source: git/libpolys/polys/monomials/p_polys.h @ 6469c2

spielwiese
Last change on this file since 6469c2 was 6469c2, checked in by Hans Schoenemann <hannes@…>, 18 months ago
opt: remove p_LmDivisible.. with different rings
  • Property mode set to 100644
File size: 55.9 KB
Line 
1/****************************************
2*  Computer Algebra System SINGULAR     *
3****************************************/
4/***************************************************************
5 *  File:    p_polys.h
6 *  Purpose: declaration of poly stuf which are independent of
7 *           currRing
8 *  Author:  obachman (Olaf Bachmann)
9 *  Created: 9/00
10 *******************************************************************/
11/***************************************************************
12 *  Purpose: implementation of poly procs which iter over ExpVector
13 *  Author:  obachman (Olaf Bachmann)
14 *  Created: 8/00
15 *******************************************************************/
16#ifndef P_POLYS_H
17#define P_POLYS_H
18
19#include "misc/mylimits.h"
20#include "misc/intvec.h"
21#include "coeffs/coeffs.h"
22
23#include "polys/monomials/monomials.h"
24#include "polys/monomials/ring.h"
25
26#include "polys/templates/p_MemAdd.h"
27#include "polys/templates/p_MemCmp.h"
28#include "polys/templates/p_Procs.h"
29
30#include "polys/sbuckets.h"
31
32#ifdef HAVE_PLURAL
33#include "polys/nc/nc.h"
34#endif
35
36poly p_Farey(poly p, number N, const ring r);
37/*
38* xx,q: arrays of length 0..rl-1
39* xx[i]: SB mod q[i]
40* assume: char=0
41* assume: q[i]!=0
42* destroys xx
43*/
44poly p_ChineseRemainder(poly *xx, number *x,number *q, int rl, CFArray &inv_cache, const ring R);
45/***************************************************************
46 *
47 * Divisiblity tests, args must be != NULL, except for
48 * pDivisbleBy
49 *
50 ***************************************************************/
51unsigned long p_GetShortExpVector(const poly a, const ring r);
52
53/// p_GetShortExpVector of p * pp
54unsigned long p_GetShortExpVector(const poly p, const poly pp, const ring r);
55
56#ifdef HAVE_RINGS
57/*! divisibility check over ground ring (which may contain zero divisors);
58   TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some
59   coefficient c and some monomial m;
60   does not take components into account
61 */
62BOOLEAN p_DivisibleByRingCase(poly f, poly g, const ring r);
63#endif
64
65/***************************************************************
66 *
67 * Misc things on polys
68 *
69 ***************************************************************/
70
71poly p_One(const ring r);
72
73int p_MinDeg(poly p,intvec *w, const ring R);
74
75long p_DegW(poly p, const int *w, const ring R);
76
77/// return TRUE if all monoms have the same component
78BOOLEAN   p_OneComp(poly p, const ring r);
79
80/// return i, if head depends only on var(i)
81int       p_IsPurePower(const poly p, const ring r);
82
83/// return i, if poly depends only on var(i)
84int       p_IsUnivariate(poly p, const ring r);
85
86/// set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0
87/// return #(e[i]>0)
88int      p_GetVariables(poly p, int * e, const ring r);
89
90/// returns the poly representing the integer i
91poly      p_ISet(long i, const ring r);
92
93/// returns the poly representing the number n, destroys n
94poly      p_NSet(number n, const ring r);
95
96void  p_Vec2Polys(poly v, poly**p, int *len, const ring r);
97poly  p_Vec2Poly(poly v, int k, const ring r);
98
99/// julia: vector to already allocated array (len=p_MaxComp(v,r))
100void  p_Vec2Array(poly v, poly *p, int len, const ring r);
101
102/***************************************************************
103 *
104 * Copying/Deletion of polys: args may be NULL
105 *
106 ***************************************************************/
107
108// simply deletes monomials, does not free coeffs
109void p_ShallowDelete(poly *p, const ring r);
110
111
112
113/***************************************************************
114 *
115 * Copying/Deleteion of polys: args may be NULL
116 *  - p/q as arg mean a poly
117 *  - m a monomial
118 *  - n a number
119 *  - pp (resp. qq, mm, nn) means arg is constant
120 *  - p (resp, q, m, n)     means arg is destroyed
121 *
122 ***************************************************************/
123
124poly      p_Sub(poly a, poly b, const ring r);
125
126poly      p_Power(poly p, int i, const ring r);
127
128
129/***************************************************************
130 *
131 * PDEBUG stuff
132 *
133 ***************************************************************/
134#ifdef PDEBUG
135// Returns TRUE if m is monom of p, FALSE otherwise
136BOOLEAN pIsMonomOf(poly p, poly m);
137// Returns TRUE if p and q have common monoms
138BOOLEAN pHaveCommonMonoms(poly p, poly q);
139
140// p_Check* routines return TRUE if everything is ok,
141// else, they report error message and return false
142
143// check if Lm(p) is from ring r
144BOOLEAN p_LmCheckIsFromRing(poly p, ring r);
145// check if Lm(p) != NULL, r != NULL and initialized && Lm(p) is from r
146BOOLEAN p_LmCheckPolyRing(poly p, ring r);
147// check if all monoms of p are from ring r
148BOOLEAN p_CheckIsFromRing(poly p, ring r);
149// check r != NULL and initialized && all monoms of p are from r
150BOOLEAN p_CheckPolyRing(poly p, ring r);
151// check if r != NULL and initialized
152BOOLEAN p_CheckRing(ring r);
153// only do check if cond
154
155
156#define pIfThen(cond, check) do {if (cond) {check;}} while (0)
157
158BOOLEAN _p_Test(poly p, ring r, int level);
159BOOLEAN _p_LmTest(poly p, ring r, int level);
160BOOLEAN _pp_Test(poly p, ring lmRing, ring tailRing, int level);
161
162#define p_Test(p,r)     _p_Test(p, r, PDEBUG)
163#define p_LmTest(p,r)   _p_LmTest(p, r, PDEBUG)
164#define pp_Test(p, lmRing, tailRing)    _pp_Test(p, lmRing, tailRing, PDEBUG)
165
166#else // ! PDEBUG
167
168#define pIsMonomOf(p, q)          (TRUE)
169#define pHaveCommonMonoms(p, q)   (TRUE)
170#define p_LmCheckIsFromRing(p,r)  (TRUE)
171#define p_LmCheckPolyRing(p,r)    (TRUE)
172#define p_CheckIsFromRing(p,r)    (TRUE)
173#define p_CheckPolyRing(p,r)      (TRUE)
174#define p_CheckRing(r)            (TRUE)
175#define P_CheckIf(cond, check)    (TRUE)
176
177#define p_Test(p,r)               (TRUE)
178#define p_LmTest(p,r)             (TRUE)
179#define pp_Test(p, lmRing, tailRing) (TRUE)
180
181#endif
182
183/***************************************************************
184 *
185 * Misc stuff
186 *
187 ***************************************************************/
188/*2
189* returns the length of a polynomial (numbers of monomials)
190*/
191static inline unsigned pLength(poly a)
192{
193  unsigned l = 0;
194  while (a!=NULL)
195  {
196    pIter(a);
197    l++;
198  }
199  return l;
200}
201
202// returns the length of a polynomial (numbers of monomials) and the last mon.
203// respect syzComp
204poly p_Last(const poly a, int &l, const ring r);
205
206/*----------------------------------------------------*/
207
208void      p_Norm(poly p1, const ring r);
209void      p_Normalize(poly p,const ring r);
210void      p_ProjectiveUnique(poly p,const ring r);
211
212void      p_ContentForGB(poly p, const ring r);
213void      p_Content(poly p, const ring r);
214void      p_Content_n(poly p, number &c,const ring r);
215#if 1
216// currently only used by Singular/janet
217void      p_SimpleContent(poly p, int s, const ring r);
218number    p_InitContent(poly ph, const ring r);
219#endif
220
221poly      p_Cleardenom(poly p, const ring r);
222void      p_Cleardenom_n(poly p, const ring r,number &c);
223//number    p_GetAllDenom(poly ph, const ring r);// unused
224
225int       p_Size( poly p, const ring r );
226
227// homogenizes p by multiplying certain powers of the varnum-th variable
228poly      p_Homogen (poly p, int varnum, const ring r);
229
230BOOLEAN   p_IsHomogeneous (poly p, const ring r);
231BOOLEAN   p_IsHomogeneousW (poly p, const intvec *w, const ring r);
232BOOLEAN   p_IsHomogeneousW (poly p, const intvec *w, const intvec *module_w,const ring r);
233
234// Setm
235static inline void p_Setm(poly p, const ring r)
236{
237  p_CheckRing2(r);
238  r->p_Setm(p, r);
239}
240
241p_SetmProc p_GetSetmProc(const ring r);
242
243poly      p_Subst(poly p, int n, poly e, const ring r);
244
245// TODO:
246#define p_SetmComp  p_Setm
247
248// component
249static inline  unsigned long p_SetComp(poly p, unsigned long c, ring r)
250{
251  p_LmCheckPolyRing2(p, r);
252  if (r->pCompIndex>=0) __p_GetComp(p,r) = c;
253  return c;
254}
255// sets component of poly a to i
256static inline   void p_SetCompP(poly p, int i, ring r)
257{
258  if (p != NULL)
259  {
260    p_Test(p, r);
261    if (rOrd_SetCompRequiresSetm(r))
262    {
263      do
264      {
265        p_SetComp(p, i, r);
266        p_SetmComp(p, r);
267        pIter(p);
268      }
269      while (p != NULL);
270    }
271    else
272    {
273      do
274      {
275        p_SetComp(p, i, r);
276        pIter(p);
277      }
278      while(p != NULL);
279    }
280  }
281}
282
283static inline   void p_SetCompP(poly p, int i, ring lmRing, ring tailRing)
284{
285  if (p != NULL)
286  {
287    p_SetComp(p, i, lmRing);
288    p_SetmComp(p, lmRing);
289    p_SetCompP(pNext(p), i, tailRing);
290  }
291}
292
293// returns maximal column number in the modul element a (or 0)
294static inline long p_MaxComp(poly p, ring lmRing, ring tailRing)
295{
296  long result,i;
297
298  if(p==NULL) return 0;
299  result = p_GetComp(p, lmRing);
300  if (result != 0)
301  {
302    loop
303    {
304      pIter(p);
305      if(p==NULL) break;
306      i = p_GetComp(p, tailRing);
307      if (i>result) result = i;
308    }
309  }
310  return result;
311}
312
313static inline long p_MaxComp(poly p,ring lmRing) {return p_MaxComp(p,lmRing,lmRing);}
314
315static inline   long p_MinComp(poly p, ring lmRing, ring tailRing)
316{
317  long result,i;
318
319  if(p==NULL) return 0;
320  result = p_GetComp(p,lmRing);
321  if (result != 0)
322  {
323    loop
324    {
325      pIter(p);
326      if(p==NULL) break;
327      i = p_GetComp(p,tailRing);
328      if (i<result) result = i;
329    }
330  }
331  return result;
332}
333
334static inline long p_MinComp(poly p,ring lmRing) {return p_MinComp(p,lmRing,lmRing);}
335
336
337static inline poly pReverse(poly p)
338{
339  if (p == NULL || pNext(p) == NULL) return p;
340
341  poly q = pNext(p), // == pNext(p)
342    qn;
343  pNext(p) = NULL;
344  do
345  {
346    qn = pNext(q);
347    pNext(q) = p;
348    p = q;
349    q = qn;
350  }
351  while (qn != NULL);
352  return p;
353}
354void      pEnlargeSet(poly**p, int length, int increment);
355
356
357/***************************************************************
358 *
359 * I/O
360 *
361 ***************************************************************/
362/// print p according to ShortOut in lmRing & tailRing
363void      p_String0(poly p, ring lmRing, ring tailRing);
364char*     p_String(poly p, ring lmRing, ring tailRing);
365void      p_Write(poly p, ring lmRing, ring tailRing);
366void      p_Write0(poly p, ring lmRing, ring tailRing);
367void      p_wrp(poly p, ring lmRing, ring tailRing);
368
369/// print p in a short way, if possible
370void  p_String0Short(const poly p, ring lmRing, ring tailRing);
371
372/// print p in a long way
373void   p_String0Long(const poly p, ring lmRing, ring tailRing);
374
375
376/***************************************************************
377 *
378 * Degree stuff -- see p_polys.cc for explainations
379 *
380 ***************************************************************/
381
382static inline long  p_FDeg(const poly p, const ring r)  { return r->pFDeg(p,r); }
383static inline long  p_LDeg(const poly p, int *l, const ring r)  { return r->pLDeg(p,l,r); }
384
385long p_WFirstTotalDegree(poly p, ring r);
386long p_WTotaldegree(poly p, const ring r);
387long p_WDegree(poly p,const ring r);
388long pLDeg0(poly p,int *l, ring r);
389long pLDeg0c(poly p,int *l, ring r);
390long pLDegb(poly p,int *l, ring r);
391long pLDeg1(poly p,int *l, ring r);
392long pLDeg1c(poly p,int *l, ring r);
393long pLDeg1_Deg(poly p,int *l, ring r);
394long pLDeg1c_Deg(poly p,int *l, ring r);
395long pLDeg1_Totaldegree(poly p,int *l, ring r);
396long pLDeg1c_Totaldegree(poly p,int *l, ring r);
397long pLDeg1_WFirstTotalDegree(poly p,int *l, ring r);
398long pLDeg1c_WFirstTotalDegree(poly p,int *l, ring r);
399
400BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r);
401
402/// same as the usual p_EqualPolys for polys belonging to *equal* rings
403BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r1, const ring r2);
404
405long p_Deg(poly a, const ring r);
406
407
408/***************************************************************
409 *
410 * Primitives for accessing and setting fields of a poly
411 *
412 ***************************************************************/
413
414static inline number p_SetCoeff(poly p, number n, ring r)
415{
416  p_LmCheckPolyRing2(p, r);
417  n_Delete(&(p->coef), r->cf);
418  (p)->coef=n;
419  return n;
420}
421
422// order
423static inline long p_GetOrder(poly p, ring r)
424{
425  p_LmCheckPolyRing2(p, r);
426  if (r->typ==NULL) return ((p)->exp[r->pOrdIndex]);
427  int i=0;
428  loop
429  {
430    switch(r->typ[i].ord_typ)
431    {
432      case ro_am:
433      case ro_wp_neg:
434        return ((p->exp[r->pOrdIndex])-POLY_NEGWEIGHT_OFFSET);
435      case ro_syzcomp:
436      case ro_syz:
437      case ro_cp:
438        i++;
439        break;
440      //case ro_dp:
441      //case ro_wp:
442      default:
443        return ((p)->exp[r->pOrdIndex]);
444    }
445  }
446}
447
448
449static inline unsigned long p_AddComp(poly p, unsigned long v, ring r)
450{
451  p_LmCheckPolyRing2(p, r);
452  pAssume2(rRing_has_Comp(r));
453  return __p_GetComp(p,r) += v;
454}
455static inline unsigned long p_SubComp(poly p, unsigned long v, ring r)
456{
457  p_LmCheckPolyRing2(p, r);
458  pAssume2(rRing_has_Comp(r));
459  _pPolyAssume2(__p_GetComp(p,r) >= v,p,r);
460  return __p_GetComp(p,r) -= v;
461}
462
463#ifndef HAVE_EXPSIZES
464
465/// get a single variable exponent
466/// @Note:
467/// the integer VarOffset encodes:
468/// 1. the position of a variable in the exponent vector p->exp (lower 24 bits)
469/// 2. number of bits to shift to the right in the upper 8 bits (which takes at most 6 bits for 64 bit)
470/// Thus VarOffset always has 2 zero higher bits!
471static inline long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
472{
473  pAssume2((VarOffset >> (24 + 6)) == 0);
474#if 0
475  int pos=(VarOffset & 0xffffff);
476  int bitpos=(VarOffset >> 24);
477  unsigned long exp=(p->exp[pos] >> bitmask) & iBitmask;
478  return exp;
479#else
480  return (long)
481         ((p->exp[(VarOffset & 0xffffff)] >> (VarOffset >> 24))
482          & iBitmask);
483#endif
484}
485
486
487/// set a single variable exponent
488/// @Note:
489/// VarOffset encodes the position in p->exp @see p_GetExp
490static inline unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
491{
492  pAssume2(e>=0);
493  pAssume2(e<=iBitmask);
494  pAssume2((VarOffset >> (24 + 6)) == 0);
495
496  // shift e to the left:
497  REGISTER int shift = VarOffset >> 24;
498  unsigned long ee = e << shift /*(VarOffset >> 24)*/;
499  // find the bits in the exponent vector
500  REGISTER int offset = (VarOffset & 0xffffff);
501  // clear the bits in the exponent vector:
502  p->exp[offset]  &= ~( iBitmask << shift );
503  // insert e with |
504  p->exp[ offset ] |= ee;
505  return e;
506}
507
508
509#else // #ifdef HAVE_EXPSIZES // EXPERIMENTAL!!!
510
511static inline unsigned long BitMask(unsigned long bitmask, int twobits)
512{
513  // bitmask = 00000111111111111
514  // 0 must give bitmask!
515  // 1, 2, 3 - anything like 00011..11
516  pAssume2((twobits >> 2) == 0);
517  static const unsigned long _bitmasks[4] = {-1, 0x7fff, 0x7f, 0x3};
518  return bitmask & _bitmasks[twobits];
519}
520
521
522/// @Note: we may add some more info (6 ) into VarOffset and thus encode
523static inline long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
524{
525  int pos  =(VarOffset & 0xffffff);
526  int hbyte= (VarOffset >> 24); // the highest byte
527  int bitpos = hbyte & 0x3f; // last 6 bits
528  long bitmask = BitMask(iBitmask, hbyte >> 6);
529
530  long exp=(p->exp[pos] >> bitpos) & bitmask;
531  return exp;
532
533}
534
535static inline long p_SetExp(poly p, const long e, const unsigned long iBitmask, const int VarOffset)
536{
537  pAssume2(e>=0);
538  pAssume2(e <= BitMask(iBitmask, VarOffset >> 30));
539
540  // shift e to the left:
541  REGISTER int hbyte = VarOffset >> 24;
542  int bitmask = BitMask(iBitmask, hbyte >> 6);
543  REGISTER int shift = hbyte & 0x3f;
544  long ee = e << shift;
545  // find the bits in the exponent vector
546  REGISTER int offset = (VarOffset & 0xffffff);
547  // clear the bits in the exponent vector:
548  p->exp[offset]  &= ~( bitmask << shift );
549  // insert e with |
550  p->exp[ offset ] |= ee;
551  return e;
552}
553
554#endif // #ifndef HAVE_EXPSIZES
555
556
557static inline long p_GetExp(const poly p, const ring r, const int VarOffset)
558{
559  p_LmCheckPolyRing2(p, r);
560  pAssume2(VarOffset != -1);
561  return p_GetExp(p, r->bitmask, VarOffset);
562}
563
564static inline long p_SetExp(poly p, const long e, const ring r, const int VarOffset)
565{
566  p_LmCheckPolyRing2(p, r);
567  pAssume2(VarOffset != -1);
568  return p_SetExp(p, e, r->bitmask, VarOffset);
569}
570
571
572
573/// get v^th exponent for a monomial
574static inline long p_GetExp(const poly p, const int v, const ring r)
575{
576  p_LmCheckPolyRing2(p, r);
577  pAssume2(v>0 && v <= r->N);
578  pAssume2(r->VarOffset[v] != -1);
579  return p_GetExp(p, r->bitmask, r->VarOffset[v]);
580}
581
582
583/// set v^th exponent for a monomial
584static inline long p_SetExp(poly p, const int v, const long e, const ring r)
585{
586  p_LmCheckPolyRing2(p, r);
587  pAssume2(v>0 && v <= r->N);
588  pAssume2(r->VarOffset[v] != -1);
589  return p_SetExp(p, e, r->bitmask, r->VarOffset[v]);
590}
591
592// the following should be implemented more efficiently
593static inline  long p_IncrExp(poly p, int v, ring r)
594{
595  p_LmCheckPolyRing2(p, r);
596  int e = p_GetExp(p,v,r);
597  e++;
598  return p_SetExp(p,v,e,r);
599}
600static inline  long p_DecrExp(poly p, int v, ring r)
601{
602  p_LmCheckPolyRing2(p, r);
603  int e = p_GetExp(p,v,r);
604  pAssume2(e > 0);
605  e--;
606  return p_SetExp(p,v,e,r);
607}
608static inline  long p_AddExp(poly p, int v, long ee, ring r)
609{
610  p_LmCheckPolyRing2(p, r);
611  int e = p_GetExp(p,v,r);
612  e += ee;
613  return p_SetExp(p,v,e,r);
614}
615static inline  long p_SubExp(poly p, int v, long ee, ring r)
616{
617  p_LmCheckPolyRing2(p, r);
618  long e = p_GetExp(p,v,r);
619  pAssume2(e >= ee);
620  e -= ee;
621  return p_SetExp(p,v,e,r);
622}
623static inline  long p_MultExp(poly p, int v, long ee, ring r)
624{
625  p_LmCheckPolyRing2(p, r);
626  long e = p_GetExp(p,v,r);
627  e *= ee;
628  return p_SetExp(p,v,e,r);
629}
630
631static inline long p_GetExpSum(poly p1, poly p2, int i, ring r)
632{
633  p_LmCheckPolyRing2(p1, r);
634  p_LmCheckPolyRing2(p2, r);
635  return p_GetExp(p1,i,r) + p_GetExp(p2,i,r);
636}
637static inline long p_GetExpDiff(poly p1, poly p2, int i, ring r)
638{
639  return p_GetExp(p1,i,r) - p_GetExp(p2,i,r);
640}
641
642static inline int p_Comp_k_n(poly a, poly b, int k, ring r)
643{
644  if ((a==NULL) || (b==NULL) ) return FALSE;
645  p_LmCheckPolyRing2(a, r);
646  p_LmCheckPolyRing2(b, r);
647  pAssume2(k > 0 && k <= r->N);
648  int i=k;
649  for(;i<=r->N;i++)
650  {
651    if (p_GetExp(a,i,r) != p_GetExp(b,i,r)) return FALSE;
652    //    if (a->exp[(r->VarOffset[i] & 0xffffff)] != b->exp[(r->VarOffset[i] & 0xffffff)]) return FALSE;
653  }
654  return TRUE;
655}
656
657
658/***************************************************************
659 *
660 * Allocation/Initalization/Deletion
661 *
662 ***************************************************************/
663#if (OM_TRACK > 2) && defined(OM_TRACK_CUSTOM)
664static inline poly p_New(const ring r, omBin bin)
665#else
666static inline poly p_New(const ring /*r*/, omBin bin)
667#endif
668{
669  p_CheckRing2(r);
670  pAssume2(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
671  poly p;
672  omTypeAllocBin(poly, p, bin);
673  p_SetRingOfLm(p, r);
674  return p;
675}
676
677static inline poly p_New(ring r)
678{
679  return p_New(r, r->PolyBin);
680}
681
682#if (PDEBUG > 2) || defined(XALLOC_BIN)
683static inline void p_LmFree(poly p, ring r)
684#else
685static inline void p_LmFree(poly p, ring)
686#endif
687{
688  p_LmCheckPolyRing2(p, r);
689  #ifdef XALLOC_BIN
690  omFreeBin(p,r->PolyBin);
691  #else
692  omFreeBinAddr(p);
693  #endif
694}
695#if (PDEBUG > 2) || defined(XALLOC_BIN)
696static inline void p_LmFree(poly *p, ring r)
697#else
698static inline void p_LmFree(poly *p, ring)
699#endif
700{
701  p_LmCheckPolyRing2(*p, r);
702  poly h = *p;
703  *p = pNext(h);
704  #ifdef XALLOC_BIN
705  omFreeBin(h,r->PolyBin);
706  #else
707  omFreeBinAddr(h);
708  #endif
709}
710#if (PDEBUG > 2) || defined(XALLOC_BIN)
711static inline poly p_LmFreeAndNext(poly p, ring r)
712#else
713static inline poly p_LmFreeAndNext(poly p, ring)
714#endif
715{
716  p_LmCheckPolyRing2(p, r);
717  poly pnext = pNext(p);
718  #ifdef XALLOC_BIN
719  omFreeBin(p,r->PolyBin);
720  #else
721  omFreeBinAddr(p);
722  #endif
723  return pnext;
724}
725static inline void p_LmDelete(poly p, const ring r)
726{
727  p_LmCheckPolyRing2(p, r);
728  n_Delete(&pGetCoeff(p), r->cf);
729  #ifdef XALLOC_BIN
730  omFreeBin(p,r->PolyBin);
731  #else
732  omFreeBinAddr(p);
733  #endif
734}
735static inline void p_LmDelete0(poly p, const ring r)
736{
737  p_LmCheckPolyRing2(p, r);
738  if (pGetCoeff(p)!=NULL) n_Delete(&pGetCoeff(p), r->cf);
739  #ifdef XALLOC_BIN
740  omFreeBin(p,r->PolyBin);
741  #else
742  omFreeBinAddr(p);
743  #endif
744}
745static inline void p_LmDelete(poly *p, const ring r)
746{
747  p_LmCheckPolyRing2(*p, r);
748  poly h = *p;
749  *p = pNext(h);
750  n_Delete(&pGetCoeff(h), r->cf);
751  #ifdef XALLOC_BIN
752  omFreeBin(h,r->PolyBin);
753  #else
754  omFreeBinAddr(h);
755  #endif
756}
757static inline poly p_LmDeleteAndNext(poly p, const ring r)
758{
759  p_LmCheckPolyRing2(p, r);
760  poly pnext = pNext(p);
761  n_Delete(&pGetCoeff(p), r->cf);
762  #ifdef XALLOC_BIN
763  omFreeBin(p,r->PolyBin);
764  #else
765  omFreeBinAddr(p);
766  #endif
767  return pnext;
768}
769
770/***************************************************************
771 *
772 * Misc routines
773 *
774 ***************************************************************/
775
776/// return the maximal exponent of p in form of the maximal long var
777unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max = 0);
778
779/// return monomial r such that GetExp(r,i) is maximum of all
780/// monomials in p; coeff == 0, next == NULL, ord is not set
781poly p_GetMaxExpP(poly p, ring r);
782
783static inline unsigned long p_GetMaxExp(const unsigned long l, const ring r)
784{
785  unsigned long bitmask = r->bitmask;
786  unsigned long max = (l & bitmask);
787  unsigned long j = r->ExpPerLong - 1;
788
789  if (j > 0)
790  {
791    unsigned long i = r->BitsPerExp;
792    long e;
793    loop
794    {
795      e = ((l >> i) & bitmask);
796      if ((unsigned long) e > max)
797        max = e;
798      j--;
799      if (j==0) break;
800      i += r->BitsPerExp;
801    }
802  }
803  return max;
804}
805
806static inline unsigned long p_GetMaxExp(const poly p, const ring r)
807{
808  return p_GetMaxExp(p_GetMaxExpL(p, r), r);
809}
810
811static inline unsigned long
812p_GetTotalDegree(const unsigned long l, const ring r, const int number_of_exps)
813{
814  const unsigned long bitmask = r->bitmask;
815  unsigned long sum = (l & bitmask);
816  unsigned long j = number_of_exps - 1;
817
818  if (j > 0)
819  {
820    unsigned long i = r->BitsPerExp;
821    loop
822    {
823      sum += ((l >> i) & bitmask);
824      j--;
825      if (j==0) break;
826      i += r->BitsPerExp;
827    }
828  }
829  return sum;
830}
831
832/***************************************************************
833 *
834 * Dispatcher to r->p_Procs, they do the tests/checks
835 *
836 ***************************************************************/
837/// returns a copy of p (without any additional testing)
838static inline poly p_Copy_noCheck(poly p, const ring r)
839{
840  /*assume(p!=NULL);*/
841  assume(r != NULL);
842  assume(r->p_Procs != NULL);
843  assume(r->p_Procs->p_Copy != NULL);
844  return r->p_Procs->p_Copy(p, r);
845}
846
847/// returns a copy of p
848static inline poly p_Copy(poly p, const ring r)
849{
850  if (p!=NULL)
851  {
852    p_Test(p,r);
853    const poly pp = p_Copy_noCheck(p, r);
854    p_Test(pp,r);
855    return pp;
856  }
857  else
858    return NULL;
859}
860
861/// copy the (leading) term of p
862static inline poly p_Head(const poly p, const ring r)
863{
864  if (p == NULL) return NULL;
865  p_LmCheckPolyRing1(p, r);
866  poly np;
867  omTypeAllocBin(poly, np, r->PolyBin);
868  p_SetRingOfLm(np, r);
869  memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
870  pNext(np) = NULL;
871  pSetCoeff0(np, n_Copy(pGetCoeff(p), r->cf));
872  return np;
873}
874
875/// like p_Head, but allow NULL coeff
876poly p_Head0(const poly p, const ring r);
877
878/// like p_Head, but with coefficient 1
879poly p_CopyPowerProduct(const poly p, const ring r);
880
881/// like p_Head, but with coefficient n
882poly p_CopyPowerProduct0(const poly p, const number n, const ring r);
883
884/// returns a copy of p with Lm(p) from lmRing and Tail(p) from tailRing
885static inline poly p_Copy(poly p, const ring lmRing, const ring tailRing)
886{
887  if (p != NULL)
888  {
889#ifndef PDEBUG
890    if (tailRing == lmRing)
891      return p_Copy_noCheck(p, tailRing);
892#endif
893    poly pres = p_Head(p, lmRing);
894    if (pNext(p)!=NULL)
895      pNext(pres) = p_Copy_noCheck(pNext(p), tailRing);
896    return pres;
897  }
898  else
899    return NULL;
900}
901
902// deletes *p, and sets *p to NULL
903static inline void p_Delete(poly *p, const ring r)
904{
905  assume( p!= NULL );
906  assume( r!= NULL );
907  if ((*p)!=NULL) r->p_Procs->p_Delete(p, r);
908}
909
910static inline void p_Delete(poly *p,  const ring lmRing, const ring tailRing)
911{
912  assume( p!= NULL );
913  if (*p != NULL)
914  {
915#ifndef PDEBUG
916    if (tailRing == lmRing)
917    {
918      p_Delete(p, tailRing);
919      return;
920    }
921#endif
922    if (pNext(*p) != NULL)
923      p_Delete(&pNext(*p), tailRing);
924    p_LmDelete(p, lmRing);
925  }
926}
927
928// copys monomials of p, allocates new monomials from bin,
929// deletes monomials of p
930static inline poly p_ShallowCopyDelete(poly p, const ring r, omBin bin)
931{
932  p_LmCheckPolyRing2(p, r);
933  pAssume2(omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
934  return r->p_Procs->p_ShallowCopyDelete(p, r, bin);
935}
936
937// returns p+q, destroys p and q
938static inline poly p_Add_q(poly p, poly q, const ring r)
939{
940  assume( (p != q) || (p == NULL && q == NULL) );
941  if (q==NULL) return p;
942  if (p==NULL) return q;
943  int shorter;
944  return r->p_Procs->p_Add_q(p, q, shorter, r);
945}
946
947/// like p_Add_q, except that if lp == pLength(lp) lq == pLength(lq) then lp == pLength(p+q)
948static inline poly p_Add_q(poly p, poly q, int &lp, int lq, const ring r)
949{
950  assume( (p != q) || (p == NULL && q == NULL) );
951  if (q==NULL) return p;
952  if (p==NULL) { lp=lq; return q; }
953  int shorter;
954  poly res = r->p_Procs->p_Add_q(p, q, shorter, r);
955  lp += lq - shorter;
956  return res;
957}
958
959// returns p*n, destroys p
960static inline poly p_Mult_nn(poly p, number n, const ring r)
961{
962  if (p==NULL) return NULL;
963  if (n_IsOne(n, r->cf))
964    return p;
965  else if (n_IsZero(n, r->cf))
966  {
967    p_Delete(&p, r); // NOTE: without p_Delete - memory leak!
968    return NULL;
969  }
970  else
971    return r->p_Procs->p_Mult_nn(p, n, r);
972}
973#define __p_Mult_nn(p,n,r) r->p_Procs->p_Mult_nn(p, n, r)
974
975static inline poly p_Mult_nn(poly p, number n, const ring lmRing,
976                        const ring tailRing)
977{
978  assume(p!=NULL);
979#ifndef PDEBUG
980  if (lmRing == tailRing)
981    return p_Mult_nn(p, n, tailRing);
982#endif
983  poly pnext = pNext(p);
984  pNext(p) = NULL;
985  p = lmRing->p_Procs->p_Mult_nn(p, n, lmRing);
986  if (pnext!=NULL)
987  {
988    pNext(p) = tailRing->p_Procs->p_Mult_nn(pnext, n, tailRing);
989  }
990  return p;
991}
992
993// returns p*n, does not destroy p
994static inline poly pp_Mult_nn(poly p, number n, const ring r)
995{
996  if (p==NULL) return NULL;
997  if (n_IsOne(n, r->cf))
998    return p_Copy(p, r);
999  else if (n_IsZero(n, r->cf))
1000    return NULL;
1001  else
1002    return r->p_Procs->pp_Mult_nn(p, n, r);
1003}
1004#define __pp_Mult_nn(p,n,r) r->p_Procs->pp_Mult_nn(p, n, r)
1005
1006// test if the monomial is a constant as a vector component
1007// i.e., test if all exponents are zero
1008static inline BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
1009{
1010  //p_LmCheckPolyRing(p, r);
1011  int i = r->VarL_Size - 1;
1012
1013  do
1014  {
1015    if (p->exp[r->VarL_Offset[i]] != 0)
1016      return FALSE;
1017    i--;
1018  }
1019  while (i >= 0);
1020  return TRUE;
1021}
1022
1023// test if monomial is a constant, i.e. if all exponents and the component
1024// is zero
1025static inline BOOLEAN p_LmIsConstant(const poly p, const ring r)
1026{
1027  if (p_LmIsConstantComp(p, r))
1028    return (p_GetComp(p, r) == 0);
1029  return FALSE;
1030}
1031
1032// returns Copy(p)*m, does neither destroy p nor m
1033static inline poly pp_Mult_mm(poly p, poly m, const ring r)
1034{
1035  if (p==NULL) return NULL;
1036  if (p_LmIsConstant(m, r))
1037    return __pp_Mult_nn(p, pGetCoeff(m), r);
1038  else
1039    return r->p_Procs->pp_Mult_mm(p, m, r);
1040}
1041
1042// returns m*Copy(p), does neither destroy p nor m
1043static inline poly pp_mm_Mult(poly p, poly m, const ring r)
1044{
1045  if (p==NULL) return NULL;
1046  if (p_LmIsConstant(m, r))
1047    return __pp_Mult_nn(p, pGetCoeff(m), r);
1048  else
1049    return r->p_Procs->pp_mm_Mult(p, m, r);
1050}
1051
1052// returns p*m, destroys p, const: m
1053static inline poly p_Mult_mm(poly p, poly m, const ring r)
1054{
1055  if (p==NULL) return NULL;
1056  if (p_LmIsConstant(m, r))
1057    return __p_Mult_nn(p, pGetCoeff(m), r);
1058  else
1059    return r->p_Procs->p_Mult_mm(p, m, r);
1060}
1061
1062// returns m*p, destroys p, const: m
1063static inline poly p_mm_Mult(poly p, poly m, const ring r)
1064{
1065  if (p==NULL) return NULL;
1066  if (p_LmIsConstant(m, r))
1067    return __p_Mult_nn(p, pGetCoeff(m), r);
1068  else
1069    return r->p_Procs->p_mm_Mult(p, m, r);
1070}
1071
1072static inline poly p_Minus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp, int lq,
1073                                      const poly spNoether, const ring r)
1074{
1075  int shorter;
1076  const poly res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, spNoether, r);
1077  lp += lq - shorter;
1078//  assume( lp == pLength(res) );
1079  return res;
1080}
1081
1082// return p - m*Copy(q), destroys p; const: p,m
1083static inline poly p_Minus_mm_Mult_qq(poly p, const poly m, const poly q, const ring r)
1084{
1085  int shorter;
1086
1087  return r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r);
1088}
1089
1090
1091// returns p*Coeff(m) for such monomials pm of p, for which m is divisble by pm
1092static inline poly pp_Mult_Coeff_mm_DivSelect(poly p, const poly m, const ring r)
1093{
1094  int shorter;
1095  return r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r);
1096}
1097
1098// returns p*Coeff(m) for such monomials pm of p, for which m is divisble by pm
1099// if lp is length of p on input then lp is length of returned poly on output
1100static inline poly pp_Mult_Coeff_mm_DivSelect(poly p, int &lp, const poly m, const ring r)
1101{
1102  int shorter;
1103  poly pp = r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r);
1104  lp -= shorter;
1105  return pp;
1106}
1107
1108// returns -p, destroys p
1109static inline poly p_Neg(poly p, const ring r)
1110{
1111  return r->p_Procs->p_Neg(p, r);
1112}
1113
1114extern poly  _p_Mult_q(poly p, poly q, const int copy, const ring r);
1115// returns p*q, destroys p and q
1116static inline poly p_Mult_q(poly p, poly q, const ring r)
1117{
1118  assume( (p != q) || (p == NULL && q == NULL) );
1119
1120  if (p == NULL)
1121  {
1122    p_Delete(&q, r);
1123    return NULL;
1124  }
1125  if (q == NULL)
1126  {
1127    p_Delete(&p, r);
1128    return NULL;
1129  }
1130
1131  if (pNext(p) == NULL)
1132  {
1133    q = r->p_Procs->p_mm_Mult(q, p, r);
1134    p_LmDelete(&p, r);
1135    return q;
1136  }
1137
1138  if (pNext(q) == NULL)
1139  {
1140    p = r->p_Procs->p_Mult_mm(p, q, r);
1141    p_LmDelete(&q, r);
1142    return p;
1143  }
1144#if defined(HAVE_PLURAL) || defined(HAVE_SHIFTBBA)
1145  if (rIsNCRing(r))
1146    return _nc_p_Mult_q(p, q, r);
1147  else
1148#endif
1149  return _p_Mult_q(p, q, 0, r);
1150}
1151
1152// returns p*q, does neither destroy p nor q
1153static inline poly pp_Mult_qq(poly p, poly q, const ring r)
1154{
1155  if (p == NULL || q == NULL) return NULL;
1156
1157  if (pNext(p) == NULL)
1158  {
1159    return r->p_Procs->pp_mm_Mult(q, p, r);
1160  }
1161
1162  if (pNext(q) == NULL)
1163  {
1164    return r->p_Procs->pp_Mult_mm(p, q, r);
1165  }
1166
1167  poly qq = q;
1168  if (p == q)
1169    qq = p_Copy(q, r);
1170
1171  poly res;
1172#if defined(HAVE_PLURAL) || defined(HAVE_SHIFTBBA)
1173  if (rIsNCRing(r))
1174    res = _nc_pp_Mult_qq(p, qq, r);
1175  else
1176#endif
1177    res = _p_Mult_q(p, qq, 1, r);
1178
1179  if (qq != q)
1180    p_Delete(&qq, r);
1181  return res;
1182}
1183
1184// returns p + m*q destroys p, const: q, m
1185static inline poly p_Plus_mm_Mult_qq(poly p, poly m, poly q, int &lp, int lq,
1186                                const ring r)
1187{
1188#ifdef HAVE_PLURAL
1189  if (rIsPluralRing(r))
1190    return nc_p_Plus_mm_Mult_qq(p, m, q, lp, lq, r);
1191#endif
1192
1193// this should be implemented more efficiently
1194  poly res;
1195  int shorter;
1196  number n_old = pGetCoeff(m);
1197  number n_neg = n_Copy(n_old, r->cf);
1198  n_neg = n_InpNeg(n_neg, r->cf);
1199  pSetCoeff0(m, n_neg);
1200  res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r);
1201  lp = (lp + lq) - shorter;
1202  pSetCoeff0(m, n_old);
1203  n_Delete(&n_neg, r->cf);
1204  return res;
1205}
1206
1207static inline poly p_Plus_mm_Mult_qq(poly p, poly m, poly q, const ring r)
1208{
1209  int lp = 0, lq = 0;
1210  return p_Plus_mm_Mult_qq(p, m, q, lp, lq, r);
1211}
1212
1213// returns merged p and q, assumes p and q have no monomials which are equal
1214static inline poly p_Merge_q(poly p, poly q, const ring r)
1215{
1216  assume( (p != q) || (p == NULL && q == NULL) );
1217  return r->p_Procs->p_Merge_q(p, q, r);
1218}
1219
1220// like p_SortMerge, except that p may have equal monimals
1221static inline poly p_SortAdd(poly p, const ring r, BOOLEAN revert= FALSE)
1222{
1223  if (revert) p = pReverse(p);
1224  return sBucketSortAdd(p, r);
1225}
1226
1227// sorts p using bucket sort: returns sorted poly
1228// assumes that monomials of p are all different
1229// reverses it first, if revert == TRUE, use this if input p is "almost" sorted
1230// correctly
1231static inline poly p_SortMerge(poly p, const ring r, BOOLEAN revert= FALSE)
1232{
1233  if (revert) p = pReverse(p);
1234  return sBucketSortMerge(p, r);
1235}
1236
1237/***************************************************************
1238 *
1239 * I/O
1240 *
1241 ***************************************************************/
1242static inline char*     p_String(poly p, ring p_ring)
1243{
1244  return p_String(p, p_ring, p_ring);
1245}
1246static inline void     p_String0(poly p, ring p_ring)
1247{
1248  p_String0(p, p_ring, p_ring);
1249}
1250static inline void      p_Write(poly p, ring p_ring)
1251{
1252  p_Write(p, p_ring, p_ring);
1253}
1254static inline void      p_Write0(poly p, ring p_ring)
1255{
1256  p_Write0(p, p_ring, p_ring);
1257}
1258static inline void      p_wrp(poly p, ring p_ring)
1259{
1260  p_wrp(p, p_ring, p_ring);
1261}
1262
1263
1264#if PDEBUG > 0
1265
1266#define _p_LmCmpAction(p, q, r, actionE, actionG, actionS)  \
1267do                                                          \
1268{                                                           \
1269  int _cmp = p_LmCmp(p,q,r);                                \
1270  if (_cmp == 0) actionE;                                   \
1271  if (_cmp == 1) actionG;                                   \
1272  actionS;                                                  \
1273}                                                           \
1274while(0)
1275
1276#else
1277
1278#define _p_LmCmpAction(p, q, r, actionE, actionG, actionS)                      \
1279 p_MemCmp_LengthGeneral_OrdGeneral(p->exp, q->exp, r->CmpL_Size, r->ordsgn,    \
1280                                   actionE, actionG, actionS)
1281
1282#endif
1283
1284#define pDivAssume(x)   do {} while (0)
1285
1286
1287
1288/***************************************************************
1289 *
1290 * Allocation/Initalization/Deletion
1291 *
1292 ***************************************************************/
1293// adjustments for negative weights
1294static inline void p_MemAdd_NegWeightAdjust(poly p, const ring r)
1295{
1296  if (r->NegWeightL_Offset != NULL)
1297  {
1298    for (int i=r->NegWeightL_Size-1; i>=0; i--)
1299    {
1300      p->exp[r->NegWeightL_Offset[i]] -= POLY_NEGWEIGHT_OFFSET;
1301    }
1302  }
1303}
1304static inline void p_MemSub_NegWeightAdjust(poly p, const ring r)
1305{
1306  if (r->NegWeightL_Offset != NULL)
1307  {
1308    for (int i=r->NegWeightL_Size-1; i>=0; i--)
1309    {
1310      p->exp[r->NegWeightL_Offset[i]] += POLY_NEGWEIGHT_OFFSET;
1311    }
1312  }
1313}
1314// ExpVextor(d_p) = ExpVector(s_p)
1315static inline void p_ExpVectorCopy(poly d_p, poly s_p, const ring r)
1316{
1317  p_LmCheckPolyRing1(d_p, r);
1318  p_LmCheckPolyRing1(s_p, r);
1319  memcpy(d_p->exp, s_p->exp, r->ExpL_Size*sizeof(long));
1320}
1321
1322static inline poly p_Init(const ring r, omBin bin)
1323{
1324  p_CheckRing1(r);
1325  pAssume1(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
1326  poly p;
1327  omTypeAlloc0Bin(poly, p, bin);
1328  p_MemAdd_NegWeightAdjust(p, r);
1329  p_SetRingOfLm(p, r);
1330  return p;
1331}
1332static inline poly p_Init(const ring r)
1333{
1334  return p_Init(r, r->PolyBin);
1335}
1336
1337static inline poly p_LmInit(poly p, const ring r)
1338{
1339  p_LmCheckPolyRing1(p, r);
1340  poly np;
1341  omTypeAllocBin(poly, np, r->PolyBin);
1342  p_SetRingOfLm(np, r);
1343  memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
1344  pNext(np) = NULL;
1345  pSetCoeff0(np, NULL);
1346  return np;
1347}
1348static inline poly p_LmInit(poly s_p, const ring s_r, const ring d_r, omBin d_bin)
1349{
1350  p_LmCheckPolyRing1(s_p, s_r);
1351  p_CheckRing(d_r);
1352  pAssume1(d_r->N <= s_r->N);
1353  poly d_p = p_Init(d_r, d_bin);
1354  for (unsigned i=d_r->N; i!=0; i--)
1355  {
1356    p_SetExp(d_p, i, p_GetExp(s_p, i,s_r), d_r);
1357  }
1358  if (rRing_has_Comp(d_r))
1359  {
1360    p_SetComp(d_p, p_GetComp(s_p,s_r), d_r);
1361  }
1362  p_Setm(d_p, d_r);
1363  return d_p;
1364}
1365static inline poly p_LmInit(poly s_p, const ring s_r, const ring d_r)
1366{
1367  pAssume1(d_r != NULL);
1368  return p_LmInit(s_p, s_r, d_r, d_r->PolyBin);
1369}
1370
1371// set all exponents l..k to 0, assume exp. k+1..n and 1..l-1 are in
1372// different blocks
1373// set coeff to 1
1374static inline poly p_GetExp_k_n(poly p, int l, int k, const ring r)
1375{
1376  if (p == NULL) return NULL;
1377  p_LmCheckPolyRing1(p, r);
1378  poly np;
1379  omTypeAllocBin(poly, np, r->PolyBin);
1380  p_SetRingOfLm(np, r);
1381  memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
1382  pNext(np) = NULL;
1383  pSetCoeff0(np, n_Init(1, r->cf));
1384  int i;
1385  for(i=l;i<=k;i++)
1386  {
1387    //np->exp[(r->VarOffset[i] & 0xffffff)] =0;
1388    p_SetExp(np,i,0,r);
1389  }
1390  p_Setm(np,r);
1391  return np;
1392}
1393
1394// simialar to p_ShallowCopyDelete but does it only for leading monomial
1395static inline poly p_LmShallowCopyDelete(poly p, const ring r)
1396{
1397  p_LmCheckPolyRing1(p, r);
1398  pAssume1(omSizeWOfBin(bin) == omSizeWOfBin(r->PolyBin));
1399  poly new_p = p_New(r);
1400  memcpy(new_p->exp, p->exp, r->ExpL_Size*sizeof(long));
1401  pSetCoeff0(new_p, pGetCoeff(p));
1402  pNext(new_p) = pNext(p);
1403  omFreeBinAddr(p);
1404  return new_p;
1405}
1406
1407/***************************************************************
1408 *
1409 * Operation on ExpVectors
1410 *
1411 ***************************************************************/
1412// ExpVector(p1) += ExpVector(p2)
1413static inline void p_ExpVectorAdd(poly p1, poly p2, const ring r)
1414{
1415  p_LmCheckPolyRing1(p1, r);
1416  p_LmCheckPolyRing1(p2, r);
1417#if PDEBUG >= 1
1418  for (int i=1; i<=r->N; i++)
1419    pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask);
1420  pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0);
1421#endif
1422
1423  p_MemAdd_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size);
1424  p_MemAdd_NegWeightAdjust(p1, r);
1425}
1426// ExpVector(pr) = ExpVector(p1) + ExpVector(p2)
1427static inline void p_ExpVectorSum(poly pr, poly p1, poly p2, const ring r)
1428{
1429  p_LmCheckPolyRing1(p1, r);
1430  p_LmCheckPolyRing1(p2, r);
1431  p_LmCheckPolyRing1(pr, r);
1432#if PDEBUG >= 1
1433  for (int i=1; i<=r->N; i++)
1434    pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask);
1435  pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0);
1436#endif
1437
1438  p_MemSum_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size);
1439  p_MemAdd_NegWeightAdjust(pr, r);
1440}
1441// ExpVector(p1) -= ExpVector(p2)
1442static inline void p_ExpVectorSub(poly p1, poly p2, const ring r)
1443{
1444  p_LmCheckPolyRing1(p1, r);
1445  p_LmCheckPolyRing1(p2, r);
1446#if PDEBUG >= 1
1447  for (int i=1; i<=r->N; i++)
1448    pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r));
1449  pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0 ||
1450          p_GetComp(p1, r) == p_GetComp(p2, r));
1451#endif
1452
1453  p_MemSub_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size);
1454  p_MemSub_NegWeightAdjust(p1, r);
1455}
1456
1457// ExpVector(p1) += ExpVector(p2) - ExpVector(p3)
1458static inline void p_ExpVectorAddSub(poly p1, poly p2, poly p3, const ring r)
1459{
1460  p_LmCheckPolyRing1(p1, r);
1461  p_LmCheckPolyRing1(p2, r);
1462  p_LmCheckPolyRing1(p3, r);
1463#if PDEBUG >= 1
1464  for (int i=1; i<=r->N; i++)
1465    pAssume1(p_GetExp(p1, i, r) + p_GetExp(p2, i, r) >= p_GetExp(p3, i, r));
1466  pAssume1(p_GetComp(p1, r) == 0 ||
1467           (p_GetComp(p2, r) - p_GetComp(p3, r) == 0) ||
1468           (p_GetComp(p1, r) == p_GetComp(p2, r) - p_GetComp(p3, r)));
1469#endif
1470
1471  p_MemAddSub_LengthGeneral(p1->exp, p2->exp, p3->exp, r->ExpL_Size);
1472  // no need to adjust in case of NegWeights
1473}
1474
1475// ExpVector(pr) = ExpVector(p1) - ExpVector(p2)
1476static inline void p_ExpVectorDiff(poly pr, poly p1, poly p2, const ring r)
1477{
1478  p_LmCheckPolyRing1(p1, r);
1479  p_LmCheckPolyRing1(p2, r);
1480  p_LmCheckPolyRing1(pr, r);
1481#if PDEBUG >= 2
1482  for (int i=1; i<=r->N; i++)
1483    pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r));
1484  pAssume1(!rRing_has_Comp(r) || p_GetComp(p1, r) == p_GetComp(p2, r));
1485#endif
1486
1487  p_MemDiff_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size);
1488  p_MemSub_NegWeightAdjust(pr, r);
1489}
1490
1491static inline BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r)
1492{
1493  p_LmCheckPolyRing1(p1, r);
1494  p_LmCheckPolyRing1(p2, r);
1495
1496  unsigned i = r->ExpL_Size;
1497  unsigned long *ep = p1->exp;
1498  unsigned long *eq = p2->exp;
1499
1500  do
1501  {
1502    i--;
1503    if (ep[i] != eq[i]) return FALSE;
1504  }
1505  while (i!=0);
1506  return TRUE;
1507}
1508
1509static inline long p_Totaldegree(poly p, const ring r)
1510{
1511  p_LmCheckPolyRing1(p, r);
1512  unsigned long s = p_GetTotalDegree(p->exp[r->VarL_Offset[0]],
1513                                     r,
1514                                     r->ExpPerLong);
1515  for (unsigned i=r->VarL_Size-1; i!=0; i--)
1516  {
1517    s += p_GetTotalDegree(p->exp[r->VarL_Offset[i]], r,r->ExpPerLong);
1518  }
1519  return (long)s;
1520}
1521
1522static inline void p_GetExpV(poly p, int *ev, const ring r)
1523{
1524  p_LmCheckPolyRing1(p, r);
1525  for (unsigned j = r->N; j!=0; j--)
1526      ev[j] = p_GetExp(p, j, r);
1527
1528  ev[0] = p_GetComp(p, r);
1529}
1530// p_GetExpVL is used in Singular,jl
1531static inline void p_GetExpVL(poly p, int64 *ev, const ring r)
1532{
1533  p_LmCheckPolyRing1(p, r);
1534  for (unsigned j = r->N; j!=0; j--)
1535      ev[j-1] = p_GetExp(p, j, r);
1536}
1537// p_GetExpVLV is used in Singular,jl
1538static inline int64 p_GetExpVLV(poly p, int64 *ev, const ring r)
1539{
1540  p_LmCheckPolyRing1(p, r);
1541  for (unsigned j = r->N; j!=0; j--)
1542      ev[j-1] = p_GetExp(p, j, r);
1543  return (int64)p_GetComp(p,r);
1544}
1545// p_GetExpVL is used in Singular,jl
1546static inline void p_SetExpV(poly p, int *ev, const ring r)
1547{
1548  p_LmCheckPolyRing1(p, r);
1549  for (unsigned j = r->N; j!=0; j--)
1550      p_SetExp(p, j, ev[j], r);
1551
1552  if(ev[0]!=0) p_SetComp(p, ev[0],r);
1553  p_Setm(p, r);
1554}
1555static inline void p_SetExpVL(poly p, int64 *ev, const ring r)
1556{
1557  p_LmCheckPolyRing1(p, r);
1558  for (unsigned j = r->N; j!=0; j--)
1559      p_SetExp(p, j, ev[j-1], r);
1560  p_SetComp(p, 0,r);
1561
1562  p_Setm(p, r);
1563}
1564
1565// p_SetExpVLV is used in Singular,jl
1566static inline void p_SetExpVLV(poly p, int64 *ev, int64 comp, const ring r)
1567{
1568  p_LmCheckPolyRing1(p, r);
1569  for (unsigned j = r->N; j!=0; j--)
1570      p_SetExp(p, j, ev[j-1], r);
1571  p_SetComp(p, comp,r);
1572
1573  p_Setm(p, r);
1574}
1575
1576/***************************************************************
1577 *
1578 * Comparison w.r.t. monomial ordering
1579 *
1580 ***************************************************************/
1581
1582static inline int p_LmCmp(poly p, poly q, const ring r)
1583{
1584  p_LmCheckPolyRing1(p, r);
1585  p_LmCheckPolyRing1(q, r);
1586
1587  const unsigned long* _s1 = ((unsigned long*) p->exp);
1588  const unsigned long* _s2 = ((unsigned long*) q->exp);
1589  REGISTER unsigned long _v1;
1590  REGISTER unsigned long _v2;
1591  const unsigned long _l = r->CmpL_Size;
1592
1593  REGISTER unsigned long _i=0;
1594
1595  LengthGeneral_OrdGeneral_LoopTop:
1596  _v1 = _s1[_i];
1597  _v2 = _s2[_i];
1598  if (_v1 == _v2)
1599  {
1600    _i++;
1601    if (_i == _l) return 0;
1602    goto LengthGeneral_OrdGeneral_LoopTop;
1603  }
1604  const long* _ordsgn = (long*) r->ordsgn;
1605#if 1 /* two variants*/
1606  if (_v1 > _v2)
1607  {
1608    return _ordsgn[_i];
1609  }
1610  return -(_ordsgn[_i]);
1611#else
1612   if (_v1 > _v2)
1613   {
1614     if (_ordsgn[_i] == 1) return 1;
1615     return -1;
1616   }
1617   if (_ordsgn[_i] == 1) return -1;
1618   return 1;
1619#endif
1620}
1621
1622// The coefficient will be compared in absolute value
1623static inline int p_LtCmp(poly p, poly q, const ring r)
1624{
1625  int res = p_LmCmp(p,q,r);
1626  if(res == 0)
1627  {
1628    if(p_GetCoeff(p,r) == NULL || p_GetCoeff(q,r) == NULL)
1629      return res;
1630    number pc = n_Copy(p_GetCoeff(p,r),r->cf);
1631    number qc = n_Copy(p_GetCoeff(q,r),r->cf);
1632    if(!n_GreaterZero(pc,r->cf))
1633      pc = n_InpNeg(pc,r->cf);
1634    if(!n_GreaterZero(qc,r->cf))
1635      qc = n_InpNeg(qc,r->cf);
1636    if(n_Greater(pc,qc,r->cf))
1637      res = 1;
1638    else if(n_Greater(qc,pc,r->cf))
1639      res = -1;
1640    else if(n_Equal(pc,qc,r->cf))
1641      res = 0;
1642    n_Delete(&pc,r->cf);
1643    n_Delete(&qc,r->cf);
1644  }
1645  return res;
1646}
1647
1648// The coefficient will be compared in absolute value
1649static inline int p_LtCmpNoAbs(poly p, poly q, const ring r)
1650{
1651  int res = p_LmCmp(p,q,r);
1652  if(res == 0)
1653  {
1654    if(p_GetCoeff(p,r) == NULL || p_GetCoeff(q,r) == NULL)
1655      return res;
1656    number pc = p_GetCoeff(p,r);
1657    number qc = p_GetCoeff(q,r);
1658    if(n_Greater(pc,qc,r->cf))
1659      res = 1;
1660    if(n_Greater(qc,pc,r->cf))
1661      res = -1;
1662    if(n_Equal(pc,qc,r->cf))
1663      res = 0;
1664  }
1665  return res;
1666}
1667
1668#ifdef HAVE_RINGS
1669// This is the equivalent of pLmCmp(p,q) != -currRing->OrdSgn for rings
1670// It is used in posInLRing and posInTRing
1671static inline int p_LtCmpOrdSgnDiffM(poly p, poly q, const ring r)
1672{
1673  return(p_LtCmp(p,q,r) == r->OrdSgn);
1674}
1675#endif
1676
1677#ifdef HAVE_RINGS
1678// This is the equivalent of pLmCmp(p,q) != currRing->OrdSgn for rings
1679// It is used in posInLRing and posInTRing
1680static inline int p_LtCmpOrdSgnDiffP(poly p, poly q, const ring r)
1681{
1682  if(r->OrdSgn == 1)
1683  {
1684    return(p_LmCmp(p,q,r) == -1);
1685  }
1686  else
1687  {
1688    return(p_LtCmp(p,q,r) != -1);
1689  }
1690}
1691#endif
1692
1693#ifdef HAVE_RINGS
1694// This is the equivalent of pLmCmp(p,q) == -currRing->OrdSgn for rings
1695// It is used in posInLRing and posInTRing
1696static inline int p_LtCmpOrdSgnEqM(poly p, poly q, const ring r)
1697{
1698  return(p_LtCmp(p,q,r) == -r->OrdSgn);
1699}
1700#endif
1701
1702#ifdef HAVE_RINGS
1703// This is the equivalent of pLmCmp(p,q) == currRing->OrdSgn for rings
1704// It is used in posInLRing and posInTRing
1705static inline int p_LtCmpOrdSgnEqP(poly p, poly q, const ring r)
1706{
1707  return(p_LtCmp(p,q,r) == r->OrdSgn);
1708}
1709#endif
1710
1711/// returns TRUE if p1 is a skalar multiple of p2
1712/// assume p1 != NULL and p2 != NULL
1713BOOLEAN p_ComparePolys(poly p1,poly p2, const ring r);
1714
1715
1716/***************************************************************
1717 *
1718 * Comparisons: they are all done without regarding coeffs
1719 *
1720 ***************************************************************/
1721#define p_LmCmpAction(p, q, r, actionE, actionG, actionS) \
1722  _p_LmCmpAction(p, q, r, actionE, actionG, actionS)
1723
1724// returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !!
1725#define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r)
1726
1727// pCmp: args may be NULL
1728// returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
1729static inline int p_Cmp(poly p1, poly p2, ring r)
1730{
1731  if (p2==NULL)
1732  {
1733    if (p1==NULL) return 0;
1734    return 1;
1735  }
1736  if (p1==NULL)
1737    return -1;
1738  return p_LmCmp(p1,p2,r);
1739}
1740
1741static inline int p_CmpPolys(poly p1, poly p2, ring r)
1742{
1743  if (p2==NULL)
1744  {
1745    if (p1==NULL) return 0;
1746    return 1;
1747  }
1748  if (p1==NULL)
1749    return -1;
1750  return p_ComparePolys(p1,p2,r);
1751}
1752
1753
1754/***************************************************************
1755 *
1756 * divisibility
1757 *
1758 ***************************************************************/
1759/// return: FALSE, if there exists i, such that a->exp[i] > b->exp[i]
1760///         TRUE, otherwise
1761/// (1) Consider long vars, instead of single exponents
1762/// (2) Clearly, if la > lb, then FALSE
1763/// (3) Suppose la <= lb, and consider first bits of single exponents in l:
1764///     if TRUE, then value of these bits is la ^ lb
1765///     if FALSE, then la-lb causes an "overflow" into one of those bits, i.e.,
1766///               la ^ lb != la - lb
1767static inline BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r)
1768{
1769  int i=r->VarL_Size - 1;
1770  unsigned long divmask = r->divmask;
1771  unsigned long la, lb;
1772
1773  if (r->VarL_LowIndex >= 0)
1774  {
1775    i += r->VarL_LowIndex;
1776    do
1777    {
1778      la = a->exp[i];
1779      lb = b->exp[i];
1780      if ((la > lb) ||
1781          (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)))
1782      {
1783        pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == FALSE);
1784        return FALSE;
1785      }
1786      i--;
1787    }
1788    while (i>=r->VarL_LowIndex);
1789  }
1790  else
1791  {
1792    do
1793    {
1794      la = a->exp[r->VarL_Offset[i]];
1795      lb = b->exp[r->VarL_Offset[i]];
1796      if ((la > lb) ||
1797          (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)))
1798      {
1799        pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == FALSE);
1800        return FALSE;
1801      }
1802      i--;
1803    }
1804    while (i>=0);
1805  }
1806/*#ifdef HAVE_RINGS
1807  pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf));
1808  return (!rField_is_Ring(r)) || n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf);
1809#else
1810*/
1811  pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == TRUE);
1812  return TRUE;
1813//#endif
1814}
1815
1816static inline BOOLEAN _p_LmDivisibleByNoComp(poly a, const ring r_a, poly b, const ring r_b)
1817{
1818  int i=r_a->N;
1819  pAssume1(r_a->N == r_b->N);
1820
1821  do
1822  {
1823    if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b))
1824    {
1825      return FALSE;
1826    }
1827    i--;
1828  }
1829  while (i);
1830/*#ifdef HAVE_RINGS
1831  return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf);
1832#else
1833*/
1834  return TRUE;
1835//#endif
1836}
1837
1838#ifdef HAVE_RATGRING
1839static inline BOOLEAN _p_LmDivisibleByNoCompPart(poly a, const ring r_a, poly b, const ring r_b,const int start, const int end)
1840{
1841  int i=end;
1842  pAssume1(r_a->N == r_b->N);
1843
1844  do
1845  {
1846    if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b))
1847      return FALSE;
1848    i--;
1849  }
1850  while (i>=start);
1851/*#ifdef HAVE_RINGS
1852  return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf);
1853#else
1854*/
1855  return TRUE;
1856//#endif
1857}
1858static inline BOOLEAN _p_LmDivisibleByPart(poly a, const ring r_a, poly b, const ring r_b,const int start, const int end)
1859{
1860  if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b))
1861    return _p_LmDivisibleByNoCompPart(a, r_a, b, r_b,start,end);
1862  return FALSE;
1863}
1864static inline BOOLEAN p_LmDivisibleByPart(poly a, poly b, const ring r,const int start, const int end)
1865{
1866  p_LmCheckPolyRing1(b, r);
1867  pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r));
1868  if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1869    return _p_LmDivisibleByNoCompPart(a, r, b, r,start, end);
1870  return FALSE;
1871}
1872#endif
1873static inline BOOLEAN _p_LmDivisibleBy(poly a, poly b, const ring r)
1874{
1875  if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1876    return _p_LmDivisibleByNoComp(a, b, r);
1877  return FALSE;
1878}
1879static inline BOOLEAN p_LmDivisibleByNoComp(poly a, poly b, const ring r)
1880{
1881  p_LmCheckPolyRing1(a, r);
1882  p_LmCheckPolyRing1(b, r);
1883  return _p_LmDivisibleByNoComp(a, b, r);
1884}
1885
1886static inline BOOLEAN p_LmDivisibleByNoComp(poly a, const ring ra, poly b, const ring rb)
1887{
1888  p_LmCheckPolyRing1(a, ra);
1889  p_LmCheckPolyRing1(b, rb);
1890  return _p_LmDivisibleByNoComp(a, ra, b, rb);
1891}
1892
1893static inline BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
1894{
1895  p_LmCheckPolyRing1(b, r);
1896  pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r));
1897  if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1898    return _p_LmDivisibleByNoComp(a, b, r);
1899  return FALSE;
1900}
1901
1902static inline BOOLEAN p_DivisibleBy(poly a, poly b, const ring r)
1903{
1904  pIfThen1(b!=NULL, p_LmCheckPolyRing1(b, r));
1905  pIfThen1(a!=NULL, p_LmCheckPolyRing1(a, r));
1906
1907  if (a != NULL && (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r)))
1908      return _p_LmDivisibleByNoComp(a,b,r);
1909  return FALSE;
1910}
1911
1912static inline BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a,
1913                                    poly b, unsigned long not_sev_b, const ring r)
1914{
1915  p_LmCheckPolyRing1(a, r);
1916  p_LmCheckPolyRing1(b, r);
1917#ifndef PDIV_DEBUG
1918  _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r);
1919  _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r);
1920
1921  if (sev_a & not_sev_b)
1922  {
1923    pAssume1(p_LmDivisibleByNoComp(a, b, r) == FALSE);
1924    return FALSE;
1925  }
1926  return p_LmDivisibleBy(a, b, r);
1927#else
1928  return pDebugLmShortDivisibleBy(a, sev_a, r, b, not_sev_b, r);
1929#endif
1930}
1931
1932static inline BOOLEAN p_LmShortDivisibleByNoComp(poly a, unsigned long sev_a,
1933                                           poly b, unsigned long not_sev_b, const ring r)
1934{
1935  p_LmCheckPolyRing1(a, r);
1936  p_LmCheckPolyRing1(b, r);
1937#ifndef PDIV_DEBUG
1938  _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r);
1939  _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r);
1940
1941  if (sev_a & not_sev_b)
1942  {
1943    pAssume1(p_LmDivisibleByNoComp(a, b, r) == FALSE);
1944    return FALSE;
1945  }
1946  return p_LmDivisibleByNoComp(a, b, r);
1947#else
1948  return pDebugLmShortDivisibleByNoComp(a, sev_a, r, b, not_sev_b, r);
1949#endif
1950}
1951
1952/***************************************************************
1953 *
1954 * Misc things on Lm
1955 *
1956 ***************************************************************/
1957
1958
1959/// like the respective p_LmIs* routines, except that p might be empty
1960static inline BOOLEAN p_IsConstantComp(const poly p, const ring r)
1961{
1962  if (p == NULL) return TRUE;
1963  return (pNext(p)==NULL) && p_LmIsConstantComp(p, r);
1964}
1965
1966static inline BOOLEAN p_IsConstant(const poly p, const ring r)
1967{
1968  if (p == NULL) return TRUE;
1969  return (pNext(p)==NULL) && p_LmIsConstant(p, r);
1970}
1971
1972/// either poly(1)  or gen(k)?!
1973static inline BOOLEAN p_IsOne(const poly p, const ring R)
1974{
1975  if (p == NULL) return FALSE; /* TODO check if 0 == 1 */
1976  p_Test(p, R);
1977  return (p_IsConstant(p, R) && n_IsOne(p_GetCoeff(p, R), R->cf));
1978}
1979
1980static inline BOOLEAN p_IsConstantPoly(const poly p, const ring r)
1981{
1982  p_Test(p, r);
1983  poly pp=p;
1984  while(pp!=NULL)
1985  {
1986    if (! p_LmIsConstantComp(pp, r))
1987      return FALSE;
1988    pIter(pp);
1989  }
1990  return TRUE;
1991}
1992
1993static inline BOOLEAN p_IsUnit(const poly p, const ring r)
1994{
1995  if (p == NULL) return FALSE;
1996  if (rField_is_Ring(r))
1997    return (p_LmIsConstant(p, r) && n_IsUnit(pGetCoeff(p),r->cf));
1998  return p_LmIsConstant(p, r);
1999}
2000
2001static inline BOOLEAN p_LmExpVectorAddIsOk(const poly p1, const poly p2,
2002                                      const ring r)
2003{
2004  p_LmCheckPolyRing(p1, r);
2005  p_LmCheckPolyRing(p2, r);
2006  unsigned long l1, l2, divmask = r->divmask;
2007  int i;
2008
2009  for (i=0; i<r->VarL_Size; i++)
2010  {
2011    l1 = p1->exp[r->VarL_Offset[i]];
2012    l2 = p2->exp[r->VarL_Offset[i]];
2013    // do the divisiblity trick
2014    if ( (l1 > ULONG_MAX - l2) ||
2015         (((l1 & divmask) ^ (l2 & divmask)) != ((l1 + l2) & divmask)))
2016      return FALSE;
2017  }
2018  return TRUE;
2019}
2020void      p_Split(poly p, poly * r);   /*p => IN(p), r => REST(p) */
2021BOOLEAN p_HasNotCF(poly p1, poly p2, const ring r);
2022BOOLEAN p_HasNotCFRing(poly p1, poly p2, const ring r);
2023poly      p_mInit(const char *s, BOOLEAN &ok, const ring r); /* monom s -> poly, interpreter */
2024const char *    p_Read(const char *s, poly &p,const ring r); /* monom -> poly */
2025poly      p_MDivide(poly a, poly b, const ring r);
2026poly      p_DivideM(poly a, poly b, const ring r);
2027poly      pp_DivideM(poly a, poly b, const ring r);
2028poly      p_Div_nn(poly p, const number n, const ring r);
2029
2030// returns the LCM of the head terms of a and b in *m, does not p_Setm
2031void p_Lcm(const poly a, const poly b, poly m, const ring r);
2032// returns the LCM of the head terms of a and b, does p_Setm
2033poly p_Lcm(const poly a, const poly b, const ring r);
2034
2035#ifdef HAVE_RATGRING
2036poly p_LcmRat(const poly a, const poly b, const long lCompM, const ring r);
2037poly p_GetCoeffRat(poly p, int ishift, ring r);
2038void p_LmDeleteAndNextRat(poly *p, int ishift, ring r);
2039void p_ContentRat(poly &ph, const ring r);
2040#endif /* ifdef HAVE_RATGRING */
2041
2042
2043poly      p_Diff(poly a, int k, const ring r);
2044poly      p_DiffOp(poly a, poly b,BOOLEAN multiply, const ring r);
2045int       p_Weight(int c, const ring r);
2046
2047///   assumes that p and divisor are univariate polynomials in r,
2048///   mentioning the same variable;
2049///   assumes divisor != NULL;
2050///   p may be NULL;
2051///   assumes a global monomial ordering in r;
2052///   performs polynomial division of p by divisor:
2053///     - afterwards p contains the remainder of the division, i.e.,
2054///       p_before = result * divisor + p_afterwards;
2055///     - if needResult == TRUE, then the method computes and returns 'result',
2056///       otherwise NULL is returned (This parametrization can be used when
2057///       one is only interested in the remainder of the division. In this
2058///       case, the method will be slightly faster.)
2059///   leaves divisor unmodified
2060poly      p_PolyDiv(poly &p, const poly divisor, const BOOLEAN needResult, const ring r);
2061
2062/* syszygy stuff */
2063BOOLEAN   p_VectorHasUnitB(poly p, int * k, const ring r);
2064void      p_VectorHasUnit(poly p, int * k, int * len, const ring r);
2065poly      p_TakeOutComp1(poly * p, int k, const ring r);
2066// Splits *p into two polys: *q which consists of all monoms with
2067// component == comp and *p of all other monoms *lq == pLength(*q)
2068// On return all components pf *q == 0
2069void p_TakeOutComp(poly *p, long comp, poly *q, int *lq, const ring r);
2070
2071// This is something weird -- Don't use it, unless you know what you are doing
2072poly      p_TakeOutComp(poly * p, int k, const ring r);
2073
2074void      p_DeleteComp(poly * p,int k, const ring r);
2075
2076/*-------------ring management:----------------------*/
2077
2078// resets the pFDeg and pLDeg: if pLDeg is not given, it is
2079// set to currRing->pLDegOrig, i.e. to the respective LDegProc which
2080// only uses pFDeg (and not pDeg, or pTotalDegree, etc).
2081// If you use this, make sure your procs does not make any assumptions
2082// on ordering and/or OrdIndex -- otherwise they might return wrong results
2083// on strat->tailRing
2084void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg = NULL);
2085// restores pFDeg and pLDeg:
2086void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg);
2087
2088/*-------------pComp for syzygies:-------------------*/
2089void p_SetModDeg(intvec *w, ring r);
2090
2091/*------------ Jet ----------------------------------*/
2092poly pp_Jet(poly p, int m, const ring R);
2093poly p_Jet(poly p, int m,const ring R);
2094poly pp_JetW(poly p, int m, int *w, const ring R);
2095poly p_JetW(poly p, int m, int *w, const ring R);
2096
2097poly n_PermNumber(const number z, const int *par_perm, const int OldPar, const ring src, const ring dst);
2098
2099poly p_PermPoly (poly p, const int * perm,const ring OldRing, const ring dst,
2100                     nMapFunc nMap, const int *par_perm=NULL, int OldPar=0,
2101                     BOOLEAN use_mult=FALSE);
2102
2103/*----------------------------------------------------*/
2104poly p_Series(int n,poly p,poly u, intvec *w, const ring R);
2105
2106/*----------------------------------------------------*/
2107int   p_Var(poly mi, const ring r);
2108/// the minimal index of used variables - 1
2109int   p_LowVar (poly p, const ring r);
2110
2111/*----------------------------------------------------*/
2112/// shifts components of the vector p by i
2113void p_Shift (poly * p,int i, const ring r);
2114/*----------------------------------------------------*/
2115
2116int p_Compare(const poly a, const poly b, const ring R);
2117
2118/// polynomial gcd for f=mon
2119poly p_GcdMon(poly f, poly g, const ring r);
2120
2121/// divide polynomial by monomial
2122poly p_Div_mm(poly p, const poly m, const ring r);
2123
2124
2125/// max exponent of variable x_i in p
2126int p_MaxExpPerVar(poly p, int i, const ring r);
2127#endif // P_POLYS_H
2128
Note: See TracBrowser for help on using the repository browser.