1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /*************************************************************** |
---|
5 | * File: gring.cc |
---|
6 | * Purpose: noncommutative kernel procedures |
---|
7 | * Author: levandov (Viktor Levandovsky) |
---|
8 | * Created: 8/00 - 11/00 |
---|
9 | *******************************************************************/ |
---|
10 | |
---|
11 | #define MYTEST 0 |
---|
12 | #define OUTPUT 0 |
---|
13 | |
---|
14 | #if MYTEST |
---|
15 | #define OM_CHECK 4 |
---|
16 | #define OM_TRACK 5 |
---|
17 | #endif |
---|
18 | |
---|
19 | |
---|
20 | |
---|
21 | |
---|
22 | #include "misc/auxiliary.h" |
---|
23 | |
---|
24 | #ifdef HAVE_PLURAL |
---|
25 | |
---|
26 | # define PLURAL_INTERNAL_DECLARATIONS |
---|
27 | #include "nc.h" |
---|
28 | #include "sca.h" |
---|
29 | #include "gb_hack.h" |
---|
30 | |
---|
31 | #include "polys/monomials/ring.h" |
---|
32 | |
---|
33 | #include "coeffs/numbers.h" |
---|
34 | |
---|
35 | #include "misc/options.h" |
---|
36 | |
---|
37 | #include "polys/monomials/ring.h" |
---|
38 | #include "polys/monomials/p_polys.h" |
---|
39 | |
---|
40 | #include "polys/simpleideals.h" |
---|
41 | #include "polys/matpol.h" |
---|
42 | |
---|
43 | #include "polys/kbuckets.h" |
---|
44 | #include "polys/sbuckets.h" |
---|
45 | |
---|
46 | #include "polys/prCopy.h" |
---|
47 | |
---|
48 | #include "polys/operations/p_Mult_q.h" |
---|
49 | |
---|
50 | #include "summator.h" |
---|
51 | |
---|
52 | #include "ncSAMult.h" // for CMultiplier etc classes |
---|
53 | #include "ncSAFormula.h" // for CFormulaPowerMultiplier and enum Enum_ncSAType |
---|
54 | |
---|
55 | // #ifdef HAVE_RATGRING |
---|
56 | // #include "polys/ratgring.h" |
---|
57 | // #endif |
---|
58 | |
---|
59 | static poly NF_Proc_Dummy(ideal, ideal, poly, int, int, const ring) |
---|
60 | { WerrorS("nc_NF not defined"); return NULL; } |
---|
61 | static ideal BBA_Proc_Dummy (const ideal, const ideal, const intvec *, const intvec *, kStrategy, const ring) |
---|
62 | { WerrorS("nc_NF not defined"); return NULL; } |
---|
63 | |
---|
64 | // the following funtion poiters are quasi-static: |
---|
65 | // they will be set in siInit and never changes afterwards: |
---|
66 | VAR NF_Proc nc_NF=NF_Proc_Dummy; |
---|
67 | VAR BBA_Proc gnc_gr_bba=BBA_Proc_Dummy; |
---|
68 | VAR BBA_Proc gnc_gr_mora=BBA_Proc_Dummy; |
---|
69 | VAR BBA_Proc sca_bba=BBA_Proc_Dummy; |
---|
70 | VAR BBA_Proc sca_mora=BBA_Proc_Dummy; |
---|
71 | VAR BBA_Proc sca_gr_bba=BBA_Proc_Dummy; |
---|
72 | |
---|
73 | /* copy : */ |
---|
74 | poly nc_p_CopyGet(poly a, const ring r); |
---|
75 | poly nc_p_CopyPut(poly a, const ring r); |
---|
76 | |
---|
77 | poly nc_p_Bracket_qq(poly p, const poly q, const ring r); |
---|
78 | |
---|
79 | // only SCA can be used by default, formulas are off by default |
---|
80 | VAR int iNCExtensions = SCAMASK | NOFORMULAMASK; |
---|
81 | |
---|
82 | int& getNCExtensions() |
---|
83 | { |
---|
84 | return (iNCExtensions); |
---|
85 | } |
---|
86 | |
---|
87 | int setNCExtensions(int iMask) |
---|
88 | { |
---|
89 | const int iOld = getNCExtensions(); |
---|
90 | getNCExtensions() = iMask; |
---|
91 | return (iOld); |
---|
92 | } |
---|
93 | |
---|
94 | bool ncExtensions(int iMask) // = 0x0FFFF |
---|
95 | { |
---|
96 | return ((getNCExtensions() & iMask) == iMask); |
---|
97 | } |
---|
98 | |
---|
99 | /* global nc_macros : */ |
---|
100 | |
---|
101 | #define freeT(A,v) omFreeSize((ADDRESS)A,(v+1)*sizeof(int)) |
---|
102 | #define freeN(A,k) omFreeSize((ADDRESS)A,k*sizeof(number)) |
---|
103 | |
---|
104 | |
---|
105 | // some forward declarations: |
---|
106 | |
---|
107 | |
---|
108 | // polynomial multiplication functions for p_Procs : |
---|
109 | poly gnc_pp_Mult_mm(const poly p, const poly m, const ring r, poly &last); |
---|
110 | poly gnc_p_Mult_mm(poly p, const poly m, const ring r); |
---|
111 | poly gnc_p_mm_Mult(poly m, const poly p, const ring r); |
---|
112 | poly gnc_pp_mm_Mult(const poly p, const poly m, const ring r); |
---|
113 | |
---|
114 | |
---|
115 | /* syzygies : */ |
---|
116 | poly gnc_CreateSpolyOld(const poly p1, const poly p2/*, poly spNoether*/, const ring r); |
---|
117 | poly gnc_ReduceSpolyOld(const poly p1, poly p2/*, poly spNoether*/, const ring r); |
---|
118 | |
---|
119 | poly gnc_CreateSpolyNew(const poly p1, const poly p2/*, poly spNoether*/, const ring r); |
---|
120 | poly gnc_ReduceSpolyNew(const poly p1, poly p2/*, poly spNoether*/, const ring r); |
---|
121 | |
---|
122 | |
---|
123 | |
---|
124 | void gnc_kBucketPolyRedNew(kBucket_pt b, poly p, number *c); |
---|
125 | void gnc_kBucketPolyRed_ZNew(kBucket_pt b, poly p, number *c); |
---|
126 | |
---|
127 | void gnc_kBucketPolyRedOld(kBucket_pt b, poly p, number *c); |
---|
128 | void gnc_kBucketPolyRed_ZOld(kBucket_pt b, poly p, number *c); |
---|
129 | |
---|
130 | |
---|
131 | // poly gnc_ReduceSpolyNew(poly p1, poly p2, poly spNoether, const ring r); |
---|
132 | // void gnc_ReduceSpolyTail(poly p1, poly q, poly q2, poly spNoether, const ring r); |
---|
133 | |
---|
134 | // void nc_kBucketPolyRed(kBucket_pt b, poly p); |
---|
135 | |
---|
136 | void nc_CleanUp(nc_struct* p); // just free memory! |
---|
137 | void nc_rCleanUp(ring r); // smaller than kill: just free mem |
---|
138 | |
---|
139 | |
---|
140 | #if 0 |
---|
141 | // deprecated functions: |
---|
142 | // poly gnc_p_Minus_mm_Mult_qq_ign(poly p, const poly m, poly q, int & d1, poly d2, const ring ri, poly &d3); |
---|
143 | // poly gnc_p_Minus_mm_Mult_qq(poly p, const poly m, poly q, const ring r); |
---|
144 | // poly nc_p_Minus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp, int lq, const ring r); |
---|
145 | // poly nc_p_Plus_mm_Mult_qq (poly p, const poly m, const poly q, int &lp, int lq, const ring r); |
---|
146 | #endif |
---|
147 | |
---|
148 | |
---|
149 | /////////////////////////////////////////////////////////////////////////////// |
---|
150 | poly nc_p_Minus_mm_Mult_qq(poly p, const poly m, const poly q, int &shorter, |
---|
151 | const poly, const ring r) |
---|
152 | { |
---|
153 | poly mc = p_Neg( p_Copy(m, r), r ); |
---|
154 | poly mmc = nc_mm_Mult_pp( mc, q, r ); |
---|
155 | p_Delete(&mc, r); |
---|
156 | |
---|
157 | int org_p=pLength(p); |
---|
158 | int org_q=pLength(q); |
---|
159 | |
---|
160 | p = p_Add_q(p, mmc, r); |
---|
161 | |
---|
162 | shorter = pLength(p)-org_p-org_q; // ring independent! |
---|
163 | |
---|
164 | return(p); |
---|
165 | } |
---|
166 | |
---|
167 | // returns p + m*q destroys p, const: q, m |
---|
168 | poly nc_p_Plus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp, |
---|
169 | const int, const ring r) |
---|
170 | { |
---|
171 | p = p_Add_q(p, nc_mm_Mult_pp( m, q, r ), r); |
---|
172 | |
---|
173 | lp = pLength(p); |
---|
174 | |
---|
175 | return(p); |
---|
176 | } |
---|
177 | |
---|
178 | #if 0 |
---|
179 | poly gnc_p_Minus_mm_Mult_qq_ign(poly p, const poly m, poly q, int & d1, poly d2, const ring r, poly &d3) |
---|
180 | { |
---|
181 | poly t; |
---|
182 | int i; |
---|
183 | |
---|
184 | return gnc_p_Minus_mm_Mult_qq(p, m, q, d1, i, t, r); |
---|
185 | } |
---|
186 | #endif |
---|
187 | |
---|
188 | |
---|
189 | //----------- auxiliary routines-------------------------- |
---|
190 | poly _gnc_p_Mult_q(poly p, poly q, const int copy, const ring r) // not used anymore! |
---|
191 | /* destroy p,q unless copy=1 */ |
---|
192 | { |
---|
193 | poly res=NULL; |
---|
194 | poly qq,pp; |
---|
195 | if (copy) |
---|
196 | { |
---|
197 | qq=p_Copy(q,r); |
---|
198 | pp=p_Copy(p,r); |
---|
199 | } |
---|
200 | else |
---|
201 | { |
---|
202 | qq=q; |
---|
203 | pp=p; |
---|
204 | } |
---|
205 | while (qq!=NULL) |
---|
206 | { |
---|
207 | res=p_Add_q(res, pp_Mult_mm(pp, qq, r), r); // p_Head(qq, r)? |
---|
208 | qq=p_LmDeleteAndNext(qq,r); |
---|
209 | } |
---|
210 | p_Delete(&pp,r); |
---|
211 | return(res); |
---|
212 | } |
---|
213 | |
---|
214 | // return pPolyP * pPolyQ; destroy or reuse pPolyP and pPolyQ |
---|
215 | poly _nc_p_Mult_q(poly pPolyP, poly pPolyQ, const ring rRing) |
---|
216 | { |
---|
217 | assume( rIsNCRing(rRing) ); |
---|
218 | #ifdef PDEBUG |
---|
219 | p_Test(pPolyP, rRing); |
---|
220 | p_Test(pPolyQ, rRing); |
---|
221 | #endif |
---|
222 | #ifdef RDEBUG |
---|
223 | rTest(rRing); |
---|
224 | #endif |
---|
225 | |
---|
226 | int lp, lq; |
---|
227 | |
---|
228 | pqLength(pPolyP, pPolyQ, lp, lq, MIN_LENGTH_BUCKET); |
---|
229 | |
---|
230 | bool bUsePolynomial = TEST_OPT_NOT_BUCKETS || (si_max(lp, lq) < MIN_LENGTH_BUCKET); // ??? |
---|
231 | |
---|
232 | CPolynomialSummator sum(rRing, bUsePolynomial); |
---|
233 | |
---|
234 | if (lq <= lp) // ? |
---|
235 | { |
---|
236 | // always length(q) times "p * q[j]" |
---|
237 | for( ; pPolyQ!=NULL; pPolyQ = p_LmDeleteAndNext( pPolyQ, rRing ) ) |
---|
238 | sum += pp_Mult_mm( pPolyP, pPolyQ, rRing); |
---|
239 | |
---|
240 | p_Delete( &pPolyP, rRing ); |
---|
241 | } else |
---|
242 | { |
---|
243 | // always length(p) times "p[i] * q" |
---|
244 | for( ; pPolyP!=NULL; pPolyP = p_LmDeleteAndNext( pPolyP, rRing ) ) |
---|
245 | sum += nc_mm_Mult_pp( pPolyP, pPolyQ, rRing); |
---|
246 | |
---|
247 | p_Delete( &pPolyQ, rRing ); |
---|
248 | } |
---|
249 | |
---|
250 | return(sum); |
---|
251 | } |
---|
252 | |
---|
253 | // return pPolyP * pPolyQ; preserve pPolyP and pPolyQ |
---|
254 | poly _nc_pp_Mult_qq(const poly pPolyP, const poly pPolyQ, const ring rRing) |
---|
255 | { |
---|
256 | assume( rIsPluralRing(rRing) ); |
---|
257 | #ifdef PDEBUG |
---|
258 | p_Test(pPolyP, rRing); |
---|
259 | p_Test(pPolyQ, rRing); |
---|
260 | #endif |
---|
261 | #ifdef RDEBUG |
---|
262 | rTest(rRing); |
---|
263 | #endif |
---|
264 | |
---|
265 | int lp, lq; |
---|
266 | |
---|
267 | pqLength(pPolyP, pPolyQ, lp, lq, MIN_LENGTH_BUCKET); |
---|
268 | |
---|
269 | bool bUsePolynomial = TEST_OPT_NOT_BUCKETS || (si_max(lp, lq) < MIN_LENGTH_BUCKET); // ??? |
---|
270 | |
---|
271 | CPolynomialSummator sum(rRing, bUsePolynomial); |
---|
272 | |
---|
273 | if (lq <= lp) // ? |
---|
274 | { |
---|
275 | // always length(q) times "p * q[j]" |
---|
276 | for( poly q = pPolyQ; q !=NULL; q = pNext(q) ) |
---|
277 | sum += pp_Mult_mm(pPolyP, q, rRing); |
---|
278 | } else |
---|
279 | { |
---|
280 | // always length(p) times "p[i] * q" |
---|
281 | for( poly p = pPolyP; p !=NULL; p = pNext(p) ) |
---|
282 | sum += nc_mm_Mult_pp( p, pPolyQ, rRing); |
---|
283 | } |
---|
284 | |
---|
285 | return(sum); |
---|
286 | } |
---|
287 | |
---|
288 | |
---|
289 | |
---|
290 | poly gnc_mm_Mult_nn (int *F, int *G, const ring r); |
---|
291 | poly gnc_mm_Mult_uu (int *F,int jG,int bG, const ring r); |
---|
292 | |
---|
293 | /* #define nc_uu_Mult_ww nc_uu_Mult_ww_vert */ |
---|
294 | poly gnc_uu_Mult_ww (int i, int a, int j, int b, const ring r); |
---|
295 | /* poly nc_uu_Mult_ww_vert (int i, int a, int j, int b, const ring r); */ |
---|
296 | /* poly nc_uu_Mult_ww_horvert (int i, int a, int j, int b, const ring r); */ |
---|
297 | /* poly nc_uu_Mult_ww_hvdiag (int i, int a, int j, int b, const ring r); */ |
---|
298 | /* not written yet */ |
---|
299 | |
---|
300 | |
---|
301 | poly gnc_p_Mult_mm_Common(poly p, const poly m, int side, const ring r) |
---|
302 | /* p is poly, m is mono with coeff, destroys p */ |
---|
303 | /* if side==1, computes p_Mult_mm; otherwise, mm_Mult_p */ |
---|
304 | { |
---|
305 | if ((p==NULL) || (m==NULL)) return NULL; |
---|
306 | /* if (pNext(p)==NULL) return(nc_mm_Mult_nn(p,pCopy(m),r)); */ |
---|
307 | /* excluded - the cycle will do it anyway - OK. */ |
---|
308 | if (p_IsConstant(m,r)) return(__p_Mult_nn(p,p_GetCoeff(m,r),r)); |
---|
309 | |
---|
310 | #ifdef PDEBUG |
---|
311 | p_Test(p,r); |
---|
312 | p_Test(m,r); |
---|
313 | #endif |
---|
314 | poly v=NULL; |
---|
315 | int rN=r->N; |
---|
316 | int *P=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
317 | int *M=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
318 | /* coefficients: */ |
---|
319 | number cP,cM,cOut; |
---|
320 | p_GetExpV(m, M, r); |
---|
321 | cM=p_GetCoeff(m,r); |
---|
322 | /* components:*/ |
---|
323 | const int expM=p_GetComp(m,r); |
---|
324 | int expP=0; |
---|
325 | int expOut=0; |
---|
326 | /* bucket constraints: */ |
---|
327 | int UseBuckets=1; |
---|
328 | if (pLength(p)< MIN_LENGTH_BUCKET || TEST_OPT_NOT_BUCKETS) UseBuckets=0; |
---|
329 | |
---|
330 | CPolynomialSummator sum(r, UseBuckets == 0); |
---|
331 | |
---|
332 | while (p!=NULL) |
---|
333 | { |
---|
334 | #ifdef PDEBUG |
---|
335 | p_Test(p,r); |
---|
336 | #endif |
---|
337 | expP=p_GetComp(p,r); |
---|
338 | if (expP==0) |
---|
339 | { |
---|
340 | expOut=expM; |
---|
341 | } |
---|
342 | else |
---|
343 | { |
---|
344 | if (expM==0) |
---|
345 | { |
---|
346 | expOut=expP; |
---|
347 | #ifdef PDEBUG |
---|
348 | // if (side) |
---|
349 | // { |
---|
350 | // PrintS("gnc_p_Mult_mm: Multiplication in the left module from the right"); |
---|
351 | // } |
---|
352 | #endif |
---|
353 | } |
---|
354 | else |
---|
355 | { |
---|
356 | /* REPORT_ERROR */ |
---|
357 | #ifdef PDEBUG |
---|
358 | const char* s; |
---|
359 | if (side==1) s="gnc_p_Mult_mm"; |
---|
360 | else s="gnc_p_mm_Mult"; |
---|
361 | Print("%s: exponent mismatch %d and %d\n",s,expP,expM); |
---|
362 | #endif |
---|
363 | expOut=0; |
---|
364 | } |
---|
365 | } |
---|
366 | p_GetExpV(p,P,r); |
---|
367 | cP=pGetCoeff(p); |
---|
368 | cOut=n_Mult(cP,cM,r->cf); |
---|
369 | if (side==1) |
---|
370 | { |
---|
371 | v = gnc_mm_Mult_nn(P, M, r); |
---|
372 | } |
---|
373 | else |
---|
374 | { |
---|
375 | v = gnc_mm_Mult_nn(M, P, r); |
---|
376 | } |
---|
377 | v = __p_Mult_nn(v,cOut,r); |
---|
378 | n_Delete(&cOut,r->cf); |
---|
379 | p_SetCompP(v,expOut,r); |
---|
380 | |
---|
381 | sum += v; |
---|
382 | |
---|
383 | p_LmDelete(&p,r); |
---|
384 | } |
---|
385 | freeT(P,rN); |
---|
386 | freeT(M,rN); |
---|
387 | |
---|
388 | return(sum); |
---|
389 | } |
---|
390 | |
---|
391 | /* poly functions defined in p_Procs : */ |
---|
392 | poly gnc_pp_Mult_mm(const poly p, const poly m, const ring r) |
---|
393 | { |
---|
394 | return( gnc_p_Mult_mm_Common(p_Copy(p,r), m, 1, r) ); |
---|
395 | } |
---|
396 | |
---|
397 | poly gnc_p_Mult_mm(poly p, const poly m, const ring r) |
---|
398 | { |
---|
399 | return( gnc_p_Mult_mm_Common(p, m, 1, r) ); |
---|
400 | } |
---|
401 | |
---|
402 | /* m * p */ |
---|
403 | poly gnc_p_mm_Mult(poly p, const poly m, const ring r) |
---|
404 | { |
---|
405 | return( gnc_p_Mult_mm_Common(p, m, 0, r) ); |
---|
406 | } |
---|
407 | |
---|
408 | poly gnc_pp_mm_Mult(const poly p, const poly m, const ring r) |
---|
409 | { |
---|
410 | return( gnc_p_Mult_mm_Common(p_Copy(p,r), m, 0, r) ); |
---|
411 | } |
---|
412 | |
---|
413 | |
---|
414 | |
---|
415 | poly gnc_mm_Mult_nn(int *F0, int *G0, const ring r) |
---|
416 | /* destroys nothing, no coeffs and exps */ |
---|
417 | { |
---|
418 | poly out=NULL; |
---|
419 | int i,j; |
---|
420 | int iF,jG,iG; |
---|
421 | int rN=r->N; |
---|
422 | |
---|
423 | int *F=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
424 | int *G=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
425 | |
---|
426 | memcpy(F, F0,(rN+1)*sizeof(int)); |
---|
427 | // pExpVectorCopy(F,F0); |
---|
428 | memcpy(G, G0,(rN+1)*sizeof(int)); |
---|
429 | // pExpVectorCopy(G,G0); |
---|
430 | F[0]=0; |
---|
431 | G[0]=0; |
---|
432 | |
---|
433 | iF=rN; |
---|
434 | while ((F[iF]==0)&&(iF>=1)) iF--; /* last exp_num of F */ |
---|
435 | if (iF==0) /* F0 is zero vector */ |
---|
436 | { |
---|
437 | out=p_One(r); |
---|
438 | p_SetExpV(out,G0,r); |
---|
439 | p_Setm(out,r); |
---|
440 | freeT(F,rN); |
---|
441 | freeT(G,rN); |
---|
442 | return(out); |
---|
443 | } |
---|
444 | jG=1; |
---|
445 | while ((G[jG]==0)&&(jG<rN)) jG++; /* first exp_num of G */ |
---|
446 | iG=rN; |
---|
447 | while ((G[iG]==0)&&(iG>1)) iG--; /* last exp_num of G */ |
---|
448 | |
---|
449 | out=p_One(r); |
---|
450 | |
---|
451 | if (iF<=jG) |
---|
452 | /* i.e. no mixed exp_num , MERGE case */ |
---|
453 | { |
---|
454 | { for(int ii=rN;ii>0;ii--) F[ii]+=G[ii]; } |
---|
455 | p_SetExpV(out,F,r); |
---|
456 | p_Setm(out,r); |
---|
457 | freeT(F,rN); |
---|
458 | freeT(G,rN); |
---|
459 | return(out); |
---|
460 | } |
---|
461 | |
---|
462 | number cff=n_Init(1,r->cf); |
---|
463 | number tmp_num=NULL; |
---|
464 | int cpower=0; |
---|
465 | |
---|
466 | if (ncRingType(r)==nc_skew) |
---|
467 | { |
---|
468 | if (r->GetNC()->IsSkewConstant==1) |
---|
469 | { |
---|
470 | int tpower=0; |
---|
471 | for(j=jG; j<=iG; j++) |
---|
472 | { |
---|
473 | if (G[j]!=0) |
---|
474 | { |
---|
475 | cpower = 0; |
---|
476 | for(i=j+1; i<=iF; i++) |
---|
477 | { |
---|
478 | cpower = cpower + F[i]; |
---|
479 | } |
---|
480 | cpower = cpower*G[j]; // bug! here may happen an arithmetic overflow!!! |
---|
481 | tpower = tpower + cpower; |
---|
482 | } |
---|
483 | } |
---|
484 | cff = n_Copy(pGetCoeff(MATELEM(r->GetNC()->COM,1,2)),r->cf); |
---|
485 | n_Power(cff,tpower,&tmp_num, r->cf); |
---|
486 | n_Delete(&cff,r->cf); |
---|
487 | cff = tmp_num; |
---|
488 | } |
---|
489 | else /* skew commutative with nonequal coeffs */ |
---|
490 | { |
---|
491 | number totcff=n_Init(1,r->cf); |
---|
492 | for(j=jG; j<=iG; j++) |
---|
493 | { |
---|
494 | if (G[j]!=0) |
---|
495 | { |
---|
496 | cpower = 0; |
---|
497 | for(i=j+1; i<=iF; i++) |
---|
498 | { |
---|
499 | if (F[i]!=0) |
---|
500 | { |
---|
501 | cpower = F[i]*G[j]; // bug! overflow danger!!! |
---|
502 | cff = n_Copy(pGetCoeff(MATELEM(r->GetNC()->COM,j,i)),r->cf); |
---|
503 | n_Power(cff,cpower,&tmp_num, r->cf); |
---|
504 | cff = n_Mult(totcff,tmp_num, r->cf); |
---|
505 | n_Delete(&totcff, r->cf); |
---|
506 | n_Delete(&tmp_num, r->cf); |
---|
507 | totcff = n_Copy(cff,r->cf); |
---|
508 | n_Delete(&cff,r->cf); |
---|
509 | } |
---|
510 | } /* end 2nd for */ |
---|
511 | } |
---|
512 | } |
---|
513 | cff=totcff; |
---|
514 | } |
---|
515 | { for(int ii=rN;ii>0;ii--) F[ii]+=G[ii]; } |
---|
516 | p_SetExpV(out,F,r); |
---|
517 | p_Setm(out,r); |
---|
518 | p_SetCoeff(out,cff,r); |
---|
519 | freeT(F,rN); |
---|
520 | freeT(G,rN); |
---|
521 | return(out); |
---|
522 | } /* end nc_skew */ |
---|
523 | |
---|
524 | /* now we have to destroy out! */ |
---|
525 | p_Delete(&out,r); |
---|
526 | |
---|
527 | if (iG==jG) |
---|
528 | /* g is univariate monomial */ |
---|
529 | { |
---|
530 | /* if (ri->GetNC()->type==nc_skew) -- postpone to TU */ |
---|
531 | out = gnc_mm_Mult_uu(F,jG,G[jG],r); |
---|
532 | freeT(F,rN); |
---|
533 | freeT(G,rN); |
---|
534 | return(out); |
---|
535 | } |
---|
536 | |
---|
537 | int *Prv=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
538 | int *Nxt=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
539 | |
---|
540 | int *log=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
541 | int cnt=0; int cnf=0; |
---|
542 | |
---|
543 | /* splitting F wrt jG */ |
---|
544 | for (i=1;i<=jG;i++) |
---|
545 | { |
---|
546 | Prv[i]=F[i]; Nxt[i]=0; /* mult at the very end */ |
---|
547 | if (F[i]!=0) cnf++; |
---|
548 | } |
---|
549 | |
---|
550 | if (cnf==0) freeT(Prv,rN); |
---|
551 | |
---|
552 | for (i=jG+1;i<=rN;i++) |
---|
553 | { |
---|
554 | Nxt[i]=F[i]; |
---|
555 | /* if (cnf!=0) Prv[i]=0; */ |
---|
556 | if (F[i]!=0) |
---|
557 | { |
---|
558 | cnt++; |
---|
559 | } /* effective part for F */ |
---|
560 | } |
---|
561 | freeT(F,rN); |
---|
562 | cnt=0; |
---|
563 | |
---|
564 | for (i=1;i<=rN;i++) |
---|
565 | { |
---|
566 | if (G[i]!=0) |
---|
567 | { |
---|
568 | cnt++; |
---|
569 | log[cnt]=i; |
---|
570 | } /* lG for G */ |
---|
571 | } |
---|
572 | |
---|
573 | /* ---------------------- A C T I O N ------------------------ */ |
---|
574 | poly D=NULL; |
---|
575 | poly Rout=NULL; |
---|
576 | number *c=(number *)omAlloc0((rN+1)*sizeof(number)); |
---|
577 | c[0]=n_Init(1,r->cf); |
---|
578 | |
---|
579 | int *Op=Nxt; |
---|
580 | int *On=G; |
---|
581 | int *U=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
582 | |
---|
583 | for (i=jG;i<=rN;i++) U[i]=Nxt[i]+G[i]; /* make leadterm */ |
---|
584 | Nxt=NULL; |
---|
585 | G=NULL; |
---|
586 | cnt=1; |
---|
587 | int t=0; |
---|
588 | poly w=NULL; |
---|
589 | poly Pn=p_One(r); |
---|
590 | p_SetExpV(Pn,On,r); |
---|
591 | p_Setm(Pn,r); |
---|
592 | |
---|
593 | while (On[iG]!=0) |
---|
594 | { |
---|
595 | t=log[cnt]; |
---|
596 | |
---|
597 | w=gnc_mm_Mult_uu(Op,t,On[t],r); |
---|
598 | c[cnt]=n_Mult(c[cnt-1],pGetCoeff(w),r->cf); |
---|
599 | D = pNext(w); /* getting coef and rest D */ |
---|
600 | p_LmDelete(&w,r); |
---|
601 | w=NULL; |
---|
602 | |
---|
603 | Op[t] += On[t]; /* update exp_vectors */ |
---|
604 | On[t] = 0; |
---|
605 | |
---|
606 | if (t!=iG) /* not the last step */ |
---|
607 | { |
---|
608 | p_SetExpV(Pn,On,r); |
---|
609 | p_Setm(Pn,r); |
---|
610 | #ifdef PDEBUG |
---|
611 | p_Test(Pn,r); |
---|
612 | #endif |
---|
613 | |
---|
614 | // if (pNext(D)==0) |
---|
615 | // is D a monomial? could be postponed higher |
---|
616 | // { |
---|
617 | // Rout=nc_mm_Mult_nn(D,Pn,r); |
---|
618 | // } |
---|
619 | // else |
---|
620 | // { |
---|
621 | Rout=gnc_p_Mult_mm(D,Pn,r); |
---|
622 | // } |
---|
623 | } |
---|
624 | else |
---|
625 | { |
---|
626 | Rout=D; |
---|
627 | D=NULL; |
---|
628 | } |
---|
629 | |
---|
630 | if (Rout!=NULL) |
---|
631 | { |
---|
632 | Rout=__p_Mult_nn(Rout,c[cnt-1],r); /* Rest is ready */ |
---|
633 | out=p_Add_q(out,Rout,r); |
---|
634 | Rout=NULL; |
---|
635 | } |
---|
636 | cnt++; |
---|
637 | } |
---|
638 | freeT(On,rN); |
---|
639 | freeT(Op,rN); |
---|
640 | p_Delete(&Pn,r); |
---|
641 | omFreeSize((ADDRESS)log,(rN+1)*sizeof(int)); |
---|
642 | |
---|
643 | /* leadterm and Prv-part */ |
---|
644 | |
---|
645 | Rout=p_One(r); |
---|
646 | /* U is lead.monomial */ |
---|
647 | U[0]=0; |
---|
648 | p_SetExpV(Rout,U,r); |
---|
649 | p_Setm(Rout,r); /* use again this name Rout */ |
---|
650 | #ifdef PDEBUG |
---|
651 | p_Test(Rout,r); |
---|
652 | #endif |
---|
653 | p_SetCoeff(Rout,c[cnt-1],r); |
---|
654 | out=p_Add_q(out,Rout,r); |
---|
655 | freeT(U,rN); |
---|
656 | freeN(c,rN+1); |
---|
657 | if (cnf!=0) /* Prv is non-zero vector */ |
---|
658 | { |
---|
659 | Rout=p_One(r); |
---|
660 | Prv[0]=0; |
---|
661 | p_SetExpV(Rout,Prv,r); |
---|
662 | p_Setm(Rout,r); |
---|
663 | #ifdef PDEBUG |
---|
664 | p_Test(Rout,r); |
---|
665 | #endif |
---|
666 | out=gnc_p_mm_Mult(out,Rout,r); /* getting the final result */ |
---|
667 | freeT(Prv,rN); |
---|
668 | p_Delete(&Rout,r); |
---|
669 | } |
---|
670 | return (out); |
---|
671 | } |
---|
672 | |
---|
673 | |
---|
674 | poly gnc_mm_Mult_uu(int *F,int jG,int bG, const ring r) |
---|
675 | /* f=mono(F),g=(x_iG)^bG */ |
---|
676 | { |
---|
677 | poly out=NULL; |
---|
678 | int i; |
---|
679 | number num=NULL; |
---|
680 | |
---|
681 | int rN=r->N; |
---|
682 | int iF=r->N; |
---|
683 | while ((F[iF]==0)&&(iF>0)) iF-- ; /* last exponent_num of F */ |
---|
684 | |
---|
685 | if (iF==0) /* F==zero vector in other words */ |
---|
686 | { |
---|
687 | out=p_One(r); |
---|
688 | p_SetExp(out,jG,bG,r); |
---|
689 | p_Setm(out,r); |
---|
690 | return(out); |
---|
691 | } |
---|
692 | |
---|
693 | int jF=1; |
---|
694 | while ((F[jF]==0)&&(jF<=rN)) jF++; /* first exp of F */ |
---|
695 | |
---|
696 | if (iF<=jG) /* i.e. no mixed exp_num */ |
---|
697 | { |
---|
698 | out=p_One(r); |
---|
699 | F[jG]=F[jG]+bG; |
---|
700 | p_SetExpV(out,F,r); |
---|
701 | p_Setm(out,r); |
---|
702 | return(out); |
---|
703 | } |
---|
704 | |
---|
705 | if (iF==jF) /* uni times uni */ |
---|
706 | { |
---|
707 | out=gnc_uu_Mult_ww(iF,F[iF],jG,bG,r); |
---|
708 | return(out); |
---|
709 | } |
---|
710 | |
---|
711 | /* Now: F is mono with >=2 exponents, jG<iF */ |
---|
712 | /* check the quasi-commutative case */ |
---|
713 | // matrix LCOM=r->GetNC()->COM; |
---|
714 | // number rescoef=n_Init(1,r); |
---|
715 | // number tmpcoef=n_Init(1,r); |
---|
716 | // int tmpint; |
---|
717 | // i=iF; |
---|
718 | // while (i>=jG+1) |
---|
719 | // /* all the non-zero exponents */ |
---|
720 | // { |
---|
721 | // if (MATELEM(LCOM,jG,i)!=NULL) |
---|
722 | // { |
---|
723 | // tmpcoef=pGetCoeff(MATELEM(LCOM,jG,i)); |
---|
724 | // tmpint=(int)F[i]; |
---|
725 | // nPower(tmpcoef,F[i],&tmpcoef); |
---|
726 | // rescoef=nMult(rescoef,tmpcoef); |
---|
727 | // i--; |
---|
728 | // } |
---|
729 | // else |
---|
730 | // { |
---|
731 | // if (F[i]!=0) break; |
---|
732 | // } |
---|
733 | // } |
---|
734 | // if (iF==i) |
---|
735 | // /* no action took place*/ |
---|
736 | // { |
---|
737 | |
---|
738 | // } |
---|
739 | // else /* power the result up to bG */ |
---|
740 | // { |
---|
741 | // nPower(rescoef,bG,&rescoef); |
---|
742 | // /* + cleanup, post-processing */ |
---|
743 | // } |
---|
744 | |
---|
745 | int *Prv=(int*)omAlloc0((rN+1)*sizeof(int)); |
---|
746 | int *Nxt=(int*)omAlloc0((rN+1)*sizeof(int)); |
---|
747 | int *lF=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
748 | |
---|
749 | int cnt=0; int cnf=0; |
---|
750 | /* splitting F wrt jG */ |
---|
751 | for (i=1;i<=jG;i++) /* mult at the very end */ |
---|
752 | { |
---|
753 | Prv[i]=F[i]; Nxt[i]=0; |
---|
754 | if (F[i]!=0) cnf++; |
---|
755 | } |
---|
756 | |
---|
757 | if (cnf==0) |
---|
758 | { |
---|
759 | freeT(Prv,rN); Prv = NULL; |
---|
760 | } |
---|
761 | |
---|
762 | for (i=jG+1;i<=rN;i++) |
---|
763 | { |
---|
764 | Nxt[i]=F[i]; |
---|
765 | if (cnf!=0) { Prv[i]=0;} |
---|
766 | if (F[i]!=0) |
---|
767 | { |
---|
768 | cnt++; |
---|
769 | lF[cnt]=i; |
---|
770 | } /* eff_part,lF_for_F */ |
---|
771 | } |
---|
772 | |
---|
773 | if (cnt==1) /* Nxt consists of 1 nonzero el-t only */ |
---|
774 | { |
---|
775 | int q=lF[1]; |
---|
776 | poly Rout=p_One(r); |
---|
777 | out=gnc_uu_Mult_ww(q,Nxt[q],jG,bG,r); |
---|
778 | |
---|
779 | freeT(Nxt,rN); Nxt = NULL; |
---|
780 | |
---|
781 | if (cnf!=0) |
---|
782 | { |
---|
783 | Prv[0]=0; |
---|
784 | p_SetExpV(Rout,Prv,r); |
---|
785 | p_Setm(Rout,r); |
---|
786 | |
---|
787 | #ifdef PDEBUG |
---|
788 | p_Test(Rout,r); |
---|
789 | #endif |
---|
790 | |
---|
791 | freeT(Prv,rN); |
---|
792 | Prv = NULL; |
---|
793 | |
---|
794 | out=gnc_p_mm_Mult(out,Rout,r); /* getting the final result */ |
---|
795 | } |
---|
796 | |
---|
797 | freeT(lF,rN); |
---|
798 | lF = NULL; |
---|
799 | |
---|
800 | p_Delete(&Rout,r); |
---|
801 | |
---|
802 | assume(Nxt == NULL); |
---|
803 | assume(lF == NULL); |
---|
804 | assume(Prv == NULL); |
---|
805 | |
---|
806 | return (out); |
---|
807 | } |
---|
808 | /* -------------------- MAIN ACTION --------------------- */ |
---|
809 | |
---|
810 | poly D=NULL; |
---|
811 | poly Rout=NULL; |
---|
812 | number *c=(number *)omAlloc0((cnt+2)*sizeof(number)); |
---|
813 | c[cnt+1]=n_Init(1,r->cf); |
---|
814 | i=cnt+2; /* later in freeN */ |
---|
815 | int *Op=Nxt; |
---|
816 | |
---|
817 | int *On=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
818 | int *U=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
819 | |
---|
820 | |
---|
821 | // pExpVectorCopy(U,Nxt); |
---|
822 | memcpy(U, Nxt,(rN+1)*sizeof(int)); |
---|
823 | U[jG] = U[jG] + bG; |
---|
824 | |
---|
825 | /* Op=Nxt and initial On=(0); */ |
---|
826 | Nxt=NULL; |
---|
827 | |
---|
828 | poly Pp; |
---|
829 | poly Pn; |
---|
830 | int t=0; |
---|
831 | int first=lF[1]; |
---|
832 | int nlast=lF[cnt]; |
---|
833 | int kk=0; |
---|
834 | /* cnt--; */ |
---|
835 | /* now lF[cnt] should be <=iF-1 */ |
---|
836 | |
---|
837 | while (Op[first]!=0) |
---|
838 | { |
---|
839 | t=lF[cnt]; /* cnt as it was computed */ |
---|
840 | |
---|
841 | poly w=gnc_uu_Mult_ww(t,Op[t],jG,bG,r); |
---|
842 | c[cnt]=n_Copy(pGetCoeff(w),r->cf); |
---|
843 | D = pNext(w); /* getting coef and rest D */ |
---|
844 | p_LmDelete(&w,r); |
---|
845 | w=NULL; |
---|
846 | |
---|
847 | Op[t]= 0; |
---|
848 | Pp=p_One(r); |
---|
849 | p_SetExpV(Pp,Op,r); |
---|
850 | p_Setm(Pp,r); |
---|
851 | |
---|
852 | if (t<nlast) |
---|
853 | { |
---|
854 | kk=lF[cnt+1]; |
---|
855 | On[kk]=F[kk]; |
---|
856 | |
---|
857 | Pn=p_One(r); |
---|
858 | p_SetExpV(Pn,On,r); |
---|
859 | p_Setm(Pn,r); |
---|
860 | |
---|
861 | if (t!=first) /* typical expr */ |
---|
862 | { |
---|
863 | w=gnc_p_Mult_mm(D,Pn,r); |
---|
864 | Rout=gnc_p_mm_Mult(w,Pp,r); |
---|
865 | w=NULL; |
---|
866 | } |
---|
867 | else /* last step */ |
---|
868 | { |
---|
869 | On[t]=0; |
---|
870 | p_SetExpV(Pn,On,r); |
---|
871 | p_Setm(Pn,r); |
---|
872 | Rout=gnc_p_Mult_mm(D,Pn,r); |
---|
873 | } |
---|
874 | #ifdef PDEBUG |
---|
875 | p_Test(Pp,r); |
---|
876 | #endif |
---|
877 | p_Delete(&Pn,r); |
---|
878 | } |
---|
879 | else /* first step */ |
---|
880 | { |
---|
881 | Rout=gnc_p_mm_Mult(D,Pp,r); |
---|
882 | } |
---|
883 | #ifdef PDEBUG |
---|
884 | p_Test(Pp,r); |
---|
885 | #endif |
---|
886 | p_Delete(&Pp,r); |
---|
887 | num=n_Mult(c[cnt+1],c[cnt],r->cf); |
---|
888 | n_Delete(&c[cnt],r->cf); |
---|
889 | c[cnt]=num; |
---|
890 | Rout=__p_Mult_nn(Rout,c[cnt+1],r); /* Rest is ready */ |
---|
891 | out=p_Add_q(out,Rout,r); |
---|
892 | Pp=NULL; |
---|
893 | cnt--; |
---|
894 | } |
---|
895 | /* only to feel safe:*/ |
---|
896 | Pn=Pp=NULL; |
---|
897 | freeT(On,rN); |
---|
898 | freeT(Op,rN); |
---|
899 | |
---|
900 | /* leadterm and Prv-part with coef 1 */ |
---|
901 | /* U[0]=exp; */ |
---|
902 | /* U[jG]=U[jG]+bG; */ |
---|
903 | /* make leadterm */ |
---|
904 | /* ??????????? we have done it already :-0 */ |
---|
905 | |
---|
906 | Rout=p_One(r); |
---|
907 | p_SetExpV(Rout,U,r); |
---|
908 | p_Setm(Rout,r); /* use again this name */ |
---|
909 | p_SetCoeff(Rout,c[cnt+1],r); /* last computed coef */ |
---|
910 | |
---|
911 | out=p_Add_q(out,Rout,r); |
---|
912 | |
---|
913 | Rout=NULL; |
---|
914 | |
---|
915 | freeT(U, rN); |
---|
916 | freeN(c, i); |
---|
917 | freeT(lF, rN); |
---|
918 | |
---|
919 | if (cnf!=0) |
---|
920 | { |
---|
921 | Rout=p_One(r); |
---|
922 | p_SetExpV(Rout,Prv,r); |
---|
923 | p_Setm(Rout,r); |
---|
924 | freeT(Prv, rN); |
---|
925 | out=gnc_p_mm_Mult(out,Rout,r); /* getting the final result */ |
---|
926 | p_Delete(&Rout,r); |
---|
927 | } |
---|
928 | |
---|
929 | return (out); |
---|
930 | } |
---|
931 | |
---|
932 | poly gnc_uu_Mult_ww_vert (int i, int a, int j, int b, const ring r) |
---|
933 | { |
---|
934 | int k,m; |
---|
935 | int rN=r->N; |
---|
936 | const int cMTindex = UPMATELEM(j,i,rN); |
---|
937 | matrix cMT=r->GetNC()->MT[cMTindex]; /* cMT=current MT */ |
---|
938 | |
---|
939 | poly x=p_One(r);p_SetExp(x,j,1,r);p_Setm(x,r); |
---|
940 | /* var(j); */ |
---|
941 | poly y=p_One(r);p_SetExp(y,i,1,r);p_Setm(y,r); |
---|
942 | /*var(i); for convenience */ |
---|
943 | #ifdef PDEBUG |
---|
944 | p_Test(x,r); |
---|
945 | p_Test(y,r); |
---|
946 | #endif |
---|
947 | poly t=NULL; |
---|
948 | /* ------------ Main Cycles ----------------------------*/ |
---|
949 | |
---|
950 | for (k=2;k<=a;k++) |
---|
951 | { |
---|
952 | t = MATELEM(cMT,k,1); |
---|
953 | |
---|
954 | if (t==NULL) /* not computed yet */ |
---|
955 | { |
---|
956 | t = nc_p_CopyGet(MATELEM(cMT,k-1,1),r); |
---|
957 | // t=p_Copy(MATELEM(cMT,k-1,1),r); |
---|
958 | t = gnc_p_mm_Mult(t,y,r); |
---|
959 | cMT=r->GetNC()->MT[cMTindex]; // since multiplication can change the MT table... |
---|
960 | assume( t != NULL ); |
---|
961 | #ifdef PDEBUG |
---|
962 | p_Test(t,r); |
---|
963 | #endif |
---|
964 | MATELEM(cMT,k,1) = nc_p_CopyPut(t,r); |
---|
965 | // omCheckAddr(cMT->m); |
---|
966 | p_Delete(&t,r); |
---|
967 | } |
---|
968 | t=NULL; |
---|
969 | } |
---|
970 | |
---|
971 | for (m=2;m<=b;m++) |
---|
972 | { |
---|
973 | t = MATELEM(cMT,a,m); |
---|
974 | // t=MATELEM(cMT,a,m); |
---|
975 | if (t==NULL) //not computed yet |
---|
976 | { |
---|
977 | t = nc_p_CopyGet(MATELEM(cMT,a,m-1),r); |
---|
978 | assume( t != NULL ); |
---|
979 | // t=p_Copy(MATELEM(cMT,a,m-1),r); |
---|
980 | t = gnc_p_Mult_mm(t,x,r); |
---|
981 | cMT=r->GetNC()->MT[cMTindex]; // since multiplication can change the MT table... |
---|
982 | #ifdef PDEBUG |
---|
983 | p_Test(t,r); |
---|
984 | #endif |
---|
985 | MATELEM(cMT,a,m) = nc_p_CopyPut(t,r); |
---|
986 | // MATELEM(cMT,a,m) = t; |
---|
987 | // omCheckAddr(cMT->m); |
---|
988 | p_Delete(&t,r); |
---|
989 | } |
---|
990 | t=NULL; |
---|
991 | } |
---|
992 | p_Delete(&x,r); |
---|
993 | p_Delete(&y,r); |
---|
994 | t=MATELEM(cMT,a,b); |
---|
995 | assume( t != NULL ); |
---|
996 | |
---|
997 | t= nc_p_CopyGet(t,r); |
---|
998 | #ifdef PDEBUG |
---|
999 | p_Test(t,r); |
---|
1000 | #endif |
---|
1001 | // return(p_Copy(t,r)); |
---|
1002 | /* since the last computed element was cMT[a,b] */ |
---|
1003 | return(t); |
---|
1004 | } |
---|
1005 | |
---|
1006 | |
---|
1007 | static inline poly gnc_uu_Mult_ww_formula (int i, int a, int j, int b, const ring r) |
---|
1008 | { |
---|
1009 | if(ncExtensions(NOFORMULAMASK)) |
---|
1010 | return gnc_uu_Mult_ww_vert(i, a, j, b, r); |
---|
1011 | |
---|
1012 | CFormulaPowerMultiplier* FormulaMultiplier = GetFormulaPowerMultiplier(r); |
---|
1013 | Enum_ncSAType PairType = _ncSA_notImplemented; |
---|
1014 | |
---|
1015 | if( FormulaMultiplier != NULL ) |
---|
1016 | PairType = FormulaMultiplier->GetPair(j, i); |
---|
1017 | |
---|
1018 | |
---|
1019 | if( PairType == _ncSA_notImplemented ) |
---|
1020 | return gnc_uu_Mult_ww_vert(i, a, j, b, r); |
---|
1021 | |
---|
1022 | |
---|
1023 | // return FormulaMultiplier->Multiply(j, i, b, a); |
---|
1024 | poly t = CFormulaPowerMultiplier::Multiply( PairType, j, i, b, a, r); |
---|
1025 | |
---|
1026 | int rN=r->N; |
---|
1027 | matrix cMT = r->GetNC()->MT[UPMATELEM(j,i,rN)]; /* cMT=current MT */ |
---|
1028 | |
---|
1029 | |
---|
1030 | MATELEM(cMT, a, b) = nc_p_CopyPut(t,r); |
---|
1031 | |
---|
1032 | // t=MATELEM(cMT,a,b); |
---|
1033 | // t= nc_p_CopyGet(MATELEM(cMT,a,b),r); |
---|
1034 | // return(p_Copy(t,r)); |
---|
1035 | /* since the last computed element was cMT[a,b] */ |
---|
1036 | return(t); |
---|
1037 | } |
---|
1038 | |
---|
1039 | |
---|
1040 | poly gnc_uu_Mult_ww (int i, int a, int j, int b, const ring r) |
---|
1041 | /* (x_i)^a times (x_j)^b */ |
---|
1042 | /* x_i = y, x_j = x ! */ |
---|
1043 | { |
---|
1044 | /* Check zero exceptions, (q-)commutativity and is there something to do? */ |
---|
1045 | assume(a!=0); |
---|
1046 | assume(b!=0); |
---|
1047 | poly out=p_One(r); |
---|
1048 | if (i<=j) |
---|
1049 | { |
---|
1050 | p_SetExp(out,i,a,r); |
---|
1051 | p_AddExp(out,j,b,r); |
---|
1052 | p_Setm(out,r); |
---|
1053 | return(out); |
---|
1054 | }/* zero exeptions and usual case */ |
---|
1055 | /* if ((a==0)||(b==0)||(i<=j)) return(out); */ |
---|
1056 | |
---|
1057 | if (MATELEM(r->GetNC()->COM,j,i)!=NULL) |
---|
1058 | /* commutative or quasicommutative case */ |
---|
1059 | { |
---|
1060 | p_SetExp(out,i,a,r); |
---|
1061 | p_AddExp(out,j,b,r); |
---|
1062 | p_Setm(out,r); |
---|
1063 | if (n_IsOne(pGetCoeff(MATELEM(r->GetNC()->COM,j,i)),r->cf)) /* commutative case */ |
---|
1064 | { |
---|
1065 | return(out); |
---|
1066 | } |
---|
1067 | else |
---|
1068 | { |
---|
1069 | number tmp_number=pGetCoeff(MATELEM(r->GetNC()->COM,j,i)); /* quasicommutative case */ |
---|
1070 | n_Power(tmp_number,a*b,&tmp_number, r->cf); // BUG! ;-( |
---|
1071 | p_SetCoeff(out,tmp_number,r); |
---|
1072 | return(out); |
---|
1073 | } |
---|
1074 | }/* end_of commutative or quasicommutative case */ |
---|
1075 | p_Delete(&out,r); |
---|
1076 | |
---|
1077 | |
---|
1078 | if(ncExtensions(NOCACHEMASK) && !ncExtensions(NOFORMULAMASK)) // don't use cache whenever possible! |
---|
1079 | { // without cache!? |
---|
1080 | CFormulaPowerMultiplier* FormulaMultiplier = GetFormulaPowerMultiplier(r); |
---|
1081 | Enum_ncSAType PairType = _ncSA_notImplemented; |
---|
1082 | |
---|
1083 | if( FormulaMultiplier != NULL ) |
---|
1084 | PairType = FormulaMultiplier->GetPair(j, i); |
---|
1085 | |
---|
1086 | if( PairType != _ncSA_notImplemented ) |
---|
1087 | // // return FormulaMultiplier->Multiply(j, i, b, a); |
---|
1088 | return CFormulaPowerMultiplier::Multiply( PairType, j, i, b, a, r); |
---|
1089 | } |
---|
1090 | |
---|
1091 | |
---|
1092 | /* we are here if i>j and variables do not commute or quasicommute */ |
---|
1093 | /* in fact, now a>=1 and b>=1; and j<i */ |
---|
1094 | /* now check whether the polynomial is already computed */ |
---|
1095 | int rN=r->N; |
---|
1096 | int vik = UPMATELEM(j,i,rN); |
---|
1097 | int cMTsize=r->GetNC()->MTsize[vik]; |
---|
1098 | int newcMTsize=0; |
---|
1099 | newcMTsize=si_max(a,b); |
---|
1100 | |
---|
1101 | if (newcMTsize<=cMTsize) |
---|
1102 | { |
---|
1103 | out = nc_p_CopyGet(MATELEM(r->GetNC()->MT[vik],a,b),r); |
---|
1104 | if (out !=NULL) return (out); |
---|
1105 | } |
---|
1106 | int k,m; |
---|
1107 | if (newcMTsize > cMTsize) |
---|
1108 | { |
---|
1109 | int inM=(((newcMTsize+6)/7)*7); |
---|
1110 | assume (inM>=newcMTsize); |
---|
1111 | newcMTsize = inM; |
---|
1112 | // matrix tmp = (matrix)omAlloc0(inM*inM*sizeof(poly)); |
---|
1113 | matrix tmp = mpNew(newcMTsize,newcMTsize); |
---|
1114 | |
---|
1115 | for (k=1;k<=cMTsize;k++) |
---|
1116 | { |
---|
1117 | for (m=1;m<=cMTsize;m++) |
---|
1118 | { |
---|
1119 | out = MATELEM(r->GetNC()->MT[UPMATELEM(j,i,rN)],k,m); |
---|
1120 | if ( out != NULL ) |
---|
1121 | { |
---|
1122 | MATELEM(tmp,k,m) = out;/*MATELEM(r->GetNC()->MT[UPMATELEM(j,i,rN)],k,m)*/ |
---|
1123 | // omCheckAddr(tmp->m); |
---|
1124 | MATELEM(r->GetNC()->MT[UPMATELEM(j,i,rN)],k,m)=NULL; |
---|
1125 | // omCheckAddr(r->GetNC()->MT[UPMATELEM(j,i,rN)]->m); |
---|
1126 | out=NULL; |
---|
1127 | } |
---|
1128 | } |
---|
1129 | } |
---|
1130 | id_Delete((ideal *)&(r->GetNC()->MT[UPMATELEM(j,i,rN)]),r); |
---|
1131 | r->GetNC()->MT[UPMATELEM(j,i,rN)] = tmp; |
---|
1132 | tmp=NULL; |
---|
1133 | r->GetNC()->MTsize[UPMATELEM(j,i,rN)] = newcMTsize; |
---|
1134 | } |
---|
1135 | /* The update of multiplication matrix is finished */ |
---|
1136 | |
---|
1137 | |
---|
1138 | return gnc_uu_Mult_ww_formula(i, a, j, b, r); |
---|
1139 | |
---|
1140 | out = gnc_uu_Mult_ww_vert(i, a, j, b, r); |
---|
1141 | // out = nc_uu_Mult_ww_horvert(i, a, j, b, r); |
---|
1142 | return(out); |
---|
1143 | } |
---|
1144 | |
---|
1145 | poly gnc_uu_Mult_ww_horvert (int i, int a, int j, int b, const ring r) |
---|
1146 | |
---|
1147 | { |
---|
1148 | int k,m; |
---|
1149 | int rN=r->N; |
---|
1150 | matrix cMT=r->GetNC()->MT[UPMATELEM(j,i,rN)]; /* cMT=current MT */ |
---|
1151 | |
---|
1152 | poly x=p_One(r);p_SetExp(x,j,1,r);p_Setm(x,r);/* var(j); */ |
---|
1153 | poly y=p_One(r);p_SetExp(y,i,1,r);p_Setm(y,r); /*var(i); for convenience */ |
---|
1154 | #ifdef PDEBUG |
---|
1155 | p_Test(x,r); |
---|
1156 | p_Test(y,r); |
---|
1157 | #endif |
---|
1158 | |
---|
1159 | poly t=NULL; |
---|
1160 | |
---|
1161 | int toXY; |
---|
1162 | int toYX; |
---|
1163 | |
---|
1164 | if (a==1) /* y*x^b, b>=2 */ |
---|
1165 | { |
---|
1166 | toXY=b-1; |
---|
1167 | while ( (MATELEM(cMT,1,toXY)==NULL) && (toXY>=2)) toXY--; |
---|
1168 | for (m=toXY+1;m<=b;m++) |
---|
1169 | { |
---|
1170 | t=MATELEM(cMT,1,m); |
---|
1171 | if (t==NULL) /* remove after debug */ |
---|
1172 | { |
---|
1173 | t = p_Copy(MATELEM(cMT,1,m-1),r); |
---|
1174 | t = gnc_p_Mult_mm(t,x,r); |
---|
1175 | MATELEM(cMT,1,m) = t; |
---|
1176 | /* omCheckAddr(cMT->m); */ |
---|
1177 | } |
---|
1178 | else |
---|
1179 | { |
---|
1180 | /* Error, should never get there */ |
---|
1181 | WarnS("Error: a=1; MATELEM!=0"); |
---|
1182 | } |
---|
1183 | t=NULL; |
---|
1184 | } |
---|
1185 | return(p_Copy(MATELEM(cMT,1,b),r)); |
---|
1186 | } |
---|
1187 | |
---|
1188 | if (b==1) /* y^a*x, a>=2 */ |
---|
1189 | { |
---|
1190 | toYX=a-1; |
---|
1191 | while ( (MATELEM(cMT,toYX,1)==NULL) && (toYX>=2)) toYX--; |
---|
1192 | for (m=toYX+1;m<=a;m++) |
---|
1193 | { |
---|
1194 | t=MATELEM(cMT,m,1); |
---|
1195 | if (t==NULL) /* remove after debug */ |
---|
1196 | { |
---|
1197 | t = p_Copy(MATELEM(cMT,m-1,1),r); |
---|
1198 | t = gnc_p_mm_Mult(t,y,r); |
---|
1199 | MATELEM(cMT,m,1) = t; |
---|
1200 | /* omCheckAddr(cMT->m); */ |
---|
1201 | } |
---|
1202 | else |
---|
1203 | { |
---|
1204 | /* Error, should never get there */ |
---|
1205 | WarnS("Error: b=1, MATELEM!=0"); |
---|
1206 | } |
---|
1207 | t=NULL; |
---|
1208 | } |
---|
1209 | return(p_Copy(MATELEM(cMT,a,1),r)); |
---|
1210 | } |
---|
1211 | |
---|
1212 | /* ------------ Main Cycles ----------------------------*/ |
---|
1213 | /* a>1, b>1 */ |
---|
1214 | |
---|
1215 | int dXY=0; int dYX=0; |
---|
1216 | /* dXY = distance for computing x-mult, then y-mult */ |
---|
1217 | /* dYX = distance for computing y-mult, then x-mult */ |
---|
1218 | int toX=a-1; int toY=b-1; /* toX = to axe X, toY = to axe Y */ |
---|
1219 | toXY=b-1; toYX=a-1; |
---|
1220 | /* if toX==0, toXY = dist. to computed y * x^toXY */ |
---|
1221 | /* if toY==0, toYX = dist. to computed y^toYX * x */ |
---|
1222 | while ( (MATELEM(cMT,toX,b)==NULL) && (toX>=1)) toX--; |
---|
1223 | if (toX==0) /* the whole column is not computed yet */ |
---|
1224 | { |
---|
1225 | while ( (MATELEM(cMT,1,toXY)==NULL) && (toXY>=1)) toXY--; |
---|
1226 | /* toXY >=1 */ |
---|
1227 | dXY=b-1-toXY; |
---|
1228 | } |
---|
1229 | dXY=dXY+a-toX; /* the distance to nearest computed y^toX x^b */ |
---|
1230 | |
---|
1231 | while ( (MATELEM(cMT,a,toY)==NULL) && (toY>=1)) toY--; |
---|
1232 | if (toY==0) /* the whole row is not computed yet */ |
---|
1233 | { |
---|
1234 | while ( (MATELEM(cMT,toYX,1)==NULL) && (toYX>=1)) toYX--; |
---|
1235 | /* toYX >=1 */ |
---|
1236 | dYX=a-1-toYX; |
---|
1237 | } |
---|
1238 | dYX=dYX+b-toY; /* the distance to nearest computed y^a x^toY */ |
---|
1239 | |
---|
1240 | if (dYX>=dXY) |
---|
1241 | { |
---|
1242 | /* first x, then y */ |
---|
1243 | if (toX==0) /* start with the row*/ |
---|
1244 | { |
---|
1245 | for (m=toXY+1;m<=b;m++) |
---|
1246 | { |
---|
1247 | t=MATELEM(cMT,1,m); |
---|
1248 | if (t==NULL) /* remove after debug */ |
---|
1249 | { |
---|
1250 | t = p_Copy(MATELEM(cMT,1,m-1),r); |
---|
1251 | t = gnc_p_Mult_mm(t,x,r); |
---|
1252 | MATELEM(cMT,1,m) = t; |
---|
1253 | /* omCheckAddr(cMT->m); */ |
---|
1254 | } |
---|
1255 | else |
---|
1256 | { |
---|
1257 | /* Error, should never get there */ |
---|
1258 | WarnS("dYX>=dXY,toXY; MATELEM==0"); |
---|
1259 | } |
---|
1260 | t=NULL; |
---|
1261 | } |
---|
1262 | toX=1; /* y*x^b is computed */ |
---|
1263 | } |
---|
1264 | /* Now toX>=1 */ |
---|
1265 | for (k=toX+1;k<=a;k++) |
---|
1266 | { |
---|
1267 | t=MATELEM(cMT,k,b); |
---|
1268 | if (t==NULL) /* remove after debug */ |
---|
1269 | { |
---|
1270 | t = p_Copy(MATELEM(cMT,k-1,b),r); |
---|
1271 | t = gnc_p_mm_Mult(t,y,r); |
---|
1272 | MATELEM(cMT,k,b) = t; |
---|
1273 | /* omCheckAddr(cMT->m); */ |
---|
1274 | } |
---|
1275 | else |
---|
1276 | { |
---|
1277 | /* Error, should never get there */ |
---|
1278 | WarnS("dYX>=dXY,toX; MATELEM==0"); |
---|
1279 | } |
---|
1280 | t=NULL; |
---|
1281 | } |
---|
1282 | } /* endif (dYX>=dXY) */ |
---|
1283 | |
---|
1284 | |
---|
1285 | if (dYX<dXY) |
---|
1286 | { |
---|
1287 | /* first y, then x */ |
---|
1288 | if (toY==0) /* start with the column*/ |
---|
1289 | { |
---|
1290 | for (m=toYX+1;m<=a;m++) |
---|
1291 | { |
---|
1292 | t=MATELEM(cMT,m,1); |
---|
1293 | if (t==NULL) /* remove after debug */ |
---|
1294 | { |
---|
1295 | t = p_Copy(MATELEM(cMT,m-1,1),r); |
---|
1296 | t = gnc_p_mm_Mult(t,y,r); |
---|
1297 | MATELEM(cMT,m,1) = t; |
---|
1298 | /* omCheckAddr(cMT->m); */ |
---|
1299 | } |
---|
1300 | else |
---|
1301 | { |
---|
1302 | /* Error, should never get there */ |
---|
1303 | WarnS("dYX<dXY,toYX; MATELEM==0"); |
---|
1304 | } |
---|
1305 | t=NULL; |
---|
1306 | } |
---|
1307 | toY=1; /* y^a*x is computed */ |
---|
1308 | } |
---|
1309 | /* Now toY>=1 */ |
---|
1310 | for (k=toY+1;k<=b;k++) |
---|
1311 | { |
---|
1312 | t=MATELEM(cMT,a,k); |
---|
1313 | if (t==NULL) /* remove after debug */ |
---|
1314 | { |
---|
1315 | t = p_Copy(MATELEM(cMT,a,k-1),r); |
---|
1316 | t = gnc_p_Mult_mm(t,x,r); |
---|
1317 | MATELEM(cMT,a,k) = t; |
---|
1318 | /* omCheckAddr(cMT->m); */ |
---|
1319 | } |
---|
1320 | else |
---|
1321 | { |
---|
1322 | /* Error, should never get there */ |
---|
1323 | WarnS("dYX<dXY,toY; MATELEM==0"); |
---|
1324 | } |
---|
1325 | t=NULL; |
---|
1326 | } |
---|
1327 | } /* endif (dYX<dXY) */ |
---|
1328 | |
---|
1329 | p_Delete(&x,r); |
---|
1330 | p_Delete(&y,r); |
---|
1331 | t=p_Copy(MATELEM(cMT,a,b),r); |
---|
1332 | return(t); /* since the last computed element was cMT[a,b] */ |
---|
1333 | } |
---|
1334 | |
---|
1335 | |
---|
1336 | /* ----------------------------- Syzygies ---------------------- */ |
---|
1337 | |
---|
1338 | /*2 |
---|
1339 | * reduction of p2 with p1 |
---|
1340 | * do not destroy p1, but p2 |
---|
1341 | * p1 divides p2 -> for use in NF algorithm |
---|
1342 | */ |
---|
1343 | poly gnc_ReduceSpolyOld(const poly p1, poly p2/*,poly spNoether*/, const ring r) |
---|
1344 | { |
---|
1345 | assume(p_LmDivisibleBy(p1, p2, r)); |
---|
1346 | |
---|
1347 | #ifdef PDEBUG |
---|
1348 | if (p_GetComp(p1,r)!=p_GetComp(p2,r) |
---|
1349 | && (p_GetComp(p1,r)!=0) |
---|
1350 | && (p_GetComp(p2,r)!=0)) |
---|
1351 | { |
---|
1352 | dReportError("nc_ReduceSpolyOld: different components"); |
---|
1353 | return(NULL); |
---|
1354 | } |
---|
1355 | #endif |
---|
1356 | poly m = p_One(r); |
---|
1357 | p_ExpVectorDiff(m,p2,p1,r); |
---|
1358 | //p_Setm(m,r); |
---|
1359 | #ifdef PDEBUG |
---|
1360 | p_Test(m,r); |
---|
1361 | #endif |
---|
1362 | /* pSetComp(m,r)=0? */ |
---|
1363 | poly N = nc_mm_Mult_p(m, p_Head(p1,r), r); |
---|
1364 | number C = p_GetCoeff(N, r); |
---|
1365 | number cF = p_GetCoeff(p2, r); |
---|
1366 | /* GCD stuff */ |
---|
1367 | number cG = n_SubringGcd(C, cF, r->cf); |
---|
1368 | if ( !n_IsOne(cG,r->cf) ) |
---|
1369 | { |
---|
1370 | cF = n_Div(cF, cG, r->cf); n_Normalize(cF, r->cf); |
---|
1371 | C = n_Div(C, cG, r->cf); n_Normalize(C, r->cf); |
---|
1372 | } |
---|
1373 | else |
---|
1374 | { |
---|
1375 | cF = n_Copy(cF, r->cf); |
---|
1376 | C = n_Copy(C, r->cf); |
---|
1377 | } |
---|
1378 | n_Delete(&cG,r->cf); |
---|
1379 | p2 = __p_Mult_nn(p2, C, r); |
---|
1380 | poly out = nc_mm_Mult_pp(m, pNext(p1), r); |
---|
1381 | N = p_Add_q(N, out, r); |
---|
1382 | p_Test(p2,r); |
---|
1383 | p_Test(N,r); |
---|
1384 | if (!n_IsMOne(cF,r->cf)) |
---|
1385 | { |
---|
1386 | cF = n_InpNeg(cF,r->cf); |
---|
1387 | N = __p_Mult_nn(N, cF, r); |
---|
1388 | p_Test(N,r); |
---|
1389 | } |
---|
1390 | out = p_Add_q(p2,N,r); |
---|
1391 | p_Test(out,r); |
---|
1392 | if ( out!=NULL ) p_Cleardenom(out,r); |
---|
1393 | p_Delete(&m,r); |
---|
1394 | n_Delete(&cF,r->cf); |
---|
1395 | n_Delete(&C,r->cf); |
---|
1396 | return(out); |
---|
1397 | } |
---|
1398 | |
---|
1399 | poly gnc_ReduceSpolyNew(const poly p1, poly p2, const ring r) |
---|
1400 | { |
---|
1401 | assume(p_LmDivisibleBy(p1, p2, r)); |
---|
1402 | |
---|
1403 | const long lCompP1 = p_GetComp(p1,r); |
---|
1404 | const long lCompP2 = p_GetComp(p2,r); |
---|
1405 | |
---|
1406 | if ((lCompP1!=lCompP2) && (lCompP1!=0) && (lCompP2!=0)) |
---|
1407 | { |
---|
1408 | #ifdef PDEBUG |
---|
1409 | WerrorS("gnc_ReduceSpolyNew: different non-zero components!"); |
---|
1410 | #endif |
---|
1411 | return(NULL); |
---|
1412 | } |
---|
1413 | |
---|
1414 | poly m = p_One(r); |
---|
1415 | p_ExpVectorDiff(m, p2, p1, r); |
---|
1416 | //p_Setm(m,r); |
---|
1417 | #ifdef PDEBUG |
---|
1418 | p_Test(m,r); |
---|
1419 | #endif |
---|
1420 | |
---|
1421 | /* pSetComp(m,r)=0? */ |
---|
1422 | poly N = nc_mm_Mult_p(m, p_Head(p1,r), r); |
---|
1423 | |
---|
1424 | number C = p_GetCoeff(N, r); |
---|
1425 | number cF = p_GetCoeff(p2, r); |
---|
1426 | |
---|
1427 | /* GCD stuff */ |
---|
1428 | number cG = n_SubringGcd(C, cF, r->cf); |
---|
1429 | |
---|
1430 | if (!n_IsOne(cG, r->cf)) |
---|
1431 | { |
---|
1432 | cF = n_Div(cF, cG, r->cf); n_Normalize(cF, r->cf); |
---|
1433 | C = n_Div(C, cG, r->cf); n_Normalize(C, r->cf); |
---|
1434 | } |
---|
1435 | else |
---|
1436 | { |
---|
1437 | cF = n_Copy(cF, r->cf); |
---|
1438 | C = n_Copy(C, r->cf); |
---|
1439 | } |
---|
1440 | n_Delete(&cG,r->cf); |
---|
1441 | |
---|
1442 | p2 = __p_Mult_nn(p2, C, r); // p2 !!! |
---|
1443 | p_Test(p2,r); |
---|
1444 | n_Delete(&C,r->cf); |
---|
1445 | |
---|
1446 | poly out = nc_mm_Mult_pp(m, pNext(p1), r); |
---|
1447 | p_Delete(&m,r); |
---|
1448 | |
---|
1449 | N = p_Add_q(N, out, r); |
---|
1450 | p_Test(N,r); |
---|
1451 | |
---|
1452 | if (!n_IsMOne(cF,r->cf)) // ??? |
---|
1453 | { |
---|
1454 | cF = n_InpNeg(cF,r->cf); |
---|
1455 | N = __p_Mult_nn(N, cF, r); |
---|
1456 | p_Test(N,r); |
---|
1457 | } |
---|
1458 | n_Delete(&cF,r->cf); |
---|
1459 | |
---|
1460 | out = p_Add_q(p2,N,r); // delete N, p2 |
---|
1461 | p_Test(out,r); |
---|
1462 | if ( out!=NULL ) p_Cleardenom(out,r); |
---|
1463 | return(out); |
---|
1464 | } |
---|
1465 | |
---|
1466 | |
---|
1467 | /*4 |
---|
1468 | * creates the S-polynomial of p1 and p2 |
---|
1469 | * do not destroy p1 and p2 |
---|
1470 | */ |
---|
1471 | poly gnc_CreateSpolyOld(poly p1, poly p2/*,poly spNoether*/, const ring r) |
---|
1472 | { |
---|
1473 | #ifdef PDEBUG |
---|
1474 | if ((p_GetComp(p1,r)!=p_GetComp(p2,r)) |
---|
1475 | && (p_GetComp(p1,r)!=0) |
---|
1476 | && (p_GetComp(p2,r)!=0)) |
---|
1477 | { |
---|
1478 | dReportError("gnc_CreateSpolyOld : different components!"); |
---|
1479 | return(NULL); |
---|
1480 | } |
---|
1481 | #endif |
---|
1482 | if ((ncRingType(r)==nc_lie) && p_HasNotCF(p1,p2, r)) /* prod crit */ |
---|
1483 | { |
---|
1484 | return(nc_p_Bracket_qq(p_Copy(p2, r),p1, r)); |
---|
1485 | } |
---|
1486 | poly pL=p_One(r); |
---|
1487 | poly m1=p_One(r); |
---|
1488 | poly m2=p_One(r); |
---|
1489 | pL = p_Lcm(p1,p2,r); |
---|
1490 | p_Setm(pL,r); |
---|
1491 | #ifdef PDEBUG |
---|
1492 | p_Test(pL,r); |
---|
1493 | #endif |
---|
1494 | p_ExpVectorDiff(m1,pL,p1,r); |
---|
1495 | //p_SetComp(m1,0,r); |
---|
1496 | //p_Setm(m1,r); |
---|
1497 | #ifdef PDEBUG |
---|
1498 | p_Test(m1,r); |
---|
1499 | #endif |
---|
1500 | p_ExpVectorDiff(m2,pL,p2,r); |
---|
1501 | //p_SetComp(m2,0,r); |
---|
1502 | //p_Setm(m2,r); |
---|
1503 | #ifdef PDEBUG |
---|
1504 | p_Test(m2,r); |
---|
1505 | #endif |
---|
1506 | p_Delete(&pL,r); |
---|
1507 | /* zero exponents ! */ |
---|
1508 | poly M1 = nc_mm_Mult_p(m1,p_Head(p1,r),r); |
---|
1509 | number C1 = p_GetCoeff(M1,r); |
---|
1510 | poly M2 = nc_mm_Mult_p(m2,p_Head(p2,r),r); |
---|
1511 | number C2 = p_GetCoeff(M2,r); |
---|
1512 | /* GCD stuff */ |
---|
1513 | number C = n_SubringGcd(C1,C2,r->cf); |
---|
1514 | if (!n_IsOne(C,r->cf)) |
---|
1515 | { |
---|
1516 | C1=n_Div(C1,C, r->cf);n_Normalize(C1,r->cf); |
---|
1517 | C2=n_Div(C2,C, r->cf);n_Normalize(C2,r->cf); |
---|
1518 | } |
---|
1519 | else |
---|
1520 | { |
---|
1521 | C1=n_Copy(C1, r->cf); |
---|
1522 | C2=n_Copy(C2, r->cf); |
---|
1523 | } |
---|
1524 | n_Delete(&C,r->cf); |
---|
1525 | M1=__p_Mult_nn(M1,C2,r); |
---|
1526 | p_SetCoeff(m1,C2,r); |
---|
1527 | if (n_IsMOne(C1,r->cf)) |
---|
1528 | { |
---|
1529 | M2=p_Add_q(M1,M2,r); |
---|
1530 | } |
---|
1531 | else |
---|
1532 | { |
---|
1533 | C1=n_InpNeg(C1,r->cf); |
---|
1534 | M2=__p_Mult_nn(M2,C1,r); |
---|
1535 | M2=p_Add_q(M1,M2,r); |
---|
1536 | p_SetCoeff(m2,C1,r); |
---|
1537 | } |
---|
1538 | /* M1 is killed, M2=res = C2 M1 - C1 M2 */ |
---|
1539 | poly tmp=p_Copy(p1,r); |
---|
1540 | tmp=p_LmDeleteAndNext(tmp,r); |
---|
1541 | M1=nc_mm_Mult_p(m1,tmp,r); |
---|
1542 | tmp=p_Copy(p2,r); |
---|
1543 | tmp=p_LmDeleteAndNext(tmp,r); |
---|
1544 | M2=p_Add_q(M2,M1,r); |
---|
1545 | M1=nc_mm_Mult_p(m2,tmp,r); |
---|
1546 | M2=p_Add_q(M2,M1,r); |
---|
1547 | p_Delete(&m1,r); |
---|
1548 | p_Delete(&m2,r); |
---|
1549 | // n_Delete(&C1,r); |
---|
1550 | // n_Delete(&C2,r); |
---|
1551 | #ifdef PDEBUG |
---|
1552 | p_Test(M2,r); |
---|
1553 | #endif |
---|
1554 | if (M2!=NULL) M2=p_Cleardenom(M2,r); |
---|
1555 | return(M2); |
---|
1556 | } |
---|
1557 | |
---|
1558 | poly gnc_CreateSpolyNew(poly p1, poly p2/*,poly spNoether*/, const ring r) |
---|
1559 | { |
---|
1560 | #ifdef PDEBUG |
---|
1561 | p_Test(p1, r); |
---|
1562 | p_Test(p2, r); |
---|
1563 | #if MYTEST |
---|
1564 | PrintS("p1: "); p_Write(p1, r); |
---|
1565 | PrintS("p2: "); p_Write(p2, r); |
---|
1566 | #endif |
---|
1567 | #endif |
---|
1568 | |
---|
1569 | const long lCompP1 = p_GetComp(p1,r); |
---|
1570 | const long lCompP2 = p_GetComp(p2,r); |
---|
1571 | |
---|
1572 | if ((lCompP1!=lCompP2) && (lCompP1!=0) && (lCompP2!=0)) |
---|
1573 | { |
---|
1574 | #ifdef PDEBUG |
---|
1575 | WerrorS("gnc_CreateSpolyNew: different non-zero components!"); |
---|
1576 | assume(0); |
---|
1577 | #endif |
---|
1578 | return(NULL); |
---|
1579 | } |
---|
1580 | |
---|
1581 | // if ((r->GetNC()->type==nc_lie) && pHasNotCF(p1,p2)) /* prod crit */ |
---|
1582 | // { |
---|
1583 | // return(nc_p_Bracket_qq(pCopy(p2),p1)); |
---|
1584 | // } |
---|
1585 | |
---|
1586 | // poly pL=p_One( r); |
---|
1587 | |
---|
1588 | poly m1=p_One( r); |
---|
1589 | poly m2=p_One( r); |
---|
1590 | |
---|
1591 | poly pL = p_Lcm(p1,p2,r); // pL = lcm( lm(p1), lm(p2) ) |
---|
1592 | |
---|
1593 | |
---|
1594 | #ifdef PDEBUG |
---|
1595 | // p_Test(pL,r); |
---|
1596 | #endif |
---|
1597 | |
---|
1598 | p_ExpVectorDiff(m1, pL, p1, r); // m1 = pL / lm(p1) |
---|
1599 | //p_SetComp(m1,0,r); |
---|
1600 | //p_Setm(m1,r); |
---|
1601 | |
---|
1602 | #ifdef PDEBUG |
---|
1603 | p_Test(m1,r); |
---|
1604 | #endif |
---|
1605 | // assume(p_GetComp(m1,r) == 0); |
---|
1606 | |
---|
1607 | p_ExpVectorDiff(m2, pL, p2, r); // m2 = pL / lm(p2) |
---|
1608 | |
---|
1609 | //p_SetComp(m2,0,r); |
---|
1610 | //p_Setm(m2,r); |
---|
1611 | #ifdef PDEBUG |
---|
1612 | p_Test(m2,r); |
---|
1613 | #endif |
---|
1614 | |
---|
1615 | #ifdef PDEBUG |
---|
1616 | #if MYTEST |
---|
1617 | PrintS("m1: "); pWrite(m1); |
---|
1618 | PrintS("m2: "); pWrite(m2); |
---|
1619 | #endif |
---|
1620 | #endif |
---|
1621 | |
---|
1622 | |
---|
1623 | // assume(p_GetComp(m2,r) == 0); |
---|
1624 | |
---|
1625 | #ifdef PDEBUG |
---|
1626 | #if 0 |
---|
1627 | if( (p_GetComp(m2,r) != 0) || (p_GetComp(m1,r) != 0) ) |
---|
1628 | { |
---|
1629 | WarnS("gnc_CreateSpolyNew: wrong monomials!"); |
---|
1630 | |
---|
1631 | |
---|
1632 | #ifdef RDEBUG |
---|
1633 | PrintS("m1 = "); p_Write(m1, r); |
---|
1634 | p_DebugPrint(m1, r); |
---|
1635 | |
---|
1636 | PrintS("m2 = "); p_Write(m2, r); |
---|
1637 | p_DebugPrint(m2, r); |
---|
1638 | |
---|
1639 | PrintS("p1 = "); p_Write(p1, r); |
---|
1640 | p_DebugPrint(p1, r); |
---|
1641 | |
---|
1642 | PrintS("p2 = "); p_Write(p2, r); |
---|
1643 | p_DebugPrint(p2, r); |
---|
1644 | |
---|
1645 | PrintS("pL = "); p_Write(pL, r); |
---|
1646 | p_DebugPrint(pL, r); |
---|
1647 | #endif |
---|
1648 | |
---|
1649 | } |
---|
1650 | |
---|
1651 | #endif |
---|
1652 | #endif |
---|
1653 | |
---|
1654 | p_LmFree(&pL,r); |
---|
1655 | |
---|
1656 | /* zero exponents !? */ |
---|
1657 | VAR poly M1 = nc_mm_Mult_p(m1,p_Head(p1,r),r); // M1 = m1 * lt(p1) |
---|
1658 | VAR poly M2 = nc_mm_Mult_p(m2,p_Head(p2,r),r); // M2 = m2 * lt(p2) |
---|
1659 | |
---|
1660 | #ifdef PDEBUG |
---|
1661 | p_Test(M1,r); |
---|
1662 | p_Test(M2,r); |
---|
1663 | |
---|
1664 | #if MYTEST |
---|
1665 | PrintS("M1: "); pWrite(M1); |
---|
1666 | PrintS("M2: "); pWrite(M2); |
---|
1667 | #endif |
---|
1668 | #endif |
---|
1669 | |
---|
1670 | if(M1 == NULL || M2 == NULL) |
---|
1671 | { |
---|
1672 | #ifdef PDEBUG |
---|
1673 | PrintS("\np1 = "); |
---|
1674 | p_Write(p1, r); |
---|
1675 | |
---|
1676 | PrintS("m1 = "); |
---|
1677 | p_Write(m1, r); |
---|
1678 | |
---|
1679 | PrintS("p2 = "); |
---|
1680 | p_Write(p2, r); |
---|
1681 | |
---|
1682 | PrintS("m2 = "); |
---|
1683 | p_Write(m2, r); |
---|
1684 | |
---|
1685 | WerrorS("ERROR in nc_CreateSpoly: result of multiplication is Zero!\n"); |
---|
1686 | #endif |
---|
1687 | return(NULL); |
---|
1688 | } |
---|
1689 | |
---|
1690 | VAR number C1 = p_GetCoeff(M1,r); // C1 = lc(M1) |
---|
1691 | VAR number C2 = p_GetCoeff(M2,r); // C2 = lc(M2) |
---|
1692 | |
---|
1693 | /* GCD stuff */ |
---|
1694 | VAR number C = n_SubringGcd(C1, C2, r->cf); // C = gcd(C1, C2) |
---|
1695 | |
---|
1696 | if (!n_IsOne(C, r->cf)) // if C != 1 |
---|
1697 | { |
---|
1698 | C1=n_Div(C1, C, r->cf);n_Normalize(C1,r->cf); // C1 = C1 / C |
---|
1699 | C2=n_Div(C2, C, r->cf);n_Normalize(C2,r->cf); // C2 = C2 / C |
---|
1700 | } |
---|
1701 | else |
---|
1702 | { |
---|
1703 | C1=n_Copy(C1,r->cf); |
---|
1704 | C2=n_Copy(C2,r->cf); |
---|
1705 | } |
---|
1706 | |
---|
1707 | n_Delete(&C,r->cf); // destroy the number C |
---|
1708 | |
---|
1709 | C1=n_InpNeg(C1,r->cf); |
---|
1710 | |
---|
1711 | // number MinusOne=n_Init(-1,r); |
---|
1712 | // if (n_Equal(C1,MinusOne,r)) // lc(M1) / gcd( lc(M1), lc(M2)) == -1 ???? |
---|
1713 | // { |
---|
1714 | // M2=p_Add_q(M1,M2,r); // ????? |
---|
1715 | // } |
---|
1716 | // else |
---|
1717 | // { |
---|
1718 | M1=__p_Mult_nn(M1,C2,r); // M1 = (C2*lc(p1)) * (lcm(lm(p1),lm(p2)) / lm(p1)) * lm(p1) |
---|
1719 | |
---|
1720 | #ifdef PDEBUG |
---|
1721 | p_Test(M1,r); |
---|
1722 | #endif |
---|
1723 | |
---|
1724 | M2=__p_Mult_nn(M2,C1,r); // M2 =(-C1*lc(p2)) * (lcm(lm(p1),lm(p2)) / lm(p2)) * lm(p2) |
---|
1725 | |
---|
1726 | |
---|
1727 | |
---|
1728 | #ifdef PDEBUG |
---|
1729 | p_Test(M2,r); |
---|
1730 | |
---|
1731 | #if MYTEST |
---|
1732 | PrintS("M1: "); pWrite(M1); |
---|
1733 | PrintS("M2: "); pWrite(M2); |
---|
1734 | #endif |
---|
1735 | #endif |
---|
1736 | |
---|
1737 | |
---|
1738 | M2=p_Add_q(M1,M2,r); // M1 is killed, M2 = spoly(lt(p1), lt(p2)) = C2*M1 - C1*M2 |
---|
1739 | |
---|
1740 | #ifdef PDEBUG |
---|
1741 | p_Test(M2,r); |
---|
1742 | |
---|
1743 | #if MYTEST |
---|
1744 | PrintS("M2: "); pWrite(M2); |
---|
1745 | #endif |
---|
1746 | |
---|
1747 | #endif |
---|
1748 | |
---|
1749 | // M2 == 0 for supercommutative algebras! |
---|
1750 | // } |
---|
1751 | // n_Delete(&MinusOne,r); |
---|
1752 | |
---|
1753 | p_SetCoeff(m1,C2,r); // lc(m1) = C2!!! |
---|
1754 | p_SetCoeff(m2,C1,r); // lc(m2) = C1!!! |
---|
1755 | |
---|
1756 | #ifdef PDEBUG |
---|
1757 | p_Test(m1,r); |
---|
1758 | p_Test(m2,r); |
---|
1759 | #endif |
---|
1760 | |
---|
1761 | // poly tmp = p_Copy(p1,r); // tmp = p1 |
---|
1762 | // tmp=p_LmDeleteAndNext(tmp,r); // tmp = tail(p1) |
---|
1763 | //#ifdef PDEBUG |
---|
1764 | // p_Test(tmp,r); |
---|
1765 | //#endif |
---|
1766 | |
---|
1767 | M1 = nc_mm_Mult_pp(m1, pNext(p1), r); // M1 = m1 * tail(p1), delete tmp // ??? |
---|
1768 | |
---|
1769 | #ifdef PDEBUG |
---|
1770 | p_Test(M1,r); |
---|
1771 | |
---|
1772 | #if MYTEST |
---|
1773 | PrintS("M1: "); pWrite(M1); |
---|
1774 | #endif |
---|
1775 | |
---|
1776 | #endif |
---|
1777 | |
---|
1778 | M2=p_Add_q(M2,M1,r); // M2 = spoly(lt(p1), lt(p2)) + m1 * tail(p1), delete M1 |
---|
1779 | #ifdef PDEBUG |
---|
1780 | M1=NULL; |
---|
1781 | p_Test(M2,r); |
---|
1782 | |
---|
1783 | #if MYTEST |
---|
1784 | PrintS("M2: "); pWrite(M2); |
---|
1785 | #endif |
---|
1786 | |
---|
1787 | #endif |
---|
1788 | |
---|
1789 | // tmp=p_Copy(p2,r); // tmp = p2 |
---|
1790 | // tmp=p_LmDeleteAndNext(tmp,r); // tmp = tail(p2) |
---|
1791 | |
---|
1792 | //#ifdef PDEBUG |
---|
1793 | // p_Test(tmp,r); |
---|
1794 | //#endif |
---|
1795 | |
---|
1796 | M1 = nc_mm_Mult_pp(m2, pNext(p2), r); // M1 = m2 * tail(p2), detele tmp |
---|
1797 | |
---|
1798 | #ifdef PDEBUG |
---|
1799 | p_Test(M1,r); |
---|
1800 | |
---|
1801 | #if MYTEST |
---|
1802 | PrintS("M1: "); pWrite(M1); |
---|
1803 | #endif |
---|
1804 | |
---|
1805 | #endif |
---|
1806 | |
---|
1807 | M2 = p_Add_q(M2,M1,r); // M2 = spoly(lt(p1), lt(p2)) + m1 * tail(p1) + m2*tail(p2) |
---|
1808 | |
---|
1809 | #ifdef PDEBUG |
---|
1810 | M1=NULL; |
---|
1811 | p_Test(M2,r); |
---|
1812 | |
---|
1813 | #if MYTEST |
---|
1814 | PrintS("M2: "); pWrite(M2); |
---|
1815 | #endif |
---|
1816 | |
---|
1817 | #endif |
---|
1818 | |
---|
1819 | p_Delete(&m1,r); // => n_Delete(&C1,r); |
---|
1820 | p_Delete(&m2,r); // => n_Delete(&C2,r); |
---|
1821 | |
---|
1822 | #ifdef PDEBUG |
---|
1823 | p_Test(M2,r); |
---|
1824 | #endif |
---|
1825 | |
---|
1826 | if (M2!=NULL) p_Cleardenom(M2,r); |
---|
1827 | |
---|
1828 | return(M2); |
---|
1829 | } |
---|
1830 | |
---|
1831 | |
---|
1832 | |
---|
1833 | |
---|
1834 | #if 0 |
---|
1835 | /*5 |
---|
1836 | * reduction of tail(q) with p1 |
---|
1837 | * lead(p1) divides lead(pNext(q2)) and pNext(q2) is reduced |
---|
1838 | * do not destroy p1, but tail(q) |
---|
1839 | */ |
---|
1840 | void gnc_ReduceSpolyTail(poly p1, poly q, poly q2, poly spNoether, const ring r) |
---|
1841 | { |
---|
1842 | poly a1=p_Head(p1,r); |
---|
1843 | poly Q=pNext(q2); |
---|
1844 | number cQ=p_GetCoeff(Q,r); |
---|
1845 | poly m=p_One(r); |
---|
1846 | p_ExpVectorDiff(m,Q,p1,r); |
---|
1847 | // p_SetComp(m,0,r); |
---|
1848 | //p_Setm(m,r); |
---|
1849 | #ifdef PDEBUG |
---|
1850 | p_Test(m,r); |
---|
1851 | #endif |
---|
1852 | /* pSetComp(m,r)=0? */ |
---|
1853 | VAR poly M = nc_mm_Mult_pp(m, p1,r); |
---|
1854 | VAR number C=p_GetCoeff(M,r); |
---|
1855 | M=p_Add_q(M,nc_mm_Mult_p(m,p_LmDeleteAndNext(p_Copy(p1,r),r),r),r); // _pp? |
---|
1856 | q=__p_Mult_nn(q,C,r); |
---|
1857 | VAR number MinusOne=n_Init(-1,r->cf); |
---|
1858 | if (!n_Equal(cQ,MinusOne,r->cf)) |
---|
1859 | { |
---|
1860 | cQ=nInpNeg(cQ); |
---|
1861 | M=__p_Mult_nn(M,cQ,r); |
---|
1862 | } |
---|
1863 | Q=p_Add_q(Q,M,r); |
---|
1864 | pNext(q2)=Q; |
---|
1865 | |
---|
1866 | p_Delete(&m,r); |
---|
1867 | n_Delete(&C,r->cf); |
---|
1868 | n_Delete(&cQ,r->cf); |
---|
1869 | n_Delete(&MinusOne,r->cf); |
---|
1870 | /* return(q); */ |
---|
1871 | } |
---|
1872 | #endif |
---|
1873 | |
---|
1874 | |
---|
1875 | /*6 |
---|
1876 | * creates the commutative lcm(lm(p1),lm(p2)) |
---|
1877 | * do not destroy p1 and p2 |
---|
1878 | */ |
---|
1879 | poly nc_CreateShortSpoly(poly p1, poly p2, const ring r) |
---|
1880 | { |
---|
1881 | #ifdef PDEBUG |
---|
1882 | p_Test(p1, r); |
---|
1883 | p_Test(p2, r); |
---|
1884 | #endif |
---|
1885 | |
---|
1886 | const long lCompP1 = p_GetComp(p1,r); |
---|
1887 | const long lCompP2 = p_GetComp(p2,r); |
---|
1888 | |
---|
1889 | if ((lCompP1!=lCompP2) && (lCompP1!=0) && (lCompP2!=0)) |
---|
1890 | { |
---|
1891 | #ifdef PDEBUG |
---|
1892 | WerrorS("nc_CreateShortSpoly: wrong module components!"); // !!!! |
---|
1893 | #endif |
---|
1894 | return(NULL); |
---|
1895 | } |
---|
1896 | |
---|
1897 | poly m; |
---|
1898 | |
---|
1899 | #ifdef HAVE_RATGRING |
---|
1900 | if ( rIsRatGRing(r)) |
---|
1901 | { |
---|
1902 | /* rational version */ |
---|
1903 | m = p_LcmRat(p1, p2, si_max(lCompP1, lCompP2), r); |
---|
1904 | } else |
---|
1905 | #endif |
---|
1906 | { |
---|
1907 | m = p_Lcm(p1, p2, r); |
---|
1908 | } |
---|
1909 | |
---|
1910 | pSetCoeff0(m,NULL); |
---|
1911 | |
---|
1912 | return(m); |
---|
1913 | } |
---|
1914 | |
---|
1915 | void gnc_kBucketPolyRedOld(kBucket_pt b, poly p, number *c) |
---|
1916 | { |
---|
1917 | const ring r = b->bucket_ring; |
---|
1918 | // b will not be multiplied by any constant in this impl. |
---|
1919 | // ==> *c=1 |
---|
1920 | if (c!=NULL) *c=n_Init(1, r->cf); |
---|
1921 | poly m=p_One(r); |
---|
1922 | p_ExpVectorDiff(m,kBucketGetLm(b),p, r); |
---|
1923 | //pSetm(m); |
---|
1924 | #ifdef PDEBUG |
---|
1925 | p_Test(m, r); |
---|
1926 | #endif |
---|
1927 | poly pp= nc_mm_Mult_pp(m,p, r); |
---|
1928 | assume(pp!=NULL); |
---|
1929 | p_Delete(&m, r); |
---|
1930 | number n=pGetCoeff(pp); |
---|
1931 | number nn; |
---|
1932 | if (!n_IsMOne(n, r->cf)) |
---|
1933 | { |
---|
1934 | nn=n_InpNeg(n_Invers(n, r->cf), r->cf); |
---|
1935 | n= n_Mult(nn,pGetCoeff(kBucketGetLm(b)), r->cf); |
---|
1936 | n_Delete(&nn, r->cf); |
---|
1937 | pp=__p_Mult_nn(pp,n,r); |
---|
1938 | n_Delete(&n, r->cf); |
---|
1939 | } |
---|
1940 | else |
---|
1941 | { |
---|
1942 | pp=__p_Mult_nn(pp,p_GetCoeff(kBucketGetLm(b), r),r); |
---|
1943 | } |
---|
1944 | int l=pLength(pp); |
---|
1945 | kBucket_Add_q(b,pp,&l); |
---|
1946 | } |
---|
1947 | |
---|
1948 | void gnc_kBucketPolyRedNew(kBucket_pt b, poly p, number *c) |
---|
1949 | { |
---|
1950 | const ring r = b->bucket_ring; |
---|
1951 | #ifdef PDEBUG |
---|
1952 | // PrintS(">*"); |
---|
1953 | #endif |
---|
1954 | |
---|
1955 | #ifdef KDEBUG |
---|
1956 | if( !kbTest(b) ) WerrorS("nc_kBucketPolyRed: broken bucket!"); |
---|
1957 | #endif |
---|
1958 | |
---|
1959 | #ifdef PDEBUG |
---|
1960 | p_Test(p, r); |
---|
1961 | #if MYTEST |
---|
1962 | PrintS("p: "); p_Write(p, r); |
---|
1963 | #endif |
---|
1964 | #endif |
---|
1965 | |
---|
1966 | // b will not be multiplied by any constant in this impl. |
---|
1967 | // ==> *c=1 |
---|
1968 | if (c!=NULL) *c=n_Init(1, r->cf); |
---|
1969 | poly m = p_One(r); |
---|
1970 | const poly pLmB = kBucketGetLm(b); // no new copy! |
---|
1971 | |
---|
1972 | assume( pLmB != NULL ); |
---|
1973 | |
---|
1974 | #ifdef PDEBUG |
---|
1975 | p_Test(pLmB, r); |
---|
1976 | |
---|
1977 | #if MYTEST |
---|
1978 | PrintS("pLmB: "); p_Write(pLmB, r); |
---|
1979 | #endif |
---|
1980 | #endif |
---|
1981 | |
---|
1982 | p_ExpVectorDiff(m, pLmB, p, r); |
---|
1983 | //pSetm(m); |
---|
1984 | |
---|
1985 | #ifdef PDEBUG |
---|
1986 | p_Test(m, r); |
---|
1987 | #if MYTEST |
---|
1988 | PrintS("m: "); p_Write(m, r); |
---|
1989 | #endif |
---|
1990 | #endif |
---|
1991 | |
---|
1992 | poly pp = nc_mm_Mult_pp(m, p, r); |
---|
1993 | p_Delete(&m, r); |
---|
1994 | |
---|
1995 | assume( pp != NULL ); |
---|
1996 | const number n = pGetCoeff(pp); // bug! |
---|
1997 | |
---|
1998 | if (!n_IsMOne(n, r->cf) ) // does this improve performance??!? also see below... // TODO: check later on. |
---|
1999 | // if n == -1 => nn = 1 and -1/n |
---|
2000 | { |
---|
2001 | number nn=n_InpNeg(n_Invers(n, r->cf), r->cf); |
---|
2002 | number t = n_Mult(nn,pGetCoeff(pLmB), r->cf); |
---|
2003 | n_Delete(&nn, r->cf); |
---|
2004 | pp = __p_Mult_nn(pp,t,r); |
---|
2005 | n_Delete(&t, r->cf); |
---|
2006 | } |
---|
2007 | else |
---|
2008 | { |
---|
2009 | pp = __p_Mult_nn(pp,p_GetCoeff(pLmB, r), r); |
---|
2010 | } |
---|
2011 | |
---|
2012 | int l = pLength(pp); |
---|
2013 | |
---|
2014 | #ifdef PDEBUG |
---|
2015 | p_Test(pp, r); |
---|
2016 | // PrintS("PP: "); pWrite(pp); |
---|
2017 | #endif |
---|
2018 | |
---|
2019 | kBucket_Add_q(b,pp,&l); |
---|
2020 | |
---|
2021 | |
---|
2022 | #ifdef PDEBUG |
---|
2023 | // PrintS("*>"); |
---|
2024 | #endif |
---|
2025 | } |
---|
2026 | |
---|
2027 | |
---|
2028 | void gnc_kBucketPolyRed_ZOld(kBucket_pt b, poly p, number *c) |
---|
2029 | { |
---|
2030 | const ring r = b->bucket_ring; |
---|
2031 | // b is multiplied by a constant in this impl. |
---|
2032 | number ctmp; |
---|
2033 | poly m=p_One(r); |
---|
2034 | p_ExpVectorDiff(m,kBucketGetLm(b),p, r); |
---|
2035 | //pSetm(m); |
---|
2036 | #ifdef PDEBUG |
---|
2037 | p_Test(m, r); |
---|
2038 | #endif |
---|
2039 | if(p_IsConstant(m,r)) |
---|
2040 | { |
---|
2041 | p_Delete(&m, r); |
---|
2042 | ctmp = kBucketPolyRed(b,p,pLength(p),NULL); |
---|
2043 | } |
---|
2044 | else |
---|
2045 | { |
---|
2046 | poly pp = nc_mm_Mult_pp(m,p,r); |
---|
2047 | number c2; |
---|
2048 | p_Cleardenom_n(pp,r,c2); |
---|
2049 | p_Delete(&m, r); |
---|
2050 | ctmp = kBucketPolyRed(b,pp,pLength(pp),NULL); |
---|
2051 | //cc=*c; |
---|
2052 | //*c=nMult(*c,c2); |
---|
2053 | n_Delete(&c2, r->cf); |
---|
2054 | //nDelete(&cc); |
---|
2055 | p_Delete(&pp, r); |
---|
2056 | } |
---|
2057 | if (c!=NULL) *c=ctmp; |
---|
2058 | else n_Delete(&ctmp, r->cf); |
---|
2059 | } |
---|
2060 | |
---|
2061 | void gnc_kBucketPolyRed_ZNew(kBucket_pt b, poly p, number *c) |
---|
2062 | { |
---|
2063 | const ring r = b->bucket_ring; |
---|
2064 | // b is multiplied by a constant in this impl. |
---|
2065 | number ctmp; |
---|
2066 | poly m=p_One(r); |
---|
2067 | p_ExpVectorDiff(m,kBucketGetLm(b),p, r); |
---|
2068 | //pSetm(m); |
---|
2069 | #ifdef PDEBUG |
---|
2070 | p_Test(m, r); |
---|
2071 | #endif |
---|
2072 | |
---|
2073 | if(p_IsConstant(m,r)) |
---|
2074 | { |
---|
2075 | p_Delete(&m, r); |
---|
2076 | ctmp = kBucketPolyRed(b,p,pLength(p),NULL); |
---|
2077 | } |
---|
2078 | else |
---|
2079 | { |
---|
2080 | poly pp = nc_mm_Mult_pp(m,p,r); |
---|
2081 | number c2; |
---|
2082 | p_Cleardenom_n(pp,r,c2); |
---|
2083 | p_Delete(&m, r); |
---|
2084 | ctmp = kBucketPolyRed(b,pp,pLength(pp),NULL); |
---|
2085 | //cc=*c; |
---|
2086 | //*c=nMult(*c,c2); |
---|
2087 | n_Delete(&c2, r->cf); |
---|
2088 | //nDelete(&cc); |
---|
2089 | p_Delete(&pp, r); |
---|
2090 | } |
---|
2091 | if (c!=NULL) *c=ctmp; |
---|
2092 | else n_Delete(&ctmp, r->cf); |
---|
2093 | } |
---|
2094 | |
---|
2095 | |
---|
2096 | inline void nc_PolyPolyRedOld(poly &b, poly p, number *c, const ring r) |
---|
2097 | // reduces b with p, do not delete both |
---|
2098 | { |
---|
2099 | // b will not by multiplied by any constant in this impl. |
---|
2100 | // ==> *c=1 |
---|
2101 | if (c!=NULL) *c=n_Init(1, r->cf); |
---|
2102 | poly m=p_One(r); |
---|
2103 | p_ExpVectorDiff(m,p_Head(b, r),p, r); |
---|
2104 | //pSetm(m); |
---|
2105 | #ifdef PDEBUG |
---|
2106 | p_Test(m, r); |
---|
2107 | #endif |
---|
2108 | poly pp=nc_mm_Mult_pp(m,p,r); |
---|
2109 | assume(pp!=NULL); |
---|
2110 | |
---|
2111 | p_Delete(&m, r); |
---|
2112 | number n=pGetCoeff(pp); |
---|
2113 | number nn; |
---|
2114 | if (!n_IsMOne(n, r->cf)) |
---|
2115 | { |
---|
2116 | nn=n_InpNeg(n_Invers(n, r->cf), r->cf); |
---|
2117 | n =n_Mult(nn,pGetCoeff(b), r->cf); |
---|
2118 | n_Delete(&nn, r->cf); |
---|
2119 | pp=__p_Mult_nn(pp,n,r); |
---|
2120 | n_Delete(&n, r->cf); |
---|
2121 | } |
---|
2122 | else |
---|
2123 | { |
---|
2124 | pp=__p_Mult_nn(pp,p_GetCoeff(b, r),r); |
---|
2125 | } |
---|
2126 | b=p_Add_q(b,pp,r); |
---|
2127 | } |
---|
2128 | |
---|
2129 | |
---|
2130 | inline void nc_PolyPolyRedNew(poly &b, poly p, number *c, const ring r) |
---|
2131 | // reduces b with p, do not delete both |
---|
2132 | { |
---|
2133 | #ifdef PDEBUG |
---|
2134 | p_Test(b, r); |
---|
2135 | p_Test(p, r); |
---|
2136 | #endif |
---|
2137 | |
---|
2138 | #if MYTEST |
---|
2139 | PrintS("nc_PolyPolyRedNew("); |
---|
2140 | p_Write0(b, r); |
---|
2141 | PrintS(", "); |
---|
2142 | p_Write0(p, r); |
---|
2143 | PrintS(", *c): "); |
---|
2144 | #endif |
---|
2145 | |
---|
2146 | // b will not by multiplied by any constant in this impl. |
---|
2147 | // ==> *c=1 |
---|
2148 | if (c!=NULL) *c=n_Init(1, r->cf); |
---|
2149 | |
---|
2150 | poly pp = NULL; |
---|
2151 | |
---|
2152 | // there is a problem when p is a square(=>0!) |
---|
2153 | |
---|
2154 | while((b != NULL) && (pp == NULL)) |
---|
2155 | { |
---|
2156 | |
---|
2157 | // poly pLmB = p_Head(b, r); |
---|
2158 | poly m = p_One(r); |
---|
2159 | p_ExpVectorDiff(m, b, p, r); |
---|
2160 | // pDelete(&pLmB); |
---|
2161 | //pSetm(m); |
---|
2162 | |
---|
2163 | #ifdef PDEBUG |
---|
2164 | p_Test(m, r); |
---|
2165 | p_Test(b, r); |
---|
2166 | #endif |
---|
2167 | |
---|
2168 | pp = nc_mm_Mult_pp(m, p, r); |
---|
2169 | |
---|
2170 | #if MYTEST |
---|
2171 | PrintS("\n{b': "); |
---|
2172 | p_Write0(b, r); |
---|
2173 | PrintS(", m: "); |
---|
2174 | p_Write0(m, r); |
---|
2175 | PrintS(", pp: "); |
---|
2176 | p_Write0(pp, r); |
---|
2177 | PrintS(" }\n"); |
---|
2178 | #endif |
---|
2179 | |
---|
2180 | p_Delete(&m, r); // one m for all tries! |
---|
2181 | |
---|
2182 | // assume( pp != NULL ); |
---|
2183 | |
---|
2184 | if( pp == NULL ) |
---|
2185 | { |
---|
2186 | b = p_LmDeleteAndNext(b, r); |
---|
2187 | |
---|
2188 | if( !p_DivisibleBy(p, b, r) ) |
---|
2189 | return; |
---|
2190 | |
---|
2191 | } |
---|
2192 | } |
---|
2193 | |
---|
2194 | #if MYTEST |
---|
2195 | PrintS("{b': "); |
---|
2196 | p_Write0(b, r); |
---|
2197 | PrintS(", pp: "); |
---|
2198 | p_Write0(pp, r); |
---|
2199 | PrintS(" }\n"); |
---|
2200 | #endif |
---|
2201 | |
---|
2202 | |
---|
2203 | if(b == NULL) return; |
---|
2204 | |
---|
2205 | |
---|
2206 | assume(pp != NULL); |
---|
2207 | |
---|
2208 | const number n = pGetCoeff(pp); // no new copy |
---|
2209 | |
---|
2210 | number nn; |
---|
2211 | |
---|
2212 | if (!n_IsMOne(n, r->cf)) // TODO: as above. |
---|
2213 | { |
---|
2214 | nn=n_InpNeg(n_Invers(n, r->cf), r->cf); |
---|
2215 | number t = n_Mult(nn, pGetCoeff(b), r->cf); |
---|
2216 | n_Delete(&nn, r->cf); |
---|
2217 | pp=__p_Mult_nn(pp, t, r); |
---|
2218 | n_Delete(&t, r->cf); |
---|
2219 | } |
---|
2220 | else |
---|
2221 | { |
---|
2222 | pp=__p_Mult_nn(pp, pGetCoeff(b), r); |
---|
2223 | } |
---|
2224 | |
---|
2225 | |
---|
2226 | b=p_Add_q(b,pp,r); |
---|
2227 | |
---|
2228 | } |
---|
2229 | |
---|
2230 | void nc_PolyPolyRed(poly &b, poly p, number *c, const ring r) |
---|
2231 | { |
---|
2232 | #if 0 |
---|
2233 | nc_PolyPolyRedOld(b, p, c, r); |
---|
2234 | #else |
---|
2235 | nc_PolyPolyRedNew(b, p, c, r); |
---|
2236 | #endif |
---|
2237 | } |
---|
2238 | |
---|
2239 | |
---|
2240 | poly nc_mm_Bracket_nn(poly m1, poly m2, const ring r); |
---|
2241 | |
---|
2242 | /// returns [p,q], destroys p |
---|
2243 | poly nc_p_Bracket_qq(poly p, const poly q, const ring r) |
---|
2244 | { |
---|
2245 | assume(p != NULL && q!= NULL); |
---|
2246 | |
---|
2247 | if (!rIsPluralRing(r)) return(NULL); |
---|
2248 | if (p_ComparePolys(p,q, r)) return(NULL); |
---|
2249 | /* Components !? */ |
---|
2250 | poly Q=NULL; |
---|
2251 | number coef=NULL; |
---|
2252 | poly pres=NULL; |
---|
2253 | int UseBuckets=1; |
---|
2254 | if (((pLength(p)< MIN_LENGTH_BUCKET/2) && (pLength(q)< MIN_LENGTH_BUCKET/2)) |
---|
2255 | || TEST_OPT_NOT_BUCKETS) |
---|
2256 | UseBuckets=0; |
---|
2257 | |
---|
2258 | |
---|
2259 | CPolynomialSummator sum(r, UseBuckets == 0); |
---|
2260 | |
---|
2261 | while (p!=NULL) |
---|
2262 | { |
---|
2263 | Q=q; |
---|
2264 | while(Q!=NULL) |
---|
2265 | { |
---|
2266 | pres=nc_mm_Bracket_nn(p,Q, r); /* since no coeffs are taken into account there */ |
---|
2267 | if (pres!=NULL) |
---|
2268 | { |
---|
2269 | coef = n_Mult(pGetCoeff(p),pGetCoeff(Q), r->cf); |
---|
2270 | pres = __p_Mult_nn(pres,coef,r); |
---|
2271 | |
---|
2272 | sum += pres; |
---|
2273 | n_Delete(&coef, r->cf); |
---|
2274 | } |
---|
2275 | pIter(Q); |
---|
2276 | } |
---|
2277 | p=p_LmDeleteAndNext(p, r); |
---|
2278 | } |
---|
2279 | return(sum); |
---|
2280 | } |
---|
2281 | |
---|
2282 | /// returns [m1,m2] for two monoms, destroys nothing |
---|
2283 | /// without coeffs |
---|
2284 | poly nc_mm_Bracket_nn(poly m1, poly m2, const ring r) |
---|
2285 | { |
---|
2286 | if (p_LmIsConstant(m1, r) || p_LmIsConstant(m1, r)) return(NULL); |
---|
2287 | if (p_LmCmp(m1,m2, r)==0) return(NULL); |
---|
2288 | int rN=r->N; |
---|
2289 | int *M1=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
2290 | int *M2=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
2291 | int *aPREFIX=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
2292 | int *aSUFFIX=(int *)omAlloc0((rN+1)*sizeof(int)); |
---|
2293 | p_GetExpV(m1,M1, r); |
---|
2294 | p_GetExpV(m2,M2, r); |
---|
2295 | poly res=NULL; |
---|
2296 | poly ares=NULL; |
---|
2297 | poly bres=NULL; |
---|
2298 | poly prefix=NULL; |
---|
2299 | poly suffix=NULL; |
---|
2300 | int nMin,nMax; |
---|
2301 | number nTmp=NULL; |
---|
2302 | int i,j,k; |
---|
2303 | for (i=1;i<=rN;i++) |
---|
2304 | { |
---|
2305 | if (M2[i]!=0) |
---|
2306 | { |
---|
2307 | ares=NULL; |
---|
2308 | for (j=1;j<=rN;j++) |
---|
2309 | { |
---|
2310 | if (M1[j]!=0) |
---|
2311 | { |
---|
2312 | bres=NULL; |
---|
2313 | /* compute [ x_j^M1[j],x_i^M2[i] ] */ |
---|
2314 | if (i<j) {nMax=j; nMin=i;} else {nMax=i; nMin=j;} |
---|
2315 | if ( (i==j) || ((MATELEM(r->GetNC()->COM,nMin,nMax)!=NULL) && n_IsOne(pGetCoeff(MATELEM(r->GetNC()->C,nMin,nMax)), r->cf) )) /* not (the same exp. or commuting exps)*/ |
---|
2316 | { bres=NULL; } |
---|
2317 | else |
---|
2318 | { |
---|
2319 | if (i<j) { bres=gnc_uu_Mult_ww(j,M1[j],i,M2[i], r); } |
---|
2320 | else bres=gnc_uu_Mult_ww(i,M2[i],j,M1[j], r); |
---|
2321 | if (n_IsOne(pGetCoeff(bres), r->cf)) |
---|
2322 | { |
---|
2323 | bres=p_LmDeleteAndNext(bres, r); |
---|
2324 | } |
---|
2325 | else |
---|
2326 | { |
---|
2327 | nTmp=n_Sub(pGetCoeff(bres),n_Init(1, r->cf), r->cf); |
---|
2328 | p_SetCoeff(bres,nTmp, r); /* only lc ! */ |
---|
2329 | } |
---|
2330 | #ifdef PDEBUG |
---|
2331 | p_Test(bres, r); |
---|
2332 | #endif |
---|
2333 | if (i>j) bres=p_Neg(bres, r); |
---|
2334 | } |
---|
2335 | if (bres!=NULL) |
---|
2336 | { |
---|
2337 | /* now mult (prefix, bres, suffix) */ |
---|
2338 | memcpy(aSUFFIX, M1,(rN+1)*sizeof(int)); |
---|
2339 | memcpy(aPREFIX, M1,(rN+1)*sizeof(int)); |
---|
2340 | for (k=1;k<=j;k++) aSUFFIX[k]=0; |
---|
2341 | for (k=j;k<=rN;k++) aPREFIX[k]=0; |
---|
2342 | aSUFFIX[0]=0; |
---|
2343 | aPREFIX[0]=0; |
---|
2344 | prefix=p_One(r); |
---|
2345 | suffix=p_One(r); |
---|
2346 | p_SetExpV(prefix,aPREFIX, r); |
---|
2347 | p_Setm(prefix, r); |
---|
2348 | p_SetExpV(suffix,aSUFFIX, r); |
---|
2349 | p_Setm(suffix, r); |
---|
2350 | if (!p_LmIsConstant(prefix, r)) bres = gnc_p_mm_Mult(bres, prefix, r); |
---|
2351 | if (!p_LmIsConstant(suffix, r)) bres = gnc_p_Mult_mm(bres, suffix, r); |
---|
2352 | ares=p_Add_q(ares, bres, r); |
---|
2353 | /* What to give free? */ |
---|
2354 | /* Do we have to free aPREFIX/aSUFFIX? it seems so */ |
---|
2355 | p_Delete(&prefix, r); |
---|
2356 | p_Delete(&suffix, r); |
---|
2357 | } |
---|
2358 | } |
---|
2359 | } |
---|
2360 | if (ares!=NULL) |
---|
2361 | { |
---|
2362 | /* now mult (prefix, bres, suffix) */ |
---|
2363 | memcpy(aSUFFIX, M2,(rN+1)*sizeof(int)); |
---|
2364 | memcpy(aPREFIX, M2,(rN+1)*sizeof(int)); |
---|
2365 | for (k=1;k<=i;k++) aSUFFIX[k]=0; |
---|
2366 | for (k=i;k<=rN;k++) aPREFIX[k]=0; |
---|
2367 | aSUFFIX[0]=0; |
---|
2368 | aPREFIX[0]=0; |
---|
2369 | prefix=p_One(r); |
---|
2370 | suffix=p_One(r); |
---|
2371 | p_SetExpV(prefix,aPREFIX, r); |
---|
2372 | p_Setm(prefix, r); |
---|
2373 | p_SetExpV(suffix,aSUFFIX, r); |
---|
2374 | p_Setm(suffix, r); |
---|
2375 | bres=ares; |
---|
2376 | if (!p_LmIsConstant(prefix, r)) bres = gnc_p_mm_Mult(bres, prefix, r); |
---|
2377 | if (!p_LmIsConstant(suffix, r)) bres = gnc_p_Mult_mm(bres, suffix, r); |
---|
2378 | res=p_Add_q(res, bres, r); |
---|
2379 | p_Delete(&prefix, r); |
---|
2380 | p_Delete(&suffix, r); |
---|
2381 | } |
---|
2382 | } |
---|
2383 | } |
---|
2384 | freeT(M1, rN); |
---|
2385 | freeT(M2, rN); |
---|
2386 | freeT(aPREFIX, rN); |
---|
2387 | freeT(aSUFFIX, rN); |
---|
2388 | #ifdef PDEBUG |
---|
2389 | p_Test(res, r); |
---|
2390 | #endif |
---|
2391 | return(res); |
---|
2392 | } |
---|
2393 | /// returns matrix with the info on noncomm multiplication |
---|
2394 | matrix nc_PrintMat(int a, int b, ring r, int metric) |
---|
2395 | { |
---|
2396 | |
---|
2397 | if ( (a==b) || !rIsPluralRing(r) ) return(NULL); |
---|
2398 | int i; |
---|
2399 | int j; |
---|
2400 | if (a>b) {j=b; i=a;} |
---|
2401 | else {j=a; i=b;} |
---|
2402 | /* i<j */ |
---|
2403 | int rN=r->N; |
---|
2404 | int size=r->GetNC()->MTsize[UPMATELEM(i,j,rN)]; |
---|
2405 | matrix M = r->GetNC()->MT[UPMATELEM(i,j,rN)]; |
---|
2406 | /* return(M); */ |
---|
2407 | /* |
---|
2408 | int sizeofres; |
---|
2409 | if (metric==0) |
---|
2410 | { |
---|
2411 | sizeofres=sizeof(int); |
---|
2412 | } |
---|
2413 | if (metric==1) |
---|
2414 | { |
---|
2415 | sizeofres=sizeof(number); |
---|
2416 | } |
---|
2417 | */ |
---|
2418 | matrix res=mpNew(size,size); |
---|
2419 | int s; |
---|
2420 | int t; |
---|
2421 | int length; |
---|
2422 | long totdeg; |
---|
2423 | poly p; |
---|
2424 | for(s=1;s<=size;s++) |
---|
2425 | { |
---|
2426 | for(t=1;t<=size;t++) |
---|
2427 | { |
---|
2428 | p=MATELEM(M,s,t); |
---|
2429 | if (p==NULL) |
---|
2430 | { |
---|
2431 | MATELEM(res,s,t)=0; |
---|
2432 | } |
---|
2433 | else |
---|
2434 | { |
---|
2435 | length = pLength(p); |
---|
2436 | if (metric==0) /* length */ |
---|
2437 | { |
---|
2438 | MATELEM(res,s,t)= p_ISet(length,r); |
---|
2439 | } |
---|
2440 | else if (metric==1) /* sum of deg divided by the length */ |
---|
2441 | { |
---|
2442 | totdeg=0; |
---|
2443 | while (p!=NULL) |
---|
2444 | { |
---|
2445 | totdeg=totdeg+p_Deg(p,r); |
---|
2446 | pIter(p); |
---|
2447 | } |
---|
2448 | number ntd = n_Init(totdeg, r->cf); |
---|
2449 | number nln = n_Init(length, r->cf); |
---|
2450 | number nres= n_Div(ntd,nln, r->cf); |
---|
2451 | n_Delete(&ntd, r->cf); |
---|
2452 | n_Delete(&nln, r->cf); |
---|
2453 | MATELEM(res,s,t)=p_NSet(nres,r); |
---|
2454 | } |
---|
2455 | } |
---|
2456 | } |
---|
2457 | } |
---|
2458 | return(res); |
---|
2459 | } |
---|
2460 | |
---|
2461 | inline void nc_CleanUp(nc_struct* p) |
---|
2462 | { |
---|
2463 | assume(p != NULL); |
---|
2464 | omFreeSize((ADDRESS)p,sizeof(nc_struct)); |
---|
2465 | } |
---|
2466 | |
---|
2467 | inline void nc_CleanUp(ring r) |
---|
2468 | { |
---|
2469 | /* small CleanUp of r->GetNC() */ |
---|
2470 | assume(r != NULL); |
---|
2471 | nc_CleanUp(r->GetNC()); |
---|
2472 | r->GetNC() = NULL; |
---|
2473 | } |
---|
2474 | |
---|
2475 | void nc_rKill(ring r) |
---|
2476 | // kills the nc extension of ring r |
---|
2477 | { |
---|
2478 | if( r->GetNC()->GetGlobalMultiplier() != NULL ) |
---|
2479 | { |
---|
2480 | delete r->GetNC()->GetGlobalMultiplier(); |
---|
2481 | r->GetNC()->GetGlobalMultiplier() = NULL; |
---|
2482 | } |
---|
2483 | |
---|
2484 | if( r->GetNC()->GetFormulaPowerMultiplier() != NULL ) |
---|
2485 | { |
---|
2486 | delete r->GetNC()->GetFormulaPowerMultiplier(); |
---|
2487 | r->GetNC()->GetFormulaPowerMultiplier() = NULL; |
---|
2488 | } |
---|
2489 | |
---|
2490 | |
---|
2491 | int i,j; |
---|
2492 | int rN=r->N; |
---|
2493 | if ( rN > 1 ) |
---|
2494 | { |
---|
2495 | for(i=1;i<rN;i++) |
---|
2496 | { |
---|
2497 | for(j=i+1;j<=rN;j++) |
---|
2498 | { |
---|
2499 | id_Delete((ideal *)&(r->GetNC()->MT[UPMATELEM(i,j,rN)]),r); |
---|
2500 | } |
---|
2501 | } |
---|
2502 | omFreeSize((ADDRESS)r->GetNC()->MT,rN*(rN-1)/2*sizeof(matrix)); |
---|
2503 | omFreeSize((ADDRESS)r->GetNC()->MTsize,rN*(rN-1)/2*sizeof(int)); |
---|
2504 | id_Delete((ideal *)&(r->GetNC()->COM),r); |
---|
2505 | } |
---|
2506 | id_Delete((ideal *)&(r->GetNC()->C),r); |
---|
2507 | id_Delete((ideal *)&(r->GetNC()->D),r); |
---|
2508 | |
---|
2509 | if( rIsSCA(r) && (r->GetNC()->SCAQuotient() != NULL) ) |
---|
2510 | { |
---|
2511 | id_Delete(&r->GetNC()->SCAQuotient(), r); // Custom SCA destructor!!! |
---|
2512 | } |
---|
2513 | |
---|
2514 | |
---|
2515 | nc_CleanUp(r); |
---|
2516 | } |
---|
2517 | |
---|
2518 | |
---|
2519 | //////////////////////////////////////////////////////////////////////////////////////////////// |
---|
2520 | |
---|
2521 | // deprecated: |
---|
2522 | /* for use in getting the mult. matrix elements*/ |
---|
2523 | /* ring r must be a currRing! */ |
---|
2524 | /* for consistency, copies a poly from the comm. r->GetNC()->basering */ |
---|
2525 | /* to its image in NC ring */ |
---|
2526 | poly nc_p_CopyGet(poly a, const ring r) |
---|
2527 | { |
---|
2528 | #ifndef PDEBUG |
---|
2529 | p_Test(a, r); |
---|
2530 | #endif |
---|
2531 | |
---|
2532 | // if (r != currRing) |
---|
2533 | // { |
---|
2534 | //#ifdef PDEBUF |
---|
2535 | // WerrorS("nc_p_CopyGet call not in currRing"); |
---|
2536 | //#endif |
---|
2537 | // return(NULL); |
---|
2538 | // } |
---|
2539 | return(p_Copy(a,r)); |
---|
2540 | } |
---|
2541 | |
---|
2542 | // deprecated: |
---|
2543 | /* for use in defining the mult. matrix elements*/ |
---|
2544 | /* ring r must be a currRing! */ |
---|
2545 | /* for consistency, puts a polynomial from the NC ring */ |
---|
2546 | /* to its presentation in the comm. r->GetNC()->basering */ |
---|
2547 | poly nc_p_CopyPut(poly a, const ring r) |
---|
2548 | { |
---|
2549 | #ifndef PDEBUG |
---|
2550 | p_Test(a, r); |
---|
2551 | #endif |
---|
2552 | |
---|
2553 | // if (r != currRing) |
---|
2554 | // { |
---|
2555 | //#ifdef PDEBUF |
---|
2556 | // WerrorS("nc_p_CopyGet call not in currRing"); |
---|
2557 | //#endif |
---|
2558 | // return(NULL); |
---|
2559 | // } |
---|
2560 | |
---|
2561 | return(p_Copy(a,r)); |
---|
2562 | } |
---|
2563 | |
---|
2564 | /* returns TRUE if there were errors */ |
---|
2565 | /* checks whether product of vars from PolyVar defines */ |
---|
2566 | /* an admissible subalgebra of r */ |
---|
2567 | /* r is indeed currRing and assumed to be noncomm. */ |
---|
2568 | BOOLEAN nc_CheckSubalgebra(poly PolyVar, ring r) |
---|
2569 | { |
---|
2570 | // ring save = currRing; |
---|
2571 | // int WeChangeRing = 0; |
---|
2572 | // if (currRing != r) |
---|
2573 | // rChangeCurrRing(r); |
---|
2574 | // WeChangeRing = 1; |
---|
2575 | // } |
---|
2576 | int rN=r->N; |
---|
2577 | int *ExpVar=(int*)omAlloc0((rN+1)*sizeof(int)); |
---|
2578 | int *ExpTmp=(int*)omAlloc0((rN+1)*sizeof(int)); |
---|
2579 | p_GetExpV(PolyVar, ExpVar, r); |
---|
2580 | int i; int j; int k; |
---|
2581 | poly test=NULL; |
---|
2582 | int OK=1; |
---|
2583 | for (i=1; i<rN; i++) |
---|
2584 | { |
---|
2585 | if (ExpVar[i]==0) /* i.e. not in PolyVar */ |
---|
2586 | { |
---|
2587 | for (j=i+1; j<=rN; j++) |
---|
2588 | { |
---|
2589 | if (ExpVar[j]==0) |
---|
2590 | { |
---|
2591 | test = MATELEM(r->GetNC()->D,i,j); |
---|
2592 | while (test!=NULL) |
---|
2593 | { |
---|
2594 | p_GetExpV(test, ExpTmp, r); |
---|
2595 | OK=1; |
---|
2596 | for (k=1;k<=rN;k++) |
---|
2597 | { |
---|
2598 | if (ExpTmp[k]!=0) |
---|
2599 | { |
---|
2600 | if (ExpVar[k]!=0) OK=0; |
---|
2601 | } |
---|
2602 | } |
---|
2603 | if (!OK) |
---|
2604 | { |
---|
2605 | // if ( WeChangeRing ) |
---|
2606 | // rChangeCurrRing(save); |
---|
2607 | return(TRUE); |
---|
2608 | } |
---|
2609 | pIter(test); |
---|
2610 | } |
---|
2611 | } |
---|
2612 | } |
---|
2613 | } |
---|
2614 | } |
---|
2615 | freeT(ExpVar,rN); |
---|
2616 | freeT(ExpTmp,rN); |
---|
2617 | // if ( WeChangeRing ) |
---|
2618 | // rChangeCurrRing(save); |
---|
2619 | return(FALSE); |
---|
2620 | } |
---|
2621 | |
---|
2622 | |
---|
2623 | /* returns TRUE if there were errors */ |
---|
2624 | /* checks whether the current ordering */ |
---|
2625 | /* is admissible for r and D == r->GetNC()->D */ |
---|
2626 | /* to be executed in a currRing */ |
---|
2627 | BOOLEAN gnc_CheckOrdCondition(matrix D, ring r) |
---|
2628 | { |
---|
2629 | /* analyze D: an upper triangular matrix of polys */ |
---|
2630 | /* check the ordering condition for D */ |
---|
2631 | // ring save = currRing; |
---|
2632 | // int WeChangeRing = 0; |
---|
2633 | // if (r != currRing) |
---|
2634 | // { |
---|
2635 | // rChangeCurrRing(r); |
---|
2636 | // WeChangeRing = 1; |
---|
2637 | // } |
---|
2638 | poly p,q; |
---|
2639 | int i,j; |
---|
2640 | int report = 0; |
---|
2641 | for(i=1; i<r->N; i++) |
---|
2642 | { |
---|
2643 | for(j=i+1; j<=r->N; j++) |
---|
2644 | { |
---|
2645 | p = nc_p_CopyGet(MATELEM(D,i,j),r); |
---|
2646 | if ( p != NULL) |
---|
2647 | { |
---|
2648 | q = p_One(r); |
---|
2649 | p_SetExp(q,i,1,r); |
---|
2650 | p_SetExp(q,j,1,r); |
---|
2651 | p_Setm(q,r); |
---|
2652 | if (p_LmCmp(q,p,r) != 1) /* i.e. lm(p)==xy < lm(q)==D_ij */ |
---|
2653 | { |
---|
2654 | Werror("Bad ordering at %d,%d\n",i,j); |
---|
2655 | #if 0 /*Singularg should not differ from Singular except in error case*/ |
---|
2656 | p_Write(p,r); |
---|
2657 | p_Write(q,r); |
---|
2658 | #endif |
---|
2659 | report = 1; |
---|
2660 | } |
---|
2661 | p_Delete(&q,r); |
---|
2662 | p_Delete(&p,r); |
---|
2663 | p = NULL; |
---|
2664 | } |
---|
2665 | } |
---|
2666 | } |
---|
2667 | // if ( WeChangeRing ) |
---|
2668 | // rChangeCurrRing(save); |
---|
2669 | return(report); |
---|
2670 | } |
---|
2671 | |
---|
2672 | |
---|
2673 | |
---|
2674 | BOOLEAN gnc_InitMultiplication(ring r, bool bSetupQuotient = false); // just for a moment |
---|
2675 | |
---|
2676 | /// returns TRUE if there were errors |
---|
2677 | /// analyze inputs, check them for consistency |
---|
2678 | /// detects nc_type, DO NOT initialize multiplication but call for it at the end |
---|
2679 | /// checks the ordering condition and evtl. NDC |
---|
2680 | /// NOTE: all the data belong to the curr, |
---|
2681 | /// we change r which may be the same ring, and must have the same representation! |
---|
2682 | BOOLEAN nc_CallPlural(matrix CCC, matrix DDD, |
---|
2683 | poly CCN, poly DDN, |
---|
2684 | ring r, |
---|
2685 | bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, |
---|
2686 | ring curr, bool dummy_ring /*=false*/) |
---|
2687 | { |
---|
2688 | assume( r != NULL ); |
---|
2689 | assume( curr != NULL ); |
---|
2690 | |
---|
2691 | if( !bSetupQuotient) |
---|
2692 | assume( (r->qideal == NULL) ); // The basering must NOT be a qring!?? |
---|
2693 | |
---|
2694 | assume( rSamePolyRep(r, curr) || bCopyInput ); // wrong assumption? |
---|
2695 | |
---|
2696 | |
---|
2697 | if( r->N == 1 ) // clearly commutative!!! |
---|
2698 | { |
---|
2699 | assume( |
---|
2700 | ( (CCC != NULL) && (MATCOLS(CCC) == 1) && (MATROWS(CCC) == 1) && (MATELEM(CCC,1,1) == NULL) ) || |
---|
2701 | ( (CCN == NULL) ) |
---|
2702 | ); |
---|
2703 | |
---|
2704 | assume( |
---|
2705 | ( (DDD != NULL) && (MATCOLS(DDD) == 1) && (MATROWS(DDD) == 1) && (MATELEM(DDD,1,1) == NULL) ) || |
---|
2706 | ( (DDN == NULL) ) |
---|
2707 | ); |
---|
2708 | if(!dummy_ring) |
---|
2709 | { |
---|
2710 | WarnS("commutative ring with 1 variable"); |
---|
2711 | return FALSE; |
---|
2712 | } |
---|
2713 | } |
---|
2714 | |
---|
2715 | // there must be: |
---|
2716 | assume( (CCC != NULL) != (CCN != NULL) ); // exactly one data about coeffs (C). |
---|
2717 | assume( !((DDD != NULL) && (DDN != NULL)) ); // at most one data about tails (D). |
---|
2718 | |
---|
2719 | // ring save = currRing; |
---|
2720 | // if( save != curr ) |
---|
2721 | // rChangeCurrRing(curr); |
---|
2722 | |
---|
2723 | |
---|
2724 | #if OUTPUT |
---|
2725 | if( CCC != NULL ) |
---|
2726 | { |
---|
2727 | PrintS("nc_CallPlural(), Input data, CCC: \n"); |
---|
2728 | iiWriteMatrix(CCC, "C", 2, curr, 4); |
---|
2729 | } |
---|
2730 | if( DDD != NULL ) |
---|
2731 | { |
---|
2732 | PrintS("nc_CallPlural(), Input data, DDD: \n"); |
---|
2733 | iiWriteMatrix(DDD, "D", 2, curr, 4); |
---|
2734 | } |
---|
2735 | #endif |
---|
2736 | |
---|
2737 | |
---|
2738 | #ifndef SING_NDEBUG |
---|
2739 | if (CCC!=NULL) id_Test((ideal)CCC, curr); |
---|
2740 | if (DDD!=NULL) id_Test((ideal)DDD, curr); |
---|
2741 | p_Test(CCN, curr); |
---|
2742 | p_Test(DDN, curr); |
---|
2743 | #endif |
---|
2744 | |
---|
2745 | if( (!bBeQuiet) && (r->GetNC() != NULL) ) |
---|
2746 | WarnS("going to redefine the algebra structure"); |
---|
2747 | |
---|
2748 | // if( currRing != r ) |
---|
2749 | // rChangeCurrRing(r); |
---|
2750 | |
---|
2751 | matrix CC = NULL; |
---|
2752 | poly CN = NULL; |
---|
2753 | matrix C; bool bCnew = false; |
---|
2754 | |
---|
2755 | matrix DD = NULL; |
---|
2756 | poly DN = NULL; |
---|
2757 | matrix D; bool bDnew = false; |
---|
2758 | |
---|
2759 | number nN, pN, qN; |
---|
2760 | |
---|
2761 | bool IsSkewConstant = false, tmpIsSkewConstant; |
---|
2762 | int i, j; |
---|
2763 | |
---|
2764 | nc_type nctype = nc_undef; |
---|
2765 | |
---|
2766 | ////////////////////////////////////////////////////////////////// |
---|
2767 | // check the correctness of arguments, without any real chagnes!!! |
---|
2768 | |
---|
2769 | |
---|
2770 | |
---|
2771 | // check C |
---|
2772 | if ((CCC != NULL) && ( (MATCOLS(CCC)==1) || MATROWS(CCC)==1 ) ) |
---|
2773 | { |
---|
2774 | CN = MATELEM(CCC,1,1); |
---|
2775 | } |
---|
2776 | else |
---|
2777 | { |
---|
2778 | if ((CCC != NULL) && ( (MATCOLS(CCC)!=r->N) || (MATROWS(CCC)!=r->N) )) |
---|
2779 | { |
---|
2780 | Werror("Square %d x %d matrix expected", r->N, r->N); |
---|
2781 | |
---|
2782 | // if( currRing != save ) |
---|
2783 | // rChangeCurrRing(save); |
---|
2784 | return TRUE; |
---|
2785 | } |
---|
2786 | } |
---|
2787 | if (( CCC != NULL) && (CC == NULL)) CC = CCC; // mp_Copy(CCC, ?); // bug!? |
---|
2788 | if (( CCN != NULL) && (CN == NULL)) CN = CCN; |
---|
2789 | |
---|
2790 | // check D |
---|
2791 | if ((DDD != NULL) && ( (MATCOLS(DDD)==1) || MATROWS(DDD)==1 ) ) |
---|
2792 | { |
---|
2793 | DN = MATELEM(DDD,1,1); |
---|
2794 | } |
---|
2795 | else |
---|
2796 | { |
---|
2797 | if ((DDD != NULL) && ( (MATCOLS(DDD)!=r->N) || (MATROWS(DDD)!=r->N) )) |
---|
2798 | { |
---|
2799 | Werror("Square %d x %d matrix expected",r->N,r->N); |
---|
2800 | |
---|
2801 | // if( currRing != save ) |
---|
2802 | // rChangeCurrRing(save); |
---|
2803 | return TRUE; |
---|
2804 | } |
---|
2805 | } |
---|
2806 | |
---|
2807 | if (( DDD != NULL) && (DD == NULL)) DD = DDD; // mp_Copy(DDD, ?); // ??? |
---|
2808 | if (( DDN != NULL) && (DN == NULL)) DN = DDN; |
---|
2809 | |
---|
2810 | // further checks and some analysis: |
---|
2811 | // all data in 'curr'! |
---|
2812 | if (CN != NULL) /* create matrix C = CN * Id */ |
---|
2813 | { |
---|
2814 | if (!p_IsConstant(CN,curr)) |
---|
2815 | { |
---|
2816 | WerrorS("Incorrect input : non-constants are not allowed as coefficients (first argument)"); |
---|
2817 | return TRUE; |
---|
2818 | } |
---|
2819 | assume(p_IsConstant(CN,curr)); |
---|
2820 | |
---|
2821 | nN = pGetCoeff(CN); |
---|
2822 | if (n_IsZero(nN, curr->cf)) |
---|
2823 | { |
---|
2824 | WerrorS("Incorrect input : zero coefficients are not allowed"); |
---|
2825 | |
---|
2826 | // if( currRing != save ) |
---|
2827 | // rChangeCurrRing(save); |
---|
2828 | return TRUE; |
---|
2829 | } |
---|
2830 | |
---|
2831 | if (n_IsOne(nN, curr->cf)) |
---|
2832 | nctype = nc_lie; |
---|
2833 | else |
---|
2834 | nctype = nc_general; |
---|
2835 | |
---|
2836 | IsSkewConstant = true; |
---|
2837 | |
---|
2838 | C = mpNew(r->N,r->N); // ring independent! |
---|
2839 | bCnew = true; |
---|
2840 | |
---|
2841 | for(i=1; i<r->N; i++) |
---|
2842 | for(j=i+1; j<=r->N; j++) |
---|
2843 | MATELEM(C,i,j) = prCopyR_NoSort(CN, curr, r); // nc_p_CopyPut(CN, r); // copy CN from curr into r |
---|
2844 | |
---|
2845 | #ifndef SING_NDEBUG |
---|
2846 | id_Test((ideal)C, r); |
---|
2847 | #endif |
---|
2848 | |
---|
2849 | } else |
---|
2850 | if ( (CN == NULL) && (CC != NULL) ) /* copy matrix C */ |
---|
2851 | { |
---|
2852 | /* analyze C */ |
---|
2853 | |
---|
2854 | BOOLEAN pN_set=FALSE; |
---|
2855 | pN = n_Init(0,curr->cf); |
---|
2856 | |
---|
2857 | if( r->N > 1 ) |
---|
2858 | if ( MATELEM(CC,1,2) != NULL ) |
---|
2859 | { |
---|
2860 | if (!pN_set) n_Delete(&pN,curr->cf); // free initial nInit(0) |
---|
2861 | pN = p_GetCoeff(MATELEM(CC,1,2), curr); |
---|
2862 | pN_set=TRUE; |
---|
2863 | } |
---|
2864 | |
---|
2865 | tmpIsSkewConstant = true; |
---|
2866 | |
---|
2867 | for(i=1; i<r->N; i++) |
---|
2868 | for(j=i+1; j<=r->N; j++) |
---|
2869 | { |
---|
2870 | if (MATELEM(CC,i,j) == NULL) |
---|
2871 | qN = NULL; |
---|
2872 | else |
---|
2873 | { |
---|
2874 | if (!p_IsConstant(MATELEM(CC,i,j),curr)) |
---|
2875 | { |
---|
2876 | Werror("Incorrect input : non-constants are not allowed as coefficients (first argument at [%d, %d])", i, j); |
---|
2877 | return TRUE; |
---|
2878 | } |
---|
2879 | assume(p_IsConstant(MATELEM(CC,i,j),curr)); |
---|
2880 | qN = p_GetCoeff(MATELEM(CC,i,j),curr); |
---|
2881 | } |
---|
2882 | |
---|
2883 | |
---|
2884 | if ( qN == NULL ) /* check the consistency: Cij!=0 */ |
---|
2885 | // find also illegal pN |
---|
2886 | { |
---|
2887 | WerrorS("Incorrect input : matrix of coefficients contains zeros in the upper triangle"); |
---|
2888 | |
---|
2889 | // if( currRing != save ) |
---|
2890 | // rChangeCurrRing(save); |
---|
2891 | return TRUE; |
---|
2892 | } |
---|
2893 | |
---|
2894 | if (!n_Equal(pN, qN, curr->cf)) tmpIsSkewConstant = false; |
---|
2895 | } |
---|
2896 | |
---|
2897 | if( bCopyInput ) |
---|
2898 | { |
---|
2899 | C = mp_Copy(CC, curr, r); // Copy C into r!!!??? |
---|
2900 | #ifndef SING_NDEBUG |
---|
2901 | id_Test((ideal)C, r); |
---|
2902 | #endif |
---|
2903 | bCnew = true; |
---|
2904 | } |
---|
2905 | else |
---|
2906 | C = CC; |
---|
2907 | |
---|
2908 | IsSkewConstant = tmpIsSkewConstant; |
---|
2909 | |
---|
2910 | if ( tmpIsSkewConstant && n_IsOne(pN, curr->cf) ) |
---|
2911 | nctype = nc_lie; |
---|
2912 | else |
---|
2913 | nctype = nc_general; |
---|
2914 | if (!pN_set) n_Delete(&pN,curr->cf); // free initial nInit(0) |
---|
2915 | } |
---|
2916 | |
---|
2917 | /* initialition of the matrix D */ |
---|
2918 | if ( DD == NULL ) /* we treat DN only (it could also be NULL) */ |
---|
2919 | { |
---|
2920 | D = mpNew(r->N,r->N); bDnew = true; |
---|
2921 | |
---|
2922 | if (DN == NULL) |
---|
2923 | { |
---|
2924 | if ( (nctype == nc_lie) || (nctype == nc_undef) ) |
---|
2925 | nctype = nc_comm; /* it was nc_skew earlier */ |
---|
2926 | else /* nc_general, nc_skew */ |
---|
2927 | nctype = nc_skew; |
---|
2928 | } |
---|
2929 | else /* DN != NULL */ |
---|
2930 | for(i=1; i<r->N; i++) |
---|
2931 | for(j=i+1; j<=r->N; j++) |
---|
2932 | MATELEM(D,i,j) = prCopyR_NoSort(DN, curr, r); // project DN into r->GetNC()->basering! |
---|
2933 | #ifndef SING_NDEBUG |
---|
2934 | id_Test((ideal)D, r); |
---|
2935 | #endif |
---|
2936 | } |
---|
2937 | else /* DD != NULL */ |
---|
2938 | { |
---|
2939 | bool b = true; // DD == null ? |
---|
2940 | |
---|
2941 | for(int i = 1; (i < r->N) && b; i++) |
---|
2942 | for(int j = i+1; (j <= r->N) && b; j++) |
---|
2943 | if (MATELEM(DD, i, j) != NULL) |
---|
2944 | { |
---|
2945 | b = false; |
---|
2946 | break; |
---|
2947 | } |
---|
2948 | |
---|
2949 | if (b) // D == NULL!!! |
---|
2950 | { |
---|
2951 | if ( (nctype == nc_lie) || (nctype == nc_undef) ) |
---|
2952 | nctype = nc_comm; /* it was nc_skew earlier */ |
---|
2953 | else /* nc_general, nc_skew */ |
---|
2954 | nctype = nc_skew; |
---|
2955 | } |
---|
2956 | |
---|
2957 | if( bCopyInput ) |
---|
2958 | { |
---|
2959 | D = mp_Copy(DD, curr, r); // Copy DD into r!!! |
---|
2960 | #ifndef SING_NDEBUG |
---|
2961 | id_Test((ideal)D, r); |
---|
2962 | #endif |
---|
2963 | bDnew = true; |
---|
2964 | } |
---|
2965 | else |
---|
2966 | D = DD; |
---|
2967 | } |
---|
2968 | |
---|
2969 | assume( C != NULL ); |
---|
2970 | assume( D != NULL ); |
---|
2971 | |
---|
2972 | #if OUTPUT |
---|
2973 | PrintS("nc_CallPlural(), Computed data, C: \n"); |
---|
2974 | iiWriteMatrix(C, "C", 2, r, 4); |
---|
2975 | |
---|
2976 | PrintS("nc_CallPlural(), Computed data, D: \n"); |
---|
2977 | iiWriteMatrix(D, "D", 2, r, 4); |
---|
2978 | |
---|
2979 | Print("\nTemporary: type = %d, IsSkewConstant = %d\n", nctype, IsSkewConstant); |
---|
2980 | #endif |
---|
2981 | |
---|
2982 | |
---|
2983 | // check the ordering condition for D (both matrix and poly cases): |
---|
2984 | if ( gnc_CheckOrdCondition(D, r) ) |
---|
2985 | { |
---|
2986 | if( bCnew ) mp_Delete( &C, r ); |
---|
2987 | if( bDnew ) mp_Delete( &D, r ); |
---|
2988 | |
---|
2989 | WerrorS("Matrix of polynomials violates the ordering condition"); |
---|
2990 | |
---|
2991 | // if( currRing != save ) |
---|
2992 | // rChangeCurrRing(save); |
---|
2993 | return TRUE; |
---|
2994 | } |
---|
2995 | |
---|
2996 | // okay now we are ready for this!!! |
---|
2997 | |
---|
2998 | // create new non-commutative structure |
---|
2999 | nc_struct *nc_new = (nc_struct *)omAlloc0(sizeof(nc_struct)); |
---|
3000 | |
---|
3001 | ncRingType(nc_new, nctype); |
---|
3002 | |
---|
3003 | nc_new->C = C; // if C and D were given by matrices at the beginning they are in r |
---|
3004 | nc_new->D = D; // otherwise they should be in r->GetNC()->basering(polynomial * Id_{N}) |
---|
3005 | |
---|
3006 | nc_new->IsSkewConstant = (IsSkewConstant?1:0); |
---|
3007 | |
---|
3008 | // Setup new NC structure!!! |
---|
3009 | if (r->GetNC() != NULL) |
---|
3010 | { |
---|
3011 | #ifndef SING_NDEBUG |
---|
3012 | WarnS("Changing the NC-structure of an existing NC-ring!!!"); |
---|
3013 | #endif |
---|
3014 | nc_rKill(r); |
---|
3015 | } |
---|
3016 | |
---|
3017 | r->GetNC() = nc_new; |
---|
3018 | |
---|
3019 | r->ext_ref=NULL; |
---|
3020 | |
---|
3021 | // if( currRing != save ) |
---|
3022 | // rChangeCurrRing(save); |
---|
3023 | |
---|
3024 | return gnc_InitMultiplication(r, bSetupQuotient); |
---|
3025 | } |
---|
3026 | |
---|
3027 | ////////////////////////////////////////////////////////////////////////////// |
---|
3028 | |
---|
3029 | bool nc_rCopy(ring res, const ring r, bool bSetupQuotient) |
---|
3030 | { |
---|
3031 | if (nc_CallPlural(r->GetNC()->C, r->GetNC()->D, NULL, NULL, res, bSetupQuotient, true, true, r)) |
---|
3032 | { |
---|
3033 | WarnS("Error occurred while coping/setuping the NC structure!"); // No reaction!??? |
---|
3034 | return true; // error |
---|
3035 | } |
---|
3036 | |
---|
3037 | return false; |
---|
3038 | } |
---|
3039 | |
---|
3040 | ////////////////////////////////////////////////////////////////////////////// |
---|
3041 | BOOLEAN gnc_InitMultiplication(ring r, bool bSetupQuotient) |
---|
3042 | { |
---|
3043 | /* returns TRUE if there were errors */ |
---|
3044 | /* initialize the multiplication: */ |
---|
3045 | /* r->GetNC()->MTsize, r->GetNC()->MT, r->GetNC()->COM, */ |
---|
3046 | /* and r->GetNC()->IsSkewConstant for the skew case */ |
---|
3047 | if (rVar(r)==1) |
---|
3048 | { |
---|
3049 | ncRingType(r, nc_comm); |
---|
3050 | r->GetNC()->IsSkewConstant=1; |
---|
3051 | return FALSE; |
---|
3052 | } |
---|
3053 | |
---|
3054 | // ring save = currRing; |
---|
3055 | // int WeChangeRing = 0; |
---|
3056 | |
---|
3057 | // if (currRing!=r) |
---|
3058 | // { |
---|
3059 | // rChangeCurrRing(r); |
---|
3060 | // WeChangeRing = 1; |
---|
3061 | // } |
---|
3062 | // assume( (currRing == r) |
---|
3063 | // && (currRing->GetNC()!=NULL) ); // otherwise we cannot work with all these matrices! |
---|
3064 | |
---|
3065 | int i,j; |
---|
3066 | r->GetNC()->MT = (matrix *)omAlloc0((r->N*(r->N-1))/2*sizeof(matrix)); |
---|
3067 | r->GetNC()->MTsize = (int *)omAlloc0((r->N*(r->N-1))/2*sizeof(int)); |
---|
3068 | id_Test((ideal)r->GetNC()->C, r); |
---|
3069 | matrix COM = mp_Copy(r->GetNC()->C, r); |
---|
3070 | poly p,q; |
---|
3071 | short DefMTsize=7; |
---|
3072 | int IsNonComm=0; |
---|
3073 | // bool tmpIsSkewConstant = false; |
---|
3074 | |
---|
3075 | for(i=1; i<r->N; i++) |
---|
3076 | { |
---|
3077 | for(j=i+1; j<=r->N; j++) |
---|
3078 | { |
---|
3079 | if ( MATELEM(r->GetNC()->D,i,j) == NULL ) /* quasicommutative case */ |
---|
3080 | { |
---|
3081 | /* 1x1 mult.matrix */ |
---|
3082 | r->GetNC()->MTsize[UPMATELEM(i,j,r->N)] = 1; |
---|
3083 | r->GetNC()->MT[UPMATELEM(i,j,r->N)] = mpNew(1,1); |
---|
3084 | } |
---|
3085 | else /* pure noncommutative case */ |
---|
3086 | { |
---|
3087 | /* TODO check the special multiplication properties */ |
---|
3088 | IsNonComm = 1; |
---|
3089 | p_Delete(&(MATELEM(COM,i,j)),r); |
---|
3090 | //MATELEM(COM,i,j) = NULL; // done by p_Delete |
---|
3091 | r->GetNC()->MTsize[UPMATELEM(i,j,r->N)] = DefMTsize; /* default sizes */ |
---|
3092 | r->GetNC()->MT[UPMATELEM(i,j,r->N)] = mpNew(DefMTsize, DefMTsize); |
---|
3093 | } |
---|
3094 | /* set MT[i,j,1,1] to c_i_j*x_i*x_j + D_i_j */ |
---|
3095 | p = p_One(r); |
---|
3096 | if (MATELEM(r->GetNC()->C,i,j)!=NULL) |
---|
3097 | p_SetCoeff(p,n_Copy(pGetCoeff(MATELEM(r->GetNC()->C,i,j)),r->cf),r); |
---|
3098 | p_SetExp(p,i,1,r); |
---|
3099 | p_SetExp(p,j,1,r); |
---|
3100 | p_Setm(p,r); |
---|
3101 | p_Test(MATELEM(r->GetNC()->D,i,j),r); |
---|
3102 | q = nc_p_CopyGet(MATELEM(r->GetNC()->D,i,j),r); |
---|
3103 | p = p_Add_q(p,q,r); |
---|
3104 | MATELEM(r->GetNC()->MT[UPMATELEM(i,j,r->N)],1,1) = nc_p_CopyPut(p,r); |
---|
3105 | p_Delete(&p,r); |
---|
3106 | // p = NULL;// done by p_Delete |
---|
3107 | } |
---|
3108 | } |
---|
3109 | if (ncRingType(r)==nc_undef) |
---|
3110 | { |
---|
3111 | if (IsNonComm==1) |
---|
3112 | { |
---|
3113 | // assume(pN!=NULL); |
---|
3114 | // if ((tmpIsSkewConstant==1) && (nIsOne(pGetCoeff(pN)))) r->GetNC()->type=nc_lie; |
---|
3115 | // else r->GetNC()->type=nc_general; |
---|
3116 | } |
---|
3117 | if (IsNonComm==0) |
---|
3118 | { |
---|
3119 | ncRingType(r, nc_skew); // TODO: check whether it is commutative |
---|
3120 | r->GetNC()->IsSkewConstant = 0; // true; //tmpIsSkewConstant; // BUG??? |
---|
3121 | } else |
---|
3122 | assume( FALSE ); |
---|
3123 | } |
---|
3124 | r->GetNC()->COM=COM; |
---|
3125 | |
---|
3126 | nc_p_ProcsSet(r, r->p_Procs); |
---|
3127 | |
---|
3128 | if(bSetupQuotient) // Test me!!! |
---|
3129 | nc_SetupQuotient(r, NULL, false); // no copy! |
---|
3130 | |
---|
3131 | |
---|
3132 | // if (save != currRing) |
---|
3133 | // rChangeCurrRing(save); |
---|
3134 | |
---|
3135 | return FALSE; |
---|
3136 | } |
---|
3137 | |
---|
3138 | |
---|
3139 | // set pProcs for r and global variable p_Procs as for general non-commutative algebras. |
---|
3140 | static inline |
---|
3141 | void gnc_p_ProcsSet(ring rGR, p_Procs_s* p_Procs) |
---|
3142 | { |
---|
3143 | // "commutative" |
---|
3144 | p_Procs->p_Mult_mm = rGR->p_Procs->p_Mult_mm = gnc_p_Mult_mm; |
---|
3145 | p_Procs->pp_Mult_mm = rGR->p_Procs->pp_Mult_mm = gnc_pp_Mult_mm; |
---|
3146 | p_Procs->p_Minus_mm_Mult_qq = rGR->p_Procs->p_Minus_mm_Mult_qq = nc_p_Minus_mm_Mult_qq; |
---|
3147 | |
---|
3148 | // non-commutaitve multiplication by monomial from the left |
---|
3149 | p_Procs->p_mm_Mult = gnc_p_mm_Mult; |
---|
3150 | p_Procs->pp_mm_Mult = gnc_pp_mm_Mult; |
---|
3151 | |
---|
3152 | #if 0 |
---|
3153 | // Previous Plural's implementation... |
---|
3154 | rGR->GetNC()->p_Procs.SPoly = gnc_CreateSpolyOld; |
---|
3155 | rGR->GetNC()->p_Procs.ReduceSPoly = gnc_ReduceSpolyOld; |
---|
3156 | |
---|
3157 | rGR->GetNC()->p_Procs.BucketPolyRed = gnc_kBucketPolyRedOld; |
---|
3158 | rGR->GetNC()->p_Procs.BucketPolyRed_Z= gnc_kBucketPolyRed_ZOld; |
---|
3159 | #else |
---|
3160 | // A bit cleaned up and somewhat rewritten functions... |
---|
3161 | rGR->GetNC()->p_Procs.SPoly = gnc_CreateSpolyNew; |
---|
3162 | rGR->GetNC()->p_Procs.ReduceSPoly = gnc_ReduceSpolyNew; |
---|
3163 | |
---|
3164 | rGR->GetNC()->p_Procs.BucketPolyRed_NF= gnc_kBucketPolyRedNew; |
---|
3165 | rGR->GetNC()->p_Procs.BucketPolyRed_Z= gnc_kBucketPolyRed_ZNew; |
---|
3166 | #endif |
---|
3167 | |
---|
3168 | // warning: ISO C++ forbids casting between pointer-to-function and pointer-to-object? |
---|
3169 | if (rHasLocalOrMixedOrdering(rGR)) |
---|
3170 | rGR->GetNC()->p_Procs.GB = cast_A_to_vptr(gnc_gr_mora); |
---|
3171 | else |
---|
3172 | rGR->GetNC()->p_Procs.GB = cast_A_to_vptr(gnc_gr_bba); |
---|
3173 | |
---|
3174 | /////////// rGR->GetNC()->p_Procs.GB = gnc_gr_bba; // bba even for local case! |
---|
3175 | // old /// r->GetNC()->GB() = gnc_gr_bba; |
---|
3176 | // rGR->GetNC()->p_Procs.GlobalGB = gnc_gr_bba; |
---|
3177 | // rGR->GetNC()->p_Procs.LocalGB = gnc_gr_mora; |
---|
3178 | // const ring save = currRing; if( save != r ) rChangeCurrRing(r); |
---|
3179 | // ideal res = gnc_gr_bba(F, Q, w, hilb, strat/*, r*/); |
---|
3180 | // if( save != r ) rChangeCurrRing(save); return (res); |
---|
3181 | |
---|
3182 | |
---|
3183 | #if 0 |
---|
3184 | // Old Stuff |
---|
3185 | p_Procs->p_Mult_mm = gnc_p_Mult_mm; |
---|
3186 | _p_procs->p_Mult_mm = gnc_p_Mult_mm; |
---|
3187 | |
---|
3188 | p_Procs->pp_Mult_mm = gnc_pp_Mult_mm; |
---|
3189 | _p_procs->pp_Mult_mm = gnc_pp_Mult_mm; |
---|
3190 | |
---|
3191 | p_Procs->p_Minus_mm_Mult_qq = NULL; // gnc_p_Minus_mm_Mult_qq_ign; |
---|
3192 | _p_procs->p_Minus_mm_Mult_qq= NULL; // gnc_p_Minus_mm_Mult_qq_ign; |
---|
3193 | |
---|
3194 | r->GetNC()->mmMultP() = gnc_mm_Mult_p; |
---|
3195 | r->GetNC()->mmMultPP() = gnc_mm_Mult_pp; |
---|
3196 | |
---|
3197 | r->GetNC()->SPoly() = gnc_CreateSpoly; |
---|
3198 | r->GetNC()->ReduceSPoly() = gnc_ReduceSpoly; |
---|
3199 | |
---|
3200 | #endif |
---|
3201 | } |
---|
3202 | |
---|
3203 | |
---|
3204 | // set pProcs table for rGR and global variable p_Procs |
---|
3205 | void nc_p_ProcsSet(ring rGR, p_Procs_s* p_Procs) |
---|
3206 | { |
---|
3207 | assume(rIsPluralRing(rGR)); |
---|
3208 | assume(p_Procs!=NULL); |
---|
3209 | |
---|
3210 | gnc_p_ProcsSet(rGR, p_Procs); |
---|
3211 | |
---|
3212 | if(rIsSCA(rGR) && ncExtensions(SCAMASK) ) |
---|
3213 | { |
---|
3214 | sca_p_ProcsSet(rGR, p_Procs); |
---|
3215 | } |
---|
3216 | |
---|
3217 | if( ncExtensions(NOPLURALMASK) ) |
---|
3218 | ncInitSpecialPairMultiplication(rGR); |
---|
3219 | |
---|
3220 | if(!rIsSCA(rGR) && !ncExtensions(NOFORMULAMASK)) |
---|
3221 | ncInitSpecialPowersMultiplication(rGR); |
---|
3222 | |
---|
3223 | } |
---|
3224 | |
---|
3225 | |
---|
3226 | /// substitute the n-th variable by e in p |
---|
3227 | /// destroy p |
---|
3228 | /// e is not a constant |
---|
3229 | poly nc_pSubst(poly p, int n, poly e, const ring r) |
---|
3230 | { |
---|
3231 | int rN = r->N; |
---|
3232 | int *PRE = (int *)omAlloc0((rN+1)*sizeof(int)); |
---|
3233 | int *SUF = (int *)omAlloc0((rN+1)*sizeof(int)); |
---|
3234 | int i,pow; |
---|
3235 | number C; |
---|
3236 | poly suf,pre; |
---|
3237 | poly res = NULL; |
---|
3238 | poly out = NULL; |
---|
3239 | while ( p!= NULL ) |
---|
3240 | { |
---|
3241 | C = p_GetCoeff(p, r); |
---|
3242 | p_GetExpV(p, PRE, r); /* faster splitting? */ |
---|
3243 | pow = PRE[n]; PRE[n]=0; |
---|
3244 | res = NULL; |
---|
3245 | if (pow!=0) |
---|
3246 | { |
---|
3247 | for (i=n+1; i<=rN; i++) |
---|
3248 | { |
---|
3249 | SUF[i] = PRE[i]; |
---|
3250 | PRE[i] = 0; |
---|
3251 | } |
---|
3252 | res = p_Power(p_Copy(e, r),pow, r); |
---|
3253 | /* multiply with prefix */ |
---|
3254 | pre = p_One(r); |
---|
3255 | p_SetExpV(pre,PRE, r); |
---|
3256 | p_Setm(pre, r); |
---|
3257 | res = nc_mm_Mult_p(pre,res, r); |
---|
3258 | /* multiply with suffix */ |
---|
3259 | suf = p_One(r); |
---|
3260 | p_SetExpV(suf,SUF, r); |
---|
3261 | p_Setm(suf, r); |
---|
3262 | res = p_Mult_mm(res,suf, r); |
---|
3263 | res = __p_Mult_nn(res,C, r); |
---|
3264 | p_SetComp(res,PRE[0], r); |
---|
3265 | } |
---|
3266 | else /* pow==0 */ |
---|
3267 | { |
---|
3268 | res = p_Head(p, r); |
---|
3269 | } |
---|
3270 | p = p_LmDeleteAndNext(p, r); |
---|
3271 | out = p_Add_q(out,res, r); |
---|
3272 | } |
---|
3273 | freeT(PRE,rN); |
---|
3274 | freeT(SUF,rN); |
---|
3275 | return(out); |
---|
3276 | } |
---|
3277 | |
---|
3278 | |
---|
3279 | // creates a commutative nc extension; "converts" comm.ring to a Plural ring |
---|
3280 | ring nc_rCreateNCcomm(ring r) |
---|
3281 | { |
---|
3282 | if (rIsPluralRing(r)) return r; |
---|
3283 | |
---|
3284 | ring rr = rCopy(r); |
---|
3285 | |
---|
3286 | matrix C = mpNew(rr->N,rr->N); // ring-independent!?! |
---|
3287 | matrix D = mpNew(rr->N,rr->N); |
---|
3288 | |
---|
3289 | for(int i=1; i<rr->N; i++) |
---|
3290 | for(int j=i+1; j<=rr->N; j++) |
---|
3291 | MATELEM(C,i,j) = p_One(rr); |
---|
3292 | |
---|
3293 | if (nc_CallPlural(C, D, NULL, NULL, rr, false, true, false, rr, TRUE)) // TODO: what about quotient ideal? |
---|
3294 | WarnS("Error initializing multiplication!"); // No reaction!??? |
---|
3295 | |
---|
3296 | return rr; |
---|
3297 | } |
---|
3298 | |
---|
3299 | /* NOT USED ANYMORE: replaced by maFindPerm in ring.cc */ |
---|
3300 | /* for use with embeddings: currRing is a sum of smaller rings */ |
---|
3301 | /* and srcRing is one of such smaller rings */ |
---|
3302 | /* shift defines the position of a subring in srcRing */ |
---|
3303 | /* par_shift defines the position of a subfield in basefield of CurrRing */ |
---|
3304 | poly p_CopyEmbed(poly p, ring srcRing, int shift, int /*par_shift*/, ring dstRing) |
---|
3305 | { |
---|
3306 | if (dstRing == srcRing) |
---|
3307 | { |
---|
3308 | return(p_Copy(p,dstRing)); |
---|
3309 | } |
---|
3310 | nMapFunc nMap=n_SetMap(srcRing->cf, dstRing->cf); |
---|
3311 | poly q; |
---|
3312 | // if ( nMap == nCopy) |
---|
3313 | // { |
---|
3314 | // q = prCopyR(p,srcRing); |
---|
3315 | // } |
---|
3316 | // else |
---|
3317 | { |
---|
3318 | int *perm = (int *)omAlloc0((rVar(srcRing)+1)*sizeof(int)); |
---|
3319 | int *par_perm = (int *)omAlloc0((rPar(srcRing)+1)*sizeof(int)); |
---|
3320 | // int *par_perm = (int *)omAlloc0((rPar(srcRing)+1)*sizeof(int)); |
---|
3321 | int i; |
---|
3322 | // if (srcRing->P > 0) |
---|
3323 | // { |
---|
3324 | // for (i=0; i<srcRing->P; i++) |
---|
3325 | // par_perm[i]=-i; |
---|
3326 | // } |
---|
3327 | if ((shift<0) || (shift > rVar(srcRing))) // ??? |
---|
3328 | { |
---|
3329 | WerrorS("bad shifts in p_CopyEmbed"); |
---|
3330 | return(0); |
---|
3331 | } |
---|
3332 | for (i=1; i<= srcRing->N; i++) |
---|
3333 | { |
---|
3334 | perm[i] = shift+i; |
---|
3335 | } |
---|
3336 | q = p_PermPoly(p,perm,srcRing, dstRing, nMap,par_perm, rPar(srcRing)); |
---|
3337 | } |
---|
3338 | return(q); |
---|
3339 | } |
---|
3340 | |
---|
3341 | BOOLEAN rIsLikeOpposite(ring rBase, ring rCandidate) |
---|
3342 | { |
---|
3343 | /* the same basefield */ |
---|
3344 | int diagnose = TRUE; |
---|
3345 | nMapFunc nMap = n_SetMap(rCandidate->cf, rBase->cf); // reverse? |
---|
3346 | |
---|
3347 | ////// if (nMap != nCopy) diagnose = FALSE; |
---|
3348 | if (nMap == NULL) diagnose = FALSE; |
---|
3349 | |
---|
3350 | |
---|
3351 | /* same number of variables */ |
---|
3352 | if (rBase->N != rCandidate->N) diagnose = FALSE; |
---|
3353 | /* nc and comm ring */ |
---|
3354 | if ( rIsPluralRing(rBase) != rIsPluralRing(rCandidate) ) diagnose = FALSE; |
---|
3355 | /* both are qrings */ |
---|
3356 | /* NO CHECK, since it is used in building opposite qring */ |
---|
3357 | /* if ( ((rBase->qideal != NULL) && (rCandidate->qideal == NULL)) */ |
---|
3358 | /* || ((rBase->qideal == NULL) && (rCandidate->qideal != NULL)) ) */ |
---|
3359 | /* diagnose = FALSE; */ |
---|
3360 | /* TODO: varnames are e->E etc */ |
---|
3361 | return diagnose; |
---|
3362 | } |
---|
3363 | |
---|
3364 | |
---|
3365 | |
---|
3366 | |
---|
3367 | /// opposes a vector p from Rop to currRing (dst!) |
---|
3368 | poly pOppose(ring Rop, poly p, const ring dst) |
---|
3369 | { |
---|
3370 | /* the simplest case:*/ |
---|
3371 | if ( Rop == dst ) return(p_Copy(p, dst)); |
---|
3372 | /* check Rop == rOpposite(currRing) */ |
---|
3373 | |
---|
3374 | |
---|
3375 | if ( !rIsLikeOpposite(dst, Rop) ) |
---|
3376 | { |
---|
3377 | WarnS("an opposite ring should be used"); |
---|
3378 | return NULL; |
---|
3379 | } |
---|
3380 | |
---|
3381 | nMapFunc nMap = n_SetMap(Rop->cf, dst->cf); // reverse? |
---|
3382 | |
---|
3383 | /* nMapFunc nMap = nSetMap(Rop);*/ |
---|
3384 | /* since we know that basefields coinside! */ |
---|
3385 | |
---|
3386 | // coinside??? |
---|
3387 | |
---|
3388 | int *perm=(int *)omAlloc0((Rop->N+1)*sizeof(int)); |
---|
3389 | if (!p_IsConstantPoly(p, Rop)) |
---|
3390 | { |
---|
3391 | /* we know perm exactly */ |
---|
3392 | int i; |
---|
3393 | for(i=1; i<=Rop->N; i++) |
---|
3394 | { |
---|
3395 | perm[i] = Rop->N+1-i; |
---|
3396 | } |
---|
3397 | } |
---|
3398 | poly res = p_PermPoly(p, perm, Rop, dst, nMap); |
---|
3399 | omFreeSize((ADDRESS)perm,(Rop->N+1)*sizeof(int)); |
---|
3400 | |
---|
3401 | p_Test(res, dst); |
---|
3402 | |
---|
3403 | return res; |
---|
3404 | } |
---|
3405 | |
---|
3406 | /// opposes a module I from Rop to currRing(dst) |
---|
3407 | ideal idOppose(ring Rop, ideal I, const ring dst) |
---|
3408 | { |
---|
3409 | /* the simplest case:*/ |
---|
3410 | if ( Rop == dst ) return id_Copy(I, dst); |
---|
3411 | |
---|
3412 | /* check Rop == rOpposite(currRing) */ |
---|
3413 | if (!rIsLikeOpposite(dst, Rop)) |
---|
3414 | { |
---|
3415 | WarnS("an opposite ring should be used"); |
---|
3416 | return NULL; |
---|
3417 | } |
---|
3418 | int i; |
---|
3419 | ideal idOp = idInit(I->ncols, I->rank); |
---|
3420 | for (i=0; i< (I->ncols)*(I->nrows); i++) |
---|
3421 | { |
---|
3422 | idOp->m[i] = pOppose(Rop,I->m[i], dst); |
---|
3423 | } |
---|
3424 | id_Test(idOp, dst); |
---|
3425 | return idOp; |
---|
3426 | } |
---|
3427 | |
---|
3428 | |
---|
3429 | bool nc_SetupQuotient(ring rGR, const ring rG, bool bCopy) |
---|
3430 | { |
---|
3431 | if( rGR->qideal == NULL ) |
---|
3432 | return false; // no quotient = no work! done!? What about factors of SCA? |
---|
3433 | |
---|
3434 | bool ret = true; |
---|
3435 | // currently only super-commutative extension deals with factors. |
---|
3436 | |
---|
3437 | if( ncExtensions(SCAMASK) ) |
---|
3438 | { |
---|
3439 | bool sca_ret = sca_SetupQuotient(rGR, rG, bCopy); |
---|
3440 | |
---|
3441 | if(sca_ret) // yes it was dealt with! |
---|
3442 | ret = false; |
---|
3443 | } |
---|
3444 | |
---|
3445 | if( bCopy ) |
---|
3446 | { |
---|
3447 | assume(rIsPluralRing(rGR) == rIsPluralRing(rG)); |
---|
3448 | assume((rGR->qideal==NULL) == (rG->qideal==NULL)); |
---|
3449 | assume(rIsSCA(rGR) == rIsSCA(rG)); |
---|
3450 | assume(ncRingType(rGR) == ncRingType(rG)); |
---|
3451 | } |
---|
3452 | |
---|
3453 | return ret; |
---|
3454 | } |
---|
3455 | |
---|
3456 | |
---|
3457 | |
---|
3458 | // int Commutative_Context(ring r, leftv expression) |
---|
3459 | // /* returns 1 if expression consists */ |
---|
3460 | // /* of commutative elements */ |
---|
3461 | // { |
---|
3462 | // /* crucial: poly -> ideal, module, matrix */ |
---|
3463 | // } |
---|
3464 | |
---|
3465 | // int Comm_Context_Poly(ring r, poly p) |
---|
3466 | // { |
---|
3467 | // poly COMM=r->GetNC()->COMM; |
---|
3468 | // poly pp=pOne(); |
---|
3469 | // memset(pp->exp,0,r->ExpL_Size*sizeof(long)); |
---|
3470 | // while (p!=NULL) |
---|
3471 | // { |
---|
3472 | // for (i=0;i<=r->ExpL_Size;i++) |
---|
3473 | // { |
---|
3474 | // if ((p->exp[i]) && (pp->exp[i])) return(FALSE); |
---|
3475 | // /* nonzero exponent of non-comm variable */ |
---|
3476 | // } |
---|
3477 | // pIter(p); |
---|
3478 | // } |
---|
3479 | // return(TRUE); |
---|
3480 | // } |
---|
3481 | |
---|
3482 | #endif |
---|
3483 | |
---|
3484 | |
---|
3485 | |
---|