1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /*************************************************************** |
---|
5 | * File: p_Mult_q.cc |
---|
6 | * Purpose: multiplication of polynomials |
---|
7 | * Author: obachman (Olaf Bachmann) |
---|
8 | * Created: 8/00 |
---|
9 | *******************************************************************/ |
---|
10 | |
---|
11 | |
---|
12 | |
---|
13 | #include <misc/auxiliary.h> |
---|
14 | |
---|
15 | #include <factory/factory.h> |
---|
16 | |
---|
17 | #include <misc/options.h> |
---|
18 | |
---|
19 | #include <polys/monomials/p_polys.h> |
---|
20 | #include <polys/templates/p_Procs.h> |
---|
21 | #include <polys/templates/p_MemCmp.h> |
---|
22 | #include <polys/templates/p_MemAdd.h> |
---|
23 | #include <polys/templates/p_MemCopy.h> |
---|
24 | #include <polys/templates/p_Numbers.h> |
---|
25 | #include <polys/kbuckets.h> |
---|
26 | |
---|
27 | #include "p_Mult_q.h" |
---|
28 | |
---|
29 | |
---|
30 | BOOLEAN pqLength(poly p, poly q, int &lp, int &lq, const int min) |
---|
31 | { |
---|
32 | int l = 0; |
---|
33 | |
---|
34 | do |
---|
35 | { |
---|
36 | if (p == NULL) |
---|
37 | { |
---|
38 | lp = l; |
---|
39 | if (l < min) |
---|
40 | { |
---|
41 | if (q != NULL) |
---|
42 | lq = l+1; |
---|
43 | else |
---|
44 | lq = l; |
---|
45 | return FALSE; |
---|
46 | } |
---|
47 | lq = l + pLength(q); |
---|
48 | return TRUE; |
---|
49 | } |
---|
50 | pIter(p); |
---|
51 | if (q == NULL) |
---|
52 | { |
---|
53 | lq = l; |
---|
54 | if (l < min) |
---|
55 | { |
---|
56 | lp = l+1; |
---|
57 | return FALSE; |
---|
58 | } |
---|
59 | lp = l + 1 + pLength(p); |
---|
60 | return TRUE; |
---|
61 | } |
---|
62 | pIter(q); |
---|
63 | l++; |
---|
64 | } |
---|
65 | while (1); |
---|
66 | } |
---|
67 | |
---|
68 | |
---|
69 | static poly _p_Mult_q_Bucket(poly p, const int lp, |
---|
70 | poly q, const int lq, |
---|
71 | const int copy, const ring r) |
---|
72 | { |
---|
73 | assume(p != NULL && pNext(p) != NULL && q != NULL && pNext(q) != NULL); |
---|
74 | pAssume1(! pHaveCommonMonoms(p, q)); |
---|
75 | #ifdef HAVE_RINGS |
---|
76 | assume(!rField_is_Ring(r) || rField_is_Domain(r)); |
---|
77 | #endif |
---|
78 | assume(lp >= 1 && lq >= 1); |
---|
79 | p_Test(p, r); |
---|
80 | p_Test(q, r); |
---|
81 | |
---|
82 | poly res = pp_Mult_mm(p,q,r); // holds initially q1*p |
---|
83 | poly qq = pNext(q); // we iter of this |
---|
84 | poly qn = pp_Mult_mm(qq, p,r); // holds p1*qi |
---|
85 | poly pp = pNext(p); // used for Lm(qq)*pp |
---|
86 | poly rr = res; // last monom which is surely not NULL |
---|
87 | poly rn = pNext(res); // pNext(rr) |
---|
88 | number n, n1; |
---|
89 | |
---|
90 | kBucket_pt bucket = kBucketCreate(r); |
---|
91 | |
---|
92 | // initialize bucket |
---|
93 | kBucketInit(bucket, pNext(rn), lp - 2); |
---|
94 | pNext(rn) = NULL; |
---|
95 | |
---|
96 | // now the main loop |
---|
97 | Top: |
---|
98 | if (rn == NULL) goto Smaller; |
---|
99 | p_LmCmpAction(rn, qn, r, goto Equal, goto Greater, goto Smaller); |
---|
100 | |
---|
101 | Greater: |
---|
102 | // rn > qn, so iter |
---|
103 | rr = rn; |
---|
104 | pNext(rn) = kBucketExtractLm(bucket); |
---|
105 | pIter(rn); |
---|
106 | goto Top; |
---|
107 | |
---|
108 | // rn < qn, append qn to rr, and compute next Lm(qq)*pp |
---|
109 | Smaller: |
---|
110 | pNext(rr) = qn; |
---|
111 | rr = qn; |
---|
112 | pIter(qn); |
---|
113 | Work: // compute res + Lm(qq)*pp |
---|
114 | if (rn == NULL) |
---|
115 | { |
---|
116 | pNext(rr) = pp_Mult_mm(pp, qq, r); |
---|
117 | kBucketInit(bucket, pNext(pNext(rr)), lp - 2); |
---|
118 | pNext(pNext(rr)) = NULL; |
---|
119 | } |
---|
120 | else |
---|
121 | { |
---|
122 | kBucketSetLm(bucket, rn); |
---|
123 | kBucket_Plus_mm_Mult_pp(bucket, qq, pp, lp - 1); |
---|
124 | pNext(rr) = kBucketExtractLm(bucket); |
---|
125 | } |
---|
126 | |
---|
127 | pIter(qq); |
---|
128 | if (qq == NULL) goto Finish; |
---|
129 | rn = pNext(rr); |
---|
130 | goto Top; |
---|
131 | |
---|
132 | Equal: |
---|
133 | n1 = pGetCoeff(rn); |
---|
134 | n = n_Add(n1, pGetCoeff(qn), r->cf); |
---|
135 | n_Delete(&n1, r->cf); |
---|
136 | if (n_IsZero(n, r->cf)) |
---|
137 | { |
---|
138 | n_Delete(&n, r->cf); |
---|
139 | p_LmFree(rn, r); |
---|
140 | } |
---|
141 | else |
---|
142 | { |
---|
143 | pSetCoeff0(rn, n); |
---|
144 | rr = rn; |
---|
145 | } |
---|
146 | rn = kBucketExtractLm(bucket); |
---|
147 | n_Delete(&pGetCoeff(qn),r->cf); |
---|
148 | qn = p_LmFreeAndNext(qn, r); |
---|
149 | goto Work; |
---|
150 | |
---|
151 | Finish: |
---|
152 | assume(rr != NULL && pNext(rr) != NULL); |
---|
153 | pNext(pNext(rr)) = kBucketClear(bucket); |
---|
154 | kBucketDestroy(&bucket); |
---|
155 | |
---|
156 | if (!copy) |
---|
157 | { |
---|
158 | p_Delete(&p, r); |
---|
159 | p_Delete(&q, r); |
---|
160 | } |
---|
161 | p_Test(res, r); |
---|
162 | return res; |
---|
163 | } |
---|
164 | |
---|
165 | #ifdef HAVE_RINGS |
---|
166 | static poly _p_Mult_q_Normal_ZeroDiv(poly p, poly q, const int copy, const ring r) |
---|
167 | { |
---|
168 | assume(p != NULL && pNext(p) != NULL && q != NULL && pNext(q) != NULL); |
---|
169 | pAssume1(! pHaveCommonMonoms(p, q)); |
---|
170 | p_Test(p, r); |
---|
171 | p_Test(q, r); |
---|
172 | |
---|
173 | poly res = pp_Mult_mm(p,q,r); // holds initially q1*p |
---|
174 | poly qq = pNext(q); // we iter of this |
---|
175 | |
---|
176 | while (qq != NULL) |
---|
177 | { |
---|
178 | res = p_Plus_mm_Mult_qq(res, qq, p, r); |
---|
179 | pIter(qq); |
---|
180 | } |
---|
181 | |
---|
182 | if (!copy) |
---|
183 | { |
---|
184 | p_Delete(&p, r); |
---|
185 | p_Delete(&q, r); |
---|
186 | } |
---|
187 | |
---|
188 | p_Test(res, r); |
---|
189 | |
---|
190 | return res; |
---|
191 | } |
---|
192 | #endif |
---|
193 | |
---|
194 | static poly _p_Mult_q_Normal(poly p, poly q, const int copy, const ring r) |
---|
195 | { |
---|
196 | assume(r != NULL); |
---|
197 | assume(p != NULL && pNext(p) != NULL && q != NULL && pNext(q) != NULL); |
---|
198 | #ifdef HAVE_RINGS |
---|
199 | assume(nCoeff_is_Domain(r->cf)); |
---|
200 | #endif |
---|
201 | pAssume1(! p_HaveCommonMonoms(p, q, r)); |
---|
202 | p_Test(p, r); |
---|
203 | p_Test(q, r); |
---|
204 | |
---|
205 | poly res = pp_Mult_mm(p,q,r); // holds initially q1*p |
---|
206 | poly qq = pNext(q); // we iter of this |
---|
207 | poly qn = pp_Mult_mm(qq, p,r); // holds p1*qi |
---|
208 | poly pp = pNext(p); // used for Lm(qq)*pp |
---|
209 | poly rr = res; // last monom which is surely not NULL |
---|
210 | poly rn = pNext(res); // pNext(rr) |
---|
211 | number n, n1; |
---|
212 | |
---|
213 | // now the main loop |
---|
214 | Top: |
---|
215 | if (rn == NULL) goto Smaller; |
---|
216 | p_LmCmpAction(rn, qn, r, goto Equal, goto Greater, goto Smaller); |
---|
217 | |
---|
218 | Greater: |
---|
219 | // rn > qn, so iter |
---|
220 | rr = rn; |
---|
221 | pIter(rn); |
---|
222 | goto Top; |
---|
223 | |
---|
224 | // rn < qn, append qn to rr, and compute next Lm(qq)*pp |
---|
225 | Smaller: |
---|
226 | pNext(rr) = qn; |
---|
227 | rr = qn; |
---|
228 | pIter(qn); |
---|
229 | |
---|
230 | Work: // compute res + Lm(qq)*pp |
---|
231 | if (rn == NULL) |
---|
232 | pNext(rr) = pp_Mult_mm(pp, qq, r); |
---|
233 | else |
---|
234 | { |
---|
235 | pNext(rr) = p_Plus_mm_Mult_qq(rn, qq, pp, r); |
---|
236 | } |
---|
237 | |
---|
238 | pIter(qq); |
---|
239 | if (qq == NULL) goto Finish; |
---|
240 | rn = pNext(rr); |
---|
241 | goto Top; |
---|
242 | |
---|
243 | Equal: |
---|
244 | n1 = pGetCoeff(rn); |
---|
245 | n = n_Add(n1, pGetCoeff(qn), r->cf); |
---|
246 | n_Delete(&n1, r->cf); |
---|
247 | if (n_IsZero(n, r->cf)) |
---|
248 | { |
---|
249 | n_Delete(&n, r->cf); |
---|
250 | rn = p_LmFreeAndNext(rn, r); |
---|
251 | } |
---|
252 | else |
---|
253 | { |
---|
254 | pSetCoeff0(rn, n); |
---|
255 | rr = rn; |
---|
256 | pIter(rn); |
---|
257 | } |
---|
258 | n_Delete(&pGetCoeff(qn),r->cf); |
---|
259 | qn = p_LmFreeAndNext(qn, r); |
---|
260 | goto Work; |
---|
261 | |
---|
262 | Finish: |
---|
263 | if (!copy) |
---|
264 | { |
---|
265 | p_Delete(&p, r); |
---|
266 | p_Delete(&q, r); |
---|
267 | } |
---|
268 | p_Test(res, r); |
---|
269 | return res; |
---|
270 | } |
---|
271 | |
---|
272 | |
---|
273 | /// Returns: p * q, |
---|
274 | /// Destroys: if !copy then p, q |
---|
275 | /// Assumes: pLength(p) >= 2 pLength(q) >=2 |
---|
276 | poly _p_Mult_q(poly p, poly q, const int copy, const ring r) |
---|
277 | { |
---|
278 | assume(r != NULL); |
---|
279 | #ifdef HAVE_RINGS |
---|
280 | if (!nCoeff_is_Domain(r->cf)) |
---|
281 | return _p_Mult_q_Normal_ZeroDiv(p, q, copy, r); |
---|
282 | #endif |
---|
283 | int lp, lq, l; |
---|
284 | poly pt; |
---|
285 | |
---|
286 | pqLength(p, q, lp, lq, MIN_LENGTH_BUCKET); |
---|
287 | |
---|
288 | if (lp < lq) |
---|
289 | { |
---|
290 | pt = p; |
---|
291 | p = q; |
---|
292 | q = pt; |
---|
293 | l = lp; |
---|
294 | lp = lq; |
---|
295 | lq = l; |
---|
296 | } |
---|
297 | if (lq < MIN_LENGTH_BUCKET || TEST_OPT_NOT_BUCKETS) |
---|
298 | return _p_Mult_q_Normal(p, q, copy, r); |
---|
299 | else |
---|
300 | { |
---|
301 | assume(lp == pLength(p)); |
---|
302 | assume(lq == pLength(q)); |
---|
303 | return _p_Mult_q_Bucket(p, lp, q, lq, copy, r); |
---|
304 | } |
---|
305 | } |
---|