1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* |
---|
5 | * ABSTRACT - all basic methods to manipulate ideals |
---|
6 | */ |
---|
7 | |
---|
8 | |
---|
9 | /* includes */ |
---|
10 | |
---|
11 | |
---|
12 | |
---|
13 | #include <misc/auxiliary.h> |
---|
14 | |
---|
15 | #include <omalloc/omalloc.h> |
---|
16 | |
---|
17 | #include <misc/options.h> |
---|
18 | #include <misc/intvec.h> |
---|
19 | |
---|
20 | // #include <coeffs/longrat.h> |
---|
21 | #include "matpol.h" |
---|
22 | |
---|
23 | #include "monomials/p_polys.h" |
---|
24 | #include "weight.h" |
---|
25 | #include "sbuckets.h" |
---|
26 | #include "clapsing.h" |
---|
27 | |
---|
28 | #include "simpleideals.h" |
---|
29 | |
---|
30 | omBin sip_sideal_bin = omGetSpecBin(sizeof(sip_sideal)); |
---|
31 | |
---|
32 | static poly * idpower; |
---|
33 | /*collects the monomials in makemonoms, must be allocated befor*/ |
---|
34 | static int idpowerpoint; |
---|
35 | /*index of the actual monomial in idpower*/ |
---|
36 | |
---|
37 | /// initialise an ideal / module |
---|
38 | ideal idInit(int idsize, int rank) |
---|
39 | { |
---|
40 | assume( idsize >= 0 && rank >= 0 ); |
---|
41 | |
---|
42 | ideal hh = (ideal)omAllocBin(sip_sideal_bin); |
---|
43 | |
---|
44 | IDELEMS(hh) = idsize; // ncols |
---|
45 | hh->nrows = 1; // ideal/module! |
---|
46 | |
---|
47 | hh->rank = rank; // ideal: 1, module: >= 0! |
---|
48 | |
---|
49 | if (idsize>0) |
---|
50 | hh->m = (poly *)omAlloc0(idsize*sizeof(poly)); |
---|
51 | else |
---|
52 | hh->m = NULL; |
---|
53 | |
---|
54 | return hh; |
---|
55 | } |
---|
56 | |
---|
57 | #ifdef PDEBUG |
---|
58 | // this is only for outputting an ideal within the debugger |
---|
59 | // therefor it accept the otherwise illegal id==NULL |
---|
60 | void idShow(const ideal id, const ring lmRing, const ring tailRing, const int debugPrint) |
---|
61 | { |
---|
62 | assume( debugPrint >= 0 ); |
---|
63 | |
---|
64 | if( id == NULL ) |
---|
65 | PrintS("(NULL)"); |
---|
66 | else |
---|
67 | { |
---|
68 | Print("Module of rank %ld,real rank %ld and %d generators.\n", |
---|
69 | id->rank,id_RankFreeModule(id, lmRing, tailRing),IDELEMS(id)); |
---|
70 | |
---|
71 | int j = (id->ncols*id->nrows) - 1; |
---|
72 | while ((j > 0) && (id->m[j]==NULL)) j--; |
---|
73 | for (int i = 0; i <= j; i++) |
---|
74 | { |
---|
75 | Print("generator %d: ",i); p_DebugPrint(id->m[i], lmRing, tailRing, debugPrint); |
---|
76 | } |
---|
77 | } |
---|
78 | } |
---|
79 | #endif |
---|
80 | |
---|
81 | /// index of generator with leading term in ground ring (if any); |
---|
82 | /// otherwise -1 |
---|
83 | int id_PosConstant(ideal id, const ring r) |
---|
84 | { |
---|
85 | id_Test(id, r); |
---|
86 | const int N = IDELEMS(id) - 1; |
---|
87 | const poly * m = id->m + N; |
---|
88 | |
---|
89 | for (int k = N; k >= 0; --k, --m) |
---|
90 | { |
---|
91 | const poly p = *m; |
---|
92 | if (p!=NULL) |
---|
93 | if (p_LmIsConstantComp(p, r) == TRUE) |
---|
94 | return k; |
---|
95 | } |
---|
96 | |
---|
97 | return -1; |
---|
98 | } |
---|
99 | |
---|
100 | /// initialise the maximal ideal (at 0) |
---|
101 | ideal id_MaxIdeal (const ring r) |
---|
102 | { |
---|
103 | ideal hh = idInit(rVar(r), 1); |
---|
104 | for (int l=rVar(r)-1; l>=0; l--) |
---|
105 | { |
---|
106 | hh->m[l] = p_One(r); |
---|
107 | p_SetExp(hh->m[l],l+1,1,r); |
---|
108 | p_Setm(hh->m[l],r); |
---|
109 | } |
---|
110 | id_Test(hh, r); |
---|
111 | return hh; |
---|
112 | } |
---|
113 | |
---|
114 | /// deletes an ideal/module/matrix |
---|
115 | void id_Delete (ideal * h, ring r) |
---|
116 | { |
---|
117 | if (*h == NULL) |
---|
118 | return; |
---|
119 | |
---|
120 | id_Test(*h, r); |
---|
121 | |
---|
122 | const int elems = (*h)->nrows * (*h)->ncols; |
---|
123 | |
---|
124 | if ( elems > 0 ) |
---|
125 | { |
---|
126 | assume( (*h)->m != NULL ); |
---|
127 | |
---|
128 | int j = elems; |
---|
129 | do |
---|
130 | { |
---|
131 | j--; |
---|
132 | poly pp=((*h)->m[j]); |
---|
133 | if (pp!=NULL) p_Delete(&pp, r); |
---|
134 | } |
---|
135 | while (j>0); |
---|
136 | |
---|
137 | omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems); |
---|
138 | } |
---|
139 | |
---|
140 | omFreeBin((ADDRESS)*h, sip_sideal_bin); |
---|
141 | *h=NULL; |
---|
142 | } |
---|
143 | |
---|
144 | |
---|
145 | /// Shallowdeletes an ideal/matrix |
---|
146 | void id_ShallowDelete (ideal *h, ring r) |
---|
147 | { |
---|
148 | id_Test(*h, r); |
---|
149 | |
---|
150 | if (*h == NULL) |
---|
151 | return; |
---|
152 | |
---|
153 | int j,elems; |
---|
154 | elems=j=(*h)->nrows*(*h)->ncols; |
---|
155 | if (j>0) |
---|
156 | { |
---|
157 | assume( (*h)->m != NULL ); |
---|
158 | do |
---|
159 | { |
---|
160 | p_ShallowDelete(&((*h)->m[--j]), r); |
---|
161 | } |
---|
162 | while (j>0); |
---|
163 | omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems); |
---|
164 | } |
---|
165 | omFreeBin((ADDRESS)*h, sip_sideal_bin); |
---|
166 | *h=NULL; |
---|
167 | } |
---|
168 | |
---|
169 | /// gives an ideal/module the minimal possible size |
---|
170 | void idSkipZeroes (ideal ide) |
---|
171 | { |
---|
172 | assume (ide != NULL); |
---|
173 | |
---|
174 | int k; |
---|
175 | int j = -1; |
---|
176 | BOOLEAN change=FALSE; |
---|
177 | |
---|
178 | for (k=0; k<IDELEMS(ide); k++) |
---|
179 | { |
---|
180 | if (ide->m[k] != NULL) |
---|
181 | { |
---|
182 | j++; |
---|
183 | if (change) |
---|
184 | { |
---|
185 | ide->m[j] = ide->m[k]; |
---|
186 | } |
---|
187 | } |
---|
188 | else |
---|
189 | { |
---|
190 | change=TRUE; |
---|
191 | } |
---|
192 | } |
---|
193 | if (change) |
---|
194 | { |
---|
195 | if (j == -1) |
---|
196 | j = 0; |
---|
197 | else |
---|
198 | { |
---|
199 | for (k=j+1; k<IDELEMS(ide); k++) |
---|
200 | ide->m[k] = NULL; |
---|
201 | } |
---|
202 | pEnlargeSet(&(ide->m),IDELEMS(ide),j+1-IDELEMS(ide)); |
---|
203 | IDELEMS(ide) = j+1; |
---|
204 | } |
---|
205 | } |
---|
206 | |
---|
207 | /// count non-zero elements |
---|
208 | int idElem(const ideal F) |
---|
209 | { |
---|
210 | assume (F != NULL); |
---|
211 | |
---|
212 | int i=0,j=IDELEMS(F)-1; |
---|
213 | |
---|
214 | while(j>=0) |
---|
215 | { |
---|
216 | if ((F->m)[j]!=NULL) i++; |
---|
217 | j--; |
---|
218 | } |
---|
219 | return i; |
---|
220 | } |
---|
221 | |
---|
222 | /// copies the first k (>= 1) entries of the given ideal/module |
---|
223 | /// and returns these as a new ideal/module |
---|
224 | /// (Note that the copied entries may be zero.) |
---|
225 | ideal id_CopyFirstK (const ideal ide, const int k,const ring r) |
---|
226 | { |
---|
227 | id_Test(ide, r); |
---|
228 | |
---|
229 | assume( ide != NULL ); |
---|
230 | assume( k <= IDELEMS(ide) ); |
---|
231 | |
---|
232 | ideal newI = idInit(k, ide->rank); |
---|
233 | |
---|
234 | for (int i = 0; i < k; i++) |
---|
235 | newI->m[i] = p_Copy(ide->m[i],r); |
---|
236 | |
---|
237 | return newI; |
---|
238 | } |
---|
239 | |
---|
240 | /// ideal id = (id[i]), result is leadcoeff(id[i]) = 1 |
---|
241 | void id_Norm(ideal id, const ring r) |
---|
242 | { |
---|
243 | id_Test(id, r); |
---|
244 | for (int i=IDELEMS(id)-1; i>=0; i--) |
---|
245 | { |
---|
246 | if (id->m[i] != NULL) |
---|
247 | { |
---|
248 | p_Norm(id->m[i],r); |
---|
249 | } |
---|
250 | } |
---|
251 | } |
---|
252 | |
---|
253 | /// ideal id = (id[i]), c any unit |
---|
254 | /// if id[i] = c*id[j] then id[j] is deleted for j > i |
---|
255 | void id_DelMultiples(ideal id, const ring r) |
---|
256 | { |
---|
257 | id_Test(id, r); |
---|
258 | |
---|
259 | int i, j; |
---|
260 | int k = IDELEMS(id)-1; |
---|
261 | for (i=k; i>=0; i--) |
---|
262 | { |
---|
263 | if (id->m[i]!=NULL) |
---|
264 | { |
---|
265 | for (j=k; j>i; j--) |
---|
266 | { |
---|
267 | if (id->m[j]!=NULL) |
---|
268 | { |
---|
269 | #ifdef HAVE_RINGS |
---|
270 | if (rField_is_Ring(r)) |
---|
271 | { |
---|
272 | /* if id[j] = c*id[i] then delete id[j]. |
---|
273 | In the below cases of a ground field, we |
---|
274 | check whether id[i] = c*id[j] and, if so, |
---|
275 | delete id[j] for historical reasons (so |
---|
276 | that previous output does not change) */ |
---|
277 | if (p_ComparePolys(id->m[j], id->m[i],r)) p_Delete(&id->m[j],r); |
---|
278 | } |
---|
279 | else |
---|
280 | { |
---|
281 | if (p_ComparePolys(id->m[i], id->m[j],r)) p_Delete(&id->m[j],r); |
---|
282 | } |
---|
283 | #else |
---|
284 | if (p_ComparePolys(id->m[i], id->m[j],r)) p_Delete(&id->m[j],r); |
---|
285 | #endif |
---|
286 | } |
---|
287 | } |
---|
288 | } |
---|
289 | } |
---|
290 | } |
---|
291 | |
---|
292 | /// ideal id = (id[i]) |
---|
293 | /// if id[i] = id[j] then id[j] is deleted for j > i |
---|
294 | void id_DelEquals(ideal id, const ring r) |
---|
295 | { |
---|
296 | id_Test(id, r); |
---|
297 | |
---|
298 | int i, j; |
---|
299 | int k = IDELEMS(id)-1; |
---|
300 | for (i=k; i>=0; i--) |
---|
301 | { |
---|
302 | if (id->m[i]!=NULL) |
---|
303 | { |
---|
304 | for (j=k; j>i; j--) |
---|
305 | { |
---|
306 | if ((id->m[j]!=NULL) |
---|
307 | && (p_EqualPolys(id->m[i], id->m[j],r))) |
---|
308 | { |
---|
309 | p_Delete(&id->m[j],r); |
---|
310 | } |
---|
311 | } |
---|
312 | } |
---|
313 | } |
---|
314 | } |
---|
315 | |
---|
316 | /// Delete id[j], if Lm(j) == Lm(i) and both LC(j), LC(i) are units and j > i |
---|
317 | void id_DelLmEquals(ideal id, const ring r) |
---|
318 | { |
---|
319 | id_Test(id, r); |
---|
320 | |
---|
321 | int i, j; |
---|
322 | int k = IDELEMS(id)-1; |
---|
323 | for (i=k; i>=0; i--) |
---|
324 | { |
---|
325 | if (id->m[i] != NULL) |
---|
326 | { |
---|
327 | for (j=k; j>i; j--) |
---|
328 | { |
---|
329 | if ((id->m[j] != NULL) |
---|
330 | && p_LmEqual(id->m[i], id->m[j],r) |
---|
331 | #ifdef HAVE_RINGS |
---|
332 | && n_IsUnit(pGetCoeff(id->m[i]),r->cf) && n_IsUnit(pGetCoeff(id->m[j]),r->cf) |
---|
333 | #endif |
---|
334 | ) |
---|
335 | { |
---|
336 | p_Delete(&id->m[j],r); |
---|
337 | } |
---|
338 | } |
---|
339 | } |
---|
340 | } |
---|
341 | } |
---|
342 | |
---|
343 | /// delete id[j], if LT(j) == coeff*mon*LT(i) and vice versa, i.e., |
---|
344 | /// delete id[i], if LT(i) == coeff*mon*LT(j) |
---|
345 | void id_DelDiv(ideal id, const ring r) |
---|
346 | { |
---|
347 | id_Test(id, r); |
---|
348 | |
---|
349 | int i, j; |
---|
350 | int k = IDELEMS(id)-1; |
---|
351 | for (i=k; i>=0; i--) |
---|
352 | { |
---|
353 | if (id->m[i] != NULL) |
---|
354 | { |
---|
355 | for (j=k; j>i; j--) |
---|
356 | { |
---|
357 | if (id->m[j]!=NULL) |
---|
358 | { |
---|
359 | #ifdef HAVE_RINGS |
---|
360 | if (rField_is_Ring(r)) |
---|
361 | { |
---|
362 | if (p_DivisibleByRingCase(id->m[i], id->m[j],r)) |
---|
363 | { |
---|
364 | p_Delete(&id->m[j],r); |
---|
365 | } |
---|
366 | else if (p_DivisibleByRingCase(id->m[j], id->m[i],r)) |
---|
367 | { |
---|
368 | p_Delete(&id->m[i],r); |
---|
369 | break; |
---|
370 | } |
---|
371 | } |
---|
372 | else |
---|
373 | { |
---|
374 | #endif |
---|
375 | /* the case of a ground field: */ |
---|
376 | if (p_DivisibleBy(id->m[i], id->m[j],r)) |
---|
377 | { |
---|
378 | p_Delete(&id->m[j],r); |
---|
379 | } |
---|
380 | else if (p_DivisibleBy(id->m[j], id->m[i],r)) |
---|
381 | { |
---|
382 | p_Delete(&id->m[i],r); |
---|
383 | break; |
---|
384 | } |
---|
385 | #ifdef HAVE_RINGS |
---|
386 | } |
---|
387 | #endif |
---|
388 | } |
---|
389 | } |
---|
390 | } |
---|
391 | } |
---|
392 | } |
---|
393 | |
---|
394 | /// test if the ideal has only constant polynomials |
---|
395 | /// NOTE: zero ideal/module is also constant |
---|
396 | BOOLEAN id_IsConstant(ideal id, const ring r) |
---|
397 | { |
---|
398 | id_Test(id, r); |
---|
399 | |
---|
400 | for (int k = IDELEMS(id)-1; k>=0; k--) |
---|
401 | { |
---|
402 | if (!p_IsConstantPoly(id->m[k],r)) |
---|
403 | return FALSE; |
---|
404 | } |
---|
405 | return TRUE; |
---|
406 | } |
---|
407 | |
---|
408 | /// copy an ideal |
---|
409 | ideal id_Copy(ideal h1, const ring r) |
---|
410 | { |
---|
411 | id_Test(h1, r); |
---|
412 | |
---|
413 | ideal h2 = idInit(IDELEMS(h1), h1->rank); |
---|
414 | for (int i=IDELEMS(h1)-1; i>=0; i--) |
---|
415 | h2->m[i] = p_Copy(h1->m[i],r); |
---|
416 | return h2; |
---|
417 | } |
---|
418 | |
---|
419 | #ifdef PDEBUG |
---|
420 | /// Internal verification for ideals/modules and dense matrices! |
---|
421 | void id_DBTest(ideal h1, int level, const char *f,const int l, const ring r, const ring tailRing) |
---|
422 | { |
---|
423 | if (h1 != NULL) |
---|
424 | { |
---|
425 | // assume(IDELEMS(h1) > 0); for ideal/module, does not apply to matrix |
---|
426 | omCheckAddrSize(h1,sizeof(*h1)); |
---|
427 | |
---|
428 | assume( h1->ncols >= 0 ); |
---|
429 | assume( h1->nrows >= 0 ); // matrix case! |
---|
430 | |
---|
431 | assume( h1->rank >= 0 ); |
---|
432 | |
---|
433 | const int n = (h1->ncols * h1->nrows); |
---|
434 | |
---|
435 | assume( !( n > 0 && h1->m == NULL) ); |
---|
436 | |
---|
437 | if( h1->m != NULL && n > 0 ) |
---|
438 | omdebugAddrSize(h1->m, n * sizeof(poly)); |
---|
439 | |
---|
440 | long new_rk = 0; // inlining id_RankFreeModule(h1, r, tailRing); |
---|
441 | |
---|
442 | /* to be able to test matrices: */ |
---|
443 | for (int i=n - 1; i >= 0; i--) |
---|
444 | { |
---|
445 | _pp_Test(h1->m[i], r, tailRing, level); |
---|
446 | const long k = p_MaxComp(h1->m[i], r, tailRing); |
---|
447 | if (k > new_rk) new_rk = k; |
---|
448 | } |
---|
449 | |
---|
450 | // dense matrices only contain polynomials: |
---|
451 | // h1->nrows == h1->rank > 1 && new_rk == 0! |
---|
452 | assume( !( h1->nrows == h1->rank && h1->nrows > 1 && new_rk > 0 ) ); // |
---|
453 | |
---|
454 | if(new_rk > h1->rank) |
---|
455 | { |
---|
456 | dReportError("wrong rank %d (should be %d) in %s:%d\n", |
---|
457 | h1->rank, new_rk, f,l); |
---|
458 | omPrintAddrInfo(stderr, h1, " for ideal"); |
---|
459 | h1->rank = new_rk; |
---|
460 | } |
---|
461 | } |
---|
462 | else |
---|
463 | { |
---|
464 | Print("error: ideal==NULL in %s:%d\n",f,l); |
---|
465 | assume( h1 != NULL ); |
---|
466 | } |
---|
467 | } |
---|
468 | #endif |
---|
469 | |
---|
470 | /// for idSort: compare a and b revlex inclusive module comp. |
---|
471 | static int p_Comp_RevLex(poly a, poly b,BOOLEAN nolex, const ring R) |
---|
472 | { |
---|
473 | if (b==NULL) return 1; |
---|
474 | if (a==NULL) return -1; |
---|
475 | |
---|
476 | if (nolex) |
---|
477 | { |
---|
478 | int r=p_LmCmp(a,b,R); |
---|
479 | if (r!=0) return r; |
---|
480 | number h=n_Sub(pGetCoeff(a),pGetCoeff(b),R->cf); |
---|
481 | r = -1+n_IsZero(h,R->cf)+2*n_GreaterZero(h,R->cf); /* -1: <, 0:==, 1: > */ |
---|
482 | n_Delete(&h, R->cf); |
---|
483 | return r; |
---|
484 | } |
---|
485 | int l=rVar(R); |
---|
486 | while ((l>0) && (p_GetExp(a,l,R)==p_GetExp(b,l,R))) l--; |
---|
487 | if (l==0) |
---|
488 | { |
---|
489 | if (p_GetComp(a,R)==p_GetComp(b,R)) |
---|
490 | { |
---|
491 | number h=n_Sub(pGetCoeff(a),pGetCoeff(b),R->cf); |
---|
492 | int r = -1+n_IsZero(h,R->cf)+2*n_GreaterZero(h,R->cf); /* -1: <, 0:==, 1: > */ |
---|
493 | n_Delete(&h,R->cf); |
---|
494 | return r; |
---|
495 | } |
---|
496 | if (p_GetComp(a,R)>p_GetComp(b,R)) return 1; |
---|
497 | } |
---|
498 | else if (p_GetExp(a,l,R)>p_GetExp(b,l,R)) |
---|
499 | return 1; |
---|
500 | return -1; |
---|
501 | } |
---|
502 | |
---|
503 | // sorts the ideal w.r.t. the actual ringordering |
---|
504 | // uses lex-ordering when nolex = FALSE |
---|
505 | intvec *id_Sort(const ideal id, const BOOLEAN nolex, const ring r) |
---|
506 | { |
---|
507 | id_Test(id, r); |
---|
508 | |
---|
509 | intvec * result = new intvec(IDELEMS(id)); |
---|
510 | int i, j, actpos=0, newpos; |
---|
511 | int diff, olddiff, lastcomp, newcomp; |
---|
512 | BOOLEAN notFound; |
---|
513 | |
---|
514 | for (i=0;i<IDELEMS(id);i++) |
---|
515 | { |
---|
516 | if (id->m[i]!=NULL) |
---|
517 | { |
---|
518 | notFound = TRUE; |
---|
519 | newpos = actpos / 2; |
---|
520 | diff = (actpos+1) / 2; |
---|
521 | diff = (diff+1) / 2; |
---|
522 | lastcomp = p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r); |
---|
523 | if (lastcomp<0) |
---|
524 | { |
---|
525 | newpos -= diff; |
---|
526 | } |
---|
527 | else if (lastcomp>0) |
---|
528 | { |
---|
529 | newpos += diff; |
---|
530 | } |
---|
531 | else |
---|
532 | { |
---|
533 | notFound = FALSE; |
---|
534 | } |
---|
535 | //while ((newpos>=0) && (newpos<actpos) && (notFound)) |
---|
536 | while (notFound && (newpos>=0) && (newpos<actpos)) |
---|
537 | { |
---|
538 | newcomp = p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r); |
---|
539 | olddiff = diff; |
---|
540 | if (diff>1) |
---|
541 | { |
---|
542 | diff = (diff+1) / 2; |
---|
543 | if ((newcomp==1) |
---|
544 | && (actpos-newpos>1) |
---|
545 | && (diff>1) |
---|
546 | && (newpos+diff>=actpos)) |
---|
547 | { |
---|
548 | diff = actpos-newpos-1; |
---|
549 | } |
---|
550 | else if ((newcomp==-1) |
---|
551 | && (diff>1) |
---|
552 | && (newpos<diff)) |
---|
553 | { |
---|
554 | diff = newpos; |
---|
555 | } |
---|
556 | } |
---|
557 | if (newcomp<0) |
---|
558 | { |
---|
559 | if ((olddiff==1) && (lastcomp>0)) |
---|
560 | notFound = FALSE; |
---|
561 | else |
---|
562 | newpos -= diff; |
---|
563 | } |
---|
564 | else if (newcomp>0) |
---|
565 | { |
---|
566 | if ((olddiff==1) && (lastcomp<0)) |
---|
567 | { |
---|
568 | notFound = FALSE; |
---|
569 | newpos++; |
---|
570 | } |
---|
571 | else |
---|
572 | { |
---|
573 | newpos += diff; |
---|
574 | } |
---|
575 | } |
---|
576 | else |
---|
577 | { |
---|
578 | notFound = FALSE; |
---|
579 | } |
---|
580 | lastcomp = newcomp; |
---|
581 | if (diff==0) notFound=FALSE; /*hs*/ |
---|
582 | } |
---|
583 | if (newpos<0) newpos = 0; |
---|
584 | if (newpos>actpos) newpos = actpos; |
---|
585 | while ((newpos<actpos) && (p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r)==0)) |
---|
586 | newpos++; |
---|
587 | for (j=actpos;j>newpos;j--) |
---|
588 | { |
---|
589 | (*result)[j] = (*result)[j-1]; |
---|
590 | } |
---|
591 | (*result)[newpos] = i; |
---|
592 | actpos++; |
---|
593 | } |
---|
594 | } |
---|
595 | for (j=0;j<actpos;j++) (*result)[j]++; |
---|
596 | return result; |
---|
597 | } |
---|
598 | |
---|
599 | /// concat the lists h1 and h2 without zeros |
---|
600 | ideal id_SimpleAdd (ideal h1,ideal h2, const ring R) |
---|
601 | { |
---|
602 | id_Test(h1, R); |
---|
603 | id_Test(h2, R); |
---|
604 | |
---|
605 | if ( idIs0(h1) ) |
---|
606 | { |
---|
607 | ideal res=id_Copy(h2,R); |
---|
608 | if (res->rank<h1->rank) res->rank=h1->rank; |
---|
609 | return res; |
---|
610 | } |
---|
611 | if ( idIs0(h2) ) |
---|
612 | { |
---|
613 | ideal res=id_Copy(h1,R); |
---|
614 | if (res->rank<h2->rank) res->rank=h2->rank; |
---|
615 | return res; |
---|
616 | } |
---|
617 | |
---|
618 | int j = IDELEMS(h1)-1; |
---|
619 | while ((j >= 0) && (h1->m[j] == NULL)) j--; |
---|
620 | |
---|
621 | int i = IDELEMS(h2)-1; |
---|
622 | while ((i >= 0) && (h2->m[i] == NULL)) i--; |
---|
623 | |
---|
624 | const int r = si_max(h1->rank, h2->rank); |
---|
625 | |
---|
626 | ideal result = idInit(i+j+2,r); |
---|
627 | |
---|
628 | int l; |
---|
629 | |
---|
630 | for (l=j; l>=0; l--) |
---|
631 | result->m[l] = p_Copy(h1->m[l],R); |
---|
632 | |
---|
633 | j = i+j+1; |
---|
634 | for (l=i; l>=0; l--, j--) |
---|
635 | result->m[j] = p_Copy(h2->m[l],R); |
---|
636 | |
---|
637 | return result; |
---|
638 | } |
---|
639 | |
---|
640 | /// insert h2 into h1 (if h2 is not the zero polynomial) |
---|
641 | /// return TRUE iff h2 was indeed inserted |
---|
642 | BOOLEAN idInsertPoly (ideal h1, poly h2) |
---|
643 | { |
---|
644 | if (h2==NULL) return FALSE; |
---|
645 | assume (h1 != NULL); |
---|
646 | |
---|
647 | int j = IDELEMS(h1) - 1; |
---|
648 | |
---|
649 | while ((j >= 0) && (h1->m[j] == NULL)) j--; |
---|
650 | j++; |
---|
651 | if (j==IDELEMS(h1)) |
---|
652 | { |
---|
653 | pEnlargeSet(&(h1->m),IDELEMS(h1),16); |
---|
654 | IDELEMS(h1)+=16; |
---|
655 | } |
---|
656 | h1->m[j]=h2; |
---|
657 | return TRUE; |
---|
658 | } |
---|
659 | |
---|
660 | |
---|
661 | /*! insert h2 into h1 depending on the two boolean parameters: |
---|
662 | * - if zeroOk is true, then h2 will also be inserted when it is zero |
---|
663 | * - if duplicateOk is true, then h2 will also be inserted when it is |
---|
664 | * already present in h1 |
---|
665 | * return TRUE iff h2 was indeed inserted |
---|
666 | */ |
---|
667 | BOOLEAN id_InsertPolyWithTests (ideal h1, const int validEntries, |
---|
668 | const poly h2, const bool zeroOk, const bool duplicateOk, const ring r) |
---|
669 | { |
---|
670 | id_Test(h1, r); |
---|
671 | p_Test(h2, r); |
---|
672 | |
---|
673 | if ((!zeroOk) && (h2 == NULL)) return FALSE; |
---|
674 | if (!duplicateOk) |
---|
675 | { |
---|
676 | bool h2FoundInH1 = false; |
---|
677 | int i = 0; |
---|
678 | while ((i < validEntries) && (!h2FoundInH1)) |
---|
679 | { |
---|
680 | h2FoundInH1 = p_EqualPolys(h1->m[i], h2,r); |
---|
681 | i++; |
---|
682 | } |
---|
683 | if (h2FoundInH1) return FALSE; |
---|
684 | } |
---|
685 | if (validEntries == IDELEMS(h1)) |
---|
686 | { |
---|
687 | pEnlargeSet(&(h1->m), IDELEMS(h1), 16); |
---|
688 | IDELEMS(h1) += 16; |
---|
689 | } |
---|
690 | h1->m[validEntries] = h2; |
---|
691 | return TRUE; |
---|
692 | } |
---|
693 | |
---|
694 | /// h1 + h2 |
---|
695 | ideal id_Add (ideal h1,ideal h2, const ring r) |
---|
696 | { |
---|
697 | id_Test(h1, r); |
---|
698 | id_Test(h2, r); |
---|
699 | |
---|
700 | ideal result = id_SimpleAdd(h1,h2,r); |
---|
701 | id_Compactify(result,r); |
---|
702 | return result; |
---|
703 | } |
---|
704 | |
---|
705 | /// h1 * h2 |
---|
706 | /// one h_i must be an ideal (with at least one column) |
---|
707 | /// the other h_i may be a module (with no columns at all) |
---|
708 | ideal id_Mult (ideal h1,ideal h2, const ring R) |
---|
709 | { |
---|
710 | id_Test(h1, R); |
---|
711 | id_Test(h2, R); |
---|
712 | |
---|
713 | int j = IDELEMS(h1); |
---|
714 | while ((j > 0) && (h1->m[j-1] == NULL)) j--; |
---|
715 | |
---|
716 | int i = IDELEMS(h2); |
---|
717 | while ((i > 0) && (h2->m[i-1] == NULL)) i--; |
---|
718 | |
---|
719 | j *= i; |
---|
720 | int r = si_max( h2->rank, h1->rank ); |
---|
721 | if (j==0) |
---|
722 | { |
---|
723 | if ((IDELEMS(h1)>0) && (IDELEMS(h2)>0)) j=1; |
---|
724 | return idInit(j, r); |
---|
725 | } |
---|
726 | ideal hh = idInit(j, r); |
---|
727 | |
---|
728 | int k = 0; |
---|
729 | for (i=0; i<IDELEMS(h1); i++) |
---|
730 | { |
---|
731 | if (h1->m[i] != NULL) |
---|
732 | { |
---|
733 | for (j=0; j<IDELEMS(h2); j++) |
---|
734 | { |
---|
735 | if (h2->m[j] != NULL) |
---|
736 | { |
---|
737 | hh->m[k] = pp_Mult_qq(h1->m[i],h2->m[j],R); |
---|
738 | k++; |
---|
739 | } |
---|
740 | } |
---|
741 | } |
---|
742 | } |
---|
743 | |
---|
744 | id_Compactify(hh,R); |
---|
745 | return hh; |
---|
746 | } |
---|
747 | |
---|
748 | /// returns true if h is the zero ideal |
---|
749 | BOOLEAN idIs0 (ideal h) |
---|
750 | { |
---|
751 | assume (h != NULL); // will fail :( |
---|
752 | // if (h == NULL) return TRUE; |
---|
753 | |
---|
754 | for( int i = IDELEMS(h)-1; i >= 0; i-- ) |
---|
755 | if(h->m[i] != NULL) |
---|
756 | return FALSE; |
---|
757 | |
---|
758 | return TRUE; |
---|
759 | |
---|
760 | } |
---|
761 | |
---|
762 | /// return the maximal component number found in any polynomial in s |
---|
763 | long id_RankFreeModule (ideal s, ring lmRing, ring tailRing) |
---|
764 | { |
---|
765 | id_TestTail(s, lmRing, tailRing); |
---|
766 | |
---|
767 | long j = 0; |
---|
768 | |
---|
769 | if (rRing_has_Comp(tailRing) && rRing_has_Comp(lmRing)) |
---|
770 | { |
---|
771 | poly *p=s->m; |
---|
772 | for (unsigned int l=IDELEMS(s); l > 0; --l, ++p) |
---|
773 | if (*p != NULL) |
---|
774 | { |
---|
775 | pp_Test(*p, lmRing, tailRing); |
---|
776 | const long k = p_MaxComp(*p, lmRing, tailRing); |
---|
777 | if (k>j) j = k; |
---|
778 | } |
---|
779 | } |
---|
780 | |
---|
781 | return j; // return -1; |
---|
782 | } |
---|
783 | |
---|
784 | /*2 |
---|
785 | *returns true if id is homogenous with respect to the aktual weights |
---|
786 | */ |
---|
787 | BOOLEAN id_HomIdeal (ideal id, ideal Q, const ring r) |
---|
788 | { |
---|
789 | int i; |
---|
790 | BOOLEAN b; |
---|
791 | i = 0; |
---|
792 | b = TRUE; |
---|
793 | while ((i < IDELEMS(id)) && b) |
---|
794 | { |
---|
795 | b = p_IsHomogeneous(id->m[i],r); |
---|
796 | i++; |
---|
797 | } |
---|
798 | if ((b) && (Q!=NULL) && (IDELEMS(Q)>0)) |
---|
799 | { |
---|
800 | i=0; |
---|
801 | while ((i < IDELEMS(Q)) && b) |
---|
802 | { |
---|
803 | b = p_IsHomogeneous(Q->m[i],r); |
---|
804 | i++; |
---|
805 | } |
---|
806 | } |
---|
807 | return b; |
---|
808 | } |
---|
809 | |
---|
810 | /*2 |
---|
811 | *initialized a field with r numbers between beg and end for the |
---|
812 | *procedure idNextChoise |
---|
813 | */ |
---|
814 | void idInitChoise (int r,int beg,int end,BOOLEAN *endch,int * choise) |
---|
815 | { |
---|
816 | /*returns the first choise of r numbers between beg and end*/ |
---|
817 | int i; |
---|
818 | for (i=0; i<r; i++) |
---|
819 | { |
---|
820 | choise[i] = 0; |
---|
821 | } |
---|
822 | if (r <= end-beg+1) |
---|
823 | for (i=0; i<r; i++) |
---|
824 | { |
---|
825 | choise[i] = beg+i; |
---|
826 | } |
---|
827 | if (r > end-beg+1) |
---|
828 | *endch = TRUE; |
---|
829 | else |
---|
830 | *endch = FALSE; |
---|
831 | } |
---|
832 | |
---|
833 | /*2 |
---|
834 | *returns the next choise of r numbers between beg and end |
---|
835 | */ |
---|
836 | void idGetNextChoise (int r,int end,BOOLEAN *endch,int * choise) |
---|
837 | { |
---|
838 | int i = r-1,j; |
---|
839 | while ((i >= 0) && (choise[i] == end)) |
---|
840 | { |
---|
841 | i--; |
---|
842 | end--; |
---|
843 | } |
---|
844 | if (i == -1) |
---|
845 | *endch = TRUE; |
---|
846 | else |
---|
847 | { |
---|
848 | choise[i]++; |
---|
849 | for (j=i+1; j<r; j++) |
---|
850 | { |
---|
851 | choise[j] = choise[i]+j-i; |
---|
852 | } |
---|
853 | *endch = FALSE; |
---|
854 | } |
---|
855 | } |
---|
856 | |
---|
857 | /*2 |
---|
858 | *takes the field choise of d numbers between beg and end, cancels the t-th |
---|
859 | *entree and searches for the ordinal number of that d-1 dimensional field |
---|
860 | * w.r.t. the algorithm of construction |
---|
861 | */ |
---|
862 | int idGetNumberOfChoise(int t, int d, int begin, int end, int * choise) |
---|
863 | { |
---|
864 | int * localchoise,i,result=0; |
---|
865 | BOOLEAN b=FALSE; |
---|
866 | |
---|
867 | if (d<=1) return 1; |
---|
868 | localchoise=(int*)omAlloc((d-1)*sizeof(int)); |
---|
869 | idInitChoise(d-1,begin,end,&b,localchoise); |
---|
870 | while (!b) |
---|
871 | { |
---|
872 | result++; |
---|
873 | i = 0; |
---|
874 | while ((i<t) && (localchoise[i]==choise[i])) i++; |
---|
875 | if (i>=t) |
---|
876 | { |
---|
877 | i = t+1; |
---|
878 | while ((i<d) && (localchoise[i-1]==choise[i])) i++; |
---|
879 | if (i>=d) |
---|
880 | { |
---|
881 | omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int)); |
---|
882 | return result; |
---|
883 | } |
---|
884 | } |
---|
885 | idGetNextChoise(d-1,end,&b,localchoise); |
---|
886 | } |
---|
887 | omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int)); |
---|
888 | return 0; |
---|
889 | } |
---|
890 | |
---|
891 | /*2 |
---|
892 | *computes the binomial coefficient |
---|
893 | */ |
---|
894 | int binom (int n,int r) |
---|
895 | { |
---|
896 | int i,result; |
---|
897 | |
---|
898 | if (r==0) return 1; |
---|
899 | if (n-r<r) return binom(n,n-r); |
---|
900 | result = n-r+1; |
---|
901 | for (i=2;i<=r;i++) |
---|
902 | { |
---|
903 | result *= n-r+i; |
---|
904 | if (result<0) |
---|
905 | { |
---|
906 | WarnS("overflow in binomials"); |
---|
907 | return 0; |
---|
908 | } |
---|
909 | result /= i; |
---|
910 | } |
---|
911 | return result; |
---|
912 | } |
---|
913 | |
---|
914 | |
---|
915 | /// the free module of rank i |
---|
916 | ideal id_FreeModule (int i, const ring r) |
---|
917 | { |
---|
918 | assume(i >= 0); |
---|
919 | ideal h = idInit(i, i); |
---|
920 | |
---|
921 | for (int j=0; j<i; j++) |
---|
922 | { |
---|
923 | h->m[j] = p_One(r); |
---|
924 | p_SetComp(h->m[j],j+1,r); |
---|
925 | p_SetmComp(h->m[j],r); |
---|
926 | } |
---|
927 | |
---|
928 | return h; |
---|
929 | } |
---|
930 | |
---|
931 | /*2 |
---|
932 | *computes recursively all monomials of a certain degree |
---|
933 | *in every step the actvar-th entry in the exponential |
---|
934 | *vector is incremented and the other variables are |
---|
935 | *computed by recursive calls of makemonoms |
---|
936 | *if the last variable is reached, the difference to the |
---|
937 | *degree is computed directly |
---|
938 | *vars is the number variables |
---|
939 | *actvar is the actual variable to handle |
---|
940 | *deg is the degree of the monomials to compute |
---|
941 | *monomdeg is the actual degree of the monomial in consideration |
---|
942 | */ |
---|
943 | static void makemonoms(int vars,int actvar,int deg,int monomdeg, const ring r) |
---|
944 | { |
---|
945 | poly p; |
---|
946 | int i=0; |
---|
947 | |
---|
948 | if ((idpowerpoint == 0) && (actvar ==1)) |
---|
949 | { |
---|
950 | idpower[idpowerpoint] = p_One(r); |
---|
951 | monomdeg = 0; |
---|
952 | } |
---|
953 | while (i<=deg) |
---|
954 | { |
---|
955 | if (deg == monomdeg) |
---|
956 | { |
---|
957 | p_Setm(idpower[idpowerpoint],r); |
---|
958 | idpowerpoint++; |
---|
959 | return; |
---|
960 | } |
---|
961 | if (actvar == vars) |
---|
962 | { |
---|
963 | p_SetExp(idpower[idpowerpoint],actvar,deg-monomdeg,r); |
---|
964 | p_Setm(idpower[idpowerpoint],r); |
---|
965 | p_Test(idpower[idpowerpoint],r); |
---|
966 | idpowerpoint++; |
---|
967 | return; |
---|
968 | } |
---|
969 | else |
---|
970 | { |
---|
971 | p = p_Copy(idpower[idpowerpoint],r); |
---|
972 | makemonoms(vars,actvar+1,deg,monomdeg,r); |
---|
973 | idpower[idpowerpoint] = p; |
---|
974 | } |
---|
975 | monomdeg++; |
---|
976 | p_SetExp(idpower[idpowerpoint],actvar,p_GetExp(idpower[idpowerpoint],actvar,r)+1,r); |
---|
977 | p_Setm(idpower[idpowerpoint],r); |
---|
978 | p_Test(idpower[idpowerpoint],r); |
---|
979 | i++; |
---|
980 | } |
---|
981 | } |
---|
982 | |
---|
983 | /*2 |
---|
984 | *returns the deg-th power of the maximal ideal of 0 |
---|
985 | */ |
---|
986 | ideal id_MaxIdeal(int deg, const ring r) |
---|
987 | { |
---|
988 | if (deg < 0) |
---|
989 | { |
---|
990 | WarnS("maxideal: power must be non-negative"); |
---|
991 | } |
---|
992 | if (deg < 1) |
---|
993 | { |
---|
994 | ideal I=idInit(1,1); |
---|
995 | I->m[0]=p_One(r); |
---|
996 | return I; |
---|
997 | } |
---|
998 | if (deg == 1) |
---|
999 | { |
---|
1000 | return id_MaxIdeal(r); |
---|
1001 | } |
---|
1002 | |
---|
1003 | int vars = rVar(r); |
---|
1004 | int i = binom(vars+deg-1,deg); |
---|
1005 | if (i<=0) return idInit(1,1); |
---|
1006 | ideal id=idInit(i,1); |
---|
1007 | idpower = id->m; |
---|
1008 | idpowerpoint = 0; |
---|
1009 | makemonoms(vars,1,deg,0,r); |
---|
1010 | idpower = NULL; |
---|
1011 | idpowerpoint = 0; |
---|
1012 | return id; |
---|
1013 | } |
---|
1014 | |
---|
1015 | static void id_NextPotence(ideal given, ideal result, |
---|
1016 | int begin, int end, int deg, int restdeg, poly ap, const ring r) |
---|
1017 | { |
---|
1018 | poly p; |
---|
1019 | int i; |
---|
1020 | |
---|
1021 | p = p_Power(p_Copy(given->m[begin],r),restdeg,r); |
---|
1022 | i = result->nrows; |
---|
1023 | result->m[i] = p_Mult_q(p_Copy(ap,r),p,r); |
---|
1024 | //PrintS("."); |
---|
1025 | (result->nrows)++; |
---|
1026 | if (result->nrows >= IDELEMS(result)) |
---|
1027 | { |
---|
1028 | pEnlargeSet(&(result->m),IDELEMS(result),16); |
---|
1029 | IDELEMS(result) += 16; |
---|
1030 | } |
---|
1031 | if (begin == end) return; |
---|
1032 | for (i=restdeg-1;i>0;i--) |
---|
1033 | { |
---|
1034 | p = p_Power(p_Copy(given->m[begin],r),i,r); |
---|
1035 | p = p_Mult_q(p_Copy(ap,r),p,r); |
---|
1036 | id_NextPotence(given, result, begin+1, end, deg, restdeg-i, p,r); |
---|
1037 | p_Delete(&p,r); |
---|
1038 | } |
---|
1039 | id_NextPotence(given, result, begin+1, end, deg, restdeg, ap,r); |
---|
1040 | } |
---|
1041 | |
---|
1042 | ideal id_Power(ideal given,int exp, const ring r) |
---|
1043 | { |
---|
1044 | ideal result,temp; |
---|
1045 | poly p1; |
---|
1046 | int i; |
---|
1047 | |
---|
1048 | if (idIs0(given)) return idInit(1,1); |
---|
1049 | temp = id_Copy(given,r); |
---|
1050 | idSkipZeroes(temp); |
---|
1051 | i = binom(IDELEMS(temp)+exp-1,exp); |
---|
1052 | result = idInit(i,1); |
---|
1053 | result->nrows = 0; |
---|
1054 | //Print("ideal contains %d elements\n",i); |
---|
1055 | p1=p_One(r); |
---|
1056 | id_NextPotence(temp,result,0,IDELEMS(temp)-1,exp,exp,p1,r); |
---|
1057 | p_Delete(&p1,r); |
---|
1058 | id_Delete(&temp,r); |
---|
1059 | result->nrows = 1; |
---|
1060 | id_DelEquals(result,r); |
---|
1061 | idSkipZeroes(result); |
---|
1062 | return result; |
---|
1063 | } |
---|
1064 | |
---|
1065 | /*2 |
---|
1066 | *skips all zeroes and double elements, searches also for units |
---|
1067 | */ |
---|
1068 | void id_Compactify(ideal id, const ring r) |
---|
1069 | { |
---|
1070 | int i; |
---|
1071 | BOOLEAN b=FALSE; |
---|
1072 | |
---|
1073 | i = IDELEMS(id)-1; |
---|
1074 | while ((! b) && (i>=0)) |
---|
1075 | { |
---|
1076 | b=p_IsUnit(id->m[i],r); |
---|
1077 | i--; |
---|
1078 | } |
---|
1079 | if (b) |
---|
1080 | { |
---|
1081 | for(i=IDELEMS(id)-1;i>=0;i--) p_Delete(&id->m[i],r); |
---|
1082 | id->m[0]=p_One(r); |
---|
1083 | } |
---|
1084 | else |
---|
1085 | { |
---|
1086 | id_DelMultiples(id,r); |
---|
1087 | } |
---|
1088 | idSkipZeroes(id); |
---|
1089 | } |
---|
1090 | |
---|
1091 | /// returns the ideals of initial terms |
---|
1092 | ideal id_Head(ideal h,const ring r) |
---|
1093 | { |
---|
1094 | ideal m = idInit(IDELEMS(h),h->rank); |
---|
1095 | |
---|
1096 | for (int i=IDELEMS(h)-1;i>=0; i--) |
---|
1097 | if (h->m[i]!=NULL) |
---|
1098 | m->m[i]=p_Head(h->m[i],r); |
---|
1099 | |
---|
1100 | return m; |
---|
1101 | } |
---|
1102 | |
---|
1103 | ideal id_Homogen(ideal h, int varnum,const ring r) |
---|
1104 | { |
---|
1105 | ideal m = idInit(IDELEMS(h),h->rank); |
---|
1106 | int i; |
---|
1107 | |
---|
1108 | for (i=IDELEMS(h)-1;i>=0; i--) |
---|
1109 | { |
---|
1110 | m->m[i]=p_Homogen(h->m[i],varnum,r); |
---|
1111 | } |
---|
1112 | return m; |
---|
1113 | } |
---|
1114 | |
---|
1115 | /*------------------type conversions----------------*/ |
---|
1116 | ideal id_Vec2Ideal(poly vec, const ring R) |
---|
1117 | { |
---|
1118 | ideal result=idInit(1,1); |
---|
1119 | omFree((ADDRESS)result->m); |
---|
1120 | result->m=NULL; // remove later |
---|
1121 | p_Vec2Polys(vec, &(result->m), &(IDELEMS(result)),R); |
---|
1122 | return result; |
---|
1123 | } |
---|
1124 | |
---|
1125 | |
---|
1126 | // converts mat to module, destroys mat |
---|
1127 | ideal id_Matrix2Module(matrix mat, const ring R) |
---|
1128 | { |
---|
1129 | int mc=MATCOLS(mat); |
---|
1130 | int mr=MATROWS(mat); |
---|
1131 | ideal result = idInit(mc,mr); |
---|
1132 | int i,j,l; |
---|
1133 | poly h; |
---|
1134 | sBucket_pt bucket = sBucketCreate(R); |
---|
1135 | |
---|
1136 | for(j=0;j<mc /*MATCOLS(mat)*/;j++) /* j is also index in result->m */ |
---|
1137 | { |
---|
1138 | for (i=1;i<=mr /*MATROWS(mat)*/;i++) |
---|
1139 | { |
---|
1140 | h = MATELEM(mat,i,j+1); |
---|
1141 | if (h!=NULL) |
---|
1142 | { |
---|
1143 | l=pLength(h); |
---|
1144 | MATELEM(mat,i,j+1)=NULL; |
---|
1145 | p_SetCompP(h,i, R); |
---|
1146 | sBucket_Merge_p(bucket, h, l); |
---|
1147 | } |
---|
1148 | } |
---|
1149 | sBucketClearMerge(bucket, &(result->m[j]), &l); |
---|
1150 | } |
---|
1151 | sBucketDestroy(&bucket); |
---|
1152 | |
---|
1153 | // obachman: need to clean this up |
---|
1154 | id_Delete((ideal*) &mat,R); |
---|
1155 | return result; |
---|
1156 | } |
---|
1157 | |
---|
1158 | /*2 |
---|
1159 | * converts a module into a matrix, destroyes the input |
---|
1160 | */ |
---|
1161 | matrix id_Module2Matrix(ideal mod, const ring R) |
---|
1162 | { |
---|
1163 | matrix result = mpNew(mod->rank,IDELEMS(mod)); |
---|
1164 | long i; long cp; |
---|
1165 | poly p,h; |
---|
1166 | |
---|
1167 | for(i=0;i<IDELEMS(mod);i++) |
---|
1168 | { |
---|
1169 | p=pReverse(mod->m[i]); |
---|
1170 | mod->m[i]=NULL; |
---|
1171 | while (p!=NULL) |
---|
1172 | { |
---|
1173 | h=p; |
---|
1174 | pIter(p); |
---|
1175 | pNext(h)=NULL; |
---|
1176 | cp = si_max((long)1,p_GetComp(h, R)); // if used for ideals too |
---|
1177 | //cp = p_GetComp(h,R); |
---|
1178 | p_SetComp(h,0,R); |
---|
1179 | p_SetmComp(h,R); |
---|
1180 | #ifdef TEST |
---|
1181 | if (cp>mod->rank) |
---|
1182 | { |
---|
1183 | Print("## inv. rank %ld -> %ld\n",mod->rank,cp); |
---|
1184 | int k,l,o=mod->rank; |
---|
1185 | mod->rank=cp; |
---|
1186 | matrix d=mpNew(mod->rank,IDELEMS(mod)); |
---|
1187 | for (l=1; l<=o; l++) |
---|
1188 | { |
---|
1189 | for (k=1; k<=IDELEMS(mod); k++) |
---|
1190 | { |
---|
1191 | MATELEM(d,l,k)=MATELEM(result,l,k); |
---|
1192 | MATELEM(result,l,k)=NULL; |
---|
1193 | } |
---|
1194 | } |
---|
1195 | id_Delete((ideal *)&result,R); |
---|
1196 | result=d; |
---|
1197 | } |
---|
1198 | #endif |
---|
1199 | MATELEM(result,cp,i+1) = p_Add_q(MATELEM(result,cp,i+1),h,R); |
---|
1200 | } |
---|
1201 | } |
---|
1202 | // obachman 10/99: added the following line, otherwise memory leack! |
---|
1203 | id_Delete(&mod,R); |
---|
1204 | return result; |
---|
1205 | } |
---|
1206 | |
---|
1207 | matrix id_Module2formatedMatrix(ideal mod,int rows, int cols, const ring R) |
---|
1208 | { |
---|
1209 | matrix result = mpNew(rows,cols); |
---|
1210 | int i,cp,r=id_RankFreeModule(mod,R),c=IDELEMS(mod); |
---|
1211 | poly p,h; |
---|
1212 | |
---|
1213 | if (r>rows) r = rows; |
---|
1214 | if (c>cols) c = cols; |
---|
1215 | for(i=0;i<c;i++) |
---|
1216 | { |
---|
1217 | p=pReverse(mod->m[i]); |
---|
1218 | mod->m[i]=NULL; |
---|
1219 | while (p!=NULL) |
---|
1220 | { |
---|
1221 | h=p; |
---|
1222 | pIter(p); |
---|
1223 | pNext(h)=NULL; |
---|
1224 | cp = p_GetComp(h,R); |
---|
1225 | if (cp<=r) |
---|
1226 | { |
---|
1227 | p_SetComp(h,0,R); |
---|
1228 | p_SetmComp(h,R); |
---|
1229 | MATELEM(result,cp,i+1) = p_Add_q(MATELEM(result,cp,i+1),h,R); |
---|
1230 | } |
---|
1231 | else |
---|
1232 | p_Delete(&h,R); |
---|
1233 | } |
---|
1234 | } |
---|
1235 | id_Delete(&mod,R); |
---|
1236 | return result; |
---|
1237 | } |
---|
1238 | |
---|
1239 | /*2 |
---|
1240 | * substitute the n-th variable by the monomial e in id |
---|
1241 | * destroy id |
---|
1242 | */ |
---|
1243 | ideal id_Subst(ideal id, int n, poly e, const ring r) |
---|
1244 | { |
---|
1245 | int k=MATROWS((matrix)id)*MATCOLS((matrix)id); |
---|
1246 | ideal res=(ideal)mpNew(MATROWS((matrix)id),MATCOLS((matrix)id)); |
---|
1247 | |
---|
1248 | res->rank = id->rank; |
---|
1249 | for(k--;k>=0;k--) |
---|
1250 | { |
---|
1251 | res->m[k]=p_Subst(id->m[k],n,e,r); |
---|
1252 | id->m[k]=NULL; |
---|
1253 | } |
---|
1254 | id_Delete(&id,r); |
---|
1255 | return res; |
---|
1256 | } |
---|
1257 | |
---|
1258 | BOOLEAN id_HomModule(ideal m, ideal Q, intvec **w, const ring R) |
---|
1259 | { |
---|
1260 | if (w!=NULL) *w=NULL; |
---|
1261 | if ((Q!=NULL) && (!id_HomIdeal(Q,NULL,R))) return FALSE; |
---|
1262 | if (idIs0(m)) |
---|
1263 | { |
---|
1264 | if (w!=NULL) (*w)=new intvec(m->rank); |
---|
1265 | return TRUE; |
---|
1266 | } |
---|
1267 | |
---|
1268 | long cmax=1,order=0,ord,* diff,diffmin=32000; |
---|
1269 | int *iscom; |
---|
1270 | int i; |
---|
1271 | poly p=NULL; |
---|
1272 | pFDegProc d; |
---|
1273 | if (R->pLexOrder && (R->order[0]==ringorder_lp)) |
---|
1274 | d=p_Totaldegree; |
---|
1275 | else |
---|
1276 | d=R->pFDeg; |
---|
1277 | int length=IDELEMS(m); |
---|
1278 | poly* P=m->m; |
---|
1279 | poly* F=(poly*)omAlloc(length*sizeof(poly)); |
---|
1280 | for (i=length-1;i>=0;i--) |
---|
1281 | { |
---|
1282 | p=F[i]=P[i]; |
---|
1283 | cmax=si_max(cmax,(long)p_MaxComp(p,R)); |
---|
1284 | } |
---|
1285 | cmax++; |
---|
1286 | diff = (long *)omAlloc0(cmax*sizeof(long)); |
---|
1287 | if (w!=NULL) *w=new intvec(cmax-1); |
---|
1288 | iscom = (int *)omAlloc0(cmax*sizeof(int)); |
---|
1289 | i=0; |
---|
1290 | while (i<=length) |
---|
1291 | { |
---|
1292 | if (i<length) |
---|
1293 | { |
---|
1294 | p=F[i]; |
---|
1295 | while ((p!=NULL) && (iscom[p_GetComp(p,R)]==0)) pIter(p); |
---|
1296 | } |
---|
1297 | if ((p==NULL) && (i<length)) |
---|
1298 | { |
---|
1299 | i++; |
---|
1300 | } |
---|
1301 | else |
---|
1302 | { |
---|
1303 | if (p==NULL) /* && (i==length) */ |
---|
1304 | { |
---|
1305 | i=0; |
---|
1306 | while ((i<length) && (F[i]==NULL)) i++; |
---|
1307 | if (i>=length) break; |
---|
1308 | p = F[i]; |
---|
1309 | } |
---|
1310 | //if (pLexOrder && (currRing->order[0]==ringorder_lp)) |
---|
1311 | // order=pTotaldegree(p); |
---|
1312 | //else |
---|
1313 | // order = p->order; |
---|
1314 | // order = pFDeg(p,currRing); |
---|
1315 | order = d(p,R) +diff[p_GetComp(p,R)]; |
---|
1316 | //order += diff[pGetComp(p)]; |
---|
1317 | p = F[i]; |
---|
1318 | //Print("Actual p=F[%d]: ",i);pWrite(p); |
---|
1319 | F[i] = NULL; |
---|
1320 | i=0; |
---|
1321 | } |
---|
1322 | while (p!=NULL) |
---|
1323 | { |
---|
1324 | if (R->pLexOrder && (R->order[0]==ringorder_lp)) |
---|
1325 | ord=p_Totaldegree(p,R); |
---|
1326 | else |
---|
1327 | // ord = p->order; |
---|
1328 | ord = R->pFDeg(p,R); |
---|
1329 | if (iscom[p_GetComp(p,R)]==0) |
---|
1330 | { |
---|
1331 | diff[p_GetComp(p,R)] = order-ord; |
---|
1332 | iscom[p_GetComp(p,R)] = 1; |
---|
1333 | /* |
---|
1334 | *PrintS("new diff: "); |
---|
1335 | *for (j=0;j<cmax;j++) Print("%d ",diff[j]); |
---|
1336 | *PrintLn(); |
---|
1337 | *PrintS("new iscom: "); |
---|
1338 | *for (j=0;j<cmax;j++) Print("%d ",iscom[j]); |
---|
1339 | *PrintLn(); |
---|
1340 | *Print("new set %d, order %d, ord %d, diff %d\n",pGetComp(p),order,ord,diff[pGetComp(p)]); |
---|
1341 | */ |
---|
1342 | } |
---|
1343 | else |
---|
1344 | { |
---|
1345 | /* |
---|
1346 | *PrintS("new diff: "); |
---|
1347 | *for (j=0;j<cmax;j++) Print("%d ",diff[j]); |
---|
1348 | *PrintLn(); |
---|
1349 | *Print("order %d, ord %d, diff %d\n",order,ord,diff[pGetComp(p)]); |
---|
1350 | */ |
---|
1351 | if (order != (ord+diff[p_GetComp(p,R)])) |
---|
1352 | { |
---|
1353 | omFreeSize((ADDRESS) iscom,cmax*sizeof(int)); |
---|
1354 | omFreeSize((ADDRESS) diff,cmax*sizeof(long)); |
---|
1355 | omFreeSize((ADDRESS) F,length*sizeof(poly)); |
---|
1356 | delete *w;*w=NULL; |
---|
1357 | return FALSE; |
---|
1358 | } |
---|
1359 | } |
---|
1360 | pIter(p); |
---|
1361 | } |
---|
1362 | } |
---|
1363 | omFreeSize((ADDRESS) iscom,cmax*sizeof(int)); |
---|
1364 | omFreeSize((ADDRESS) F,length*sizeof(poly)); |
---|
1365 | for (i=1;i<cmax;i++) (**w)[i-1]=(int)(diff[i]); |
---|
1366 | for (i=1;i<cmax;i++) |
---|
1367 | { |
---|
1368 | if (diff[i]<diffmin) diffmin=diff[i]; |
---|
1369 | } |
---|
1370 | if (w!=NULL) |
---|
1371 | { |
---|
1372 | for (i=1;i<cmax;i++) |
---|
1373 | { |
---|
1374 | (**w)[i-1]=(int)(diff[i]-diffmin); |
---|
1375 | } |
---|
1376 | } |
---|
1377 | omFreeSize((ADDRESS) diff,cmax*sizeof(long)); |
---|
1378 | return TRUE; |
---|
1379 | } |
---|
1380 | |
---|
1381 | ideal id_Jet(ideal i,int d, const ring R) |
---|
1382 | { |
---|
1383 | ideal r=idInit((i->nrows)*(i->ncols),i->rank); |
---|
1384 | r->nrows = i-> nrows; |
---|
1385 | r->ncols = i-> ncols; |
---|
1386 | //r->rank = i-> rank; |
---|
1387 | |
---|
1388 | for(int k=(i->nrows)*(i->ncols)-1;k>=0; k--) |
---|
1389 | r->m[k]=pp_Jet(i->m[k],d,R); |
---|
1390 | |
---|
1391 | return r; |
---|
1392 | } |
---|
1393 | |
---|
1394 | ideal id_JetW(ideal i,int d, intvec * iv, const ring R) |
---|
1395 | { |
---|
1396 | ideal r=idInit(IDELEMS(i),i->rank); |
---|
1397 | if (ecartWeights!=NULL) |
---|
1398 | { |
---|
1399 | WerrorS("cannot compute weighted jets now"); |
---|
1400 | } |
---|
1401 | else |
---|
1402 | { |
---|
1403 | short *w=iv2array(iv,R); |
---|
1404 | int k; |
---|
1405 | for(k=0; k<IDELEMS(i); k++) |
---|
1406 | { |
---|
1407 | r->m[k]=pp_JetW(i->m[k],d,w,R); |
---|
1408 | } |
---|
1409 | omFreeSize((ADDRESS)w,(rVar(R)+1)*sizeof(short)); |
---|
1410 | } |
---|
1411 | return r; |
---|
1412 | } |
---|
1413 | |
---|
1414 | /*3 |
---|
1415 | * searches for the next unit in the components of the module arg and |
---|
1416 | * returns the first one; |
---|
1417 | */ |
---|
1418 | int id_ReadOutPivot(ideal arg,int* comp, const ring r) |
---|
1419 | { |
---|
1420 | if (idIs0(arg)) return -1; |
---|
1421 | int i=0,j, generator=-1; |
---|
1422 | int rk_arg=arg->rank; //idRankFreeModule(arg); |
---|
1423 | int * componentIsUsed =(int *)omAlloc((rk_arg+1)*sizeof(int)); |
---|
1424 | poly p; |
---|
1425 | |
---|
1426 | while ((generator<0) && (i<IDELEMS(arg))) |
---|
1427 | { |
---|
1428 | memset(componentIsUsed,0,(rk_arg+1)*sizeof(int)); |
---|
1429 | p = arg->m[i]; |
---|
1430 | while (p!=NULL) |
---|
1431 | { |
---|
1432 | j = p_GetComp(p,r); |
---|
1433 | if (componentIsUsed[j]==0) |
---|
1434 | { |
---|
1435 | #ifdef HAVE_RINGS |
---|
1436 | if (p_LmIsConstantComp(p,r) && |
---|
1437 | (!rField_is_Ring(r) || n_IsUnit(pGetCoeff(p),r->cf))) |
---|
1438 | { |
---|
1439 | #else |
---|
1440 | if (p_LmIsConstantComp(p,r)) |
---|
1441 | { |
---|
1442 | #endif |
---|
1443 | generator = i; |
---|
1444 | componentIsUsed[j] = 1; |
---|
1445 | } |
---|
1446 | else |
---|
1447 | { |
---|
1448 | componentIsUsed[j] = -1; |
---|
1449 | } |
---|
1450 | } |
---|
1451 | else if (componentIsUsed[j]>0) |
---|
1452 | { |
---|
1453 | (componentIsUsed[j])++; |
---|
1454 | } |
---|
1455 | pIter(p); |
---|
1456 | } |
---|
1457 | i++; |
---|
1458 | } |
---|
1459 | i = 0; |
---|
1460 | *comp = -1; |
---|
1461 | for (j=0;j<=rk_arg;j++) |
---|
1462 | { |
---|
1463 | if (componentIsUsed[j]>0) |
---|
1464 | { |
---|
1465 | if ((*comp==-1) || (componentIsUsed[j]<i)) |
---|
1466 | { |
---|
1467 | *comp = j; |
---|
1468 | i= componentIsUsed[j]; |
---|
1469 | } |
---|
1470 | } |
---|
1471 | } |
---|
1472 | omFree(componentIsUsed); |
---|
1473 | return generator; |
---|
1474 | } |
---|
1475 | |
---|
1476 | #if 0 |
---|
1477 | static void idDeleteComp(ideal arg,int red_comp) |
---|
1478 | { |
---|
1479 | int i,j; |
---|
1480 | poly p; |
---|
1481 | |
---|
1482 | for (i=IDELEMS(arg)-1;i>=0;i--) |
---|
1483 | { |
---|
1484 | p = arg->m[i]; |
---|
1485 | while (p!=NULL) |
---|
1486 | { |
---|
1487 | j = pGetComp(p); |
---|
1488 | if (j>red_comp) |
---|
1489 | { |
---|
1490 | pSetComp(p,j-1); |
---|
1491 | pSetm(p); |
---|
1492 | } |
---|
1493 | pIter(p); |
---|
1494 | } |
---|
1495 | } |
---|
1496 | (arg->rank)--; |
---|
1497 | } |
---|
1498 | #endif |
---|
1499 | |
---|
1500 | intvec * id_QHomWeight(ideal id, const ring r) |
---|
1501 | { |
---|
1502 | poly head, tail; |
---|
1503 | int k; |
---|
1504 | int in=IDELEMS(id)-1, ready=0, all=0, |
---|
1505 | coldim=rVar(r), rowmax=2*coldim; |
---|
1506 | if (in<0) return NULL; |
---|
1507 | intvec *imat=new intvec(rowmax+1,coldim,0); |
---|
1508 | |
---|
1509 | do |
---|
1510 | { |
---|
1511 | head = id->m[in--]; |
---|
1512 | if (head!=NULL) |
---|
1513 | { |
---|
1514 | tail = pNext(head); |
---|
1515 | while (tail!=NULL) |
---|
1516 | { |
---|
1517 | all++; |
---|
1518 | for (k=1;k<=coldim;k++) |
---|
1519 | IMATELEM(*imat,all,k) = p_GetExpDiff(head,tail,k,r); |
---|
1520 | if (all==rowmax) |
---|
1521 | { |
---|
1522 | ivTriangIntern(imat, ready, all); |
---|
1523 | if (ready==coldim) |
---|
1524 | { |
---|
1525 | delete imat; |
---|
1526 | return NULL; |
---|
1527 | } |
---|
1528 | } |
---|
1529 | pIter(tail); |
---|
1530 | } |
---|
1531 | } |
---|
1532 | } while (in>=0); |
---|
1533 | if (all>ready) |
---|
1534 | { |
---|
1535 | ivTriangIntern(imat, ready, all); |
---|
1536 | if (ready==coldim) |
---|
1537 | { |
---|
1538 | delete imat; |
---|
1539 | return NULL; |
---|
1540 | } |
---|
1541 | } |
---|
1542 | intvec *result = ivSolveKern(imat, ready); |
---|
1543 | delete imat; |
---|
1544 | return result; |
---|
1545 | } |
---|
1546 | |
---|
1547 | BOOLEAN id_IsZeroDim(ideal I, const ring r) |
---|
1548 | { |
---|
1549 | BOOLEAN *UsedAxis=(BOOLEAN *)omAlloc0(rVar(r)*sizeof(BOOLEAN)); |
---|
1550 | int i,n; |
---|
1551 | poly po; |
---|
1552 | BOOLEAN res=TRUE; |
---|
1553 | for(i=IDELEMS(I)-1;i>=0;i--) |
---|
1554 | { |
---|
1555 | po=I->m[i]; |
---|
1556 | if ((po!=NULL) &&((n=p_IsPurePower(po,r))!=0)) UsedAxis[n-1]=TRUE; |
---|
1557 | } |
---|
1558 | for(i=rVar(r)-1;i>=0;i--) |
---|
1559 | { |
---|
1560 | if(UsedAxis[i]==FALSE) {res=FALSE; break;} // not zero-dim. |
---|
1561 | } |
---|
1562 | omFreeSize(UsedAxis,rVar(r)*sizeof(BOOLEAN)); |
---|
1563 | return res; |
---|
1564 | } |
---|
1565 | |
---|
1566 | void id_Normalize(ideal I,const ring r) /* for ideal/matrix */ |
---|
1567 | { |
---|
1568 | if (rField_has_simple_inverse(r)) return; /* Z/p, GF(p,n), R, long R/C */ |
---|
1569 | int i; |
---|
1570 | for(i=I->nrows*I->ncols-1;i>=0;i--) |
---|
1571 | { |
---|
1572 | p_Normalize(I->m[i],r); |
---|
1573 | } |
---|
1574 | } |
---|
1575 | |
---|
1576 | int id_MinDegW(ideal M,intvec *w, const ring r) |
---|
1577 | { |
---|
1578 | int d=-1; |
---|
1579 | for(int i=0;i<IDELEMS(M);i++) |
---|
1580 | { |
---|
1581 | if (M->m[i]!=NULL) |
---|
1582 | { |
---|
1583 | int d0=p_MinDeg(M->m[i],w,r); |
---|
1584 | if(-1<d0&&((d0<d)||(d==-1))) |
---|
1585 | d=d0; |
---|
1586 | } |
---|
1587 | } |
---|
1588 | return d; |
---|
1589 | } |
---|
1590 | |
---|
1591 | // #include <kernel/clapsing.h> |
---|
1592 | |
---|
1593 | /*2 |
---|
1594 | * transpose a module |
---|
1595 | */ |
---|
1596 | ideal id_Transp(ideal a, const ring rRing) |
---|
1597 | { |
---|
1598 | int r = a->rank, c = IDELEMS(a); |
---|
1599 | ideal b = idInit(r,c); |
---|
1600 | |
---|
1601 | for (int i=c; i>0; i--) |
---|
1602 | { |
---|
1603 | poly p=a->m[i-1]; |
---|
1604 | while(p!=NULL) |
---|
1605 | { |
---|
1606 | poly h=p_Head(p, rRing); |
---|
1607 | int co=p_GetComp(h, rRing)-1; |
---|
1608 | p_SetComp(h, i, rRing); |
---|
1609 | p_Setm(h, rRing); |
---|
1610 | b->m[co] = p_Add_q(b->m[co], h, rRing); |
---|
1611 | pIter(p); |
---|
1612 | } |
---|
1613 | } |
---|
1614 | return b; |
---|
1615 | } |
---|
1616 | |
---|
1617 | |
---|
1618 | |
---|
1619 | /*2 |
---|
1620 | * The following is needed to compute the image of certain map used in |
---|
1621 | * the computation of cohomologies via BGG |
---|
1622 | * let M = { w_1, ..., w_k }, k = size(M) == ncols(M), n = nvars(currRing). |
---|
1623 | * assuming that nrows(M) <= m*n; the procedure computes: |
---|
1624 | * transpose(M) * transpose( var(1) I_m | ... | var(n) I_m ) :== transpose(module{f_1, ... f_k}), |
---|
1625 | * where f_i = \sum_{j=1}^{m} (w_i, v_j) gen(j), (w_i, v_j) is a `scalar` multiplication. |
---|
1626 | * that is, if w_i = (a^1_1, ... a^1_m) | (a^2_1, ..., a^2_m) | ... | (a^n_1, ..., a^n_m) then |
---|
1627 | |
---|
1628 | (a^1_1, ... a^1_m) | (a^2_1, ..., a^2_m) | ... | (a^n_1, ..., a^n_m) |
---|
1629 | * var_1 ... var_1 | var_2 ... var_2 | ... | var_n ... var(n) |
---|
1630 | * gen_1 ... gen_m | gen_1 ... gen_m | ... | gen_1 ... gen_m |
---|
1631 | + => |
---|
1632 | f_i = |
---|
1633 | |
---|
1634 | a^1_1 * var(1) * gen(1) + ... + a^1_m * var(1) * gen(m) + |
---|
1635 | a^2_1 * var(2) * gen(1) + ... + a^2_m * var(2) * gen(m) + |
---|
1636 | ... |
---|
1637 | a^n_1 * var(n) * gen(1) + ... + a^n_m * var(n) * gen(m); |
---|
1638 | |
---|
1639 | NOTE: for every f_i we run only ONCE along w_i saving partial sums into a temporary array of polys of size m |
---|
1640 | */ |
---|
1641 | ideal id_TensorModuleMult(const int m, const ideal M, const ring rRing) |
---|
1642 | { |
---|
1643 | // #ifdef DEBU |
---|
1644 | // WarnS("tensorModuleMult!!!!"); |
---|
1645 | |
---|
1646 | assume(m > 0); |
---|
1647 | assume(M != NULL); |
---|
1648 | |
---|
1649 | const int n = rRing->N; |
---|
1650 | |
---|
1651 | assume(M->rank <= m * n); |
---|
1652 | |
---|
1653 | const int k = IDELEMS(M); |
---|
1654 | |
---|
1655 | ideal idTemp = idInit(k,m); // = {f_1, ..., f_k } |
---|
1656 | |
---|
1657 | for( int i = 0; i < k; i++ ) // for every w \in M |
---|
1658 | { |
---|
1659 | poly pTempSum = NULL; |
---|
1660 | |
---|
1661 | poly w = M->m[i]; |
---|
1662 | |
---|
1663 | while(w != NULL) // for each term of w... |
---|
1664 | { |
---|
1665 | poly h = p_Head(w, rRing); |
---|
1666 | |
---|
1667 | const int gen = p_GetComp(h, rRing); // 1 ... |
---|
1668 | |
---|
1669 | assume(gen > 0); |
---|
1670 | assume(gen <= n*m); |
---|
1671 | |
---|
1672 | // TODO: write a formula with %, / instead of while! |
---|
1673 | /* |
---|
1674 | int c = gen; |
---|
1675 | int v = 1; |
---|
1676 | while(c > m) |
---|
1677 | { |
---|
1678 | c -= m; |
---|
1679 | v++; |
---|
1680 | } |
---|
1681 | */ |
---|
1682 | |
---|
1683 | int cc = gen % m; |
---|
1684 | if( cc == 0) cc = m; |
---|
1685 | int vv = 1 + (gen - cc) / m; |
---|
1686 | |
---|
1687 | // assume( cc == c ); |
---|
1688 | // assume( vv == v ); |
---|
1689 | |
---|
1690 | // 1<= c <= m |
---|
1691 | assume( cc > 0 ); |
---|
1692 | assume( cc <= m ); |
---|
1693 | |
---|
1694 | assume( vv > 0 ); |
---|
1695 | assume( vv <= n ); |
---|
1696 | |
---|
1697 | assume( (cc + (vv-1)*m) == gen ); |
---|
1698 | |
---|
1699 | p_IncrExp(h, vv, rRing); // h *= var(j) && // p_AddExp(h, vv, 1, rRing); |
---|
1700 | p_SetComp(h, cc, rRing); |
---|
1701 | |
---|
1702 | p_Setm(h, rRing); // addjust degree after the previous steps! |
---|
1703 | |
---|
1704 | pTempSum = p_Add_q(pTempSum, h, rRing); // it is slow since h will be usually put to the back of pTempSum!!! |
---|
1705 | |
---|
1706 | pIter(w); |
---|
1707 | } |
---|
1708 | |
---|
1709 | idTemp->m[i] = pTempSum; |
---|
1710 | } |
---|
1711 | |
---|
1712 | // simplify idTemp??? |
---|
1713 | |
---|
1714 | ideal idResult = id_Transp(idTemp, rRing); |
---|
1715 | |
---|
1716 | id_Delete(&idTemp, rRing); |
---|
1717 | |
---|
1718 | return(idResult); |
---|
1719 | } |
---|
1720 | |
---|
1721 | ideal id_ChineseRemainder(ideal *xx, number *q, int rl, const ring r) |
---|
1722 | { |
---|
1723 | int cnt=IDELEMS(xx[0])*xx[0]->nrows; |
---|
1724 | ideal result=idInit(cnt,xx[0]->rank); |
---|
1725 | result->nrows=xx[0]->nrows; // for lifting matrices |
---|
1726 | result->ncols=xx[0]->ncols; // for lifting matrices |
---|
1727 | int i,j; |
---|
1728 | number *x=(number *)omAlloc(rl*sizeof(number)); |
---|
1729 | poly *p=(poly *)omAlloc(rl*sizeof(poly)); |
---|
1730 | CFArray inv_cache(rl);; |
---|
1731 | for(i=cnt-1;i>=0;i--) |
---|
1732 | { |
---|
1733 | for(j=rl-1;j>=0;j--) |
---|
1734 | { |
---|
1735 | p[j]=xx[j]->m[i]; |
---|
1736 | } |
---|
1737 | result->m[i]=p_ChineseRemainder(p,x,q,rl,inv_cache,r); |
---|
1738 | for(j=rl-1;j>=0;j--) |
---|
1739 | { |
---|
1740 | xx[j]->m[i]=p[j]; |
---|
1741 | } |
---|
1742 | } |
---|
1743 | omFreeSize(p,rl*sizeof(poly)); |
---|
1744 | omFreeSize(x,rl*sizeof(number)); |
---|
1745 | for(i=rl-1;i>=0;i--) id_Delete(&(xx[i]),r); |
---|
1746 | omFreeSize(xx,rl*sizeof(ideal)); |
---|
1747 | return result; |
---|
1748 | } |
---|
1749 | |
---|
1750 | void id_Shift(ideal M, int s, const ring r) |
---|
1751 | { |
---|
1752 | // id_Test( M, r ); |
---|
1753 | |
---|
1754 | // assume( s >= 0 ); // negative is also possible // TODO: verify input ideal in such a case!? |
---|
1755 | |
---|
1756 | for(int i=IDELEMS(M)-1; i>=0;i--) |
---|
1757 | p_Shift(&(M->m[i]),s,r); |
---|
1758 | |
---|
1759 | M->rank += s; |
---|
1760 | |
---|
1761 | // id_Test( M, r ); |
---|
1762 | } |
---|