1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /*************************************************************** |
---|
5 | * File: p_polys.h |
---|
6 | * Purpose: declaration of poly stuf which are independent of |
---|
7 | * currRing |
---|
8 | * Author: obachman (Olaf Bachmann) |
---|
9 | * Created: 9/00 |
---|
10 | *******************************************************************/ |
---|
11 | /*************************************************************** |
---|
12 | * Purpose: implementation of poly procs which iter over ExpVector |
---|
13 | * Author: obachman (Olaf Bachmann) |
---|
14 | * Created: 8/00 |
---|
15 | *******************************************************************/ |
---|
16 | #ifndef P_POLYS_H |
---|
17 | #define P_POLYS_H |
---|
18 | |
---|
19 | #include <omalloc/omalloc.h> |
---|
20 | |
---|
21 | #include <misc/mylimits.h> |
---|
22 | #include <misc/intvec.h> |
---|
23 | #include <coeffs/coeffs.h> |
---|
24 | |
---|
25 | #include <polys/monomials/monomials.h> |
---|
26 | #include <polys/monomials/ring.h> |
---|
27 | |
---|
28 | #include <polys/templates/p_MemAdd.h> |
---|
29 | #include <polys/templates/p_MemCmp.h> |
---|
30 | #include <polys/templates/p_Procs.h> |
---|
31 | |
---|
32 | #include <polys/sbuckets.h> |
---|
33 | |
---|
34 | #ifdef HAVE_PLURAL |
---|
35 | #include <polys/nc/nc.h> |
---|
36 | #endif |
---|
37 | |
---|
38 | /*************************************************************** |
---|
39 | * |
---|
40 | * Divisiblity tests, args must be != NULL, except for |
---|
41 | * pDivisbleBy |
---|
42 | * |
---|
43 | ***************************************************************/ |
---|
44 | unsigned long p_GetShortExpVector(poly a, const ring r); |
---|
45 | |
---|
46 | #ifdef HAVE_RINGS |
---|
47 | /*! divisibility check over ground ring (which may contain zero divisors); |
---|
48 | TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some |
---|
49 | coefficient c and some monomial m; |
---|
50 | does not take components into account |
---|
51 | */ |
---|
52 | BOOLEAN p_DivisibleByRingCase(poly f, poly g, const ring r); |
---|
53 | #endif |
---|
54 | |
---|
55 | /*************************************************************** |
---|
56 | * |
---|
57 | * Misc things on polys |
---|
58 | * |
---|
59 | ***************************************************************/ |
---|
60 | |
---|
61 | poly p_One(const ring r); |
---|
62 | |
---|
63 | int p_MinDeg(poly p,intvec *w, const ring R); |
---|
64 | |
---|
65 | long p_DegW(poly p, const short *w, const ring R); |
---|
66 | |
---|
67 | /// return TRUE if all monoms have the same component |
---|
68 | BOOLEAN p_OneComp(poly p, const ring r); |
---|
69 | |
---|
70 | /// return i, if head depends only on var(i) |
---|
71 | int p_IsPurePower(const poly p, const ring r); |
---|
72 | |
---|
73 | /// return i, if poly depends only on var(i) |
---|
74 | int p_IsUnivariate(poly p, const ring r); |
---|
75 | |
---|
76 | /// set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 |
---|
77 | /// return #(e[i]>0) |
---|
78 | int p_GetVariables(poly p, int * e, const ring r); |
---|
79 | |
---|
80 | /// returns the poly representing the integer i |
---|
81 | poly p_ISet(long i, const ring r); |
---|
82 | |
---|
83 | /// returns the poly representing the number n, destroys n |
---|
84 | poly p_NSet(number n, const ring r); |
---|
85 | |
---|
86 | void p_Vec2Polys(poly v, poly**p, int *len, const ring r); |
---|
87 | |
---|
88 | /*************************************************************** |
---|
89 | * |
---|
90 | * Copying/Deletion of polys: args may be NULL |
---|
91 | * |
---|
92 | ***************************************************************/ |
---|
93 | |
---|
94 | // simply deletes monomials, does not free coeffs |
---|
95 | void p_ShallowDelete(poly *p, const ring r); |
---|
96 | |
---|
97 | |
---|
98 | |
---|
99 | /*************************************************************** |
---|
100 | * |
---|
101 | * Copying/Deleteion of polys: args may be NULL |
---|
102 | * - p/q as arg mean a poly |
---|
103 | * - m a monomial |
---|
104 | * - n a number |
---|
105 | * - pp (resp. qq, mm, nn) means arg is constant |
---|
106 | * - p (resp, q, m, n) means arg is destroyed |
---|
107 | * |
---|
108 | ***************************************************************/ |
---|
109 | |
---|
110 | poly p_Sub(poly a, poly b, const ring r); |
---|
111 | |
---|
112 | poly p_Power(poly p, int i, const ring r); |
---|
113 | |
---|
114 | |
---|
115 | /*************************************************************** |
---|
116 | * |
---|
117 | * PDEBUG stuff |
---|
118 | * |
---|
119 | ***************************************************************/ |
---|
120 | #ifdef PDEBUG |
---|
121 | // Returns TRUE if m is monom of p, FALSE otherwise |
---|
122 | BOOLEAN pIsMonomOf(poly p, poly m); |
---|
123 | // Returns TRUE if p and q have common monoms |
---|
124 | BOOLEAN pHaveCommonMonoms(poly p, poly q); |
---|
125 | |
---|
126 | // p_Check* routines return TRUE if everything is ok, |
---|
127 | // else, they report error message and return false |
---|
128 | |
---|
129 | // check if Lm(p) is from ring r |
---|
130 | BOOLEAN p_LmCheckIsFromRing(poly p, ring r); |
---|
131 | // check if Lm(p) != NULL, r != NULL and initialized && Lm(p) is from r |
---|
132 | BOOLEAN p_LmCheckPolyRing(poly p, ring r); |
---|
133 | // check if all monoms of p are from ring r |
---|
134 | BOOLEAN p_CheckIsFromRing(poly p, ring r); |
---|
135 | // check r != NULL and initialized && all monoms of p are from r |
---|
136 | BOOLEAN p_CheckPolyRing(poly p, ring r); |
---|
137 | // check if r != NULL and initialized |
---|
138 | BOOLEAN p_CheckRing(ring r); |
---|
139 | // only do check if cond |
---|
140 | |
---|
141 | |
---|
142 | #define pIfThen(cond, check) do {if (cond) {check;}} while (0) |
---|
143 | |
---|
144 | BOOLEAN _p_Test(poly p, ring r, int level); |
---|
145 | BOOLEAN _p_LmTest(poly p, ring r, int level); |
---|
146 | BOOLEAN _pp_Test(poly p, ring lmRing, ring tailRing, int level); |
---|
147 | |
---|
148 | #define p_Test(p,r) _p_Test(p, r, PDEBUG) |
---|
149 | #define p_LmTest(p,r) _p_LmTest(p, r, PDEBUG) |
---|
150 | #define pp_Test(p, lmRing, tailRing) _pp_Test(p, lmRing, tailRing, PDEBUG) |
---|
151 | |
---|
152 | #else // ! PDEBUG |
---|
153 | |
---|
154 | #define pIsMonomOf(p, q) (TRUE) |
---|
155 | #define pHaveCommonMonoms(p, q) (TRUE) |
---|
156 | #define p_LmCheckIsFromRing(p,r) ((void)0) |
---|
157 | #define p_LmCheckPolyRing(p,r) ((void)0) |
---|
158 | #define p_CheckIsFromRing(p,r) ((void)0) |
---|
159 | #define p_CheckPolyRing(p,r) ((void)0) |
---|
160 | #define p_CheckRing(r) ((void)0) |
---|
161 | #define P_CheckIf(cond, check) ((void)0) |
---|
162 | |
---|
163 | #define p_Test(p,r) ((void) 1) |
---|
164 | #define p_LmTest(p,r) ((void) 1) |
---|
165 | #define pp_Test(p, lmRing, tailRing) ((void) 1) |
---|
166 | |
---|
167 | #endif |
---|
168 | |
---|
169 | /*************************************************************** |
---|
170 | * |
---|
171 | * Misc stuff |
---|
172 | * |
---|
173 | ***************************************************************/ |
---|
174 | /*2 |
---|
175 | * returns the length of a polynomial (numbers of monomials) |
---|
176 | */ |
---|
177 | static inline int pLength(poly a) |
---|
178 | { |
---|
179 | int l = 0; |
---|
180 | while (a!=NULL) |
---|
181 | { |
---|
182 | pIter(a); |
---|
183 | l++; |
---|
184 | } |
---|
185 | return l; |
---|
186 | } |
---|
187 | |
---|
188 | // returns the length of a polynomial (numbers of monomials) and the last mon. |
---|
189 | // respect syzComp |
---|
190 | poly p_Last(const poly a, int &l, const ring r); |
---|
191 | |
---|
192 | /*----------------------------------------------------*/ |
---|
193 | |
---|
194 | void p_Norm(poly p1, const ring r); |
---|
195 | void p_Normalize(poly p,const ring r); |
---|
196 | |
---|
197 | void p_Content(poly p, const ring r); |
---|
198 | #if 1 |
---|
199 | // currently only used by Singular/janet |
---|
200 | void p_SimpleContent(poly p, int s, const ring r); |
---|
201 | #endif |
---|
202 | |
---|
203 | poly p_Cleardenom(poly p, const ring r); |
---|
204 | void p_Cleardenom_n(poly p, const ring r,number &c); |
---|
205 | number p_GetAllDenom(poly ph, const ring r); |
---|
206 | |
---|
207 | int p_Size( poly p, const ring r ); |
---|
208 | |
---|
209 | // homogenizes p by multiplying certain powers of the varnum-th variable |
---|
210 | poly p_Homogen (poly p, int varnum, const ring r); |
---|
211 | |
---|
212 | BOOLEAN p_IsHomogeneous (poly p, const ring r); |
---|
213 | |
---|
214 | static inline void p_Setm(poly p, const ring r); |
---|
215 | p_SetmProc p_GetSetmProc(ring r); |
---|
216 | |
---|
217 | poly p_Subst(poly p, int n, poly e, const ring r); |
---|
218 | |
---|
219 | // TODO: |
---|
220 | #define p_SetmComp p_Setm |
---|
221 | |
---|
222 | // component |
---|
223 | static inline unsigned long p_SetComp(poly p, unsigned long c, ring r) |
---|
224 | { |
---|
225 | p_LmCheckPolyRing2(p, r); |
---|
226 | pAssume2(rRing_has_Comp(r)); |
---|
227 | __p_GetComp(p,r) = c; |
---|
228 | return c; |
---|
229 | } |
---|
230 | // sets component of poly a to i |
---|
231 | static inline void p_SetCompP(poly p, int i, ring r) |
---|
232 | { |
---|
233 | if (p != NULL) |
---|
234 | { |
---|
235 | #ifdef PDEBUG |
---|
236 | p_Test(p, r); |
---|
237 | #endif |
---|
238 | if (rOrd_SetCompRequiresSetm(r)) |
---|
239 | { |
---|
240 | do |
---|
241 | { |
---|
242 | p_SetComp(p, i, r); |
---|
243 | p_SetmComp(p, r); |
---|
244 | pIter(p); |
---|
245 | } |
---|
246 | while (p != NULL); |
---|
247 | } |
---|
248 | else |
---|
249 | { |
---|
250 | do |
---|
251 | { |
---|
252 | p_SetComp(p, i, r); |
---|
253 | pIter(p); |
---|
254 | } |
---|
255 | while(p != NULL); |
---|
256 | } |
---|
257 | } |
---|
258 | } |
---|
259 | |
---|
260 | static inline void p_SetCompP(poly p, int i, ring lmRing, ring tailRing) |
---|
261 | { |
---|
262 | if (p != NULL) |
---|
263 | { |
---|
264 | p_SetComp(p, i, lmRing); |
---|
265 | p_SetmComp(p, lmRing); |
---|
266 | p_SetCompP(pNext(p), i, tailRing); |
---|
267 | } |
---|
268 | } |
---|
269 | |
---|
270 | // returns maximal column number in the modul element a (or 0) |
---|
271 | static inline long p_MaxComp(poly p, ring lmRing, ring tailRing) |
---|
272 | { |
---|
273 | long result,i; |
---|
274 | |
---|
275 | if(p==NULL) return 0; |
---|
276 | result = p_GetComp(p, lmRing); |
---|
277 | if (result != 0) |
---|
278 | { |
---|
279 | loop |
---|
280 | { |
---|
281 | pIter(p); |
---|
282 | if(p==NULL) break; |
---|
283 | i = p_GetComp(p, tailRing); |
---|
284 | if (i>result) result = i; |
---|
285 | } |
---|
286 | } |
---|
287 | return result; |
---|
288 | } |
---|
289 | |
---|
290 | static inline long p_MaxComp(poly p,ring lmRing) {return p_MaxComp(p,lmRing,lmRing);} |
---|
291 | |
---|
292 | static inline long p_MinComp(poly p, ring lmRing, ring tailRing) |
---|
293 | { |
---|
294 | long result,i; |
---|
295 | |
---|
296 | if(p==NULL) return 0; |
---|
297 | result = p_GetComp(p,lmRing); |
---|
298 | if (result != 0) |
---|
299 | { |
---|
300 | loop |
---|
301 | { |
---|
302 | pIter(p); |
---|
303 | if(p==NULL) break; |
---|
304 | i = p_GetComp(p,tailRing); |
---|
305 | if (i<result) result = i; |
---|
306 | } |
---|
307 | } |
---|
308 | return result; |
---|
309 | } |
---|
310 | |
---|
311 | static inline long p_MinComp(poly p,ring lmRing) {return p_MinComp(p,lmRing,lmRing);} |
---|
312 | |
---|
313 | |
---|
314 | static inline poly pReverse(poly p) |
---|
315 | { |
---|
316 | if (p == NULL || pNext(p) == NULL) return p; |
---|
317 | |
---|
318 | poly q = pNext(p), // == pNext(p) |
---|
319 | qn; |
---|
320 | pNext(p) = NULL; |
---|
321 | do |
---|
322 | { |
---|
323 | qn = pNext(q); |
---|
324 | pNext(q) = p; |
---|
325 | p = q; |
---|
326 | q = qn; |
---|
327 | } |
---|
328 | while (qn != NULL); |
---|
329 | return p; |
---|
330 | } |
---|
331 | void pEnlargeSet(poly**p, int length, int increment); |
---|
332 | |
---|
333 | |
---|
334 | /*************************************************************** |
---|
335 | * |
---|
336 | * I/O |
---|
337 | * |
---|
338 | ***************************************************************/ |
---|
339 | /// print p according to ShortOut in lmRing & tailRing |
---|
340 | char* p_String0(poly p, ring lmRing, ring tailRing); |
---|
341 | char* p_String(poly p, ring lmRing, ring tailRing); |
---|
342 | void p_Write(poly p, ring lmRing, ring tailRing); |
---|
343 | void p_Write0(poly p, ring lmRing, ring tailRing); |
---|
344 | void p_wrp(poly p, ring lmRing, ring tailRing); |
---|
345 | |
---|
346 | /// print p in a short way, if possible |
---|
347 | char* p_String0Short(const poly p, ring lmRing, ring tailRing); |
---|
348 | |
---|
349 | /// print p in a long way |
---|
350 | char* p_String0Long(const poly p, ring lmRing, ring tailRing); |
---|
351 | |
---|
352 | |
---|
353 | /*************************************************************** |
---|
354 | * |
---|
355 | * Degree stuff -- see p_polys.cc for explainations |
---|
356 | * |
---|
357 | ***************************************************************/ |
---|
358 | |
---|
359 | static inline long p_FDeg(const poly p, const ring r) { return r->pFDeg(p,r); } |
---|
360 | static inline long p_LDeg(const poly p, int *l, const ring r) { return r->pLDeg(p,l,r); } |
---|
361 | |
---|
362 | long p_WFirstTotalDegree(poly p, ring r); |
---|
363 | long p_WTotaldegree(poly p, const ring r); |
---|
364 | long p_WDegree(poly p,const ring r); |
---|
365 | long pLDeg0(poly p,int *l, ring r); |
---|
366 | long pLDeg0c(poly p,int *l, ring r); |
---|
367 | long pLDegb(poly p,int *l, ring r); |
---|
368 | long pLDeg1(poly p,int *l, ring r); |
---|
369 | long pLDeg1c(poly p,int *l, ring r); |
---|
370 | long pLDeg1_Deg(poly p,int *l, ring r); |
---|
371 | long pLDeg1c_Deg(poly p,int *l, ring r); |
---|
372 | long pLDeg1_Totaldegree(poly p,int *l, ring r); |
---|
373 | long pLDeg1c_Totaldegree(poly p,int *l, ring r); |
---|
374 | long pLDeg1_WFirstTotalDegree(poly p,int *l, ring r); |
---|
375 | long pLDeg1c_WFirstTotalDegree(poly p,int *l, ring r); |
---|
376 | |
---|
377 | BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r); |
---|
378 | |
---|
379 | /// same as the usual p_EqualPolys for polys belonging to *equal* rings |
---|
380 | BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r1, const ring r2); |
---|
381 | |
---|
382 | long p_Deg(poly a, const ring r); |
---|
383 | |
---|
384 | |
---|
385 | /*************************************************************** |
---|
386 | * |
---|
387 | * Primitives for accessing and setting fields of a poly |
---|
388 | * |
---|
389 | ***************************************************************/ |
---|
390 | |
---|
391 | static inline number p_SetCoeff(poly p, number n, ring r) |
---|
392 | { |
---|
393 | p_LmCheckPolyRing2(p, r); |
---|
394 | n_Delete(&(p->coef), r->cf); |
---|
395 | (p)->coef=n; |
---|
396 | return n; |
---|
397 | } |
---|
398 | |
---|
399 | // order |
---|
400 | static inline long p_GetOrder(poly p, ring r) |
---|
401 | { |
---|
402 | p_LmCheckPolyRing2(p, r); |
---|
403 | if (r->typ==NULL) return ((p)->exp[r->pOrdIndex]); |
---|
404 | int i=0; |
---|
405 | loop |
---|
406 | { |
---|
407 | switch(r->typ[i].ord_typ) |
---|
408 | { |
---|
409 | case ro_am: |
---|
410 | case ro_wp_neg: |
---|
411 | return (((long)((p)->exp[r->pOrdIndex]))-POLY_NEGWEIGHT_OFFSET); |
---|
412 | case ro_syzcomp: |
---|
413 | case ro_syz: |
---|
414 | case ro_cp: |
---|
415 | i++; |
---|
416 | break; |
---|
417 | //case ro_dp: |
---|
418 | //case ro_wp: |
---|
419 | default: |
---|
420 | return ((p)->exp[r->pOrdIndex]); |
---|
421 | } |
---|
422 | } |
---|
423 | } |
---|
424 | |
---|
425 | // Setm |
---|
426 | static inline void p_Setm(poly p, const ring r) |
---|
427 | { |
---|
428 | p_CheckRing2(r); |
---|
429 | r->p_Setm(p, r); |
---|
430 | } |
---|
431 | |
---|
432 | |
---|
433 | static inline unsigned long p_AddComp(poly p, unsigned long v, ring r) |
---|
434 | { |
---|
435 | p_LmCheckPolyRing2(p, r); |
---|
436 | pAssume2(rRing_has_Comp(r)); |
---|
437 | return __p_GetComp(p,r) += v; |
---|
438 | } |
---|
439 | static inline unsigned long p_SubComp(poly p, unsigned long v, ring r) |
---|
440 | { |
---|
441 | p_LmCheckPolyRing2(p, r); |
---|
442 | pAssume2(rRing_has_Comp(r)); |
---|
443 | _pPolyAssume2(__p_GetComp(p,r) >= v,p,r); |
---|
444 | return __p_GetComp(p,r) -= v; |
---|
445 | } |
---|
446 | |
---|
447 | #ifndef HAVE_EXPSIZES |
---|
448 | |
---|
449 | /// get a single variable exponent |
---|
450 | /// @Note: |
---|
451 | /// the integer VarOffset encodes: |
---|
452 | /// 1. the position of a variable in the exponent vector p->exp (lower 24 bits) |
---|
453 | /// 2. number of bits to shift to the right in the upper 8 bits (which takes at most 6 bits for 64 bit) |
---|
454 | /// Thus VarOffset always has 2 zero higher bits! |
---|
455 | static inline long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset) |
---|
456 | { |
---|
457 | pAssume2((VarOffset >> (24 + 6)) == 0); |
---|
458 | #if 0 |
---|
459 | int pos=(VarOffset & 0xffffff); |
---|
460 | int bitpos=(VarOffset >> 24); |
---|
461 | unsigned long exp=(p->exp[pos] >> bitmask) & iBitmask; |
---|
462 | return exp; |
---|
463 | #else |
---|
464 | return (long) |
---|
465 | ((p->exp[(VarOffset & 0xffffff)] >> (VarOffset >> 24)) |
---|
466 | & iBitmask); |
---|
467 | #endif |
---|
468 | } |
---|
469 | |
---|
470 | |
---|
471 | /// set a single variable exponent |
---|
472 | /// @Note: |
---|
473 | /// VarOffset encodes the position in p->exp @see p_GetExp |
---|
474 | static inline unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset) |
---|
475 | { |
---|
476 | pAssume2(e>=0); |
---|
477 | pAssume2(e<=iBitmask); |
---|
478 | pAssume2((VarOffset >> (24 + 6)) == 0); |
---|
479 | |
---|
480 | // shift e to the left: |
---|
481 | register int shift = VarOffset >> 24; |
---|
482 | unsigned long ee = e << shift /*(VarOffset >> 24)*/; |
---|
483 | // find the bits in the exponent vector |
---|
484 | register int offset = (VarOffset & 0xffffff); |
---|
485 | // clear the bits in the exponent vector: |
---|
486 | p->exp[offset] &= ~( iBitmask << shift ); |
---|
487 | // insert e with | |
---|
488 | p->exp[ offset ] |= ee; |
---|
489 | return e; |
---|
490 | } |
---|
491 | |
---|
492 | |
---|
493 | #else // #ifdef HAVE_EXPSIZES // EXPERIMENTAL!!! |
---|
494 | |
---|
495 | static inline unsigned long BitMask(unsigned long bitmask, int twobits) |
---|
496 | { |
---|
497 | // bitmask = 00000111111111111 |
---|
498 | // 0 must give bitmask! |
---|
499 | // 1, 2, 3 - anything like 00011..11 |
---|
500 | pAssume2((twobits >> 2) == 0); |
---|
501 | static const unsigned long _bitmasks[4] = {-1, 0x7fff, 0x7f, 0x3}; |
---|
502 | return bitmask & _bitmasks[twobits]; |
---|
503 | } |
---|
504 | |
---|
505 | |
---|
506 | /// @Note: we may add some more info (6 ) into VarOffset and thus encode |
---|
507 | static inline long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset) |
---|
508 | { |
---|
509 | int pos =(VarOffset & 0xffffff); |
---|
510 | int hbyte= (VarOffset >> 24); // the highest byte |
---|
511 | int bitpos = hbyte & 0x3f; // last 6 bits |
---|
512 | long bitmask = BitMask(iBitmask, hbyte >> 6); |
---|
513 | |
---|
514 | long exp=(p->exp[pos] >> bitpos) & bitmask; |
---|
515 | return exp; |
---|
516 | |
---|
517 | } |
---|
518 | |
---|
519 | static inline long p_SetExp(poly p, const long e, const unsigned long iBitmask, const int VarOffset) |
---|
520 | { |
---|
521 | pAssume2(e>=0); |
---|
522 | pAssume2(e <= BitMask(iBitmask, VarOffset >> 30)); |
---|
523 | |
---|
524 | // shift e to the left: |
---|
525 | register int hbyte = VarOffset >> 24; |
---|
526 | int bitmask = BitMask(iBitmask, hbyte >> 6); |
---|
527 | register int shift = hbyte & 0x3f; |
---|
528 | long ee = e << shift; |
---|
529 | // find the bits in the exponent vector |
---|
530 | register int offset = (VarOffset & 0xffffff); |
---|
531 | // clear the bits in the exponent vector: |
---|
532 | p->exp[offset] &= ~( bitmask << shift ); |
---|
533 | // insert e with | |
---|
534 | p->exp[ offset ] |= ee; |
---|
535 | return e; |
---|
536 | } |
---|
537 | |
---|
538 | #endif // #ifndef HAVE_EXPSIZES |
---|
539 | |
---|
540 | |
---|
541 | static inline long p_GetExp(const poly p, const ring r, const int VarOffset) |
---|
542 | { |
---|
543 | p_LmCheckPolyRing2(p, r); |
---|
544 | pAssume2(VarOffset != -1); |
---|
545 | return p_GetExp(p, r->bitmask, VarOffset); |
---|
546 | } |
---|
547 | |
---|
548 | static inline long p_SetExp(poly p, const long e, const ring r, const int VarOffset) |
---|
549 | { |
---|
550 | p_LmCheckPolyRing2(p, r); |
---|
551 | pAssume2(VarOffset != -1); |
---|
552 | return p_SetExp(p, e, r->bitmask, VarOffset); |
---|
553 | } |
---|
554 | |
---|
555 | |
---|
556 | |
---|
557 | /// get v^th exponent for a monomial |
---|
558 | static inline long p_GetExp(const poly p, const int v, const ring r) |
---|
559 | { |
---|
560 | p_LmCheckPolyRing2(p, r); |
---|
561 | pAssume2(v>0 && v <= r->N); |
---|
562 | pAssume2(r->VarOffset[v] != -1); |
---|
563 | return p_GetExp(p, r->bitmask, r->VarOffset[v]); |
---|
564 | } |
---|
565 | |
---|
566 | |
---|
567 | /// set v^th exponent for a monomial |
---|
568 | static inline long p_SetExp(poly p, const int v, const long e, const ring r) |
---|
569 | { |
---|
570 | p_LmCheckPolyRing2(p, r); |
---|
571 | pAssume2(v>0 && v <= r->N); |
---|
572 | pAssume2(r->VarOffset[v] != -1); |
---|
573 | return p_SetExp(p, e, r->bitmask, r->VarOffset[v]); |
---|
574 | } |
---|
575 | |
---|
576 | // the following should be implemented more efficiently |
---|
577 | static inline long p_IncrExp(poly p, int v, ring r) |
---|
578 | { |
---|
579 | p_LmCheckPolyRing2(p, r); |
---|
580 | int e = p_GetExp(p,v,r); |
---|
581 | e++; |
---|
582 | return p_SetExp(p,v,e,r); |
---|
583 | } |
---|
584 | static inline long p_DecrExp(poly p, int v, ring r) |
---|
585 | { |
---|
586 | p_LmCheckPolyRing2(p, r); |
---|
587 | int e = p_GetExp(p,v,r); |
---|
588 | pAssume2(e > 0); |
---|
589 | e--; |
---|
590 | return p_SetExp(p,v,e,r); |
---|
591 | } |
---|
592 | static inline long p_AddExp(poly p, int v, long ee, ring r) |
---|
593 | { |
---|
594 | p_LmCheckPolyRing2(p, r); |
---|
595 | int e = p_GetExp(p,v,r); |
---|
596 | e += ee; |
---|
597 | return p_SetExp(p,v,e,r); |
---|
598 | } |
---|
599 | static inline long p_SubExp(poly p, int v, long ee, ring r) |
---|
600 | { |
---|
601 | p_LmCheckPolyRing2(p, r); |
---|
602 | long e = p_GetExp(p,v,r); |
---|
603 | pAssume2(e >= ee); |
---|
604 | e -= ee; |
---|
605 | return p_SetExp(p,v,e,r); |
---|
606 | } |
---|
607 | static inline long p_MultExp(poly p, int v, long ee, ring r) |
---|
608 | { |
---|
609 | p_LmCheckPolyRing2(p, r); |
---|
610 | long e = p_GetExp(p,v,r); |
---|
611 | e *= ee; |
---|
612 | return p_SetExp(p,v,e,r); |
---|
613 | } |
---|
614 | |
---|
615 | static inline long p_GetExpSum(poly p1, poly p2, int i, ring r) |
---|
616 | { |
---|
617 | p_LmCheckPolyRing2(p1, r); |
---|
618 | p_LmCheckPolyRing2(p2, r); |
---|
619 | return p_GetExp(p1,i,r) + p_GetExp(p2,i,r); |
---|
620 | } |
---|
621 | static inline long p_GetExpDiff(poly p1, poly p2, int i, ring r) |
---|
622 | { |
---|
623 | return p_GetExp(p1,i,r) - p_GetExp(p2,i,r); |
---|
624 | } |
---|
625 | |
---|
626 | static inline int p_Comp_k_n(poly a, poly b, int k, ring r) |
---|
627 | { |
---|
628 | if ((a==NULL) || (b==NULL) ) return FALSE; |
---|
629 | p_LmCheckPolyRing2(a, r); |
---|
630 | p_LmCheckPolyRing2(b, r); |
---|
631 | pAssume2(k > 0 && k <= r->N); |
---|
632 | int i=k; |
---|
633 | for(;i<=r->N;i++) |
---|
634 | { |
---|
635 | if (p_GetExp(a,i,r) != p_GetExp(b,i,r)) return FALSE; |
---|
636 | // if (a->exp[(r->VarOffset[i] & 0xffffff)] != b->exp[(r->VarOffset[i] & 0xffffff)]) return FALSE; |
---|
637 | } |
---|
638 | return TRUE; |
---|
639 | } |
---|
640 | |
---|
641 | |
---|
642 | /*************************************************************** |
---|
643 | * |
---|
644 | * Allocation/Initalization/Deletion |
---|
645 | * |
---|
646 | ***************************************************************/ |
---|
647 | #if PDEBUG > 2 |
---|
648 | static inline poly p_New(const ring r, omBin bin) |
---|
649 | #else |
---|
650 | static inline poly p_New(const ring r, omBin bin) |
---|
651 | #endif |
---|
652 | { |
---|
653 | p_CheckRing2(r); |
---|
654 | pAssume2(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin)); |
---|
655 | poly p; |
---|
656 | omTypeAllocBin(poly, p, bin); |
---|
657 | p_SetRingOfLm(p, r); |
---|
658 | return p; |
---|
659 | } |
---|
660 | |
---|
661 | static inline poly p_New(ring r) |
---|
662 | { |
---|
663 | return p_New(r, r->PolyBin); |
---|
664 | } |
---|
665 | |
---|
666 | #if PDEBUG > 2 |
---|
667 | static inline void p_LmFree(poly p, ring r) |
---|
668 | #else |
---|
669 | static inline void p_LmFree(poly p, ring) |
---|
670 | #endif |
---|
671 | { |
---|
672 | p_LmCheckPolyRing2(p, r); |
---|
673 | omFreeBinAddr(p); |
---|
674 | } |
---|
675 | #if PDEBUG > 2 |
---|
676 | static inline void p_LmFree(poly *p, ring r) |
---|
677 | #else |
---|
678 | static inline void p_LmFree(poly *p, ring) |
---|
679 | #endif |
---|
680 | { |
---|
681 | p_LmCheckPolyRing2(*p, r); |
---|
682 | poly h = *p; |
---|
683 | *p = pNext(h); |
---|
684 | omFreeBinAddr(h); |
---|
685 | } |
---|
686 | #if PDEBUG > 2 |
---|
687 | static inline poly p_LmFreeAndNext(poly p, ring r) |
---|
688 | #else |
---|
689 | static inline poly p_LmFreeAndNext(poly p, ring) |
---|
690 | #endif |
---|
691 | { |
---|
692 | p_LmCheckPolyRing2(p, r); |
---|
693 | poly pnext = pNext(p); |
---|
694 | omFreeBinAddr(p); |
---|
695 | return pnext; |
---|
696 | } |
---|
697 | static inline void p_LmDelete(poly p, const ring r) |
---|
698 | { |
---|
699 | p_LmCheckPolyRing2(p, r); |
---|
700 | n_Delete(&pGetCoeff(p), r->cf); |
---|
701 | omFreeBinAddr(p); |
---|
702 | } |
---|
703 | static inline void p_LmDelete(poly *p, const ring r) |
---|
704 | { |
---|
705 | p_LmCheckPolyRing2(*p, r); |
---|
706 | poly h = *p; |
---|
707 | *p = pNext(h); |
---|
708 | n_Delete(&pGetCoeff(h), r->cf); |
---|
709 | omFreeBinAddr(h); |
---|
710 | } |
---|
711 | static inline poly p_LmDeleteAndNext(poly p, const ring r) |
---|
712 | { |
---|
713 | p_LmCheckPolyRing2(p, r); |
---|
714 | poly pnext = pNext(p); |
---|
715 | n_Delete(&pGetCoeff(p), r->cf); |
---|
716 | omFreeBinAddr(p); |
---|
717 | return pnext; |
---|
718 | } |
---|
719 | |
---|
720 | /*************************************************************** |
---|
721 | * |
---|
722 | * Misc routines |
---|
723 | * |
---|
724 | ***************************************************************/ |
---|
725 | |
---|
726 | /// return the maximal exponent of p in form of the maximal long var |
---|
727 | unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max = 0); |
---|
728 | |
---|
729 | /// return monomial r such that GetExp(r,i) is maximum of all |
---|
730 | /// monomials in p; coeff == 0, next == NULL, ord is not set |
---|
731 | poly p_GetMaxExpP(poly p, ring r); |
---|
732 | |
---|
733 | static inline unsigned long p_GetMaxExp(const unsigned long l, const ring r) |
---|
734 | { |
---|
735 | unsigned long bitmask = r->bitmask; |
---|
736 | unsigned long max = (l & bitmask); |
---|
737 | unsigned long j = r->ExpPerLong - 1; |
---|
738 | |
---|
739 | if (j > 0) |
---|
740 | { |
---|
741 | unsigned long i = r->BitsPerExp; |
---|
742 | long e; |
---|
743 | loop |
---|
744 | { |
---|
745 | e = ((l >> i) & bitmask); |
---|
746 | if ((unsigned long) e > max) |
---|
747 | max = e; |
---|
748 | j--; |
---|
749 | if (j==0) break; |
---|
750 | i += r->BitsPerExp; |
---|
751 | } |
---|
752 | } |
---|
753 | return max; |
---|
754 | } |
---|
755 | |
---|
756 | static inline unsigned long p_GetMaxExp(const poly p, const ring r) |
---|
757 | { |
---|
758 | return p_GetMaxExp(p_GetMaxExpL(p, r), r); |
---|
759 | } |
---|
760 | |
---|
761 | static inline unsigned long |
---|
762 | p_GetTotalDegree(const unsigned long l, const ring r, const int number_of_exps) |
---|
763 | { |
---|
764 | const unsigned long bitmask = r->bitmask; |
---|
765 | unsigned long sum = (l & bitmask); |
---|
766 | unsigned long j = number_of_exps - 1; |
---|
767 | |
---|
768 | if (j > 0) |
---|
769 | { |
---|
770 | unsigned long i = r->BitsPerExp; |
---|
771 | loop |
---|
772 | { |
---|
773 | sum += ((l >> i) & bitmask); |
---|
774 | j--; |
---|
775 | if (j==0) break; |
---|
776 | i += r->BitsPerExp; |
---|
777 | } |
---|
778 | } |
---|
779 | return sum; |
---|
780 | } |
---|
781 | |
---|
782 | static inline unsigned long |
---|
783 | p_GetTotalDegree(const unsigned long l, const ring r) |
---|
784 | { |
---|
785 | return p_GetTotalDegree(l, r, r->ExpPerLong); |
---|
786 | } |
---|
787 | |
---|
788 | /*************************************************************** |
---|
789 | * |
---|
790 | * Dispatcher to r->p_Procs, they do the tests/checks |
---|
791 | * |
---|
792 | ***************************************************************/ |
---|
793 | // returns a copy of p |
---|
794 | static inline poly p_Copy(poly p, const ring r) |
---|
795 | { |
---|
796 | #ifdef PDEBUG |
---|
797 | poly pp= r->p_Procs->p_Copy(p, r); |
---|
798 | p_Test(pp,r); |
---|
799 | return pp; |
---|
800 | #else |
---|
801 | return r->p_Procs->p_Copy(p, r); |
---|
802 | #endif |
---|
803 | } |
---|
804 | |
---|
805 | static inline poly p_Head(poly p, const ring r) |
---|
806 | { |
---|
807 | if (p == NULL) return NULL; |
---|
808 | p_LmCheckPolyRing1(p, r); |
---|
809 | poly np; |
---|
810 | omTypeAllocBin(poly, np, r->PolyBin); |
---|
811 | p_SetRingOfLm(np, r); |
---|
812 | memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long)); |
---|
813 | pNext(np) = NULL; |
---|
814 | pSetCoeff0(np, n_Copy(pGetCoeff(p), r->cf)); |
---|
815 | return np; |
---|
816 | } |
---|
817 | |
---|
818 | // returns a copy of p with Lm(p) from lmRing and Tail(p) from tailRing |
---|
819 | static inline poly p_Copy(poly p, const ring lmRing, const ring tailRing) |
---|
820 | { |
---|
821 | #ifndef PDEBUG |
---|
822 | if (tailRing == lmRing) |
---|
823 | return tailRing->p_Procs->p_Copy(p, tailRing); |
---|
824 | #endif |
---|
825 | if (p != NULL) |
---|
826 | { |
---|
827 | poly pres = p_Head(p, lmRing); |
---|
828 | pNext(pres) = tailRing->p_Procs->p_Copy(pNext(p), tailRing); |
---|
829 | return pres; |
---|
830 | } |
---|
831 | else |
---|
832 | return NULL; |
---|
833 | } |
---|
834 | |
---|
835 | // deletes *p, and sets *p to NULL |
---|
836 | static inline void p_Delete(poly *p, const ring r) |
---|
837 | { |
---|
838 | r->p_Procs->p_Delete(p, r); |
---|
839 | } |
---|
840 | |
---|
841 | static inline void p_Delete(poly *p, const ring lmRing, const ring tailRing) |
---|
842 | { |
---|
843 | #ifndef PDEBUG |
---|
844 | if (tailRing == lmRing) |
---|
845 | { |
---|
846 | tailRing->p_Procs->p_Delete(p, tailRing); |
---|
847 | return; |
---|
848 | } |
---|
849 | #endif |
---|
850 | if (*p != NULL) |
---|
851 | { |
---|
852 | if (pNext(*p) != NULL) |
---|
853 | tailRing->p_Procs->p_Delete(&pNext(*p), tailRing); |
---|
854 | p_LmDelete(p, lmRing); |
---|
855 | } |
---|
856 | } |
---|
857 | |
---|
858 | // copys monomials of p, allocates new monomials from bin, |
---|
859 | // deletes monomoals of p |
---|
860 | static inline poly p_ShallowCopyDelete(poly p, const ring r, omBin bin) |
---|
861 | { |
---|
862 | p_LmCheckPolyRing2(p, r); |
---|
863 | pAssume2(omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin)); |
---|
864 | return r->p_Procs->p_ShallowCopyDelete(p, r, bin); |
---|
865 | } |
---|
866 | |
---|
867 | // returns p+q, destroys p and q |
---|
868 | static inline poly p_Add_q(poly p, poly q, const ring r) |
---|
869 | { |
---|
870 | assume( (p != q) || (p == NULL && q == NULL) ); |
---|
871 | int shorter; |
---|
872 | return r->p_Procs->p_Add_q(p, q, shorter, r); |
---|
873 | } |
---|
874 | |
---|
875 | /// like p_Add_q, except that if lp == pLength(lp) lq == pLength(lq) then lp == pLength(p+q) |
---|
876 | static inline poly p_Add_q(poly p, poly q, int &lp, int lq, const ring r) |
---|
877 | { |
---|
878 | assume( (p != q) || (p == NULL && q == NULL) ); |
---|
879 | int shorter; |
---|
880 | poly res = r->p_Procs->p_Add_q(p, q, shorter, r); |
---|
881 | lp = (lp + lq) - shorter; |
---|
882 | return res; |
---|
883 | } |
---|
884 | |
---|
885 | // returns p*n, destroys p |
---|
886 | static inline poly p_Mult_nn(poly p, number n, const ring r) |
---|
887 | { |
---|
888 | if (n_IsOne(n, r->cf)) |
---|
889 | return p; |
---|
890 | else |
---|
891 | return r->p_Procs->p_Mult_nn(p, n, r); |
---|
892 | } |
---|
893 | |
---|
894 | static inline poly p_Mult_nn(poly p, number n, const ring lmRing, |
---|
895 | const ring tailRing) |
---|
896 | { |
---|
897 | #ifndef PDEBUG |
---|
898 | if (lmRing == tailRing) |
---|
899 | { |
---|
900 | return p_Mult_nn(p, n, tailRing); |
---|
901 | } |
---|
902 | #endif |
---|
903 | poly pnext = pNext(p); |
---|
904 | pNext(p) = NULL; |
---|
905 | p = lmRing->p_Procs->p_Mult_nn(p, n, lmRing); |
---|
906 | pNext(p) = tailRing->p_Procs->p_Mult_nn(pnext, n, tailRing); |
---|
907 | return p; |
---|
908 | } |
---|
909 | |
---|
910 | // returns p*n, does not destroy p |
---|
911 | static inline poly pp_Mult_nn(poly p, number n, const ring r) |
---|
912 | { |
---|
913 | if (n_IsOne(n, r->cf)) |
---|
914 | return p_Copy(p, r); |
---|
915 | else |
---|
916 | return r->p_Procs->pp_Mult_nn(p, n, r); |
---|
917 | } |
---|
918 | |
---|
919 | // test if the monomial is a constant as a vector component |
---|
920 | // i.e., test if all exponents are zero |
---|
921 | static inline BOOLEAN p_LmIsConstantComp(const poly p, const ring r) |
---|
922 | { |
---|
923 | //p_LmCheckPolyRing(p, r); |
---|
924 | int i = r->VarL_Size - 1; |
---|
925 | |
---|
926 | do |
---|
927 | { |
---|
928 | if (p->exp[r->VarL_Offset[i]] != 0) |
---|
929 | return FALSE; |
---|
930 | i--; |
---|
931 | } |
---|
932 | while (i >= 0); |
---|
933 | return TRUE; |
---|
934 | } |
---|
935 | |
---|
936 | // test if monomial is a constant, i.e. if all exponents and the component |
---|
937 | // is zero |
---|
938 | static inline BOOLEAN p_LmIsConstant(const poly p, const ring r) |
---|
939 | { |
---|
940 | if (p_LmIsConstantComp(p, r)) |
---|
941 | return (p_GetComp(p, r) == 0); |
---|
942 | return FALSE; |
---|
943 | } |
---|
944 | |
---|
945 | // returns Copy(p)*m, does neither destroy p nor m |
---|
946 | static inline poly pp_Mult_mm(poly p, poly m, const ring r) |
---|
947 | { |
---|
948 | if (p_LmIsConstant(m, r)) |
---|
949 | return pp_Mult_nn(p, pGetCoeff(m), r); |
---|
950 | else |
---|
951 | { |
---|
952 | return r->p_Procs->pp_Mult_mm(p, m, r); |
---|
953 | } |
---|
954 | } |
---|
955 | |
---|
956 | // returns p*m, destroys p, const: m |
---|
957 | static inline poly p_Mult_mm(poly p, poly m, const ring r) |
---|
958 | { |
---|
959 | if (p_LmIsConstant(m, r)) |
---|
960 | return p_Mult_nn(p, pGetCoeff(m), r); |
---|
961 | else |
---|
962 | return r->p_Procs->p_Mult_mm(p, m, r); |
---|
963 | } |
---|
964 | |
---|
965 | static inline poly p_Minus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp, int lq, |
---|
966 | const poly spNoether, const ring r) |
---|
967 | { |
---|
968 | int shorter; |
---|
969 | const poly res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, spNoether, r); |
---|
970 | lp += lq - shorter; |
---|
971 | // assume( lp == pLength(res) ); |
---|
972 | return res; |
---|
973 | } |
---|
974 | |
---|
975 | // return p - m*Copy(q), destroys p; const: p,m |
---|
976 | static inline poly p_Minus_mm_Mult_qq(poly p, const poly m, const poly q, const ring r) |
---|
977 | { |
---|
978 | int shorter; |
---|
979 | |
---|
980 | return r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r); |
---|
981 | } |
---|
982 | |
---|
983 | |
---|
984 | // returns p*Coeff(m) for such monomials pm of p, for which m is divisble by pm |
---|
985 | static inline poly pp_Mult_Coeff_mm_DivSelect(poly p, const poly m, const ring r) |
---|
986 | { |
---|
987 | int shorter; |
---|
988 | return r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r); |
---|
989 | } |
---|
990 | |
---|
991 | // returns p*Coeff(m) for such monomials pm of p, for which m is divisble by pm |
---|
992 | // if lp is length of p on input then lp is length of returned poly on output |
---|
993 | static inline poly pp_Mult_Coeff_mm_DivSelect(poly p, int &lp, const poly m, const ring r) |
---|
994 | { |
---|
995 | int shorter; |
---|
996 | poly pp = r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r); |
---|
997 | lp -= shorter; |
---|
998 | return pp; |
---|
999 | } |
---|
1000 | |
---|
1001 | // returns -p, destroys p |
---|
1002 | static inline poly p_Neg(poly p, const ring r) |
---|
1003 | { |
---|
1004 | return r->p_Procs->p_Neg(p, r); |
---|
1005 | } |
---|
1006 | |
---|
1007 | extern poly _p_Mult_q(poly p, poly q, const int copy, const ring r); |
---|
1008 | // returns p*q, destroys p and q |
---|
1009 | static inline poly p_Mult_q(poly p, poly q, const ring r) |
---|
1010 | { |
---|
1011 | assume( (p != q) || (p == NULL && q == NULL) ); |
---|
1012 | |
---|
1013 | if (p == NULL) |
---|
1014 | { |
---|
1015 | r->p_Procs->p_Delete(&q, r); |
---|
1016 | return NULL; |
---|
1017 | } |
---|
1018 | if (q == NULL) |
---|
1019 | { |
---|
1020 | r->p_Procs->p_Delete(&p, r); |
---|
1021 | return NULL; |
---|
1022 | } |
---|
1023 | |
---|
1024 | if (pNext(p) == NULL) |
---|
1025 | { |
---|
1026 | #ifdef HAVE_PLURAL |
---|
1027 | if (rIsPluralRing(r)) |
---|
1028 | q = nc_mm_Mult_p(p, q, r); |
---|
1029 | else |
---|
1030 | #endif /* HAVE_PLURAL */ |
---|
1031 | q = r->p_Procs->p_Mult_mm(q, p, r); |
---|
1032 | |
---|
1033 | r->p_Procs->p_Delete(&p, r); |
---|
1034 | return q; |
---|
1035 | } |
---|
1036 | |
---|
1037 | if (pNext(q) == NULL) |
---|
1038 | { |
---|
1039 | // NEEDED |
---|
1040 | #ifdef HAVE_PLURAL |
---|
1041 | /* if (rIsPluralRing(r)) |
---|
1042 | p = gnc_p_Mult_mm(p, q, r); // ??? |
---|
1043 | else*/ |
---|
1044 | #endif /* HAVE_PLURAL */ |
---|
1045 | p = r->p_Procs->p_Mult_mm(p, q, r); |
---|
1046 | |
---|
1047 | r->p_Procs->p_Delete(&q, r); |
---|
1048 | return p; |
---|
1049 | } |
---|
1050 | #ifdef HAVE_PLURAL |
---|
1051 | if (rIsPluralRing(r)) |
---|
1052 | return _nc_p_Mult_q(p, q, r); |
---|
1053 | else |
---|
1054 | #endif |
---|
1055 | return _p_Mult_q(p, q, 0, r); |
---|
1056 | } |
---|
1057 | |
---|
1058 | // returns p*q, does neither destroy p nor q |
---|
1059 | static inline poly pp_Mult_qq(poly p, poly q, const ring r) |
---|
1060 | { |
---|
1061 | if (p == NULL || q == NULL) return NULL; |
---|
1062 | |
---|
1063 | if (pNext(p) == NULL) |
---|
1064 | { |
---|
1065 | #ifdef HAVE_PLURAL |
---|
1066 | if (rIsPluralRing(r)) |
---|
1067 | return nc_mm_Mult_pp(p, q, r); |
---|
1068 | #endif |
---|
1069 | return r->p_Procs->pp_Mult_mm(q, p, r); |
---|
1070 | } |
---|
1071 | |
---|
1072 | if (pNext(q) == NULL) |
---|
1073 | { |
---|
1074 | return r->p_Procs->pp_Mult_mm(p, q, r); |
---|
1075 | } |
---|
1076 | |
---|
1077 | poly qq = q; |
---|
1078 | if (p == q) |
---|
1079 | qq = p_Copy(q, r); |
---|
1080 | |
---|
1081 | poly res; |
---|
1082 | #ifdef HAVE_PLURAL |
---|
1083 | if (rIsPluralRing(r)) |
---|
1084 | res = _nc_pp_Mult_qq(p, qq, r); |
---|
1085 | else |
---|
1086 | #endif |
---|
1087 | res = _p_Mult_q(p, qq, 1, r); |
---|
1088 | |
---|
1089 | if (qq != q) |
---|
1090 | p_Delete(&qq, r); |
---|
1091 | return res; |
---|
1092 | } |
---|
1093 | |
---|
1094 | // returns p + m*q destroys p, const: q, m |
---|
1095 | static inline poly p_Plus_mm_Mult_qq(poly p, poly m, poly q, int &lp, int lq, |
---|
1096 | const ring r) |
---|
1097 | { |
---|
1098 | #ifdef HAVE_PLURAL |
---|
1099 | if (rIsPluralRing(r)) |
---|
1100 | return nc_p_Plus_mm_Mult_qq(p, m, q, lp, lq, r); |
---|
1101 | #endif |
---|
1102 | |
---|
1103 | // this should be implemented more efficiently |
---|
1104 | poly res; |
---|
1105 | int shorter; |
---|
1106 | number n_old = pGetCoeff(m); |
---|
1107 | number n_neg = n_Copy(n_old, r->cf); |
---|
1108 | n_neg = n_Neg(n_neg, r->cf); |
---|
1109 | pSetCoeff0(m, n_neg); |
---|
1110 | res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r); |
---|
1111 | lp = (lp + lq) - shorter; |
---|
1112 | pSetCoeff0(m, n_old); |
---|
1113 | n_Delete(&n_neg, r->cf); |
---|
1114 | return res; |
---|
1115 | } |
---|
1116 | |
---|
1117 | static inline poly p_Plus_mm_Mult_qq(poly p, poly m, poly q, const ring r) |
---|
1118 | { |
---|
1119 | int lp = 0, lq = 0; |
---|
1120 | return p_Plus_mm_Mult_qq(p, m, q, lp, lq, r); |
---|
1121 | } |
---|
1122 | |
---|
1123 | // returns merged p and q, assumes p and q have no monomials which are equal |
---|
1124 | static inline poly p_Merge_q(poly p, poly q, const ring r) |
---|
1125 | { |
---|
1126 | assume( (p != q) || (p == NULL && q == NULL) ); |
---|
1127 | return r->p_Procs->p_Merge_q(p, q, r); |
---|
1128 | } |
---|
1129 | |
---|
1130 | // like p_SortMerge, except that p may have equal monimals |
---|
1131 | static inline poly p_SortAdd(poly p, const ring r, BOOLEAN revert= FALSE) |
---|
1132 | { |
---|
1133 | if (revert) p = pReverse(p); |
---|
1134 | return sBucketSortAdd(p, r); |
---|
1135 | } |
---|
1136 | |
---|
1137 | // sorts p using bucket sort: returns sorted poly |
---|
1138 | // assumes that monomials of p are all different |
---|
1139 | // reverses it first, if revert == TRUE, use this if input p is "almost" sorted |
---|
1140 | // correctly |
---|
1141 | static inline poly p_SortMerge(poly p, const ring r, BOOLEAN revert= FALSE) |
---|
1142 | { |
---|
1143 | if (revert) p = pReverse(p); |
---|
1144 | return sBucketSortMerge(p, r); |
---|
1145 | } |
---|
1146 | |
---|
1147 | /*************************************************************** |
---|
1148 | * |
---|
1149 | * I/O |
---|
1150 | * |
---|
1151 | ***************************************************************/ |
---|
1152 | static inline char* p_String(poly p, ring p_ring) |
---|
1153 | { |
---|
1154 | return p_String(p, p_ring, p_ring); |
---|
1155 | } |
---|
1156 | static inline char* p_String0(poly p, ring p_ring) |
---|
1157 | { |
---|
1158 | return p_String0(p, p_ring, p_ring); |
---|
1159 | } |
---|
1160 | static inline void p_Write(poly p, ring p_ring) |
---|
1161 | { |
---|
1162 | p_Write(p, p_ring, p_ring); |
---|
1163 | } |
---|
1164 | static inline void p_Write0(poly p, ring p_ring) |
---|
1165 | { |
---|
1166 | p_Write0(p, p_ring, p_ring); |
---|
1167 | } |
---|
1168 | static inline void p_wrp(poly p, ring p_ring) |
---|
1169 | { |
---|
1170 | p_wrp(p, p_ring, p_ring); |
---|
1171 | } |
---|
1172 | |
---|
1173 | |
---|
1174 | #if PDEBUG > 0 |
---|
1175 | |
---|
1176 | #define _p_LmCmpAction(p, q, r, actionE, actionG, actionS) \ |
---|
1177 | do \ |
---|
1178 | { \ |
---|
1179 | int _cmp = p_LmCmp(p,q,r); \ |
---|
1180 | if (_cmp == 0) actionE; \ |
---|
1181 | if (_cmp == 1) actionG; \ |
---|
1182 | actionS; \ |
---|
1183 | } \ |
---|
1184 | while(0) |
---|
1185 | |
---|
1186 | #else |
---|
1187 | |
---|
1188 | #define _p_LmCmpAction(p, q, r, actionE, actionG, actionS) \ |
---|
1189 | p_MemCmp_LengthGeneral_OrdGeneral(p->exp, q->exp, r->CmpL_Size, r->ordsgn, \ |
---|
1190 | actionE, actionG, actionS) |
---|
1191 | |
---|
1192 | #endif |
---|
1193 | |
---|
1194 | #define pDivAssume(x) ((void)0) |
---|
1195 | |
---|
1196 | |
---|
1197 | |
---|
1198 | /*************************************************************** |
---|
1199 | * |
---|
1200 | * Allocation/Initalization/Deletion |
---|
1201 | * |
---|
1202 | ***************************************************************/ |
---|
1203 | // adjustments for negative weights |
---|
1204 | static inline void p_MemAdd_NegWeightAdjust(poly p, const ring r) |
---|
1205 | { |
---|
1206 | if (r->NegWeightL_Offset != NULL) |
---|
1207 | { |
---|
1208 | for (int i=r->NegWeightL_Size-1; i>=0; i--) |
---|
1209 | { |
---|
1210 | p->exp[r->NegWeightL_Offset[i]] -= POLY_NEGWEIGHT_OFFSET; |
---|
1211 | } |
---|
1212 | } |
---|
1213 | } |
---|
1214 | static inline void p_MemSub_NegWeightAdjust(poly p, const ring r) |
---|
1215 | { |
---|
1216 | if (r->NegWeightL_Offset != NULL) |
---|
1217 | { |
---|
1218 | for (int i=r->NegWeightL_Size-1; i>=0; i--) |
---|
1219 | { |
---|
1220 | p->exp[r->NegWeightL_Offset[i]] += POLY_NEGWEIGHT_OFFSET; |
---|
1221 | } |
---|
1222 | } |
---|
1223 | } |
---|
1224 | // ExpVextor(d_p) = ExpVector(s_p) |
---|
1225 | static inline void p_ExpVectorCopy(poly d_p, poly s_p, const ring r) |
---|
1226 | { |
---|
1227 | p_LmCheckPolyRing1(d_p, r); |
---|
1228 | p_LmCheckPolyRing1(s_p, r); |
---|
1229 | memcpy(d_p->exp, s_p->exp, r->ExpL_Size*sizeof(long)); |
---|
1230 | } |
---|
1231 | |
---|
1232 | static inline poly p_Init(const ring r, omBin bin) |
---|
1233 | { |
---|
1234 | p_CheckRing1(r); |
---|
1235 | pAssume1(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin)); |
---|
1236 | poly p; |
---|
1237 | omTypeAlloc0Bin(poly, p, bin); |
---|
1238 | p_MemAdd_NegWeightAdjust(p, r); |
---|
1239 | p_SetRingOfLm(p, r); |
---|
1240 | return p; |
---|
1241 | } |
---|
1242 | static inline poly p_Init(const ring r) |
---|
1243 | { |
---|
1244 | return p_Init(r, r->PolyBin); |
---|
1245 | } |
---|
1246 | |
---|
1247 | static inline poly p_LmInit(poly p, const ring r) |
---|
1248 | { |
---|
1249 | p_LmCheckPolyRing1(p, r); |
---|
1250 | poly np; |
---|
1251 | omTypeAllocBin(poly, np, r->PolyBin); |
---|
1252 | p_SetRingOfLm(np, r); |
---|
1253 | memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long)); |
---|
1254 | pNext(np) = NULL; |
---|
1255 | pSetCoeff0(np, NULL); |
---|
1256 | return np; |
---|
1257 | } |
---|
1258 | static inline poly p_LmInit(poly s_p, const ring s_r, const ring d_r, omBin d_bin) |
---|
1259 | { |
---|
1260 | p_LmCheckPolyRing1(s_p, s_r); |
---|
1261 | p_CheckRing(d_r); |
---|
1262 | pAssume1(d_r->N <= s_r->N); |
---|
1263 | poly d_p = p_Init(d_r, d_bin); |
---|
1264 | for (int i=d_r->N; i>0; i--) |
---|
1265 | { |
---|
1266 | p_SetExp(d_p, i, p_GetExp(s_p, i,s_r), d_r); |
---|
1267 | } |
---|
1268 | if (rRing_has_Comp(d_r)) |
---|
1269 | { |
---|
1270 | p_SetComp(d_p, p_GetComp(s_p,s_r), d_r); |
---|
1271 | } |
---|
1272 | p_Setm(d_p, d_r); |
---|
1273 | return d_p; |
---|
1274 | } |
---|
1275 | static inline poly p_LmInit(poly s_p, const ring s_r, const ring d_r) |
---|
1276 | { |
---|
1277 | pAssume1(d_r != NULL); |
---|
1278 | return p_LmInit(s_p, s_r, d_r, d_r->PolyBin); |
---|
1279 | } |
---|
1280 | |
---|
1281 | // set all exponents l..k to 0, assume exp. k+1..n and 1..l-1 are in |
---|
1282 | // different blocks |
---|
1283 | // set coeff to 1 |
---|
1284 | static inline poly p_GetExp_k_n(poly p, int l, int k, const ring r) |
---|
1285 | { |
---|
1286 | if (p == NULL) return NULL; |
---|
1287 | p_LmCheckPolyRing1(p, r); |
---|
1288 | poly np; |
---|
1289 | omTypeAllocBin(poly, np, r->PolyBin); |
---|
1290 | p_SetRingOfLm(np, r); |
---|
1291 | memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long)); |
---|
1292 | pNext(np) = NULL; |
---|
1293 | pSetCoeff0(np, n_Init(1, r->cf)); |
---|
1294 | int i; |
---|
1295 | for(i=l;i<=k;i++) |
---|
1296 | { |
---|
1297 | //np->exp[(r->VarOffset[i] & 0xffffff)] =0; |
---|
1298 | p_SetExp(np,i,0,r); |
---|
1299 | } |
---|
1300 | p_Setm(np,r); |
---|
1301 | return np; |
---|
1302 | } |
---|
1303 | |
---|
1304 | // simialar to p_ShallowCopyDelete but does it only for leading monomial |
---|
1305 | static inline poly p_LmShallowCopyDelete(poly p, const ring r) |
---|
1306 | { |
---|
1307 | p_LmCheckPolyRing1(p, r); |
---|
1308 | pAssume1(omSizeWOfBin(bin) == omSizeWOfBin(r->PolyBin)); |
---|
1309 | poly new_p = p_New(r); |
---|
1310 | memcpy(new_p->exp, p->exp, r->ExpL_Size*sizeof(long)); |
---|
1311 | pSetCoeff0(new_p, pGetCoeff(p)); |
---|
1312 | pNext(new_p) = pNext(p); |
---|
1313 | omFreeBinAddr(p); |
---|
1314 | return new_p; |
---|
1315 | } |
---|
1316 | |
---|
1317 | /*************************************************************** |
---|
1318 | * |
---|
1319 | * Operation on ExpVectors |
---|
1320 | * |
---|
1321 | ***************************************************************/ |
---|
1322 | // ExpVector(p1) += ExpVector(p2) |
---|
1323 | static inline void p_ExpVectorAdd(poly p1, poly p2, const ring r) |
---|
1324 | { |
---|
1325 | p_LmCheckPolyRing1(p1, r); |
---|
1326 | p_LmCheckPolyRing1(p2, r); |
---|
1327 | #if PDEBUG >= 1 |
---|
1328 | for (int i=1; i<=r->N; i++) |
---|
1329 | pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask); |
---|
1330 | pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0); |
---|
1331 | #endif |
---|
1332 | |
---|
1333 | p_MemAdd_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size); |
---|
1334 | p_MemAdd_NegWeightAdjust(p1, r); |
---|
1335 | } |
---|
1336 | // ExpVector(pr) = ExpVector(p1) + ExpVector(p2) |
---|
1337 | static inline void p_ExpVectorSum(poly pr, poly p1, poly p2, const ring r) |
---|
1338 | { |
---|
1339 | p_LmCheckPolyRing1(p1, r); |
---|
1340 | p_LmCheckPolyRing1(p2, r); |
---|
1341 | p_LmCheckPolyRing1(pr, r); |
---|
1342 | #if PDEBUG >= 1 |
---|
1343 | for (int i=1; i<=r->N; i++) |
---|
1344 | pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask); |
---|
1345 | pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0); |
---|
1346 | #endif |
---|
1347 | |
---|
1348 | p_MemSum_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size); |
---|
1349 | p_MemAdd_NegWeightAdjust(pr, r); |
---|
1350 | } |
---|
1351 | // ExpVector(p1) -= ExpVector(p2) |
---|
1352 | static inline void p_ExpVectorSub(poly p1, poly p2, const ring r) |
---|
1353 | { |
---|
1354 | p_LmCheckPolyRing1(p1, r); |
---|
1355 | p_LmCheckPolyRing1(p2, r); |
---|
1356 | #if PDEBUG >= 1 |
---|
1357 | for (int i=1; i<=r->N; i++) |
---|
1358 | pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r)); |
---|
1359 | pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0 || |
---|
1360 | p_GetComp(p1, r) == p_GetComp(p2, r)); |
---|
1361 | #endif |
---|
1362 | |
---|
1363 | p_MemSub_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size); |
---|
1364 | p_MemSub_NegWeightAdjust(p1, r); |
---|
1365 | |
---|
1366 | } |
---|
1367 | // ExpVector(p1) += ExpVector(p2) - ExpVector(p3) |
---|
1368 | //static inline void p_ExpVectorAddSub(poly p1, poly p2, poly p3, const ring r) |
---|
1369 | //{ |
---|
1370 | // p_LmCheckPolyRing1(p1, r); |
---|
1371 | // p_LmCheckPolyRing1(p2, r); |
---|
1372 | // p_LmCheckPolyRing1(p3, r); |
---|
1373 | //#if PDEBUG >= 1 |
---|
1374 | // for (int i=1; i<=r->N; i++) |
---|
1375 | // pAssume1(p_GetExp(p1, i, r) + p_GetExp(p2, i, r) >= p_GetExp(p3, i, r)); |
---|
1376 | // pAssume1(p_GetComp(p1, r) == 0 || |
---|
1377 | // (p_GetComp(p2, r) - p_GetComp(p3, r) == 0) || |
---|
1378 | // (p_GetComp(p1, r) == p_GetComp(p2, r) - p_GetComp(p3, r))); |
---|
1379 | //#endif |
---|
1380 | // |
---|
1381 | // p_MemAddSub_LengthGeneral(p1->exp, p2->exp, p3->exp, r->ExpL_Size); |
---|
1382 | // // no need to adjust in case of NegWeights |
---|
1383 | //} |
---|
1384 | |
---|
1385 | // ExpVector(pr) = ExpVector(p1) - ExpVector(p2) |
---|
1386 | static inline void p_ExpVectorDiff(poly pr, poly p1, poly p2, const ring r) |
---|
1387 | { |
---|
1388 | p_LmCheckPolyRing1(p1, r); |
---|
1389 | p_LmCheckPolyRing1(p2, r); |
---|
1390 | p_LmCheckPolyRing1(pr, r); |
---|
1391 | #if PDEBUG >= 2 |
---|
1392 | for (int i=1; i<=r->N; i++) |
---|
1393 | pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r)); |
---|
1394 | pAssume1(!rRing_has_Comp(r) || p_GetComp(p1, r) == p_GetComp(p2, r)); |
---|
1395 | #endif |
---|
1396 | |
---|
1397 | p_MemDiff_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size); |
---|
1398 | p_MemSub_NegWeightAdjust(pr, r); |
---|
1399 | } |
---|
1400 | |
---|
1401 | static inline BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r) |
---|
1402 | { |
---|
1403 | p_LmCheckPolyRing1(p1, r); |
---|
1404 | p_LmCheckPolyRing1(p2, r); |
---|
1405 | |
---|
1406 | int i = r->ExpL_Size; |
---|
1407 | unsigned long *ep = p1->exp; |
---|
1408 | unsigned long *eq = p2->exp; |
---|
1409 | |
---|
1410 | do |
---|
1411 | { |
---|
1412 | i--; |
---|
1413 | if (ep[i] != eq[i]) return FALSE; |
---|
1414 | } |
---|
1415 | while (i); |
---|
1416 | return TRUE; |
---|
1417 | } |
---|
1418 | |
---|
1419 | static inline long p_Totaldegree(poly p, const ring r) |
---|
1420 | { |
---|
1421 | p_LmCheckPolyRing1(p, r); |
---|
1422 | unsigned long s = p_GetTotalDegree(p->exp[r->VarL_Offset[0]], |
---|
1423 | r, |
---|
1424 | r->MinExpPerLong); |
---|
1425 | for (int i=r->VarL_Size-1; i>0; i--) |
---|
1426 | { |
---|
1427 | s += p_GetTotalDegree(p->exp[r->VarL_Offset[i]], r); |
---|
1428 | } |
---|
1429 | return (long)s; |
---|
1430 | } |
---|
1431 | |
---|
1432 | static inline void p_GetExpV(poly p, int *ev, const ring r) |
---|
1433 | { |
---|
1434 | p_LmCheckPolyRing1(p, r); |
---|
1435 | for (int j = r->N; j; j--) |
---|
1436 | ev[j] = p_GetExp(p, j, r); |
---|
1437 | |
---|
1438 | ev[0] = p_GetComp(p, r); |
---|
1439 | } |
---|
1440 | static inline void p_SetExpV(poly p, int *ev, const ring r) |
---|
1441 | { |
---|
1442 | p_LmCheckPolyRing1(p, r); |
---|
1443 | for (int j = r->N; j; j--) |
---|
1444 | p_SetExp(p, j, ev[j], r); |
---|
1445 | |
---|
1446 | p_SetComp(p, ev[0],r); |
---|
1447 | p_Setm(p, r); |
---|
1448 | } |
---|
1449 | |
---|
1450 | /*************************************************************** |
---|
1451 | * |
---|
1452 | * Comparison w.r.t. monomial ordering |
---|
1453 | * |
---|
1454 | ***************************************************************/ |
---|
1455 | |
---|
1456 | static inline int p_LmCmp(poly p, poly q, const ring r) |
---|
1457 | { |
---|
1458 | p_LmCheckPolyRing1(p, r); |
---|
1459 | p_LmCheckPolyRing1(q, r); |
---|
1460 | |
---|
1461 | const unsigned long* _s1 = ((unsigned long*) p->exp); |
---|
1462 | const unsigned long* _s2 = ((unsigned long*) q->exp); |
---|
1463 | register unsigned long _v1; |
---|
1464 | register unsigned long _v2; |
---|
1465 | const unsigned long _l = r->CmpL_Size; |
---|
1466 | |
---|
1467 | register unsigned long _i=0; |
---|
1468 | |
---|
1469 | LengthGeneral_OrdGeneral_LoopTop: |
---|
1470 | _v1 = _s1[_i]; |
---|
1471 | _v2 = _s2[_i]; |
---|
1472 | if (_v1 == _v2) |
---|
1473 | { |
---|
1474 | _i++; |
---|
1475 | if (_i == _l) return 0; |
---|
1476 | goto LengthGeneral_OrdGeneral_LoopTop; |
---|
1477 | } |
---|
1478 | const long* _ordsgn = (long*) r->ordsgn; |
---|
1479 | if (_v1 > _v2) |
---|
1480 | { |
---|
1481 | if (_ordsgn[_i] == 1) return 1; |
---|
1482 | return -1; |
---|
1483 | } |
---|
1484 | if (_ordsgn[_i] == 1) return -1; |
---|
1485 | return 1; |
---|
1486 | |
---|
1487 | } |
---|
1488 | |
---|
1489 | /// returns TRUE if p1 is a skalar multiple of p2 |
---|
1490 | /// assume p1 != NULL and p2 != NULL |
---|
1491 | BOOLEAN p_ComparePolys(poly p1,poly p2, const ring r); |
---|
1492 | |
---|
1493 | |
---|
1494 | /*************************************************************** |
---|
1495 | * |
---|
1496 | * Comparisons: they are all done without regarding coeffs |
---|
1497 | * |
---|
1498 | ***************************************************************/ |
---|
1499 | #define p_LmCmpAction(p, q, r, actionE, actionG, actionS) \ |
---|
1500 | _p_LmCmpAction(p, q, r, actionE, actionG, actionS) |
---|
1501 | |
---|
1502 | // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !! |
---|
1503 | #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r) |
---|
1504 | |
---|
1505 | // pCmp: args may be NULL |
---|
1506 | // returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2))) |
---|
1507 | static inline int p_Cmp(poly p1, poly p2, ring r) |
---|
1508 | { |
---|
1509 | if (p2==NULL) |
---|
1510 | return 1; |
---|
1511 | if (p1==NULL) |
---|
1512 | return -1; |
---|
1513 | return p_LmCmp(p1,p2,r); |
---|
1514 | } |
---|
1515 | |
---|
1516 | |
---|
1517 | /*************************************************************** |
---|
1518 | * |
---|
1519 | * divisibility |
---|
1520 | * |
---|
1521 | ***************************************************************/ |
---|
1522 | /// return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] |
---|
1523 | /// TRUE, otherwise |
---|
1524 | /// (1) Consider long vars, instead of single exponents |
---|
1525 | /// (2) Clearly, if la > lb, then FALSE |
---|
1526 | /// (3) Suppose la <= lb, and consider first bits of single exponents in l: |
---|
1527 | /// if TRUE, then value of these bits is la ^ lb |
---|
1528 | /// if FALSE, then la-lb causes an "overflow" into one of those bits, i.e., |
---|
1529 | /// la ^ lb != la - lb |
---|
1530 | static inline BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r) |
---|
1531 | { |
---|
1532 | int i=r->VarL_Size - 1; |
---|
1533 | unsigned long divmask = r->divmask; |
---|
1534 | unsigned long la, lb; |
---|
1535 | |
---|
1536 | if (r->VarL_LowIndex >= 0) |
---|
1537 | { |
---|
1538 | i += r->VarL_LowIndex; |
---|
1539 | do |
---|
1540 | { |
---|
1541 | la = a->exp[i]; |
---|
1542 | lb = b->exp[i]; |
---|
1543 | if ((la > lb) || |
---|
1544 | (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask))) |
---|
1545 | { |
---|
1546 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == FALSE); |
---|
1547 | return FALSE; |
---|
1548 | } |
---|
1549 | i--; |
---|
1550 | } |
---|
1551 | while (i>=r->VarL_LowIndex); |
---|
1552 | } |
---|
1553 | else |
---|
1554 | { |
---|
1555 | do |
---|
1556 | { |
---|
1557 | la = a->exp[r->VarL_Offset[i]]; |
---|
1558 | lb = b->exp[r->VarL_Offset[i]]; |
---|
1559 | if ((la > lb) || |
---|
1560 | (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask))) |
---|
1561 | { |
---|
1562 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == FALSE); |
---|
1563 | return FALSE; |
---|
1564 | } |
---|
1565 | i--; |
---|
1566 | } |
---|
1567 | while (i>=0); |
---|
1568 | } |
---|
1569 | #ifdef HAVE_RINGS |
---|
1570 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == nDivBy(p_GetCoeff(b, r), p_GetCoeff(a, r))); |
---|
1571 | return (!rField_is_Ring(r)) || n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf); |
---|
1572 | #else |
---|
1573 | pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == TRUE); |
---|
1574 | return TRUE; |
---|
1575 | #endif |
---|
1576 | } |
---|
1577 | |
---|
1578 | static inline BOOLEAN _p_LmDivisibleByNoComp(poly a, const ring r_a, poly b, const ring r_b) |
---|
1579 | { |
---|
1580 | int i=r_a->N; |
---|
1581 | pAssume1(r_a->N == r_b->N); |
---|
1582 | |
---|
1583 | do |
---|
1584 | { |
---|
1585 | if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b)) |
---|
1586 | return FALSE; |
---|
1587 | i--; |
---|
1588 | } |
---|
1589 | while (i); |
---|
1590 | #ifdef HAVE_RINGS |
---|
1591 | return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf); |
---|
1592 | #else |
---|
1593 | return TRUE; |
---|
1594 | #endif |
---|
1595 | } |
---|
1596 | |
---|
1597 | #ifdef HAVE_RATGRING |
---|
1598 | static inline BOOLEAN _p_LmDivisibleByNoCompPart(poly a, const ring r_a, poly b, const ring r_b,const int start, const int end) |
---|
1599 | { |
---|
1600 | int i=end; |
---|
1601 | pAssume1(r_a->N == r_b->N); |
---|
1602 | |
---|
1603 | do |
---|
1604 | { |
---|
1605 | if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b)) |
---|
1606 | return FALSE; |
---|
1607 | i--; |
---|
1608 | } |
---|
1609 | while (i>=start); |
---|
1610 | #ifdef HAVE_RINGS |
---|
1611 | return nDivBy(p_GetCoeff(b, r), p_GetCoeff(a, r)); |
---|
1612 | #else |
---|
1613 | return TRUE; |
---|
1614 | #endif |
---|
1615 | } |
---|
1616 | static inline BOOLEAN _p_LmDivisibleByPart(poly a, const ring r_a, poly b, const ring r_b,const int start, const int end) |
---|
1617 | { |
---|
1618 | if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b)) |
---|
1619 | return _p_LmDivisibleByNoCompPart(a, r_a, b, r_b,start,end); |
---|
1620 | return FALSE; |
---|
1621 | } |
---|
1622 | static inline BOOLEAN p_LmDivisibleByPart(poly a, poly b, const ring r,const int start, const int end) |
---|
1623 | { |
---|
1624 | p_LmCheckPolyRing1(b, r); |
---|
1625 | pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r)); |
---|
1626 | if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r)) |
---|
1627 | return _p_LmDivisibleByNoCompPart(a, r, b, r,start, end); |
---|
1628 | return FALSE; |
---|
1629 | } |
---|
1630 | #endif |
---|
1631 | static inline BOOLEAN _p_LmDivisibleBy(poly a, poly b, const ring r) |
---|
1632 | { |
---|
1633 | if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r)) |
---|
1634 | return _p_LmDivisibleByNoComp(a, b, r); |
---|
1635 | return FALSE; |
---|
1636 | } |
---|
1637 | static inline BOOLEAN _p_LmDivisibleBy(poly a, const ring r_a, poly b, const ring r_b) |
---|
1638 | { |
---|
1639 | if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b)) |
---|
1640 | return _p_LmDivisibleByNoComp(a, r_a, b, r_b); |
---|
1641 | return FALSE; |
---|
1642 | } |
---|
1643 | static inline BOOLEAN p_LmDivisibleByNoComp(poly a, poly b, const ring r) |
---|
1644 | { |
---|
1645 | p_LmCheckPolyRing1(a, r); |
---|
1646 | p_LmCheckPolyRing1(b, r); |
---|
1647 | return _p_LmDivisibleByNoComp(a, b, r); |
---|
1648 | } |
---|
1649 | |
---|
1650 | static inline BOOLEAN p_LmDivisibleByNoComp(poly a, const ring ra, poly b, const ring rb) |
---|
1651 | { |
---|
1652 | p_LmCheckPolyRing1(a, ra); |
---|
1653 | p_LmCheckPolyRing1(b, rb); |
---|
1654 | return _p_LmDivisibleByNoComp(a, ra, b, rb); |
---|
1655 | } |
---|
1656 | |
---|
1657 | static inline BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r) |
---|
1658 | { |
---|
1659 | p_LmCheckPolyRing1(b, r); |
---|
1660 | pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r)); |
---|
1661 | if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r)) |
---|
1662 | return _p_LmDivisibleByNoComp(a, b, r); |
---|
1663 | return FALSE; |
---|
1664 | } |
---|
1665 | |
---|
1666 | static inline BOOLEAN p_DivisibleBy(poly a, poly b, const ring r) |
---|
1667 | { |
---|
1668 | pIfThen1(b!=NULL, p_LmCheckPolyRing1(b, r)); |
---|
1669 | pIfThen1(a!=NULL, p_LmCheckPolyRing1(a, r)); |
---|
1670 | |
---|
1671 | if (a != NULL && (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))) |
---|
1672 | return _p_LmDivisibleByNoComp(a,b,r); |
---|
1673 | return FALSE; |
---|
1674 | } |
---|
1675 | static inline BOOLEAN p_DivisibleBy(poly a, const ring r_a, poly b, const ring r_b) |
---|
1676 | { |
---|
1677 | pIfThen1(b!=NULL, p_LmCheckPolyRing1(b, r_b)); |
---|
1678 | pIfThen1(a!=NULL, p_LmCheckPolyRing1(a, r_a)); |
---|
1679 | if (a != NULL) { |
---|
1680 | return _p_LmDivisibleBy(a, r_a, b, r_b); |
---|
1681 | } |
---|
1682 | return FALSE; |
---|
1683 | } |
---|
1684 | static inline BOOLEAN p_LmDivisibleBy(poly a, const ring r_a, poly b, const ring r_b) |
---|
1685 | { |
---|
1686 | p_LmCheckPolyRing(a, r_a); |
---|
1687 | p_LmCheckPolyRing(b, r_b); |
---|
1688 | return _p_LmDivisibleBy(a, r_a, b, r_b); |
---|
1689 | } |
---|
1690 | |
---|
1691 | static inline BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a, |
---|
1692 | poly b, unsigned long not_sev_b, const ring r) |
---|
1693 | { |
---|
1694 | p_LmCheckPolyRing1(a, r); |
---|
1695 | p_LmCheckPolyRing1(b, r); |
---|
1696 | #ifndef PDIV_DEBUG |
---|
1697 | _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r); |
---|
1698 | _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r); |
---|
1699 | |
---|
1700 | if (sev_a & not_sev_b) |
---|
1701 | { |
---|
1702 | pAssume1(p_LmDivisibleByNoComp(a, b, r) == FALSE); |
---|
1703 | return FALSE; |
---|
1704 | } |
---|
1705 | return p_LmDivisibleBy(a, b, r); |
---|
1706 | #else |
---|
1707 | return pDebugLmShortDivisibleBy(a, sev_a, r, b, not_sev_b, r); |
---|
1708 | #endif |
---|
1709 | } |
---|
1710 | |
---|
1711 | static inline BOOLEAN p_LmShortDivisibleByNoComp(poly a, unsigned long sev_a, |
---|
1712 | poly b, unsigned long not_sev_b, const ring r) |
---|
1713 | { |
---|
1714 | p_LmCheckPolyRing1(a, r); |
---|
1715 | p_LmCheckPolyRing1(b, r); |
---|
1716 | #ifndef PDIV_DEBUG |
---|
1717 | _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r); |
---|
1718 | _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r); |
---|
1719 | |
---|
1720 | if (sev_a & not_sev_b) |
---|
1721 | { |
---|
1722 | pAssume1(p_LmDivisibleByNoComp(a, b, r) == FALSE); |
---|
1723 | return FALSE; |
---|
1724 | } |
---|
1725 | return p_LmDivisibleByNoComp(a, b, r); |
---|
1726 | #else |
---|
1727 | return pDebugLmShortDivisibleByNoComp(a, sev_a, r, b, not_sev_b, r); |
---|
1728 | #endif |
---|
1729 | } |
---|
1730 | |
---|
1731 | static inline BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a, const ring r_a, |
---|
1732 | poly b, unsigned long not_sev_b, const ring r_b) |
---|
1733 | { |
---|
1734 | p_LmCheckPolyRing1(a, r_a); |
---|
1735 | p_LmCheckPolyRing1(b, r_b); |
---|
1736 | #ifndef PDIV_DEBUG |
---|
1737 | _pPolyAssume2(p_GetShortExpVector(a, r_a) == sev_a, a, r_a); |
---|
1738 | _pPolyAssume2(p_GetShortExpVector(b, r_b) == ~ not_sev_b, b, r_b); |
---|
1739 | |
---|
1740 | if (sev_a & not_sev_b) |
---|
1741 | { |
---|
1742 | pAssume1(_p_LmDivisibleByNoComp(a, r_a, b, r_b) == FALSE); |
---|
1743 | return FALSE; |
---|
1744 | } |
---|
1745 | return _p_LmDivisibleBy(a, r_a, b, r_b); |
---|
1746 | #else |
---|
1747 | return pDebugLmShortDivisibleBy(a, sev_a, r_a, b, not_sev_b, r_b); |
---|
1748 | #endif |
---|
1749 | } |
---|
1750 | |
---|
1751 | /*************************************************************** |
---|
1752 | * |
---|
1753 | * Misc things on Lm |
---|
1754 | * |
---|
1755 | ***************************************************************/ |
---|
1756 | |
---|
1757 | |
---|
1758 | // like the respective p_LmIs* routines, except that p might be empty |
---|
1759 | static inline BOOLEAN p_IsConstantComp(const poly p, const ring r) |
---|
1760 | { |
---|
1761 | if (p == NULL) return TRUE; |
---|
1762 | return (pNext(p)==NULL) && p_LmIsConstantComp(p, r); |
---|
1763 | } |
---|
1764 | |
---|
1765 | static inline BOOLEAN p_IsConstant(const poly p, const ring r) |
---|
1766 | { |
---|
1767 | if (p == NULL) return TRUE; |
---|
1768 | return (pNext(p)==NULL) && p_LmIsConstant(p, r); |
---|
1769 | } |
---|
1770 | |
---|
1771 | static inline BOOLEAN p_IsConstantPoly(const poly p, const ring r) |
---|
1772 | { |
---|
1773 | poly pp=p; |
---|
1774 | while(pp!=NULL) |
---|
1775 | { |
---|
1776 | if (! p_LmIsConstantComp(pp, r)) |
---|
1777 | return FALSE; |
---|
1778 | pIter(pp); |
---|
1779 | } |
---|
1780 | return TRUE; |
---|
1781 | } |
---|
1782 | |
---|
1783 | static inline BOOLEAN p_IsUnit(const poly p, const ring r) |
---|
1784 | { |
---|
1785 | if (p == NULL) return FALSE; |
---|
1786 | #ifdef HAVE_RINGS |
---|
1787 | if (rField_is_Ring(r)) |
---|
1788 | return (p_LmIsConstant(p, r) && n_IsUnit(pGetCoeff(p),r->cf)); |
---|
1789 | #endif |
---|
1790 | return p_LmIsConstant(p, r); |
---|
1791 | } |
---|
1792 | |
---|
1793 | static inline BOOLEAN p_LmExpVectorAddIsOk(const poly p1, const poly p2, |
---|
1794 | const ring r) |
---|
1795 | { |
---|
1796 | p_LmCheckPolyRing(p1, r); |
---|
1797 | p_LmCheckPolyRing(p2, r); |
---|
1798 | unsigned long l1, l2, divmask = r->divmask; |
---|
1799 | int i; |
---|
1800 | |
---|
1801 | for (i=0; i<r->VarL_Size; i++) |
---|
1802 | { |
---|
1803 | l1 = p1->exp[r->VarL_Offset[i]]; |
---|
1804 | l2 = p2->exp[r->VarL_Offset[i]]; |
---|
1805 | // do the divisiblity trick |
---|
1806 | if ( (l1 > ULONG_MAX - l2) || |
---|
1807 | (((l1 & divmask) ^ (l2 & divmask)) != ((l1 + l2) & divmask))) |
---|
1808 | return FALSE; |
---|
1809 | } |
---|
1810 | return TRUE; |
---|
1811 | } |
---|
1812 | void p_Split(poly p, poly * r); /*p => IN(p), r => REST(p) */ |
---|
1813 | BOOLEAN p_HasNotCF(poly p1, poly p2, const ring r); |
---|
1814 | poly p_mInit(const char *s, BOOLEAN &ok, const ring r); /* monom s -> poly, interpreter */ |
---|
1815 | const char * p_Read(const char *s, poly &p,const ring r); /* monom -> poly */ |
---|
1816 | poly p_Divide(poly a, poly b, const ring r); |
---|
1817 | poly p_DivideM(poly a, poly b, const ring r); |
---|
1818 | poly p_Div_nn(poly p, const number n, const ring r); |
---|
1819 | |
---|
1820 | // returns the LCM of the head terms of a and b in *m |
---|
1821 | void p_Lcm(const poly a, const poly b, poly m, const ring r); |
---|
1822 | |
---|
1823 | poly p_Diff(poly a, int k, const ring r); |
---|
1824 | poly p_DiffOp(poly a, poly b,BOOLEAN multiply, const ring r); |
---|
1825 | int p_Weight(int c, const ring r); |
---|
1826 | |
---|
1827 | /// assumes that p and divisor are univariate polynomials in r, |
---|
1828 | /// mentioning the same variable; |
---|
1829 | /// assumes divisor != NULL; |
---|
1830 | /// p may be NULL; |
---|
1831 | /// assumes a global monomial ordering in r; |
---|
1832 | /// performs polynomial division of p by divisor: |
---|
1833 | /// - afterwards p contains the remainder of the division, i.e., |
---|
1834 | /// p_before = result * divisor + p_afterwards; |
---|
1835 | /// - if needResult == TRUE, then the method computes and returns 'result', |
---|
1836 | /// otherwise NULL is returned (This parametrization can be used when |
---|
1837 | /// one is only interested in the remainder of the division. In this |
---|
1838 | /// case, the method will be slightly faster.) |
---|
1839 | /// leaves divisor unmodified |
---|
1840 | poly p_PolyDiv(poly &p, const poly divisor, const BOOLEAN needResult, const ring r); |
---|
1841 | |
---|
1842 | /* syszygy stuff */ |
---|
1843 | BOOLEAN p_VectorHasUnitB(poly p, int * k, const ring r); |
---|
1844 | void p_VectorHasUnit(poly p, int * k, int * len, const ring r); |
---|
1845 | poly p_TakeOutComp1(poly * p, int k, const ring r); |
---|
1846 | // Splits *p into two polys: *q which consists of all monoms with |
---|
1847 | // component == comp and *p of all other monoms *lq == pLength(*q) |
---|
1848 | // On return all components pf *q == 0 |
---|
1849 | void p_TakeOutComp(poly *p, long comp, poly *q, int *lq, const ring r); |
---|
1850 | |
---|
1851 | // This is something weird -- Don't use it, unless you know what you are doing |
---|
1852 | poly p_TakeOutComp(poly * p, int k, const ring r); |
---|
1853 | |
---|
1854 | void p_DeleteComp(poly * p,int k, const ring r); |
---|
1855 | |
---|
1856 | /*-------------ring management:----------------------*/ |
---|
1857 | |
---|
1858 | // resets the pFDeg and pLDeg: if pLDeg is not given, it is |
---|
1859 | // set to currRing->pLDegOrig, i.e. to the respective LDegProc which |
---|
1860 | // only uses pFDeg (and not pDeg, or pTotalDegree, etc). |
---|
1861 | // If you use this, make sure your procs does not make any assumptions |
---|
1862 | // on ordering and/or OrdIndex -- otherwise they might return wrong results |
---|
1863 | // on strat->tailRing |
---|
1864 | void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg = NULL); |
---|
1865 | // restores pFDeg and pLDeg: |
---|
1866 | void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg); |
---|
1867 | |
---|
1868 | /*-------------pComp for syzygies:-------------------*/ |
---|
1869 | void p_SetModDeg(intvec *w, ring r); |
---|
1870 | |
---|
1871 | /*------------ Jet ----------------------------------*/ |
---|
1872 | poly pp_Jet(poly p, int m, const ring R); |
---|
1873 | poly p_Jet(poly p, int m,const ring R); |
---|
1874 | poly pp_JetW(poly p, int m, short *w, const ring R); |
---|
1875 | poly p_JetW(poly p, int m, short *w, const ring R); |
---|
1876 | |
---|
1877 | poly n_PermNumber(const number z, const int *par_perm, const int OldPar, const ring src, const ring dst); |
---|
1878 | |
---|
1879 | poly p_PermPoly (poly p, const int * perm,const ring OldRing, const ring dst, |
---|
1880 | nMapFunc nMap, const int *par_perm=NULL, int OldPar=0); |
---|
1881 | |
---|
1882 | /*----------------------------------------------------*/ |
---|
1883 | poly p_Series(int n,poly p,poly u, intvec *w, const ring R); |
---|
1884 | poly p_Invers(int n,poly u,intvec *w, const ring R); |
---|
1885 | |
---|
1886 | |
---|
1887 | |
---|
1888 | /*----------------------------------------------------*/ |
---|
1889 | int p_Var(poly mi, const ring r); |
---|
1890 | /// the minimal index of used variables - 1 |
---|
1891 | int p_LowVar (poly p, const ring r); |
---|
1892 | |
---|
1893 | /*----------------------------------------------------*/ |
---|
1894 | /// shifts components of the vector p by i |
---|
1895 | void p_Shift (poly * p,int i, const ring r); |
---|
1896 | #endif // P_POLYS_H |
---|
1897 | |
---|