |
---|
863 | |
---|
864 | // returns p+q, destroys p and q |
---|
865 | static inline poly p_Add_q(poly p, poly q, const ring r) |
---|
866 | { |
---|
867 | int shorter; |
---|
868 | return r->p_Procs->p_Add_q(p, q, shorter, r); |
---|
869 | } |
---|
870 | |
---|
871 | /// like p_Add_q, except that if lp == pLength(lp) lq == pLength(lq) then lp == pLength(p+q) |
---|
872 | static inline poly p_Add_q(poly p, poly q, int &lp, int lq, const ring r) |
---|
873 | { |
---|
874 | int shorter; |
---|
875 | poly res = r->p_Procs->p_Add_q(p, q, shorter, r); |
---|
876 | lp = (lp + lq) - shorter; |
---|
877 | return res; |
---|
878 | } |
---|
879 | |
---|
880 | // returns p*n, destroys p |
---|
881 | static inline poly p_Mult_nn(poly p, number n, const ring r) |
---|
882 | { |
---|
883 | if (n_IsOne(n, r->cf)) |
---|
884 | return p; |
---|
885 | else |
---|
886 | return r->p_Procs->p_Mult_nn(p, n, r); |
---|
887 | } |
---|
888 | |
---|
889 | static inline poly p_Mult_nn(poly p, number n, const ring lmRing, |
---|
890 | const ring tailRing) |
---|
891 | { |
---|
892 | #ifndef PDEBUG |
---|
893 | if (lmRing == tailRing) |
---|
894 | { |
---|
895 | return p_Mult_nn(p, n, tailRing); |
---|
896 | } |
---|
897 | #endif |
---|
898 | poly pnext = pNext(p); |
---|
899 | pNext(p) = NULL; |
---|
900 | p = lmRing->p_Procs->p_Mult_nn(p, n, lmRing); |
---|
901 | pNext(p) = tailRing->p_Procs->p_Mult_nn(pnext, n, tailRing); |
---|
902 | return p; |
---|
903 | } |
---|
904 | |
---|
905 | // returns p*n, does not destroy p |
---|
906 | static inline poly pp_Mult_nn(poly p, number n, const ring r) |
---|
907 | { |
---|
908 | if (n_IsOne(n, r->cf)) |
---|
909 | return p_Copy(p, r); |
---|
910 | else |
---|
911 | return r->p_Procs->pp_Mult_nn(p, n, r); |
---|
912 | } |
---|
913 | |
---|
914 | // test if the monomial is a constant as a vector component |
---|
915 | // i.e., test if all exponents are zero |
---|
916 | static inline BOOLEAN p_LmIsConstantComp(const poly p, const ring r) |
---|
917 | { |
---|
918 | //p_LmCheckPolyRing(p, r); |
---|
919 | int i = r->VarL_Size - 1; |
---|
920 | |
---|
921 | do |
---|
922 | { |
---|
923 | if (p->exp[r->VarL_Offset[i]] != 0) |
---|
924 | return FALSE; |
---|
925 | i--; |
---|
926 | } |
---|
927 | while (i >= 0); |
---|
928 | return TRUE; |
---|
929 | } |
---|
930 | |
---|
931 | // test if monomial is a constant, i.e. if all exponents and the component |
---|
932 | // is zero |
---|
933 | static inline BOOLEAN p_LmIsConstant(const poly p, const ring r) |
---|
934 | { |
---|
935 | if (p_LmIsConstantComp(p, r)) |
---|
936 | return (p_GetComp(p, r) == 0); |
---|
937 | return FALSE; |
---|
938 | } |
---|
939 | |
---|
940 | // returns Copy(p)*m, does neither destroy p nor m |
---|
941 | static inline poly pp_Mult_mm(poly p, poly m, const ring r) |
---|
942 | { |
---|
943 | if (p_LmIsConstant(m, r)) |
---|
944 | return pp_Mult_nn(p, pGetCoeff(m), r); |
---|
945 | else |
---|
946 | { |
---|
947 | poly last; |
---|
948 | return r->p_Procs->pp_Mult_mm(p, m, r, last); |
---|
949 | } |
---|
950 | } |
---|
951 | |
---|
952 | // returns p*m, destroys p, const: m |
---|
953 | static inline poly p_Mult_mm(poly p, poly m, const ring r) |
---|
954 | { |
---|
955 | if (p_LmIsConstant(m, r)) |
---|
956 | return p_Mult_nn(p, pGetCoeff(m), r); |
---|
957 | else |
---|
958 | return r->p_Procs->p_Mult_mm(p, m, r); |
---|
959 | } |
---|
960 | |
---|
961 | // return p - m*Copy(q), destroys p; const: p,m |
---|
962 | static inline poly p_Minus_mm_Mult_qq(poly p, poly m, poly q, const ring r) |
---|
963 | { |
---|
964 | #ifdef HAVE_PLURAL |
---|
965 | if (rIsPluralRing(r)) |
---|
966 | { |
---|
967 | int lp, lq; |
---|
968 | poly spNoether; |
---|
969 | return nc_p_Minus_mm_Mult_qq(p, m, q, lp, lq, spNoether, r); |
---|
970 | } |
---|
971 | #endif |
---|
972 | |
---|
973 | int shorter; |
---|
974 | poly last; |
---|
975 | |
---|
976 | return r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r, last); // !!! |
---|
977 | } |
---|
978 | |
---|
979 | // like p_Minus_mm_Mult_qq, except that if lp == pLength(lp) lq == pLength(lq) |
---|
980 | // then lp == pLength(p -m*q) |
---|
981 | static inline poly p_Minus_mm_Mult_qq(poly p, poly m, poly q, int &lp, int lq, |
---|
982 | poly spNoether, const ring r) |
---|
983 | { |
---|
984 | #ifdef HAVE_PLURAL |
---|
985 | if (rIsPluralRing(r)) |
---|
986 | return nc_p_Minus_mm_Mult_qq(p, m, q, lp, lq, spNoether, r); |
---|
987 | #endif |
---|
988 | |
---|
989 | int shorter; |
---|
990 | poly last,res; |
---|
991 | res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, spNoether, r, last); |
---|
992 | lp = (lp + lq) - shorter; |
---|
993 | return res; |
---|
994 | } |
---|
995 | |
---|
996 | // returns p*Coeff(m) for such monomials pm of p, for which m is divisble by pm |
---|
997 | static inline poly pp_Mult_Coeff_mm_DivSelect(poly p, const poly m, const ring r) |
---|
998 | { |
---|
999 | int shorter; |
---|
1000 | return r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r); |
---|
1001 | } |
---|
1002 | |
---|
1003 | // returns p*Coeff(m) for such monomials pm of p, for which m is divisble by pm |
---|
1004 | // if lp is length of p on input then lp is length of returned poly on output |
---|
1005 | static inline poly pp_Mult_Coeff_mm_DivSelect(poly p, int &lp, const poly m, const ring r) |
---|
1006 | { |
---|
1007 | int shorter; |
---|
1008 | poly pp = r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r); |
---|
1009 | lp -= shorter; |
---|
1010 | return pp; |
---|
1011 | } |
---|
1012 | |
---|
1013 | // returns -p, destroys p |
---|
1014 | static inline poly p_Neg(poly p, const ring r) |
---|
1015 | { |
---|
1016 | return r->p_Procs->p_Neg(p, r); |
---|
1017 | } |
---|
1018 | |
---|
1019 | extern poly _p_Mult_q(poly p, poly q, const int copy, const ring r); |
---|
1020 | // returns p*q, destroys p and q |
---|
1021 | static inline poly p_Mult_q(poly p, poly q, const ring r) |
---|
1022 | { |
---|
1023 | if (p == NULL) |
---|
1024 | { |
---|
1025 | r->p_Procs->p_Delete(&q, r); |
---|
1026 | return NULL; |
---|
1027 | } |
---|
1028 | if (q == NULL) |
---|
1029 | { |
---|
1030 | r->p_Procs->p_Delete(&p, r); |
---|
1031 | return NULL; |
---|
1032 | } |
---|
1033 | |
---|
1034 | if (pNext(p) == NULL) |
---|
1035 | { |
---|
1036 | #ifdef HAVE_PLURAL |
---|
1037 | if (rIsPluralRing(r)) |
---|
1038 | q = nc_mm_Mult_p(p, q, r); |
---|
1039 | else |
---|
1040 | #endif /* HAVE_PLURAL */ |
---|
1041 | q = r->p_Procs->p_Mult_mm(q, p, r); |
---|
1042 | |
---|
1043 | r->p_Procs->p_Delete(&p, r); |
---|
1044 | return q; |
---|
1045 | } |
---|
1046 | |
---|
1047 | if (pNext(q) == NULL) |
---|
1048 | { |
---|
1049 | // NEEDED |
---|
1050 | #ifdef HAVE_PLURAL |
---|
1051 | /* if (rIsPluralRing(r)) |
---|
1052 | p = gnc_p_Mult_mm(p, q, r); // ??? |
---|
1053 | else*/ |
---|
1054 | #endif /* HAVE_PLURAL */ |
---|
1055 | p = r->p_Procs->p_Mult_mm(p, q, r); |
---|
1056 | |
---|
1057 | r->p_Procs->p_Delete(&q, r); |
---|
1058 | return p; |
---|
1059 | } |
---|
1060 | #ifdef HAVE_PLURAL |
---|
1061 | if (rIsPluralRing(r)) |
---|
1062 | return _nc_p_Mult_q(p, q, r); |
---|
1063 | else |
---|
1064 | #endif |
---|
1065 | return _p_Mult_q(p, q, 0, r); |
---|
1066 | } |
---|
1067 | |
---|
1068 | // returns p*q, does neither destroy p nor q |
---|
1069 | static inline poly pp_Mult_qq(poly p, poly q, const ring r) |
---|
1070 | { |
---|
1071 | poly last; |
---|
1072 | if (p == NULL || q == NULL) return NULL; |
---|
1073 | |
---|
1074 | if (pNext(p) == NULL) |
---|
1075 | { |
---|
1076 | #ifdef HAVE_PLURAL |
---|
1077 | if (rIsPluralRing(r)) |
---|
1078 | return nc_mm_Mult_pp(p, q, r); |
---|
1079 | #endif |
---|
1080 | return r->p_Procs->pp_Mult_mm(q, p, r, last); |
---|
1081 | } |
---|
1082 | |
---|
1083 | if (pNext(q) == NULL) |
---|
1084 | { |
---|
1085 | return r->p_Procs->pp_Mult_mm(p, q, r, last); |
---|
1086 | } |
---|
1087 | |
---|
1088 | poly qq = q; |
---|
1089 | if (p == q) |
---|
1090 | qq = p_Copy(q, r); |
---|
1091 | |
---|
1092 | poly res; |
---|
1093 | #ifdef HAVE_PLURAL |
---|
1094 | if (rIsPluralRing(r)) |
---|
1095 | res = _nc_pp_Mult_qq(p, qq, r); |
---|
1096 | else |
---|
1097 | #endif |
---|
1098 | res = _p_Mult_q(p, qq, 1, r); |
---|
1099 | |
---|
1100 | if (qq != q) |
---|
1101 | p_Delete(&qq, r); |
---|
1102 | return res; |
---|
1103 | } |
---|
1104 | |
---|
1105 | // returns p + m*q destroys p, const: q, m |
---|
1106 | static inline poly p_Plus_mm_Mult_qq(poly p, poly m, poly q, int &lp, int lq, |
---|
1107 | const ring r) |
---|
1108 | { |
---|
1109 | #ifdef HAVE_PLURAL |
---|
1110 | if (rIsPluralRing(r)) |
---|
1111 | return nc_p_Plus_mm_Mult_qq(p, m, q, lp, lq, r); |
---|
1112 | #endif |
---|
1113 | |
---|
1114 | // this should be implemented more efficiently |
---|
1115 | poly res, last; |
---|
1116 | int shorter; |
---|
1117 | number n_old = pGetCoeff(m); |
---|
1118 | number n_neg = n_Copy(n_old, r->cf); |
---|
1119 | n_neg = n_Neg(n_neg, r->cf); |
---|
1120 | pSetCoeff0(m, n_neg); |
---|
1121 | res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r, last); |
---|
1122 | lp = (lp + lq) - shorter; |
---|
1123 | pSetCoeff0(m, n_old); |
---|
1124 | n_Delete(&n_neg, r->cf); |
---|
1125 | return res; |
---|
1126 | } |
---|
1127 | |
---|
1128 | static inline poly p_Plus_mm_Mult_qq(poly p, poly m, poly q, const ring r) |
---|
1129 | { |
---|
1130 | int lp = 0, lq = 0; |
---|
1131 | return p_Plus_mm_Mult_qq(p, m, q, lp, lq, r); |
---|
1132 | } |
---|
1133 | |
---|
1134 | // returns merged p and q, assumes p and q have no monomials which are equal |
---|
1135 | static inline poly p_Merge_q(poly p, poly q, const ring r) |
---|
1136 | { |
---|
1137 | return r->p_Procs->p_Merge_q(p, q, r); |
---|
1138 | } |
---|
1139 | |
---|
1140 | // like p_SortMerge, except that p may have equal monimals |
---|
1141 | static inline poly p_SortAdd(poly p, const ring r, BOOLEAN revert= FALSE) |
---|
1142 | { |
---|
1143 | if (revert) p = pReverse(p); |
---|
1144 | return sBucketSortAdd(p, r); |
---|
1145 | } |
---|
1146 | |
---|
1147 | // sorts p using bucket sort: returns sorted poly |
---|
1148 | // assumes that monomials of p are all different |
---|
1149 | // reverses it first, if revert == TRUE, use this if input p is "almost" sorted |
---|
1150 | // correctly |
---|
1151 | static inline poly p_SortMerge(poly p, const ring r, BOOLEAN revert= FALSE) |
---|
1152 | { |
---|
1153 | if (revert) p = pReverse(p); |
---|
1154 | return sBucketSortMerge(p, r); |
---|
1155 | } |
---|
1156 | |
---|
1157 | /*************************************************************** |
---|
1158 | * |
---|
1159 | * I/O |
---|
1160 | * |
---|
1161 | ***************************************************************/ |
---|
1162 | static inline char* p_String(poly p, ring p_ring) |
---|
1163 | { |
---|
1164 | return p_String(p, p_ring, p_ring); |
---|
1165 | } |
---|
1166 | static inline char* p_String0(poly p, ring p_ring) |
---|
1167 | { |
---|
1168 | return p_String0(p, p_ring, p_ring); |
---|
1169 | } |
---|
1170 | static inline void p_Write(poly p, ring p_ring) |
---|
1171 | { |
---|
1172 | p_Write(p, p_ring, p_ring); |
---|
1173 | } |
---|
1174 | static inline void p_Write0(poly p, ring p_ring) |
---|
1175 | { |
---|
1176 | p_Write0(p, p_ring, p_ring); |
---|
1177 | } |
---|
1178 | static inline void p_wrp(poly p, ring p_ring) |
---|
1179 | { |
---|
1180 | p_wrp(p, p_ring, p_ring); |
---|
1181 | } |
---|
1182 | |
---|
1183 | /*************************************************************** |
---|
1184 | * Purpose: implementation of poly procs which iter over ExpVector |
---|
1185 | * Author: obachman (Olaf Bachmann) |
---|
1186 | * Created: 8/00 |
---|
1187 | * Version: $Id$ |
---|
1188 | *******************************************************************/ |
---|
1189 | #include <misc/mylimits.h> |
---|
1190 | #include <polys/templates/p_MemCmp.h> |
---|
1191 | // #include <polys/structs.h> |
---|
1192 | #include <polys/monomials/ring.h> |
---|
1193 | #include <coeffs/coeffs.h> |
---|
1194 | |
---|
1195 | #if PDEBUG > 0 |
---|
1196 | |
---|
1197 | #define _p_LmCmpAction(p, q, r, actionE, actionG, actionS) \ |
---|
1198 | do \ |
---|
1199 | { \ |
---|
1200 | int _cmp = p_LmCmp(p,q,r); \ |
---|
1201 | if (_cmp == 0) actionE; \ |
---|
1202 | if (_cmp == 1) actionG; \ |
---|
1203 | actionS; \ |
---|
1204 | } \ |
---|
1205 | while(0) |
---|
1206 | |
---|
1207 | #else |
---|
1208 | |
---|
1209 | #define _p_LmCmpAction(p, q, r, actionE, actionG, actionS) \ |
---|
1210 | p_MemCmp_LengthGeneral_OrdGeneral(p->exp, q->exp, r->CmpL_Size, r->ordsgn, \ |
---|
1211 | actionE, actionG, actionS) |
---|
1212 | |
---|
1213 | #endif |
---|
1214 | |
---|
1215 | #define pDivAssume(x) ((void)0) |
---|
1216 | |
---|
1217 | #include <omalloc/omalloc.h> |
---|
1218 | #include <coeffs/coeffs.h> |
---|
1219 | #include <polys/monomials/p_polys.h> |
---|
1220 | #include <polys/templates/p_MemAdd.h> |
---|
1221 | #include <polys/templates/p_MemCopy.h> |
---|
1222 | |
---|
1223 | /*************************************************************** |
---|
1224 | * |
---|
1225 | * Allocation/Initalization/Deletion |
---|
1226 | * |
---|
1227 | ***************************************************************/ |
---|
1228 | // adjustments for negative weights |
---|
1229 | static inline void p_MemAdd_NegWeightAdjust(poly p, const ring r) |
---|
1230 | { |
---|
1231 | if (r->NegWeightL_Offset != NULL) |
---|
1232 | { |
---|
1233 | for (int i=r->NegWeightL_Size-1; i>=0; i--) |
---|
1234 | { |
---|
1235 | p->exp[r->NegWeightL_Offset[i]] -= POLY_NEGWEIGHT_OFFSET; |
---|
1236 | } |
---|
1237 | } |
---|
1238 | } |
---|
1239 | static inline void p_MemSub_NegWeightAdjust(poly p, const ring r) |
---|
1240 | { |
---|
1241 | if (r->NegWeightL_Offset != NULL) |
---|
1242 | { |
---|
1243 | for (int i=r->NegWeightL_Size-1; i>=0; i--) |
---|
1244 | { |
---|
1245 | p->exp[r->NegWeightL_Offset[i]] += POLY_NEGWEIGHT_OFFSET; |
---|
1246 | } |
---|
1247 | } |
---|
1248 | } |
---|
1249 | // ExpVextor(d_p) = ExpVector(s_p) |
---|
1250 | static inline void p_ExpVectorCopy(poly d_p, poly s_p, const ring r) |
---|
1251 | { |
---|
1252 | p_LmCheckPolyRing1(d_p, r); |
---|
1253 | p_LmCheckPolyRing1(s_p, r); |
---|
1254 | p_MemCopy_LengthGeneral(d_p->exp, s_p->exp, r->ExpL_Size); |
---|
1255 | } |
---|
1256 | |
---|
1257 | static inline poly p_Init(const ring r, omBin bin) |
---|
1258 | { |
---|
1259 | p_CheckRing1(r); |
---|
1260 | pAssume1(bin != NULL && r->PolyBin->sizeW == bin->sizeW); |
---|
1261 | poly p; |
---|
1262 | omTypeAlloc0Bin(poly, p, bin); |
---|
1263 | p_MemAdd_NegWeightAdjust(p, r); |
---|
1264 | p_SetRingOfLm(p, r); |
---|
1265 | return p; |
---|
1266 | } |
---|
1267 | static inline poly p_Init(const ring r) |
---|
1268 | { |
---|
1269 | return p_Init(r, r->PolyBin); |
---|
1270 | } |
---|
1271 | |
---|
1272 | static inline poly p_LmInit(poly p, const ring r) |
---|
1273 | { |
---|
1274 | p_LmCheckPolyRing1(p, r); |
---|
1275 | poly np; |
---|
1276 | omTypeAllocBin(poly, np, r->PolyBin); |
---|
1277 | p_SetRingOfLm(np, r); |
---|
1278 | p_MemCopy_LengthGeneral(np->exp, p->exp, r->ExpL_Size); |
---|
1279 | pNext(np) = NULL; |
---|
1280 | pSetCoeff0(np, NULL); |
---|
1281 | return np; |
---|
1282 | } |
---|
1283 | static inline poly p_LmInit(poly s_p, const ring s_r, const ring d_r, omBin d_bin) |
---|
1284 | { |
---|
1285 | p_LmCheckPolyRing1(s_p, s_r); |
---|
1286 | p_CheckRing(d_r); |
---|
1287 | pAssume1(d_r->N <= s_r->N); |
---|
1288 | poly d_p = p_Init(d_r, d_bin); |
---|
1289 | for (int i=d_r->N; i>0; i--) |
---|
1290 | { |
---|
1291 | p_SetExp(d_p, i, p_GetExp(s_p, i,s_r), d_r); |
---|
1292 | } |
---|
1293 | if (rRing_has_Comp(d_r)) |
---|
1294 | { |
---|
1295 | p_SetComp(d_p, p_GetComp(s_p,s_r), d_r); |
---|
1296 | } |
---|
1297 | p_Setm(d_p, d_r); |
---|
1298 | return d_p; |
---|
1299 | } |
---|
1300 | static inline poly p_LmInit(poly s_p, const ring s_r, const ring d_r) |
---|
1301 | { |
---|
1302 | pAssume1(d_r != NULL); |
---|
1303 | return p_LmInit(s_p, s_r, d_r, d_r->PolyBin); |
---|
1304 | } |
---|
1305 | |
---|
1306 | // set all exponents l..k to 0, assume exp. k+1..n and 1..l-1 are in |
---|
1307 | // different blocks |
---|
1308 | // set coeff to 1 |
---|
1309 | static inline poly p_GetExp_k_n(poly p, int l, int k, const ring r) |
---|
1310 | { |
---|
1311 | if (p == NULL) return NULL; |
---|
1312 | p_LmCheckPolyRing1(p, r); |
---|
1313 | poly np; |
---|
1314 | omTypeAllocBin(poly, np, r->PolyBin); |
---|
1315 | p_SetRingOfLm(np, r); |
---|
1316 | p_MemCopy_LengthGeneral(np->exp, p->exp, r->ExpL_Size); |
---|
1317 | pNext(np) = NULL; |
---|
1318 | pSetCoeff0(np, n_Init(1, r->cf)); |
---|
1319 | int i; |
---|
1320 | for(i=l;i<=k;i++) |
---|
1321 | { |
---|
1322 | //np->exp[(r->VarOffset[i] & 0xffffff)] =0; |
---|
1323 | p_SetExp(np,i,0,r); |
---|
1324 | } |
---|
1325 | p_Setm(np,r); |
---|
1326 | return np; |
---|
1327 | } |
---|
1328 | |
---|
1329 | // simialar to p_ShallowCopyDelete but does it only for leading monomial |
---|
1330 | static inline poly p_LmShallowCopyDelete(poly p, const ring r, omBin bin) |
---|
1331 | { |
---|
1332 | p_LmCheckPolyRing1(p, r); |
---|
1333 | pAssume1(bin->sizeW == r->PolyBin->sizeW); |
---|
1334 | poly new_p = p_New(r); |
---|
1335 | p_MemCopy_LengthGeneral(new_p->exp, p->exp, r->ExpL_Size); |
---|
1336 | pSetCoeff0(new_p, pGetCoeff(p)); |
---|
1337 | pNext(new_p) = pNext(p); |
---|
1338 | omFreeBinAddr(p); |
---|
1339 | return new_p; |
---|
1340 | } |
---|
1341 | |
---|
1342 | /*************************************************************** |
---|
1343 | * |
---|
1344 | * Operation on ExpVectors |
---|
1345 | * |
---|
1346 | ***************************************************************/ |
---|
1347 | // ExpVector(p1) += ExpVector(p2) |
---|
1348 | static inline void p_ExpVectorAdd(poly p1, poly p2, const ring r) |
---|
1349 | { |
---|
1350 | p_LmCheckPolyRing1(p1, r); |
---|
1351 | p_LmCheckPolyRing1(p2, r); |
---|
1352 | #if PDEBUG >= 1 |
---|
1353 | for (int i=1; i<=r->N; i++) |
---|
1354 | pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask); |
---|
1355 | pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0); |
---|
1356 | #endif |
---|
1357 | |
---|
1358 | p_MemAdd_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size); |
---|
1359 | p_MemAdd_NegWeightAdjust(p1, r); |
---|
1360 | } |
---|
1361 | // ExpVector(p1) -= ExpVector(p2) |
---|
1362 | static inline void p_ExpVectorSub(poly p1, poly p2, const ring r) |
---|
1363 | { |
---|
1364 | p_LmCheckPolyRing1(p1, r); |
---|
1365 | p_LmCheckPolyRing1(p2, r); |
---|
1366 | #if PDEBUG >= 1 |
---|
1367 | for (int i=1; i<=r->N; i++) |
---|
1368 | pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r)); |
---|
1369 | pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0 || |
---|
1370 | p_GetComp(p1, r) == p_GetComp(p2, r)); |
---|
1371 | #endif |
---|
1372 | |
---|
1373 | p_MemSub_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size); |
---|
1374 | p_MemSub_NegWeightAdjust(p1, r); |
---|
1375 | |
---|
1376 | } |
---|
1377 | // ExpVector(p1) += ExpVector(p2) - ExpVector(p3) |
---|
1378 | static inline void p_ExpVectorAddSub(poly p1, poly p2, poly p3, const ring r) |
---|
1379 | { |
---|
1380 | p_LmCheckPolyRing1(p1, r); |
---|
1381 | p_LmCheckPolyRing1(p2, r); |
---|
1382 | p_LmCheckPolyRing1(p3, r); |
---|
1383 | #if PDEBUG >= 1 |
---|
1384 | for (int i=1; i<=r->N; i++) |
---|
1385 | pAssume1(p_GetExp(p1, i, r) + p_GetExp(p2, i, r) >= p_GetExp(p3, i, r)); |
---|
1386 | pAssume1(p_GetComp(p1, r) == 0 || |
---|
1387 | (p_GetComp(p2, r) - p_GetComp(p3, r) == 0) || |
---|
1388 | (p_GetComp(p1, r) == p_GetComp(p2, r) - p_GetComp(p3, r))); |
---|
1389 | #endif |
---|
1390 | |
---|
1391 | p_MemAddSub_LengthGeneral(p1->exp, p2->exp, p3->exp, r->ExpL_Size); |
---|
1392 | // no need to adjust in case of NegWeights |
---|
1393 | } |
---|
1394 | |
---|
1395 | // ExpVector(pr) = ExpVector(p1) + ExpVector(p2) |
---|
1396 | static inline void p_ExpVectorSum(poly pr, poly p1, poly p2, const ring r) |
---|
1397 | { |
---|
1398 | p_LmCheckPolyRing1(p1, r); |
---|
1399 | p_LmCheckPolyRing1(p2, r); |
---|
1400 | p_LmCheckPolyRing1(pr, r); |
---|
1401 | #if PDEBUG >= 1 |
---|
1402 | for (int i=1; i<=r->N; i++) |
---|
1403 | pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask); |
---|
1404 | pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0); |
---|
1405 | #endif |
---|
1406 | |
---|
1407 | p_MemSum_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size); |
---|
1408 | p_MemAdd_NegWeightAdjust(pr, r); |
---|
1409 | } |
---|
1410 | // ExpVector(pr) = ExpVector(p1) - ExpVector(p2) |
---|
1411 | static inline void p_ExpVectorDiff(poly pr, poly p1, poly p2, const ring r) |
---|
1412 | { |
---|
1413 | p_LmCheckPolyRing1(p1, r); |
---|
1414 | p_LmCheckPolyRing1(p2, r); |
---|
1415 | p_LmCheckPolyRing1(pr, r); |
---|
1416 | #if PDEBUG >= 2 |
---|
1417 | for (int i=1; i<=r->N; i++) |
---|
1418 | pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r)); |
---|
1419 | pAssume1(!rRing_has_Comp(r) || p_GetComp(p1, r) == p_GetComp(p2, r)); |
---|
1420 | #endif |
---|
1421 | |
---|
1422 | p_MemDiff_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size); |
---|
1423 | p_MemSub_NegWeightAdjust(pr, r); |
---|
1424 | } |
---|
1425 | |
---|
1426 | static inline BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r) |
---|
1427 | { |
---|
1428 | p_LmCheckPolyRing1(p1, r); |
---|
1429 | p_LmCheckPolyRing1(p2, r); |
---|
1430 | |
---|
1431 | int i = r->ExpL_Size; |
---|
1432 | unsigned long *ep = p1->exp; |
---|
1433 | unsigned long *eq = p2->exp; |
---|
1434 | |
---|
1435 | do |
---|
1436 | { |
---|
1437 | i--; |
---|
1438 | if (ep[i] != eq[i]) return FALSE; |
---|
1439 | } |
---|
1440 | while (i); |
---|
1441 | return TRUE; |
---|
1442 | } |
---|
1443 | |
---|
1444 | static inline long p_Totaldegree(poly p, const ring r) |
---|
1445 | { |
---|
1446 | p_LmCheckPolyRing1(p, r); |
---|
1447 | unsigned long s = p_GetTotalDegree(p->exp[r->VarL_Offset[0]], |
---|
1448 | r, |
---|
1449 | r->MinExpPerLong); |
---|
1450 | for (int i=r->VarL_Size-1; i>0; i--) |
---|
1451 | { |
---|
1452 | s += p_GetTotalDegree(p->exp[r->VarL_Offset[i]], r); |
---|
1453 | } |
---|
1454 | return (long)s; |
---|
1455 | } |
---|
1456 | |
---|
1457 | static inline void p_GetExpV(poly p, int *ev, const ring r) |
---|
1458 | { |
---|
1459 | p_LmCheckPolyRing1(p, r); |
---|
1460 | for (int j = r->N; j; j--) |
---|
1461 | ev[j] = p_GetExp(p, j, r); |
---|
1462 | |
---|
1463 | ev[0] = p_GetComp(p, r); |
---|
1464 | } |
---|
1465 | static inline void p_SetExpV(poly p, int *ev, const ring r) |
---|
1466 | { |
---|
1467 | p_LmCheckPolyRing1(p, r); |
---|
1468 | for (int j = r->N; j; j--) |
---|
1469 | p_SetExp(p, j, ev[j], r); |
---|
1470 | |
---|
1471 | p_SetComp(p, ev[0],r); |
---|
1472 | p_Setm(p, r); |
---|
1473 | } |
---|
1474 | |
---|
1475 | /*************************************************************** |
---|
1476 | * |
---|
1477 | * Comparison w.r.t. monomial ordering |
---|
1478 | * |
---|
1479 | ***************************************************************/ |
---|
1480 | static inline int p_LmCmp(poly p, poly q, const ring r) |
---|
1481 | { |
---|
1482 | p_LmCheckPolyRing1(p, r); |
---|
1483 | p_LmCheckPolyRing1(q, r); |
---|
1484 | |
---|
1485 | p_MemCmp_LengthGeneral_OrdGeneral(p->exp, q->exp, r->CmpL_Size, r->ordsgn, |
---|
1486 | return 0, return 1, return -1); |
---|
1487 | } |
---|
1488 | |
---|
1489 | |
---|
1490 | /*************************************************************** |
---|
1491 | * |
---|
1492 | * divisibility |
---|
1493 | * |
---|
1494 | ***************************************************************/ |
---|
1495 | // return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] |
---|
1496 | // TRUE, otherwise |
---|
1497 | // (1) Consider long vars, instead of single exponents |
---|
1498 | // (2) Clearly, if la > lb, then FALSE |
---|
1499 | // (3) Suppose la <= lb, and consider first bits of single exponents in l: |
---|
1500 | // if TRUE, then value of these bits is la ^ lb |
---|
1501 | // if FALSE, then la-lb causes an "overflow" into one of those bits, i.e., |
---|
1502 | // la ^ lb != la - lb |
---|
1503 | static inline BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r) |
---|
1504 | { |
---|
1505 | int i=r->VarL_Size - 1; |
---|
1506 | unsigned long divmask = r->divmask; |
---|
1507 | unsigned long la, lb; |
---|
1508 | |
---|
1509 | if (r->VarL_LowIndex >= 0) |
---|
1510 | { |
---|
1511 | i += r->VarL_LowIndex; |
---|
1512 | do |
---|
1513 | { |
---|
1514 | la = a->exp[i]; |
---|
1515 | lb = b->exp[i]; |
---|
1516 | if ((la > lb) || |
---|
1517 | (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask))) |
---|
1518 | { |
---|
1519 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == FALSE); |
---|
1520 | return FALSE; |
---|
1521 | } |
---|
1522 | i--; |
---|
1523 | } |
---|
1524 | while (i>=r->VarL_LowIndex); |
---|
1525 | } |
---|
1526 | else |
---|
1527 | { |
---|
1528 | do |
---|
1529 | { |
---|
1530 | la = a->exp[r->VarL_Offset[i]]; |
---|
1531 | lb = b->exp[r->VarL_Offset[i]]; |
---|
1532 | if ((la > lb) || |
---|
1533 | (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask))) |
---|
1534 | { |
---|
1535 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == FALSE); |
---|
1536 | return FALSE; |
---|
1537 | } |
---|
1538 | i--; |
---|
1539 | } |
---|
1540 | while (i>=0); |
---|
1541 | } |
---|
1542 | #ifdef HAVE_RINGS |
---|
1543 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == nDivBy(p_GetCoeff(b, r), p_GetCoeff(a, r))); |
---|
1544 | return (!rField_is_Ring(r)) || n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf); |
---|
1545 | #else |
---|
1546 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == TRUE); |
---|
1547 | return TRUE; |
---|
1548 | #endif |
---|
1549 | } |
---|
1550 | |
---|
1551 | static inline BOOLEAN _p_LmDivisibleByNoComp(poly a, const ring r_a, poly b, const ring r_b) |
---|
1552 | { |
---|
1553 | int i=r_a->N; |
---|
1554 | pAssume1(r_a->N == r_b->N); |
---|
1555 | |
---|
1556 | do |
---|
1557 | { |
---|
1558 | if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b)) |
---|
1559 | return FALSE; |
---|
1560 | i--; |
---|
1561 | } |
---|
1562 | while (i); |
---|
1563 | #ifdef HAVE_RINGS |
---|
1564 | return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf); |
---|
1565 | #else |
---|
1566 | return TRUE; |
---|
1567 | #endif |
---|
1568 | } |
---|
1569 | |
---|
1570 | #ifdef HAVE_RATGRING |
---|
1571 | static inline BOOLEAN _p_LmDivisibleByNoCompPart(poly a, const ring r_a, poly b, const ring r_b,const int start, const int end) |
---|
1572 | { |
---|
1573 | int i=end; |
---|
1574 | pAssume1(r_a->N == r_b->N); |
---|
1575 | |
---|
1576 | do |
---|
1577 | { |
---|
1578 | if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b)) |
---|
1579 | return FALSE; |
---|
1580 | i--; |
---|
1581 | } |
---|
1582 | while (i>=start); |
---|
1583 | #ifdef HAVE_RINGS |
---|
1584 | return nDivBy(p_GetCoeff(b, r), p_GetCoeff(a, r)); |
---|
1585 | #else |
---|
1586 | return TRUE; |
---|
1587 | #endif |
---|
1588 | } |
---|
1589 | static inline BOOLEAN _p_LmDivisibleByPart(poly a, const ring r_a, poly b, const ring r_b,const int start, const int end) |
---|
1590 | { |
---|
1591 | if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b)) |
---|
1592 | return _p_LmDivisibleByNoCompPart(a, r_a, b, r_b,start,end); |
---|
1593 | return FALSE; |
---|
1594 | } |
---|
1595 | static inline BOOLEAN p_LmDivisibleByPart(poly a, poly b, const ring r,const int start, const int end) |
---|
1596 | { |
---|
1597 | p_LmCheckPolyRing1(b, r); |
---|
1598 | pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r)); |
---|
1599 | if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r)) |
---|
1600 | return _p_LmDivisibleByNoCompPart(a, r, b, r,start, end); |
---|
1601 | return FALSE; |
---|
1602 | } |
---|
1603 | #endif |
---|
1604 | static inline BOOLEAN _p_LmDivisibleBy(poly a, poly b, const ring r) |
---|
1605 | { |
---|
1606 | if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r)) |
---|
1607 | return _p_LmDivisibleByNoComp(a, b, r); |
---|
1608 | return FALSE; |
---|
1609 | } |
---|
1610 | static inline BOOLEAN _p_LmDivisibleBy(poly a, const ring r_a, poly b, const ring r_b) |
---|
1611 | { |
---|
1612 | if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b)) |
---|
1613 | return _p_LmDivisibleByNoComp(a, r_a, b, r_b); |
---|
1614 | return FALSE; |
---|
1615 | } |
---|
1616 | static inline BOOLEAN p_LmDivisibleByNoComp(poly a, poly b, const ring r) |
---|
1617 | { |
---|
1618 | p_LmCheckPolyRing1(a, r); |
---|
1619 | p_LmCheckPolyRing1(b, r); |
---|
1620 | return _p_LmDivisibleByNoComp(a, b, r); |
---|
1621 | } |
---|
1622 | static inline BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r) |
---|
1623 | { |
---|
1624 | p_LmCheckPolyRing1(b, r); |
---|
1625 | pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r)); |
---|
1626 | if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r)) |
---|
1627 | return _p_LmDivisibleByNoComp(a, b, r); |
---|
1628 | return FALSE; |
---|
1629 | } |
---|
1630 | |
---|
1631 | static inline BOOLEAN p_DivisibleBy(poly a, poly b, const ring r) |
---|
1632 | { |
---|
1633 | pIfThen1(b!=NULL, p_LmCheckPolyRing1(b, r)); |
---|
1634 | pIfThen1(a!=NULL, p_LmCheckPolyRing1(a, r)); |
---|
1635 | |
---|
1636 | if (a != NULL && (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))) |
---|
1637 | return _p_LmDivisibleByNoComp(a,b,r); |
---|
1638 | return FALSE; |
---|
1639 | } |
---|
1640 | static inline BOOLEAN p_DivisibleBy(poly a, const ring r_a, poly b, const ring r_b) |
---|
1641 | { |
---|
1642 | pIfThen1(b!=NULL, p_LmCheckPolyRing1(b, r_b)); |
---|
1643 | pIfThen1(a!=NULL, p_LmCheckPolyRing1(a, r_a)); |
---|
1644 | if (a != NULL) { |
---|
1645 | return _p_LmDivisibleBy(a, r_a, b, r_b); |
---|
1646 | } |
---|
1647 | return FALSE; |
---|
1648 | } |
---|
1649 | static inline BOOLEAN p_LmDivisibleBy(poly a, const ring r_a, poly b, const ring r_b) |
---|
1650 | { |
---|
1651 | p_LmCheckPolyRing(a, r_a); |
---|
1652 | p_LmCheckPolyRing(b, r_b); |
---|
1653 | return _p_LmDivisibleBy(a, r_a, b, r_b); |
---|
1654 | } |
---|
1655 | static inline BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a, |
---|
1656 | poly b, unsigned long not_sev_b, const ring r) |
---|
1657 | { |
---|
1658 | p_LmCheckPolyRing1(a, r); |
---|
1659 | p_LmCheckPolyRing1(b, r); |
---|
1660 | #ifndef PDIV_DEBUG |
---|
1661 | _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r); |
---|
1662 | _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r); |
---|
1663 | |
---|
1664 | if (sev_a & not_sev_b) |
---|
1665 | { |
---|
1666 | pAssume1(p_LmDivisibleByNoComp(a, b, r) == FALSE); |
---|
1667 | return FALSE; |
---|
1668 | } |
---|
1669 | return p_LmDivisibleBy(a, b, r); |
---|
1670 | #else |
---|
1671 | return pDebugLmShortDivisibleBy(a, sev_a, r, b, not_sev_b, r); |
---|
1672 | #endif |
---|
1673 | } |
---|
1674 | |
---|
1675 | static inline BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a, const ring r_a, |
---|
1676 | poly b, unsigned long not_sev_b, const ring r_b) |
---|
1677 | { |
---|
1678 | p_LmCheckPolyRing1(a, r_a); |
---|
1679 | p_LmCheckPolyRing1(b, r_b); |
---|
1680 | #ifndef PDIV_DEBUG |
---|
1681 | _pPolyAssume2(p_GetShortExpVector(a, r_a) == sev_a, a, r_a); |
---|
1682 | _pPolyAssume2(p_GetShortExpVector(b, r_b) == ~ not_sev_b, b, r_b); |
---|
1683 | |
---|
1684 | if (sev_a & not_sev_b) |
---|
1685 | { |
---|
1686 | pAssume1(_p_LmDivisibleByNoComp(a, r_a, b, r_b) == FALSE); |
---|
1687 | return FALSE; |
---|
1688 | } |
---|
1689 | return _p_LmDivisibleBy(a, r_a, b, r_b); |
---|
1690 | #else |
---|
1691 | return pDebugLmShortDivisibleBy(a, sev_a, r_a, b, not_sev_b, r_b); |
---|
1692 | #endif |
---|
1693 | } |
---|
1694 | |
---|
1695 | /*************************************************************** |
---|
1696 | * |
---|
1697 | * Misc things on Lm |
---|
1698 | * |
---|
1699 | ***************************************************************/ |
---|
1700 | |
---|
1701 | |
---|
1702 | // like the respective p_LmIs* routines, except that p might be empty |
---|
1703 | static inline BOOLEAN p_IsConstantComp(const poly p, const ring r) |
---|
1704 | { |
---|
1705 | if (p == NULL) return TRUE; |
---|
1706 | return (pNext(p)==NULL) && p_LmIsConstantComp(p, r); |
---|
1707 | } |
---|
1708 | |
---|
1709 | static inline BOOLEAN p_IsConstant(const poly p, const ring r) |
---|
1710 | { |
---|
1711 | if (p == NULL) return TRUE; |
---|
1712 | return (pNext(p)==NULL) && p_LmIsConstant(p, r); |
---|
1713 | } |
---|
1714 | |
---|
1715 | static inline BOOLEAN p_IsConstantPoly(const poly p, const ring r) |
---|
1716 | { |
---|
1717 | poly pp=p; |
---|
1718 | while(pp!=NULL) |
---|
1719 | { |
---|
1720 | if (! p_LmIsConstantComp(pp, r)) |
---|
1721 | return FALSE; |
---|
1722 | pIter(pp); |
---|
1723 | } |
---|
1724 | return TRUE; |
---|
1725 | } |
---|
1726 | |
---|
1727 | static inline BOOLEAN p_IsUnit(const poly p, const ring r) |
---|
1728 | { |
---|
1729 | if (p == NULL) return FALSE; |
---|
1730 | #ifdef HAVE_RINGS |
---|
1731 | if (rField_is_Ring(r)) |
---|
1732 | return (p_LmIsConstant(p, r) && nIsUnit(pGetCoeff(p),r->cf)); |
---|
1733 | #endif |
---|
1734 | return p_LmIsConstant(p, r); |
---|
1735 | } |
---|
1736 | |
---|
1737 | static inline BOOLEAN p_LmExpVectorAddIsOk(const poly p1, const poly p2, |
---|
1738 | const ring r) |
---|
1739 | { |
---|
1740 | p_LmCheckPolyRing(p1, r); |
---|
1741 | p_LmCheckPolyRing(p2, r); |
---|
1742 | unsigned long l1, l2, divmask = r->divmask; |
---|
1743 | int i; |
---|
1744 | |
---|
1745 | for (i=0; i<r->VarL_Size; i++) |
---|
1746 | { |
---|
1747 | l1 = p1->exp[r->VarL_Offset[i]]; |
---|
1748 | l2 = p2->exp[r->VarL_Offset[i]]; |
---|
1749 | // do the divisiblity trick |
---|
1750 | if ( (l1 > ULONG_MAX - l2) || |
---|
1751 | (((l1 & divmask) ^ (l2 & divmask)) != ((l1 + l2) & divmask))) |
---|
1752 | return FALSE; |
---|
1753 | } |
---|
1754 | return TRUE; |
---|
1755 | } |
---|
1756 | void p_Split(poly p, poly * r); /*p => IN(p), r => REST(p) */ |
---|
1757 | BOOLEAN p_HasNotCF(poly p1, poly p2, const ring r); |
---|
1758 | poly p_mInit(const char *s, BOOLEAN &ok, const ring r); /* monom s -> poly, interpreter */ |
---|
1759 | const char * p_Read(const char *s, poly &p,const ring r); /* monom -> poly */ |
---|
1760 | poly p_Divide(poly a, poly b, const ring r); |
---|
1761 | poly p_DivideM(poly a, poly b, const ring r); |
---|
1762 | void p_Lcm(poly a, poly b, poly m, const ring r); |
---|
1763 | poly p_Diff(poly a, int k, const ring r); |
---|
1764 | poly p_DiffOp(poly a, poly b,BOOLEAN multiply, const ring r); |
---|
1765 | int p_Weight(int c, const ring r); |
---|
1766 | |
---|
1767 | /* syszygy stuff */ |
---|
1768 | BOOLEAN p_VectorHasUnitB(poly p, int * k, const ring r); |
---|
1769 | void p_VectorHasUnit(poly p, int * k, int * len, const ring r); |
---|
1770 | poly p_TakeOutComp1(poly * p, int k, const ring r); |
---|
1771 | // Splits *p into two polys: *q which consists of all monoms with |
---|
1772 | // component == comp and *p of all other monoms *lq == pLength(*q) |
---|
1773 | // On return all components pf *q == 0 |
---|
1774 | void p_TakeOutComp(poly *p, long comp, poly *q, int *lq, const ring r); |
---|
1775 | |
---|
1776 | // This is something weird -- Don't use it, unless you know what you are doing |
---|
1777 | poly p_TakeOutComp(poly * p, int k); |
---|
1778 | |
---|
1779 | void p_DeleteComp(poly * p,int k, const ring r); |
---|
1780 | |
---|
1781 | /*-------------ring management:----------------------*/ |
---|
1782 | void p_SetGlobals(const ring r, BOOLEAN complete = TRUE); |
---|
1783 | |
---|
1784 | // resets the pFDeg and pLDeg: if pLDeg is not given, it is |
---|
1785 | // set to currRing->pLDegOrig, i.e. to the respective LDegProc which |
---|
1786 | // only uses pFDeg (and not pDeg, or pTotalDegree, etc). |
---|
1787 | // If you use this, make sure your procs does not make any assumptions |
---|
1788 | // on ordering and/or OrdIndex -- otherwise they might return wrong results |
---|
1789 | // on strat->tailRing |
---|
1790 | void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg = NULL); |
---|
1791 | // restores pFDeg and pLDeg: |
---|
1792 | void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg); |
---|
1793 | |
---|
1794 | /*-------------pComp for syzygies:-------------------*/ |
---|
1795 | void p_SetModDeg(intvec *w, ring r); |
---|
1796 | |
---|
1797 | /*------------ Jet ----------------------------------*/ |
---|
1798 | poly pp_Jet(poly p, int m, const ring R); |
---|
1799 | poly p_Jet(poly p, int m,const ring R); |
---|
1800 | poly pp_JetW(poly p, int m, short *w, const ring R); |
---|
1801 | poly p_JetW(poly p, int m, short *w, const ring R); |
---|
1802 | |
---|
1803 | |
---|
1804 | poly p_PermPoly (poly p, int * perm,const ring OldRing, const ring dst, |
---|
1805 | nMapFunc nMap, int *par_perm=NULL, int OldPar=0); |
---|
1806 | |
---|
1807 | /*----------------------------------------------------*/ |
---|
1808 | poly p_Series(int n,poly p,poly u, intvec *w, const ring R); |
---|
1809 | poly p_Invers(int n,poly u,intvec *w, const ring R); |
---|
1810 | |
---|
1811 | |
---|
1812 | #endif // P_POLYS_H |
---|
1813 | |
---|