1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /*************************************************************** |
---|
5 | * File: sca.cc |
---|
6 | * Purpose: supercommutative kernel procedures |
---|
7 | * Author: motsak (Oleksandr Motsak) |
---|
8 | * Created: 2006/12/18 |
---|
9 | * Version: $Id$ |
---|
10 | *******************************************************************/ |
---|
11 | |
---|
12 | // set it here if needed. |
---|
13 | #define OUTPUT 0 |
---|
14 | #define MYTEST 0 |
---|
15 | |
---|
16 | #if MYTEST |
---|
17 | #define OM_CHECK 4 |
---|
18 | #define OM_TRACK 5 |
---|
19 | #endif |
---|
20 | |
---|
21 | // #define PDEBUG 2 |
---|
22 | #include "config.h" |
---|
23 | #include <misc/auxiliary.h> |
---|
24 | |
---|
25 | #ifdef HAVE_PLURAL |
---|
26 | |
---|
27 | // for |
---|
28 | #define PLURAL_INTERNAL_DECLARATIONS |
---|
29 | |
---|
30 | #include <polys/nc/sca.h> |
---|
31 | #include <polys/nc/nc.h> |
---|
32 | #include <polys/nc/gb_hack.h> |
---|
33 | // #include <polys/gring.h> |
---|
34 | |
---|
35 | |
---|
36 | #include <coeffs/numbers.h> |
---|
37 | #include <polys/coeffrings.h> |
---|
38 | |
---|
39 | |
---|
40 | // #include <polys/febase.h> |
---|
41 | #include <misc/options.h> |
---|
42 | |
---|
43 | #include <polys/monomials/p_polys.h> |
---|
44 | |
---|
45 | // #include <polys/kutil.h> |
---|
46 | #include <polys/simpleideals.h> |
---|
47 | #include <misc/intvec.h> |
---|
48 | |
---|
49 | #include <polys/monomials/ring.h> |
---|
50 | #include <polys/kbuckets.h> |
---|
51 | // #include <polys/kstd1.h> |
---|
52 | #include <polys/sbuckets.h> |
---|
53 | |
---|
54 | #include <polys/prCopy.h> |
---|
55 | |
---|
56 | #include <polys/operations/p_Mult_q.h> |
---|
57 | #include <polys/templates/p_MemAdd.h> |
---|
58 | |
---|
59 | // #include <polys/kutil.h> |
---|
60 | // #include <polys/kstd1.h> |
---|
61 | |
---|
62 | #include <polys/weight.h> |
---|
63 | |
---|
64 | |
---|
65 | // poly functions defined in p_Procs : |
---|
66 | |
---|
67 | // return pPoly * pMonom; preserve pPoly and pMonom. |
---|
68 | poly sca_pp_Mult_mm(const poly pPoly, const poly pMonom, const ring rRing, poly &); |
---|
69 | |
---|
70 | // return pMonom * pPoly; preserve pPoly and pMonom. |
---|
71 | static poly sca_mm_Mult_pp(const poly pMonom, const poly pPoly, const ring rRing); |
---|
72 | |
---|
73 | // return pPoly * pMonom; preserve pMonom, destroy or reuse pPoly. |
---|
74 | poly sca_p_Mult_mm(poly pPoly, const poly pMonom, const ring rRing); |
---|
75 | |
---|
76 | // return pMonom * pPoly; preserve pMonom, destroy or reuse pPoly. |
---|
77 | static poly sca_mm_Mult_p(const poly pMonom, poly pPoly, const ring rRing); |
---|
78 | |
---|
79 | |
---|
80 | // compute the spolynomial of p1 and p2 |
---|
81 | poly sca_SPoly(const poly p1, const poly p2, const ring r); |
---|
82 | poly sca_ReduceSpoly(const poly p1, poly p2, const ring r); |
---|
83 | |
---|
84 | |
---|
85 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
86 | // Super Commutative Algebra extension by Oleksandr |
---|
87 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
88 | |
---|
89 | // returns the sign of: lm(pMonomM) * lm(pMonomMM), |
---|
90 | // preserves input, may return +/-1, 0 |
---|
91 | static inline int sca_Sign_mm_Mult_mm( const poly pMonomM, const poly pMonomMM, const ring rRing ) |
---|
92 | { |
---|
93 | #ifdef PDEBUG |
---|
94 | p_Test(pMonomM, rRing); |
---|
95 | p_Test(pMonomMM, rRing); |
---|
96 | #endif |
---|
97 | |
---|
98 | const unsigned int iFirstAltVar = scaFirstAltVar(rRing); |
---|
99 | const unsigned int iLastAltVar = scaLastAltVar(rRing); |
---|
100 | |
---|
101 | register unsigned int tpower = 0; |
---|
102 | register unsigned int cpower = 0; |
---|
103 | |
---|
104 | for( register unsigned int j = iLastAltVar; j >= iFirstAltVar; j-- ) |
---|
105 | { |
---|
106 | const unsigned int iExpM = p_GetExp(pMonomM, j, rRing); |
---|
107 | const unsigned int iExpMM = p_GetExp(pMonomMM, j, rRing); |
---|
108 | |
---|
109 | #ifdef PDEBUG |
---|
110 | assume( iExpM <= 1); |
---|
111 | assume( iExpMM <= 1); |
---|
112 | #endif |
---|
113 | |
---|
114 | if( iExpMM != 0 ) // TODO: think about eliminating there if-s... |
---|
115 | { |
---|
116 | if( iExpM != 0 ) |
---|
117 | { |
---|
118 | return 0; // lm(pMonomM) * lm(pMonomMM) == 0 |
---|
119 | } |
---|
120 | tpower ^= cpower; // compute degree of (-1). |
---|
121 | } |
---|
122 | cpower ^= iExpM; |
---|
123 | } |
---|
124 | |
---|
125 | #ifdef PDEBUG |
---|
126 | assume(tpower <= 1); |
---|
127 | #endif |
---|
128 | |
---|
129 | // 1 => -1 // degree is odd => negate coeff. |
---|
130 | // 0 => 1 |
---|
131 | |
---|
132 | return(1 - (tpower << 1) ); |
---|
133 | } |
---|
134 | |
---|
135 | |
---|
136 | |
---|
137 | |
---|
138 | // returns and changes pMonomM: lt(pMonomM) = lt(pMonomM) * lt(pMonomMM), |
---|
139 | // preserves pMonomMM. may return NULL! |
---|
140 | // if result != NULL => next(result) = next(pMonomM), lt(result) = lt(pMonomM) * lt(pMonomMM) |
---|
141 | // if result == NULL => pMonomM MUST BE deleted manually! |
---|
142 | static inline poly sca_m_Mult_mm( poly pMonomM, const poly pMonomMM, const ring rRing ) |
---|
143 | { |
---|
144 | #ifdef PDEBUG |
---|
145 | p_Test(pMonomM, rRing); |
---|
146 | p_Test(pMonomMM, rRing); |
---|
147 | #endif |
---|
148 | |
---|
149 | const unsigned int iFirstAltVar = scaFirstAltVar(rRing); |
---|
150 | const unsigned int iLastAltVar = scaLastAltVar(rRing); |
---|
151 | |
---|
152 | register unsigned int tpower = 0; |
---|
153 | register unsigned int cpower = 0; |
---|
154 | |
---|
155 | for( register unsigned int j = iLastAltVar; j >= iFirstAltVar; j-- ) |
---|
156 | { |
---|
157 | const unsigned int iExpM = p_GetExp(pMonomM, j, rRing); |
---|
158 | const unsigned int iExpMM = p_GetExp(pMonomMM, j, rRing); |
---|
159 | |
---|
160 | #ifdef PDEBUG |
---|
161 | assume( iExpM <= 1); |
---|
162 | assume( iExpMM <= 1); |
---|
163 | #endif |
---|
164 | |
---|
165 | if( iExpMM != 0 ) |
---|
166 | { |
---|
167 | if( iExpM != 0 ) // result is zero! |
---|
168 | { |
---|
169 | return NULL; // we do nothing with pMonomM in this case! |
---|
170 | } |
---|
171 | |
---|
172 | tpower ^= cpower; // compute degree of (-1). |
---|
173 | } |
---|
174 | |
---|
175 | cpower ^= iExpM; |
---|
176 | } |
---|
177 | |
---|
178 | #ifdef PDEBUG |
---|
179 | assume(tpower <= 1); |
---|
180 | #endif |
---|
181 | |
---|
182 | p_ExpVectorAdd(pMonomM, pMonomMM, rRing); // "exponents" are additive!!! |
---|
183 | |
---|
184 | number nCoeffM = p_GetCoeff(pMonomM, rRing); // no new copy! should be deleted! |
---|
185 | |
---|
186 | if( (tpower) != 0 ) // degree is odd => negate coeff. |
---|
187 | nCoeffM = n_Neg(nCoeffM, rRing); // negate nCoeff (will destroy the original number) |
---|
188 | |
---|
189 | const number nCoeffMM = p_GetCoeff(pMonomMM, rRing); // no new copy! |
---|
190 | |
---|
191 | number nCoeff = n_Mult(nCoeffM, nCoeffMM, rRing); // new number! |
---|
192 | |
---|
193 | p_SetCoeff(pMonomM, nCoeff, rRing); // delete lc(pMonomM) and set lc(pMonomM) = nCoeff |
---|
194 | |
---|
195 | #ifdef PDEBUG |
---|
196 | p_LmTest(pMonomM, rRing); |
---|
197 | #endif |
---|
198 | |
---|
199 | return(pMonomM); |
---|
200 | } |
---|
201 | |
---|
202 | // returns and changes pMonomM: lt(pMonomM) = lt(pMonomMM) * lt(pMonomM), |
---|
203 | // preserves pMonomMM. may return NULL! |
---|
204 | // if result != NULL => next(result) = next(pMonomM), lt(result) = lt(pMonomMM) * lt(pMonomM) |
---|
205 | // if result == NULL => pMonomM MUST BE deleted manually! |
---|
206 | static inline poly sca_mm_Mult_m( const poly pMonomMM, poly pMonomM, const ring rRing ) |
---|
207 | { |
---|
208 | #ifdef PDEBUG |
---|
209 | p_Test(pMonomM, rRing); |
---|
210 | p_Test(pMonomMM, rRing); |
---|
211 | #endif |
---|
212 | |
---|
213 | const unsigned int iFirstAltVar = scaFirstAltVar(rRing); |
---|
214 | const unsigned int iLastAltVar = scaLastAltVar(rRing); |
---|
215 | |
---|
216 | register unsigned int tpower = 0; |
---|
217 | register unsigned int cpower = 0; |
---|
218 | |
---|
219 | for( register unsigned int j = iLastAltVar; j >= iFirstAltVar; j-- ) |
---|
220 | { |
---|
221 | const unsigned int iExpMM = p_GetExp(pMonomMM, j, rRing); |
---|
222 | const unsigned int iExpM = p_GetExp(pMonomM, j, rRing); |
---|
223 | |
---|
224 | #ifdef PDEBUG |
---|
225 | assume( iExpM <= 1); |
---|
226 | assume( iExpMM <= 1); |
---|
227 | #endif |
---|
228 | |
---|
229 | if( iExpM != 0 ) |
---|
230 | { |
---|
231 | if( iExpMM != 0 ) // result is zero! |
---|
232 | { |
---|
233 | return NULL; // we do nothing with pMonomM in this case! |
---|
234 | } |
---|
235 | |
---|
236 | tpower ^= cpower; // compute degree of (-1). |
---|
237 | } |
---|
238 | |
---|
239 | cpower ^= iExpMM; |
---|
240 | } |
---|
241 | |
---|
242 | #ifdef PDEBUG |
---|
243 | assume(tpower <= 1); |
---|
244 | #endif |
---|
245 | |
---|
246 | p_ExpVectorAdd(pMonomM, pMonomMM, rRing); // "exponents" are additive!!! |
---|
247 | |
---|
248 | number nCoeffM = p_GetCoeff(pMonomM, rRing); // no new copy! should be deleted! |
---|
249 | |
---|
250 | if( (tpower) != 0 ) // degree is odd => negate coeff. |
---|
251 | nCoeffM = n_Neg(nCoeffM, rRing); // negate nCoeff (will destroy the original number), creates new number! |
---|
252 | |
---|
253 | const number nCoeffMM = p_GetCoeff(pMonomMM, rRing); // no new copy! |
---|
254 | |
---|
255 | number nCoeff = n_Mult(nCoeffM, nCoeffMM, rRing); // new number! |
---|
256 | |
---|
257 | p_SetCoeff(pMonomM, nCoeff, rRing); // delete lc(pMonomM) and set lc(pMonomM) = nCoeff |
---|
258 | |
---|
259 | #ifdef PDEBUG |
---|
260 | p_LmTest(pMonomM, rRing); |
---|
261 | #endif |
---|
262 | |
---|
263 | return(pMonomM); |
---|
264 | } |
---|
265 | |
---|
266 | |
---|
267 | |
---|
268 | // returns: result = lt(pMonom1) * lt(pMonom2), |
---|
269 | // preserves pMonom1, pMonom2. may return NULL! |
---|
270 | // if result != NULL => next(result) = NULL, lt(result) = lt(pMonom1) * lt(pMonom2) |
---|
271 | static inline poly sca_mm_Mult_mm( poly pMonom1, const poly pMonom2, const ring rRing ) |
---|
272 | { |
---|
273 | #ifdef PDEBUG |
---|
274 | p_Test(pMonom1, rRing); |
---|
275 | p_Test(pMonom2, rRing); |
---|
276 | #endif |
---|
277 | |
---|
278 | const unsigned int iFirstAltVar = scaFirstAltVar(rRing); |
---|
279 | const unsigned int iLastAltVar = scaLastAltVar(rRing); |
---|
280 | |
---|
281 | register unsigned int tpower = 0; |
---|
282 | register unsigned int cpower = 0; |
---|
283 | |
---|
284 | for( register unsigned int j = iLastAltVar; j >= iFirstAltVar; j-- ) |
---|
285 | { |
---|
286 | const unsigned int iExp1 = p_GetExp(pMonom1, j, rRing); |
---|
287 | const unsigned int iExp2 = p_GetExp(pMonom2, j, rRing); |
---|
288 | |
---|
289 | #ifdef PDEBUG |
---|
290 | assume( iExp1 <= 1); |
---|
291 | assume( iExp2 <= 1); |
---|
292 | #endif |
---|
293 | |
---|
294 | if( iExp2 != 0 ) |
---|
295 | { |
---|
296 | if( iExp1 != 0 ) // result is zero! |
---|
297 | { |
---|
298 | return NULL; |
---|
299 | } |
---|
300 | tpower ^= cpower; // compute degree of (-1). |
---|
301 | } |
---|
302 | cpower ^= iExp1; |
---|
303 | } |
---|
304 | |
---|
305 | #ifdef PDEBUG |
---|
306 | assume(cpower <= 1); |
---|
307 | #endif |
---|
308 | |
---|
309 | poly pResult; |
---|
310 | p_AllocBin(pResult,rRing->PolyBin,rRing); |
---|
311 | |
---|
312 | p_ExpVectorSum(pResult, pMonom1, pMonom2, rRing); // "exponents" are additive!!! |
---|
313 | |
---|
314 | pNext(pResult) = NULL; |
---|
315 | |
---|
316 | const number nCoeff1 = p_GetCoeff(pMonom1, rRing); // no new copy! |
---|
317 | const number nCoeff2 = p_GetCoeff(pMonom2, rRing); // no new copy! |
---|
318 | |
---|
319 | number nCoeff = n_Mult(nCoeff1, nCoeff2, rRing); // new number! |
---|
320 | |
---|
321 | if( (tpower) != 0 ) // degree is odd => negate coeff. |
---|
322 | nCoeff = n_Neg(nCoeff, rRing); // negate nCoeff (will destroy the original number) |
---|
323 | |
---|
324 | p_SetCoeff0(pResult, nCoeff, rRing); // set lc(pResult) = nCoeff, no destruction! |
---|
325 | |
---|
326 | #ifdef PDEBUG |
---|
327 | p_LmTest(pResult, rRing); |
---|
328 | #endif |
---|
329 | |
---|
330 | return(pResult); |
---|
331 | } |
---|
332 | |
---|
333 | // returns: result = x_i * lt(pMonom), |
---|
334 | // preserves pMonom. may return NULL! |
---|
335 | // if result != NULL => next(result) = NULL, lt(result) = x_i * lt(pMonom) |
---|
336 | static inline poly sca_xi_Mult_mm(unsigned int i, const poly pMonom, const ring rRing) |
---|
337 | { |
---|
338 | #ifdef PDEBUG |
---|
339 | p_Test(pMonom, rRing); |
---|
340 | #endif |
---|
341 | |
---|
342 | assume( i <= scaLastAltVar(rRing)); |
---|
343 | assume( scaFirstAltVar(rRing) <= i ); |
---|
344 | |
---|
345 | if( p_GetExp(pMonom, i, rRing) != 0 ) // => result is zero! |
---|
346 | return NULL; |
---|
347 | |
---|
348 | const unsigned int iFirstAltVar = scaFirstAltVar(rRing); |
---|
349 | |
---|
350 | register unsigned int cpower = 0; |
---|
351 | |
---|
352 | for( register unsigned int j = iFirstAltVar; j < i ; j++ ) |
---|
353 | cpower ^= p_GetExp(pMonom, j, rRing); |
---|
354 | |
---|
355 | #ifdef PDEBUG |
---|
356 | assume(cpower <= 1); |
---|
357 | #endif |
---|
358 | |
---|
359 | poly pResult = p_LmInit(pMonom, rRing); |
---|
360 | |
---|
361 | p_SetExp(pResult, i, 1, rRing); // pResult*=X_i && |
---|
362 | p_Setm(pResult, rRing); // addjust degree after previous step! |
---|
363 | |
---|
364 | number nCoeff = n_Copy(p_GetCoeff(pMonom, rRing), rRing); // new number! |
---|
365 | |
---|
366 | if( cpower != 0 ) // degree is odd => negate coeff. |
---|
367 | nCoeff = n_Neg(nCoeff, rRing); // negate nCoeff (will destroy the original number) |
---|
368 | |
---|
369 | p_SetCoeff0(pResult, nCoeff, rRing); // set lc(pResult) = nCoeff, no destruction! |
---|
370 | |
---|
371 | #ifdef PDEBUG |
---|
372 | p_LmTest(pResult, rRing); |
---|
373 | #endif |
---|
374 | |
---|
375 | return(pResult); |
---|
376 | } |
---|
377 | |
---|
378 | //-----------------------------------------------------------------------------------// |
---|
379 | |
---|
380 | // return poly = pPoly * pMonom; preserve pMonom, destroy or reuse pPoly. |
---|
381 | poly sca_p_Mult_mm(poly pPoly, const poly pMonom, const ring rRing) |
---|
382 | { |
---|
383 | assume( rIsSCA(rRing) ); |
---|
384 | |
---|
385 | #ifdef PDEBUG |
---|
386 | // Print("sca_p_Mult_mm\n"); // ! |
---|
387 | |
---|
388 | p_Test(pPoly, rRing); |
---|
389 | p_Test(pMonom, rRing); |
---|
390 | #endif |
---|
391 | |
---|
392 | if( pPoly == NULL ) |
---|
393 | return NULL; |
---|
394 | |
---|
395 | assume(pMonom !=NULL); |
---|
396 | //if( pMonom == NULL ) |
---|
397 | //{ |
---|
398 | // // pPoly != NULL => |
---|
399 | // p_Delete( &pPoly, rRing ); |
---|
400 | // return NULL; |
---|
401 | //} |
---|
402 | |
---|
403 | const int iComponentMonomM = p_GetComp(pMonom, rRing); |
---|
404 | |
---|
405 | poly p = pPoly; poly* ppPrev = &pPoly; |
---|
406 | |
---|
407 | loop |
---|
408 | { |
---|
409 | #ifdef PDEBUG |
---|
410 | p_Test(p, rRing); |
---|
411 | #endif |
---|
412 | const int iComponent = p_GetComp(p, rRing); |
---|
413 | |
---|
414 | if( iComponent!=0 ) |
---|
415 | { |
---|
416 | if( iComponentMonomM!=0 ) // TODO: make global if on iComponentMonomM =?= 0 |
---|
417 | { |
---|
418 | // REPORT_ERROR |
---|
419 | Werror("sca_p_Mult_mm: exponent mismatch %d and %d\n", iComponent, iComponentMonomM); |
---|
420 | // what should we do further?!? |
---|
421 | |
---|
422 | p_Delete( &pPoly, rRing); // delete the result AND rest |
---|
423 | return NULL; |
---|
424 | } |
---|
425 | #ifdef PDEBUG |
---|
426 | if(iComponentMonomM==0 ) |
---|
427 | { |
---|
428 | dReportError("sca_p_Mult_mm: Multiplication in the left module from the right"); |
---|
429 | } |
---|
430 | #endif |
---|
431 | } |
---|
432 | |
---|
433 | // terms will be in the same order because of quasi-ordering! |
---|
434 | poly v = sca_m_Mult_mm(p, pMonom, rRing); |
---|
435 | |
---|
436 | if( v != NULL ) |
---|
437 | { |
---|
438 | ppPrev = &pNext(p); // fixed! |
---|
439 | |
---|
440 | // *p is changed if v != NULL ( p == v ) |
---|
441 | pIter(p); |
---|
442 | |
---|
443 | if( p == NULL ) |
---|
444 | break; |
---|
445 | } |
---|
446 | else |
---|
447 | { // Upps! Zero!!! we must kill this term! |
---|
448 | |
---|
449 | // |
---|
450 | p = p_LmDeleteAndNext(p, rRing); |
---|
451 | |
---|
452 | *ppPrev = p; |
---|
453 | |
---|
454 | if( p == NULL ) |
---|
455 | break; |
---|
456 | } |
---|
457 | } |
---|
458 | |
---|
459 | #ifdef PDEBUG |
---|
460 | p_Test(pPoly,rRing); |
---|
461 | #endif |
---|
462 | |
---|
463 | return(pPoly); |
---|
464 | } |
---|
465 | |
---|
466 | // return new poly = pPoly * pMonom; preserve pPoly and pMonom. |
---|
467 | poly sca_pp_Mult_mm(const poly pPoly, const poly pMonom, const ring rRing, poly &) |
---|
468 | { |
---|
469 | assume( rIsSCA(rRing) ); |
---|
470 | |
---|
471 | #ifdef PDEBUG |
---|
472 | // Print("sca_pp_Mult_mm\n"); // ! |
---|
473 | |
---|
474 | p_Test(pPoly, rRing); |
---|
475 | p_Test(pMonom, rRing); |
---|
476 | #endif |
---|
477 | |
---|
478 | if( ( pPoly == NULL ) /*|| ( pMonom == NULL )*/ ) |
---|
479 | return NULL; |
---|
480 | |
---|
481 | const int iComponentMonomM = p_GetComp(pMonom, rRing); |
---|
482 | |
---|
483 | poly pResult = NULL; |
---|
484 | poly* ppPrev = &pResult; |
---|
485 | |
---|
486 | for( poly p = pPoly; p!= NULL; pIter(p) ) |
---|
487 | { |
---|
488 | #ifdef PDEBUG |
---|
489 | p_Test(p, rRing); |
---|
490 | #endif |
---|
491 | const int iComponent = p_GetComp(p, rRing); |
---|
492 | |
---|
493 | if( iComponent!=0 ) |
---|
494 | { |
---|
495 | if( iComponentMonomM!=0 ) // TODO: make global if on iComponentMonomM =?= 0 |
---|
496 | { |
---|
497 | // REPORT_ERROR |
---|
498 | Werror("sca_pp_Mult_mm: exponent mismatch %d and %d\n", iComponent, iComponentMonomM); |
---|
499 | // what should we do further?!? |
---|
500 | |
---|
501 | p_Delete( &pResult, rRing); // delete the result |
---|
502 | return NULL; |
---|
503 | } |
---|
504 | |
---|
505 | #ifdef PDEBUG |
---|
506 | if(iComponentMonomM==0 ) |
---|
507 | { |
---|
508 | dReportError("sca_pp_Mult_mm: Multiplication in the left module from the right"); |
---|
509 | } |
---|
510 | #endif |
---|
511 | } |
---|
512 | |
---|
513 | // terms will be in the same order because of quasi-ordering! |
---|
514 | poly v = sca_mm_Mult_mm(p, pMonom, rRing); |
---|
515 | |
---|
516 | if( v != NULL ) |
---|
517 | { |
---|
518 | *ppPrev = v; |
---|
519 | ppPrev = &pNext(v); |
---|
520 | } |
---|
521 | } |
---|
522 | |
---|
523 | #ifdef PDEBUG |
---|
524 | p_Test(pResult,rRing); |
---|
525 | #endif |
---|
526 | |
---|
527 | return(pResult); |
---|
528 | } |
---|
529 | |
---|
530 | //-----------------------------------------------------------------------------------// |
---|
531 | |
---|
532 | // return x_i * pPoly; preserve pPoly. |
---|
533 | static inline poly sca_xi_Mult_pp(unsigned int i, const poly pPoly, const ring rRing) |
---|
534 | { |
---|
535 | assume( rIsSCA(rRing) ); |
---|
536 | |
---|
537 | #ifdef PDEBUG |
---|
538 | p_Test(pPoly, rRing); |
---|
539 | #endif |
---|
540 | |
---|
541 | assume(i <= scaLastAltVar(rRing)); |
---|
542 | assume(scaFirstAltVar(rRing) <= i); |
---|
543 | |
---|
544 | if( pPoly == NULL ) |
---|
545 | return NULL; |
---|
546 | |
---|
547 | poly pResult = NULL; |
---|
548 | poly* ppPrev = &pResult; |
---|
549 | |
---|
550 | for( poly p = pPoly; p!= NULL; pIter(p) ) |
---|
551 | { |
---|
552 | |
---|
553 | // terms will be in the same order because of quasi-ordering! |
---|
554 | poly v = sca_xi_Mult_mm(i, p, rRing); |
---|
555 | |
---|
556 | #ifdef PDEBUG |
---|
557 | p_Test(v, rRing); |
---|
558 | #endif |
---|
559 | |
---|
560 | if( v != NULL ) |
---|
561 | { |
---|
562 | *ppPrev = v; |
---|
563 | ppPrev = &pNext(*ppPrev); |
---|
564 | } |
---|
565 | } |
---|
566 | |
---|
567 | |
---|
568 | #ifdef PDEBUG |
---|
569 | p_Test(pResult, rRing); |
---|
570 | #endif |
---|
571 | |
---|
572 | return(pResult); |
---|
573 | } |
---|
574 | |
---|
575 | |
---|
576 | // return new poly = pMonom * pPoly; preserve pPoly and pMonom. |
---|
577 | static poly sca_mm_Mult_pp(const poly pMonom, const poly pPoly, const ring rRing) |
---|
578 | { |
---|
579 | assume( rIsSCA(rRing) ); |
---|
580 | |
---|
581 | #ifdef PDEBUG |
---|
582 | // Print("sca_mm_Mult_pp\n"); // ! |
---|
583 | |
---|
584 | p_Test(pPoly, rRing); |
---|
585 | p_Test(pMonom, rRing); |
---|
586 | #endif |
---|
587 | |
---|
588 | if ((pPoly==NULL) || (pMonom==NULL)) return NULL; |
---|
589 | |
---|
590 | assume( (pPoly != NULL) && (pMonom !=NULL)); |
---|
591 | |
---|
592 | const int iComponentMonomM = p_GetComp(pMonom, rRing); |
---|
593 | |
---|
594 | poly pResult = NULL; |
---|
595 | poly* ppPrev = &pResult; |
---|
596 | |
---|
597 | for( poly p = pPoly; p!= NULL; pIter(p) ) |
---|
598 | { |
---|
599 | #ifdef PDEBUG |
---|
600 | p_Test(p, rRing); |
---|
601 | #endif |
---|
602 | const int iComponent = p_GetComp(p, rRing); |
---|
603 | |
---|
604 | if( iComponentMonomM!=0 ) |
---|
605 | { |
---|
606 | if( iComponent!=0 ) // TODO: make global if on iComponentMonomM =?= 0 |
---|
607 | { |
---|
608 | // REPORT_ERROR |
---|
609 | Werror("sca_mm_Mult_pp: exponent mismatch %d and %d\n", iComponent, iComponentMonomM); |
---|
610 | // what should we do further?!? |
---|
611 | |
---|
612 | p_Delete( &pResult, rRing); // delete the result |
---|
613 | return NULL; |
---|
614 | } |
---|
615 | #ifdef PDEBUG |
---|
616 | if(iComponent==0 ) |
---|
617 | { |
---|
618 | dReportError("sca_mm_Mult_pp: Multiplication in the left module from the right!"); |
---|
619 | // PrintS("mm = "); p_Write(pMonom, rRing); |
---|
620 | // PrintS("pp = "); p_Write(pPoly, rRing); |
---|
621 | // assume(iComponent!=0); |
---|
622 | } |
---|
623 | #endif |
---|
624 | } |
---|
625 | |
---|
626 | // terms will be in the same order because of quasi-ordering! |
---|
627 | poly v = sca_mm_Mult_mm(pMonom, p, rRing); |
---|
628 | |
---|
629 | if( v != NULL ) |
---|
630 | { |
---|
631 | *ppPrev = v; |
---|
632 | ppPrev = &pNext(*ppPrev); // nice line ;-) |
---|
633 | } |
---|
634 | } |
---|
635 | |
---|
636 | #ifdef PDEBUG |
---|
637 | p_Test(pResult,rRing); |
---|
638 | #endif |
---|
639 | |
---|
640 | return(pResult); |
---|
641 | } |
---|
642 | |
---|
643 | |
---|
644 | // return poly = pMonom * pPoly; preserve pMonom, destroy or reuse pPoly. |
---|
645 | static poly sca_mm_Mult_p(const poly pMonom, poly pPoly, const ring rRing) // !!!!! the MOST used procedure !!!!! |
---|
646 | { |
---|
647 | assume( rIsSCA(rRing) ); |
---|
648 | |
---|
649 | #ifdef PDEBUG |
---|
650 | p_Test(pPoly, rRing); |
---|
651 | p_Test(pMonom, rRing); |
---|
652 | #endif |
---|
653 | |
---|
654 | if( pPoly == NULL ) |
---|
655 | return NULL; |
---|
656 | |
---|
657 | assume(pMonom!=NULL); |
---|
658 | //if( pMonom == NULL ) |
---|
659 | //{ |
---|
660 | // // pPoly != NULL => |
---|
661 | // p_Delete( &pPoly, rRing ); |
---|
662 | // return NULL; |
---|
663 | //} |
---|
664 | |
---|
665 | const int iComponentMonomM = p_GetComp(pMonom, rRing); |
---|
666 | |
---|
667 | poly p = pPoly; poly* ppPrev = &pPoly; |
---|
668 | |
---|
669 | loop |
---|
670 | { |
---|
671 | #ifdef PDEBUG |
---|
672 | if( !p_Test(p, rRing) ) |
---|
673 | { |
---|
674 | PrintS("p is wrong!"); |
---|
675 | p_Write(p,rRing); |
---|
676 | } |
---|
677 | #endif |
---|
678 | |
---|
679 | const int iComponent = p_GetComp(p, rRing); |
---|
680 | |
---|
681 | if( iComponentMonomM!=0 ) |
---|
682 | { |
---|
683 | if( iComponent!=0 ) |
---|
684 | { |
---|
685 | // REPORT_ERROR |
---|
686 | Werror("sca_mm_Mult_p: exponent mismatch %d and %d\n", iComponent, iComponentMonomM); |
---|
687 | // what should we do further?!? |
---|
688 | |
---|
689 | p_Delete( &pPoly, rRing); // delete the result |
---|
690 | return NULL; |
---|
691 | } |
---|
692 | #ifdef PDEBUG |
---|
693 | if(iComponent==0) |
---|
694 | { |
---|
695 | dReportError("sca_mm_Mult_p: Multiplication in the left module from the right!"); |
---|
696 | // PrintS("mm = "); p_Write(pMonom, rRing); |
---|
697 | // PrintS("p = "); p_Write(pPoly, rRing); |
---|
698 | // assume(iComponent!=0); |
---|
699 | } |
---|
700 | #endif |
---|
701 | } |
---|
702 | |
---|
703 | // terms will be in the same order because of quasi-ordering! |
---|
704 | poly v = sca_mm_Mult_m(pMonom, p, rRing); |
---|
705 | |
---|
706 | if( v != NULL ) |
---|
707 | { |
---|
708 | ppPrev = &pNext(p); |
---|
709 | |
---|
710 | // *p is changed if v != NULL ( p == v ) |
---|
711 | pIter(p); |
---|
712 | |
---|
713 | if( p == NULL ) |
---|
714 | break; |
---|
715 | } |
---|
716 | else |
---|
717 | { // Upps! Zero!!! we must kill this term! |
---|
718 | p = p_LmDeleteAndNext(p, rRing); |
---|
719 | |
---|
720 | *ppPrev = p; |
---|
721 | |
---|
722 | if( p == NULL ) |
---|
723 | break; |
---|
724 | } |
---|
725 | } |
---|
726 | |
---|
727 | #ifdef PDEBUG |
---|
728 | if( !p_Test(pPoly, rRing) ) |
---|
729 | { |
---|
730 | PrintS("pPoly is wrong!"); |
---|
731 | p_Write(pPoly, rRing); |
---|
732 | } |
---|
733 | #endif |
---|
734 | |
---|
735 | return(pPoly); |
---|
736 | } |
---|
737 | |
---|
738 | //-----------------------------------------------------------------------------------// |
---|
739 | |
---|
740 | #ifdef PDEBUG |
---|
741 | #endif |
---|
742 | |
---|
743 | |
---|
744 | |
---|
745 | |
---|
746 | //-----------------------------------------------------------------------------------// |
---|
747 | |
---|
748 | // GB computation routines: |
---|
749 | |
---|
750 | /*4 |
---|
751 | * creates the S-polynomial of p1 and p2 |
---|
752 | * does not destroy p1 and p2 |
---|
753 | */ |
---|
754 | poly sca_SPoly( const poly p1, const poly p2, const ring r ) |
---|
755 | { |
---|
756 | assume( rIsSCA(r) ); |
---|
757 | |
---|
758 | const long lCompP1 = p_GetComp(p1,r); |
---|
759 | const long lCompP2 = p_GetComp(p2,r); |
---|
760 | |
---|
761 | if ((lCompP1!=lCompP2) && (lCompP1!=0) && (lCompP2!=0)) |
---|
762 | { |
---|
763 | #ifdef PDEBUG |
---|
764 | dReportError("sca_SPoly: different non-zero components!\n"); |
---|
765 | #endif |
---|
766 | return(NULL); |
---|
767 | } |
---|
768 | |
---|
769 | poly pL = p_Lcm(p1, p2, si_max(lCompP1, lCompP2), r); // pL = lcm( lm(p1), lm(p2) ) |
---|
770 | |
---|
771 | poly m1 = p_One( r); |
---|
772 | p_ExpVectorDiff(m1, pL, p1, r); // m1 = pL / lm(p1) |
---|
773 | |
---|
774 | //p_SetComp(m1,0,r); |
---|
775 | //p_Setm(m1,r); |
---|
776 | #ifdef PDEBUG |
---|
777 | p_Test(m1,r); |
---|
778 | #endif |
---|
779 | |
---|
780 | |
---|
781 | poly m2 = p_One( r); |
---|
782 | p_ExpVectorDiff (m2, pL, p2, r); // m2 = pL / lm(p2) |
---|
783 | |
---|
784 | //p_SetComp(m2,0,r); |
---|
785 | //p_Setm(m2,r); |
---|
786 | #ifdef PDEBUG |
---|
787 | p_Test(m2,r); |
---|
788 | #endif |
---|
789 | |
---|
790 | p_Delete(&pL,r); |
---|
791 | |
---|
792 | number C1 = n_Copy(p_GetCoeff(p1,r),r); // C1 = lc(p1) |
---|
793 | number C2 = n_Copy(p_GetCoeff(p2,r),r); // C2 = lc(p2) |
---|
794 | |
---|
795 | number C = n_Gcd(C1,C2,r); // C = gcd(C1, C2) |
---|
796 | |
---|
797 | if (!n_IsOne(C, r)) // if C != 1 |
---|
798 | { |
---|
799 | C1=n_Div(C1, C, r); // C1 = C1 / C |
---|
800 | C2=n_Div(C2, C, r); // C2 = C2 / C |
---|
801 | } |
---|
802 | |
---|
803 | n_Delete(&C,r); // destroy the number C |
---|
804 | |
---|
805 | const int iSignSum = sca_Sign_mm_Mult_mm (m1, p1, r) + sca_Sign_mm_Mult_mm (m2, p2, r); |
---|
806 | // zero if different signs |
---|
807 | |
---|
808 | assume( (iSignSum*iSignSum == 0) || (iSignSum*iSignSum == 4) ); |
---|
809 | |
---|
810 | if( iSignSum != 0 ) // the same sign! |
---|
811 | C2=n_Neg (C2, r); |
---|
812 | |
---|
813 | p_SetCoeff(m1, C2, r); // lc(m1) = C2!!! |
---|
814 | p_SetCoeff(m2, C1, r); // lc(m2) = C1!!! |
---|
815 | |
---|
816 | poly tmp1 = nc_mm_Mult_pp (m1, pNext(p1), r); // tmp1 = m1 * tail(p1), |
---|
817 | p_Delete(&m1,r); // => n_Delete(&C1,r); |
---|
818 | |
---|
819 | poly tmp2 = nc_mm_Mult_pp (m2, pNext(p2), r); // tmp1 = m2 * tail(p2), |
---|
820 | p_Delete(&m2,r); // => n_Delete(&C1,r); |
---|
821 | |
---|
822 | poly spoly = p_Add_q (tmp1, tmp2, r); // spoly = spoly(lt(p1), lt(p2)) + m1 * tail(p1), delete tmp1,2 |
---|
823 | |
---|
824 | if (spoly!=NULL) p_Cleardenom (spoly, r); |
---|
825 | // if (spoly!=NULL) p_Content (spoly); // r? |
---|
826 | |
---|
827 | #ifdef PDEBUG |
---|
828 | p_Test (spoly, r); |
---|
829 | #endif |
---|
830 | |
---|
831 | return(spoly); |
---|
832 | } |
---|
833 | |
---|
834 | |
---|
835 | |
---|
836 | |
---|
837 | /*2 |
---|
838 | * reduction of p2 with p1 |
---|
839 | * do not destroy p1, but p2 |
---|
840 | * p1 divides p2 -> for use in NF algorithm |
---|
841 | */ |
---|
842 | poly sca_ReduceSpoly(const poly p1, poly p2, const ring r) |
---|
843 | { |
---|
844 | assume( rIsSCA(r) ); |
---|
845 | |
---|
846 | assume( p1 != NULL ); |
---|
847 | |
---|
848 | const long lCompP1 = p_GetComp (p1, r); |
---|
849 | const long lCompP2 = p_GetComp (p2, r); |
---|
850 | |
---|
851 | if ((lCompP1!=lCompP2) && (lCompP1!=0) && (lCompP2!=0)) |
---|
852 | { |
---|
853 | #ifdef PDEBUG |
---|
854 | dReportError("sca_ReduceSpoly: different non-zero components!"); |
---|
855 | #endif |
---|
856 | return(NULL); |
---|
857 | } |
---|
858 | |
---|
859 | poly m = p_ISet (1, r); |
---|
860 | p_ExpVectorDiff (m, p2, p1, r); // m = lm(p2) / lm(p1) |
---|
861 | //p_Setm(m,r); |
---|
862 | #ifdef PDEBUG |
---|
863 | p_Test (m,r); |
---|
864 | #endif |
---|
865 | |
---|
866 | number C1 = n_Copy( p_GetCoeff(p1, r), r); |
---|
867 | number C2 = n_Copy( p_GetCoeff(p2, r), r); |
---|
868 | |
---|
869 | /* GCD stuff */ |
---|
870 | number C = n_Gcd(C1, C2, r); |
---|
871 | |
---|
872 | if (!n_IsOne(C, r)) |
---|
873 | { |
---|
874 | C1 = n_Div(C1, C, r); |
---|
875 | C2 = n_Div(C2, C, r); |
---|
876 | } |
---|
877 | n_Delete(&C,r); |
---|
878 | |
---|
879 | const int iSign = sca_Sign_mm_Mult_mm( m, p1, r ); |
---|
880 | |
---|
881 | if(iSign == 1) |
---|
882 | C2 = n_Neg(C2,r); |
---|
883 | |
---|
884 | p_SetCoeff(m, C2, r); |
---|
885 | |
---|
886 | #ifdef PDEBUG |
---|
887 | p_Test(m,r); |
---|
888 | #endif |
---|
889 | |
---|
890 | p2 = p_LmDeleteAndNext( p2, r ); |
---|
891 | |
---|
892 | p2 = p_Mult_nn(p2, C1, r); // p2 !!! |
---|
893 | n_Delete(&C1,r); |
---|
894 | |
---|
895 | poly T = nc_mm_Mult_pp(m, pNext(p1), r); |
---|
896 | p_Delete(&m, r); |
---|
897 | |
---|
898 | p2 = p_Add_q(p2, T, r); |
---|
899 | |
---|
900 | if ( p2!=NULL ) p_Content(p2,r); |
---|
901 | |
---|
902 | #ifdef PDEBUG |
---|
903 | p_Test(p2,r); |
---|
904 | #endif |
---|
905 | |
---|
906 | return(p2); |
---|
907 | } |
---|
908 | |
---|
909 | // should be used only inside nc_SetupQuotient! |
---|
910 | // Check whether this our case: |
---|
911 | // 1. rG is a commutative polynomial ring \otimes anticommutative algebra |
---|
912 | // 2. factor ideal rGR->qideal contains squares of all alternating variables. |
---|
913 | // |
---|
914 | // if yes, make rGR a super-commutative algebra! |
---|
915 | // NOTE: Factors of SuperCommutative Algebras are supported this way! |
---|
916 | // |
---|
917 | // rG == NULL means that there is no separate base G-algebra in this case take rGR == rG |
---|
918 | |
---|
919 | // special case: bCopy == true (default value: false) |
---|
920 | // meaning: rGR copies structure from rG |
---|
921 | // (maybe with some minor changes, which don't change the type!) |
---|
922 | bool sca_SetupQuotient(ring rGR, ring rG, bool bCopy) |
---|
923 | { |
---|
924 | |
---|
925 | ////////////////////////////////////////////////////////////////////////// |
---|
926 | // checks... |
---|
927 | ////////////////////////////////////////////////////////////////////////// |
---|
928 | if( rG == NULL ) |
---|
929 | rG = rGR; |
---|
930 | |
---|
931 | assume(rGR != NULL); |
---|
932 | assume(rG != NULL); |
---|
933 | assume(rIsPluralRing(rG)); |
---|
934 | |
---|
935 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
936 | PrintS("sca_SetupQuotient(rGR, rG, bCopy)"); |
---|
937 | |
---|
938 | { |
---|
939 | PrintS("\nrG: \n"); rWrite(rG); |
---|
940 | PrintS("\nrGR: \n"); rWrite(rGR); |
---|
941 | PrintLn(); |
---|
942 | } |
---|
943 | #endif |
---|
944 | |
---|
945 | |
---|
946 | if(bCopy) |
---|
947 | { |
---|
948 | if(rIsSCA(rG) && (rG != rGR)) |
---|
949 | return sca_Force(rGR, scaFirstAltVar(rG), scaLastAltVar(rG)); |
---|
950 | else |
---|
951 | return false; |
---|
952 | } |
---|
953 | |
---|
954 | assume(!bCopy); |
---|
955 | |
---|
956 | const int N = rG->N; |
---|
957 | |
---|
958 | if(N < 2) |
---|
959 | return false; |
---|
960 | |
---|
961 | |
---|
962 | // if( (ncRingType(rG) != nc_skew) || (ncRingType(rG) != nc_comm) ) |
---|
963 | // return false; |
---|
964 | |
---|
965 | #if OUTPUT |
---|
966 | PrintS("sca_SetupQuotient: qring?\n"); |
---|
967 | #endif |
---|
968 | |
---|
969 | if(rGR->qideal == NULL) // there should be a factor! |
---|
970 | return false; |
---|
971 | |
---|
972 | #if OUTPUT |
---|
973 | PrintS("sca_SetupQuotient: qideal!!!\n"); |
---|
974 | #endif |
---|
975 | |
---|
976 | // if((rG->qideal != NULL) && (rG != rGR) ) // we cannot change from factor to factor at the time, sorry! |
---|
977 | // return false; |
---|
978 | |
---|
979 | |
---|
980 | int iAltVarEnd = -1; |
---|
981 | int iAltVarStart = N+1; |
---|
982 | |
---|
983 | const nc_struct* NC = rG->GetNC(); |
---|
984 | const ring rBase = rG; //NC->basering; |
---|
985 | const matrix C = NC->C; // live in rBase! |
---|
986 | const matrix D = NC->D; // live in rBase! |
---|
987 | |
---|
988 | #if OUTPUT |
---|
989 | PrintS("sca_SetupQuotient: AltVars?!\n"); |
---|
990 | #endif |
---|
991 | |
---|
992 | for(int i = 1; i < N; i++) |
---|
993 | { |
---|
994 | for(int j = i + 1; j <= N; j++) |
---|
995 | { |
---|
996 | if( MATELEM(D,i,j) != NULL) // !!!??? |
---|
997 | { |
---|
998 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
999 | Print("Nonzero D[%d, %d]\n", i, j); |
---|
1000 | #endif |
---|
1001 | return false; |
---|
1002 | } |
---|
1003 | |
---|
1004 | |
---|
1005 | assume(MATELEM(C,i,j) != NULL); // after CallPlural! |
---|
1006 | number c = p_GetCoeff(MATELEM(C,i,j), rBase); |
---|
1007 | |
---|
1008 | if( n_IsMOne(c, rBase) ) // !!!??? |
---|
1009 | { |
---|
1010 | if( i < iAltVarStart) |
---|
1011 | iAltVarStart = i; |
---|
1012 | |
---|
1013 | if( j > iAltVarEnd) |
---|
1014 | iAltVarEnd = j; |
---|
1015 | } else |
---|
1016 | { |
---|
1017 | if( !n_IsOne(c, rBase) ) |
---|
1018 | { |
---|
1019 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
1020 | Print("Wrong Coeff at: [%d, %d]\n", i, j); |
---|
1021 | #endif |
---|
1022 | return false; |
---|
1023 | } |
---|
1024 | } |
---|
1025 | } |
---|
1026 | } |
---|
1027 | |
---|
1028 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
1029 | Print("AltVars?1: [%d, %d]\n", iAltVarStart, iAltVarEnd); |
---|
1030 | #endif |
---|
1031 | |
---|
1032 | |
---|
1033 | if( (iAltVarEnd == -1) || (iAltVarStart == (N+1)) ) |
---|
1034 | return false; // either no alternating varables, or a single one => we are in commutative case! |
---|
1035 | |
---|
1036 | |
---|
1037 | for(int i = 1; i < N; i++) |
---|
1038 | { |
---|
1039 | for(int j = i + 1; j <= N; j++) |
---|
1040 | { |
---|
1041 | assume(MATELEM(C,i,j) != NULL); // after CallPlural! |
---|
1042 | number c = p_GetCoeff(MATELEM(C,i,j), rBase); |
---|
1043 | |
---|
1044 | if( (iAltVarStart <= i) && (j <= iAltVarEnd) ) // S <= i < j <= E |
---|
1045 | { // anticommutative part |
---|
1046 | if( !n_IsMOne(c, rBase) ) |
---|
1047 | { |
---|
1048 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
1049 | Print("Wrong Coeff at: [%d, %d]\n", i, j); |
---|
1050 | #endif |
---|
1051 | return false; |
---|
1052 | } |
---|
1053 | } else |
---|
1054 | { // should commute |
---|
1055 | if( !n_IsOne(c, rBase) ) |
---|
1056 | { |
---|
1057 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
1058 | Print("Wrong Coeff at: [%d, %d]\n", i, j); |
---|
1059 | #endif |
---|
1060 | return false; |
---|
1061 | } |
---|
1062 | } |
---|
1063 | } |
---|
1064 | } |
---|
1065 | |
---|
1066 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
1067 | Print("AltVars!?: [%d, %d]\n", iAltVarStart, iAltVarEnd); |
---|
1068 | #endif |
---|
1069 | |
---|
1070 | assume( 1 <= iAltVarStart ); |
---|
1071 | assume( iAltVarStart < iAltVarEnd ); |
---|
1072 | assume( iAltVarEnd <= N ); |
---|
1073 | |
---|
1074 | |
---|
1075 | // ring rSaveRing = assureCurrentRing(rG); |
---|
1076 | |
---|
1077 | |
---|
1078 | assume(rGR->qideal != NULL); |
---|
1079 | assume(rGR->N == rG->N); |
---|
1080 | // assume(rG->qideal == NULL); // ? |
---|
1081 | |
---|
1082 | const ideal idQuotient = rGR->qideal; |
---|
1083 | |
---|
1084 | |
---|
1085 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
1086 | PrintS("Analyzing quotient ideal:\n"); |
---|
1087 | idPrint(idQuotient); // in rG!!! |
---|
1088 | #endif |
---|
1089 | |
---|
1090 | |
---|
1091 | // check for |
---|
1092 | // y_{iAltVarStart}^2, y_{iAltVarStart+1}^2, \ldots, y_{iAltVarEnd}^2 (iAltVarEnd > iAltVarStart) |
---|
1093 | // to be within quotient ideal. |
---|
1094 | |
---|
1095 | bool bSCA = true; |
---|
1096 | |
---|
1097 | int b = N+1; |
---|
1098 | int e = -1; |
---|
1099 | |
---|
1100 | if(rIsSCA(rG)) |
---|
1101 | { |
---|
1102 | b = si_min(b, scaFirstAltVar(rG)); |
---|
1103 | e = si_max(e, scaLastAltVar(rG)); |
---|
1104 | |
---|
1105 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
1106 | Print("AltVars!?: [%d, %d]\n", b, e); |
---|
1107 | #endif |
---|
1108 | } |
---|
1109 | |
---|
1110 | for ( int i = iAltVarStart; (i <= iAltVarEnd) && bSCA; i++ ) |
---|
1111 | if( (i < b) || (i > e) ) // otherwise it's ok since rG is an SCA! |
---|
1112 | { |
---|
1113 | poly square = p_One( rG); |
---|
1114 | p_SetExp(square, i, 2, rG); // square = var(i)^2. |
---|
1115 | p_Setm(square, rG); |
---|
1116 | |
---|
1117 | // square = NF( var(i)^2 | Q ) |
---|
1118 | // NOTE: there is no better way to check this in general! |
---|
1119 | square = kNF(idQuotient, NULL, square, 0, 1, rG); // must ran in currRing == rG! |
---|
1120 | |
---|
1121 | if( square != NULL ) // var(i)^2 is not in Q? |
---|
1122 | { |
---|
1123 | p_Delete(&square, rG); |
---|
1124 | bSCA = false; |
---|
1125 | break; |
---|
1126 | } |
---|
1127 | } |
---|
1128 | |
---|
1129 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
1130 | Print("ScaVars!: [%d, %d]\n", iAltVarStart, iAltVarEnd); |
---|
1131 | #endif |
---|
1132 | |
---|
1133 | |
---|
1134 | ////////////////////////////////////////////////////////////////////////// |
---|
1135 | // ok... here we go. let's setup it!!! |
---|
1136 | ////////////////////////////////////////////////////////////////////////// |
---|
1137 | ideal tempQ = id_KillSquares(idQuotient, iAltVarStart, iAltVarEnd, rG); // in rG!!! |
---|
1138 | |
---|
1139 | |
---|
1140 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
1141 | PrintS("Quotient: \n"); |
---|
1142 | iiWriteMatrix((matrix)idQuotient,"__",1); |
---|
1143 | PrintS("tempSCAQuotient: \n"); |
---|
1144 | iiWriteMatrix((matrix)tempQ,"__",1); |
---|
1145 | #endif |
---|
1146 | |
---|
1147 | idSkipZeroes( tempQ ); |
---|
1148 | |
---|
1149 | ncRingType( rGR, nc_exterior ); |
---|
1150 | |
---|
1151 | scaFirstAltVar( rGR, iAltVarStart ); |
---|
1152 | scaLastAltVar( rGR, iAltVarEnd ); |
---|
1153 | |
---|
1154 | if( idIs0(tempQ) ) |
---|
1155 | rGR->GetNC()->SCAQuotient() = NULL; |
---|
1156 | else |
---|
1157 | rGR->GetNC()->SCAQuotient() = idrMoveR(tempQ, rG, rGR); // deletes tempQ! |
---|
1158 | |
---|
1159 | nc_p_ProcsSet(rGR, rGR->p_Procs); // !!!!!!!!!!!!!!!!! |
---|
1160 | |
---|
1161 | |
---|
1162 | #if ((defined(PDEBUG) && OUTPUT) || MYTEST) |
---|
1163 | PrintS("SCAQuotient: \n"); |
---|
1164 | if(tempQ != NULL) |
---|
1165 | iiWriteMatrix((matrix)tempQ,"__",1); |
---|
1166 | else |
---|
1167 | PrintS("(NULL)\n"); |
---|
1168 | #endif |
---|
1169 | |
---|
1170 | return true; |
---|
1171 | } |
---|
1172 | |
---|
1173 | |
---|
1174 | bool sca_Force(ring rGR, int b, int e) |
---|
1175 | { |
---|
1176 | assume(rGR != NULL); |
---|
1177 | assume(rIsPluralRing(rGR)); |
---|
1178 | assume(!rIsSCA(rGR)); |
---|
1179 | |
---|
1180 | const int N = rGR->N; |
---|
1181 | |
---|
1182 | // ring rSaveRing = currRing; |
---|
1183 | // if(rSaveRing != rGR) |
---|
1184 | // rChangeCurrRing(rGR); |
---|
1185 | |
---|
1186 | const ideal idQuotient = rGR->qideal; |
---|
1187 | |
---|
1188 | ideal tempQ = idQuotient; |
---|
1189 | |
---|
1190 | if( b <= N && e >= 1 ) |
---|
1191 | tempQ = id_KillSquares(idQuotient, b, e, rGR); |
---|
1192 | |
---|
1193 | idSkipZeroes( tempQ ); |
---|
1194 | |
---|
1195 | ncRingType( rGR, nc_exterior ); |
---|
1196 | |
---|
1197 | if( idIs0(tempQ) ) |
---|
1198 | rGR->GetNC()->SCAQuotient() = NULL; |
---|
1199 | else |
---|
1200 | rGR->GetNC()->SCAQuotient() = tempQ; |
---|
1201 | |
---|
1202 | |
---|
1203 | scaFirstAltVar( rGR, b ); |
---|
1204 | scaLastAltVar( rGR, e ); |
---|
1205 | |
---|
1206 | |
---|
1207 | nc_p_ProcsSet(rGR, rGR->p_Procs); |
---|
1208 | |
---|
1209 | // if(rSaveRing != rGR) |
---|
1210 | // rChangeCurrRing(rSaveRing); |
---|
1211 | |
---|
1212 | return true; |
---|
1213 | } |
---|
1214 | |
---|
1215 | // return x_i * pPoly; preserve pPoly. |
---|
1216 | poly sca_pp_Mult_xi_pp(unsigned int i, const poly pPoly, const ring rRing) |
---|
1217 | { |
---|
1218 | assume(1 <= i); |
---|
1219 | assume(i <= (unsigned int)rRing->N); |
---|
1220 | |
---|
1221 | if(rIsSCA(rRing)) |
---|
1222 | return sca_xi_Mult_pp(i, pPoly, rRing); |
---|
1223 | |
---|
1224 | |
---|
1225 | |
---|
1226 | poly xi = p_One( rRing); |
---|
1227 | p_SetExp(xi, i, 1, rRing); |
---|
1228 | p_Setm(xi, rRing); |
---|
1229 | |
---|
1230 | poly pResult = pp_Mult_qq(xi, pPoly, rRing); |
---|
1231 | |
---|
1232 | p_Delete( &xi, rRing); |
---|
1233 | |
---|
1234 | return pResult; |
---|
1235 | |
---|
1236 | } |
---|
1237 | |
---|
1238 | void sca_p_ProcsSet(ring rGR, p_Procs_s* p_Procs) |
---|
1239 | { |
---|
1240 | |
---|
1241 | // "commutative" procedures: |
---|
1242 | rGR->p_Procs->p_Mult_mm = sca_p_Mult_mm; |
---|
1243 | rGR->p_Procs->pp_Mult_mm = sca_pp_Mult_mm; |
---|
1244 | |
---|
1245 | p_Procs->p_Mult_mm = sca_p_Mult_mm; |
---|
1246 | p_Procs->pp_Mult_mm = sca_pp_Mult_mm; |
---|
1247 | |
---|
1248 | // non-commutaitve |
---|
1249 | rGR->GetNC()->p_Procs.mm_Mult_p = sca_mm_Mult_p; |
---|
1250 | rGR->GetNC()->p_Procs.mm_Mult_pp = sca_mm_Mult_pp; |
---|
1251 | |
---|
1252 | // rGR->GetNC()->p_Procs.SPoly = sca_SPoly; |
---|
1253 | // rGR->GetNC()->p_Procs.ReduceSPoly = sca_ReduceSpoly; |
---|
1254 | |
---|
1255 | #if 0 |
---|
1256 | |
---|
1257 | // Multiplication procedures: |
---|
1258 | |
---|
1259 | p_Procs->p_Mult_mm = sca_p_Mult_mm; |
---|
1260 | _p_procs->p_Mult_mm = sca_p_Mult_mm; |
---|
1261 | |
---|
1262 | p_Procs->pp_Mult_mm = sca_pp_Mult_mm; |
---|
1263 | _p_procs->pp_Mult_mm = sca_pp_Mult_mm; |
---|
1264 | |
---|
1265 | r->GetNC()->mmMultP() = sca_mm_Mult_p; |
---|
1266 | r->GetNC()->mmMultPP() = sca_mm_Mult_pp; |
---|
1267 | |
---|
1268 | /* |
---|
1269 | // ??????????????????????????????????????? coefficients swell... |
---|
1270 | r->GetNC()->SPoly() = sca_SPoly; |
---|
1271 | r->GetNC()->ReduceSPoly() = sca_ReduceSpoly; |
---|
1272 | */ |
---|
1273 | // r->GetNC()->BucketPolyRed() = gnc_kBucketPolyRed; |
---|
1274 | // r->GetNC()->BucketPolyRed_Z()= gnc_kBucketPolyRed_Z; |
---|
1275 | #endif |
---|
1276 | |
---|
1277 | // local ordering => Mora, otherwise - Buchberger! |
---|
1278 | if (rHasLocalOrMixedOrdering(rGR)) |
---|
1279 | rGR->GetNC()->p_Procs.GB = cast_A_to_vptr(sca_mora); |
---|
1280 | else |
---|
1281 | rGR->GetNC()->p_Procs.GB = cast_A_to_vptr(sca_bba); // sca_gr_bba? |
---|
1282 | } |
---|
1283 | |
---|
1284 | |
---|
1285 | // bi-Degree (x, y) of monomial "m" |
---|
1286 | // x-es and y-s are weighted by wx and wy resp. |
---|
1287 | // [optional] components have weights by wCx and wCy. |
---|
1288 | static inline void m_GetBiDegree(const poly m, |
---|
1289 | const intvec *wx, const intvec *wy, |
---|
1290 | const intvec *wCx, const intvec *wCy, |
---|
1291 | int& dx, int& dy, const ring r) |
---|
1292 | { |
---|
1293 | const unsigned int N = r->N; |
---|
1294 | |
---|
1295 | p_Test(m, r); |
---|
1296 | |
---|
1297 | assume( wx != NULL ); |
---|
1298 | assume( wy != NULL ); |
---|
1299 | |
---|
1300 | assume( wx->cols() == 1 ); |
---|
1301 | assume( wy->cols() == 1 ); |
---|
1302 | |
---|
1303 | assume( (unsigned int)wx->rows() >= N ); |
---|
1304 | assume( (unsigned int)wy->rows() >= N ); |
---|
1305 | |
---|
1306 | int x = 0; |
---|
1307 | int y = 0; |
---|
1308 | |
---|
1309 | for(int i = N; i > 0; i--) |
---|
1310 | { |
---|
1311 | const int d = p_GetExp(m, i, r); |
---|
1312 | x += d * (*wx)[i-1]; |
---|
1313 | y += d * (*wy)[i-1]; |
---|
1314 | } |
---|
1315 | |
---|
1316 | if( (wCx != NULL) && (wCy != NULL) ) |
---|
1317 | { |
---|
1318 | const int c = p_GetComp(m, r); |
---|
1319 | |
---|
1320 | if( wCx->range(c) ) |
---|
1321 | x += (*wCx)[c]; |
---|
1322 | |
---|
1323 | if( wCy->range(c) ) |
---|
1324 | x += (*wCy)[c]; |
---|
1325 | } |
---|
1326 | |
---|
1327 | dx = x; |
---|
1328 | dy = y; |
---|
1329 | } |
---|
1330 | |
---|
1331 | // returns true if polynom p is bi-homogenous with respect to the given weights |
---|
1332 | // simultaneously sets bi-Degree |
---|
1333 | bool p_IsBiHomogeneous(const poly p, |
---|
1334 | const intvec *wx, const intvec *wy, |
---|
1335 | const intvec *wCx, const intvec *wCy, |
---|
1336 | int &dx, int &dy, |
---|
1337 | const ring r) |
---|
1338 | { |
---|
1339 | if( p == NULL ) |
---|
1340 | { |
---|
1341 | dx = 0; |
---|
1342 | dy = 0; |
---|
1343 | return true; |
---|
1344 | } |
---|
1345 | |
---|
1346 | poly q = p; |
---|
1347 | |
---|
1348 | |
---|
1349 | int ddx, ddy; |
---|
1350 | |
---|
1351 | m_GetBiDegree( q, wx, wy, wCx, wCy, ddx, ddy, r); // get bi degree of lm(p) |
---|
1352 | |
---|
1353 | pIter(q); |
---|
1354 | |
---|
1355 | for(; q != NULL; pIter(q) ) |
---|
1356 | { |
---|
1357 | int x, y; |
---|
1358 | |
---|
1359 | m_GetBiDegree( q, wx, wy, wCx, wCy, x, y, r); // get bi degree of q |
---|
1360 | |
---|
1361 | if ( (x != ddx) || (y != ddy) ) return false; |
---|
1362 | } |
---|
1363 | |
---|
1364 | dx = ddx; |
---|
1365 | dy = ddy; |
---|
1366 | |
---|
1367 | return true; |
---|
1368 | } |
---|
1369 | |
---|
1370 | |
---|
1371 | // returns true if id is bi-homogenous without respect to the given weights |
---|
1372 | bool id_IsBiHomogeneous(const ideal id, |
---|
1373 | const intvec *wx, const intvec *wy, |
---|
1374 | const intvec *wCx, const intvec *wCy, |
---|
1375 | const ring r) |
---|
1376 | { |
---|
1377 | if (id == NULL) return true; // zero ideal |
---|
1378 | |
---|
1379 | const int iSize = IDELEMS(id); |
---|
1380 | |
---|
1381 | if (iSize == 0) return true; |
---|
1382 | |
---|
1383 | bool b = true; |
---|
1384 | int x, y; |
---|
1385 | |
---|
1386 | for(int i = iSize - 1; (i >= 0 ) && b; i--) |
---|
1387 | b = p_IsBiHomogeneous(id->m[i], wx, wy, wCx, wCy, x, y, r); |
---|
1388 | |
---|
1389 | return b; |
---|
1390 | } |
---|
1391 | |
---|
1392 | |
---|
1393 | // returns an intvector with [nvars(r)] integers [1/0] |
---|
1394 | // 1 - for commutative variables |
---|
1395 | // 0 - for anticommutative variables |
---|
1396 | intvec *ivGetSCAXVarWeights(const ring r) |
---|
1397 | { |
---|
1398 | const unsigned int N = r->N; |
---|
1399 | |
---|
1400 | const int CommutativeVariable = 0; // bug correction! |
---|
1401 | const int AntiCommutativeVariable = 0; |
---|
1402 | |
---|
1403 | intvec* w = new intvec(N, 1, CommutativeVariable); |
---|
1404 | |
---|
1405 | if(AntiCommutativeVariable != CommutativeVariable) |
---|
1406 | if( rIsSCA(r) ) |
---|
1407 | { |
---|
1408 | const unsigned int m_iFirstAltVar = scaFirstAltVar(r); |
---|
1409 | const unsigned int m_iLastAltVar = scaLastAltVar(r); |
---|
1410 | |
---|
1411 | for (unsigned int i = m_iFirstAltVar; i<= m_iLastAltVar; i++) |
---|
1412 | { |
---|
1413 | (*w)[i-1] = AntiCommutativeVariable; |
---|
1414 | } |
---|
1415 | } |
---|
1416 | |
---|
1417 | return w; |
---|
1418 | } |
---|
1419 | |
---|
1420 | |
---|
1421 | // returns an intvector with [nvars(r)] integers [1/0] |
---|
1422 | // 0 - for commutative variables |
---|
1423 | // 1 - for anticommutative variables |
---|
1424 | intvec *ivGetSCAYVarWeights(const ring r) |
---|
1425 | { |
---|
1426 | const unsigned int N = r->N; |
---|
1427 | |
---|
1428 | const int CommutativeVariable = 0; |
---|
1429 | const int AntiCommutativeVariable = 1; |
---|
1430 | |
---|
1431 | intvec* w = new intvec(N, 1, CommutativeVariable); |
---|
1432 | |
---|
1433 | if(AntiCommutativeVariable != CommutativeVariable) |
---|
1434 | if( rIsSCA(r) ) |
---|
1435 | { |
---|
1436 | const unsigned int m_iFirstAltVar = scaFirstAltVar(r); |
---|
1437 | const unsigned int m_iLastAltVar = scaLastAltVar(r); |
---|
1438 | |
---|
1439 | for (unsigned int i = m_iFirstAltVar; i<= m_iLastAltVar; i++) |
---|
1440 | { |
---|
1441 | (*w)[i-1] = AntiCommutativeVariable; |
---|
1442 | } |
---|
1443 | } |
---|
1444 | return w; |
---|
1445 | } |
---|
1446 | |
---|
1447 | |
---|
1448 | |
---|
1449 | |
---|
1450 | // reduce term lt(m) modulo <y_i^2> , i = iFirstAltVar .. iLastAltVar: |
---|
1451 | // either create a copy of m or return NULL |
---|
1452 | static inline poly m_KillSquares(const poly m, |
---|
1453 | const unsigned int iFirstAltVar, const unsigned int iLastAltVar, |
---|
1454 | const ring r) |
---|
1455 | { |
---|
1456 | #ifdef PDEBUG |
---|
1457 | p_Test(m, r); |
---|
1458 | assume( (iFirstAltVar >= 1) && (iLastAltVar <= r->N) && (iFirstAltVar <= iLastAltVar) ); |
---|
1459 | |
---|
1460 | #if 0 |
---|
1461 | Print("m_KillSquares, m = "); // ! |
---|
1462 | p_Write(m, r); |
---|
1463 | #endif |
---|
1464 | #endif |
---|
1465 | |
---|
1466 | assume( m != NULL ); |
---|
1467 | |
---|
1468 | for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++) |
---|
1469 | if( p_GetExp(m, k, r) > 1 ) |
---|
1470 | return NULL; |
---|
1471 | |
---|
1472 | return p_Head(m, r); |
---|
1473 | } |
---|
1474 | |
---|
1475 | |
---|
1476 | // reduce polynomial p modulo <y_i^2> , i = iFirstAltVar .. iLastAltVar |
---|
1477 | // returns a new poly! |
---|
1478 | poly p_KillSquares(const poly p, |
---|
1479 | const unsigned int iFirstAltVar, const unsigned int iLastAltVar, |
---|
1480 | const ring r) |
---|
1481 | { |
---|
1482 | #ifdef PDEBUG |
---|
1483 | p_Test(p, r); |
---|
1484 | |
---|
1485 | assume( (iFirstAltVar >= 1) && (iLastAltVar <= r->N) && (iFirstAltVar <= iLastAltVar) ); |
---|
1486 | |
---|
1487 | #if 0 |
---|
1488 | Print("p_KillSquares, p = "); // ! |
---|
1489 | p_Write(p, r); |
---|
1490 | #endif |
---|
1491 | #endif |
---|
1492 | |
---|
1493 | |
---|
1494 | if( p == NULL ) |
---|
1495 | return NULL; |
---|
1496 | |
---|
1497 | poly pResult = NULL; |
---|
1498 | poly* ppPrev = &pResult; |
---|
1499 | |
---|
1500 | for( poly q = p; q!= NULL; pIter(q) ) |
---|
1501 | { |
---|
1502 | #ifdef PDEBUG |
---|
1503 | p_Test(q, r); |
---|
1504 | #endif |
---|
1505 | |
---|
1506 | // terms will be in the same order because of quasi-ordering! |
---|
1507 | poly v = m_KillSquares(q, iFirstAltVar, iLastAltVar, r); |
---|
1508 | |
---|
1509 | if( v != NULL ) |
---|
1510 | { |
---|
1511 | *ppPrev = v; |
---|
1512 | ppPrev = &pNext(v); |
---|
1513 | } |
---|
1514 | |
---|
1515 | } |
---|
1516 | |
---|
1517 | #ifdef PDEBUG |
---|
1518 | p_Test(pResult, r); |
---|
1519 | #if 0 |
---|
1520 | Print("p_KillSquares => "); // ! |
---|
1521 | p_Write(pResult, r); |
---|
1522 | #endif |
---|
1523 | #endif |
---|
1524 | |
---|
1525 | return(pResult); |
---|
1526 | } |
---|
1527 | |
---|
1528 | |
---|
1529 | |
---|
1530 | |
---|
1531 | // reduces ideal id modulo <y_i^2> , i = iFirstAltVar .. iLastAltVar |
---|
1532 | // returns the reduced ideal or zero ideal. |
---|
1533 | ideal id_KillSquares(const ideal id, |
---|
1534 | const unsigned int iFirstAltVar, const unsigned int iLastAltVar, |
---|
1535 | const ring r, const bool bSkipZeroes) |
---|
1536 | { |
---|
1537 | if (id == NULL) return id; // zero ideal |
---|
1538 | |
---|
1539 | assume( (iFirstAltVar >= 1) && (iLastAltVar <= r->N) && (iFirstAltVar <= iLastAltVar) ); |
---|
1540 | |
---|
1541 | const int iSize = IDELEMS(id); |
---|
1542 | |
---|
1543 | if (iSize == 0) return id; |
---|
1544 | |
---|
1545 | ideal temp = idInit(iSize, id->rank); |
---|
1546 | |
---|
1547 | #if 0 |
---|
1548 | PrintS("<id_KillSquares>\n"); |
---|
1549 | { |
---|
1550 | PrintS("ideal id: \n"); |
---|
1551 | for (int i = 0; i < IDELEMS(id); i++) |
---|
1552 | { |
---|
1553 | Print("; id[%d] = ", i+1); |
---|
1554 | p_Write(id->m[i], r); |
---|
1555 | } |
---|
1556 | PrintS(";\n"); |
---|
1557 | PrintLn(); |
---|
1558 | } |
---|
1559 | #endif |
---|
1560 | |
---|
1561 | |
---|
1562 | for (int j = 0; j < iSize; j++) |
---|
1563 | temp->m[j] = p_KillSquares(id->m[j], iFirstAltVar, iLastAltVar, r); |
---|
1564 | |
---|
1565 | if( bSkipZeroes ) |
---|
1566 | idSkipZeroes(temp); |
---|
1567 | |
---|
1568 | #if 0 |
---|
1569 | PrintS("<id_KillSquares>\n"); |
---|
1570 | { |
---|
1571 | PrintS("ideal temp: \n"); |
---|
1572 | for (int i = 0; i < IDELEMS(temp); i++) |
---|
1573 | { |
---|
1574 | Print("; temp[%d] = ", i+1); |
---|
1575 | p_Write(temp->m[i], r); |
---|
1576 | } |
---|
1577 | PrintS(";\n"); |
---|
1578 | PrintLn(); |
---|
1579 | } |
---|
1580 | PrintS("</id_KillSquares>\n"); |
---|
1581 | #endif |
---|
1582 | |
---|
1583 | // temp->rank = idRankFreeModule(temp, r); |
---|
1584 | |
---|
1585 | return temp; |
---|
1586 | } |
---|
1587 | |
---|
1588 | |
---|
1589 | |
---|
1590 | |
---|
1591 | #endif |
---|