1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /*************************************************************** |
---|
5 | * File: p_polys.cc |
---|
6 | * Purpose: implementation of currRing independent poly procedures |
---|
7 | * Author: obachman (Olaf Bachmann) |
---|
8 | * Created: 8/00 |
---|
9 | * Version: $Id$ |
---|
10 | *******************************************************************/ |
---|
11 | |
---|
12 | |
---|
13 | #include <auxialiary.h> |
---|
14 | |
---|
15 | #include "ring.h" |
---|
16 | #include "p_polys.h" |
---|
17 | #include "ring.h" |
---|
18 | #include "ideals.h" |
---|
19 | #include "int64vec.h" |
---|
20 | #ifndef NDEBUG |
---|
21 | #include <kernel/febase.h> |
---|
22 | #endif |
---|
23 | |
---|
24 | /*************************************************************** |
---|
25 | * |
---|
26 | * Completing what needs to be set for the monomial |
---|
27 | * |
---|
28 | ***************************************************************/ |
---|
29 | // this is special for the syz stuff |
---|
30 | static int* _components = NULL; |
---|
31 | static long* _componentsShifted = NULL; |
---|
32 | static int _componentsExternal = 0; |
---|
33 | |
---|
34 | BOOLEAN pSetm_error=0; |
---|
35 | |
---|
36 | #ifndef NDEBUG |
---|
37 | # define MYTEST 0 |
---|
38 | #else /* ifndef NDEBUG */ |
---|
39 | # define MYTEST 0 |
---|
40 | #endif /* ifndef NDEBUG */ |
---|
41 | |
---|
42 | void p_Setm_General(poly p, const ring r) |
---|
43 | { |
---|
44 | p_LmCheckPolyRing(p, r); |
---|
45 | int pos=0; |
---|
46 | if (r->typ!=NULL) |
---|
47 | { |
---|
48 | loop |
---|
49 | { |
---|
50 | long ord=0; |
---|
51 | sro_ord* o=&(r->typ[pos]); |
---|
52 | switch(o->ord_typ) |
---|
53 | { |
---|
54 | case ro_dp: |
---|
55 | { |
---|
56 | int a,e; |
---|
57 | a=o->data.dp.start; |
---|
58 | e=o->data.dp.end; |
---|
59 | for(int i=a;i<=e;i++) ord+=p_GetExp(p,i,r); |
---|
60 | p->exp[o->data.dp.place]=ord; |
---|
61 | break; |
---|
62 | } |
---|
63 | case ro_wp_neg: |
---|
64 | ord=POLY_NEGWEIGHT_OFFSET; |
---|
65 | // no break; |
---|
66 | case ro_wp: |
---|
67 | { |
---|
68 | int a,e; |
---|
69 | a=o->data.wp.start; |
---|
70 | e=o->data.wp.end; |
---|
71 | int *w=o->data.wp.weights; |
---|
72 | #if 1 |
---|
73 | for(int i=a;i<=e;i++) ord+=p_GetExp(p,i,r)*w[i-a]; |
---|
74 | #else |
---|
75 | long ai; |
---|
76 | int ei,wi; |
---|
77 | for(int i=a;i<=e;i++) |
---|
78 | { |
---|
79 | ei=p_GetExp(p,i,r); |
---|
80 | wi=w[i-a]; |
---|
81 | ai=ei*wi; |
---|
82 | if (ai/ei!=wi) pSetm_error=TRUE; |
---|
83 | ord+=ai; |
---|
84 | if (ord<ai) pSetm_error=TRUE; |
---|
85 | } |
---|
86 | #endif |
---|
87 | p->exp[o->data.wp.place]=ord; |
---|
88 | break; |
---|
89 | } |
---|
90 | case ro_wp64: |
---|
91 | { |
---|
92 | int64 ord=0; |
---|
93 | int a,e; |
---|
94 | a=o->data.wp64.start; |
---|
95 | e=o->data.wp64.end; |
---|
96 | int64 *w=o->data.wp64.weights64; |
---|
97 | int64 ei,wi,ai; |
---|
98 | for(int i=a;i<=e;i++) |
---|
99 | { |
---|
100 | //Print("exp %d w %d \n",p_GetExp(p,i,r),(int)w[i-a]); |
---|
101 | //ord+=((int64)p_GetExp(p,i,r))*w[i-a]; |
---|
102 | ei=(int64)p_GetExp(p,i,r); |
---|
103 | wi=w[i-a]; |
---|
104 | ai=ei*wi; |
---|
105 | if(ei!=0 && ai/ei!=wi) |
---|
106 | { |
---|
107 | pSetm_error=TRUE; |
---|
108 | #if SIZEOF_LONG == 4 |
---|
109 | Print("ai %lld, wi %lld\n",ai,wi); |
---|
110 | #else |
---|
111 | Print("ai %ld, wi %ld\n",ai,wi); |
---|
112 | #endif |
---|
113 | } |
---|
114 | ord+=ai; |
---|
115 | if (ord<ai) |
---|
116 | { |
---|
117 | pSetm_error=TRUE; |
---|
118 | #if SIZEOF_LONG == 4 |
---|
119 | Print("ai %lld, ord %lld\n",ai,ord); |
---|
120 | #else |
---|
121 | Print("ai %ld, ord %ld\n",ai,ord); |
---|
122 | #endif |
---|
123 | } |
---|
124 | } |
---|
125 | int64 mask=(int64)0x7fffffff; |
---|
126 | long a_0=(long)(ord&mask); //2^31 |
---|
127 | long a_1=(long)(ord >>31 ); /*(ord/(mask+1));*/ |
---|
128 | |
---|
129 | //Print("mask: %x, ord: %d, a_0: %d, a_1: %d\n" |
---|
130 | //,(int)mask,(int)ord,(int)a_0,(int)a_1); |
---|
131 | //Print("mask: %d",mask); |
---|
132 | |
---|
133 | p->exp[o->data.wp64.place]=a_1; |
---|
134 | p->exp[o->data.wp64.place+1]=a_0; |
---|
135 | // if(p_Setm_error) Print("***************************\n |
---|
136 | // ***************************\n |
---|
137 | // **WARNING: overflow error**\n |
---|
138 | // ***************************\n |
---|
139 | // ***************************\n"); |
---|
140 | break; |
---|
141 | } |
---|
142 | case ro_cp: |
---|
143 | { |
---|
144 | int a,e; |
---|
145 | a=o->data.cp.start; |
---|
146 | e=o->data.cp.end; |
---|
147 | int pl=o->data.cp.place; |
---|
148 | for(int i=a;i<=e;i++) { p->exp[pl]=p_GetExp(p,i,r); pl++; } |
---|
149 | break; |
---|
150 | } |
---|
151 | case ro_syzcomp: |
---|
152 | { |
---|
153 | int c=p_GetComp(p,r); |
---|
154 | long sc = c; |
---|
155 | int* Components = (_componentsExternal ? _components : |
---|
156 | o->data.syzcomp.Components); |
---|
157 | long* ShiftedComponents = (_componentsExternal ? _componentsShifted: |
---|
158 | o->data.syzcomp.ShiftedComponents); |
---|
159 | if (ShiftedComponents != NULL) |
---|
160 | { |
---|
161 | assume(Components != NULL); |
---|
162 | assume(c == 0 || Components[c] != 0); |
---|
163 | sc = ShiftedComponents[Components[c]]; |
---|
164 | assume(c == 0 || sc != 0); |
---|
165 | } |
---|
166 | p->exp[o->data.syzcomp.place]=sc; |
---|
167 | break; |
---|
168 | } |
---|
169 | case ro_syz: |
---|
170 | { |
---|
171 | const unsigned long c = p_GetComp(p, r); |
---|
172 | const short place = o->data.syz.place; |
---|
173 | const int limit = o->data.syz.limit; |
---|
174 | |
---|
175 | if (c > limit) |
---|
176 | p->exp[place] = o->data.syz.curr_index; |
---|
177 | else if (c > 0) |
---|
178 | { |
---|
179 | assume( (1 <= c) && (c <= limit) ); |
---|
180 | p->exp[place]= o->data.syz.syz_index[c]; |
---|
181 | } |
---|
182 | else |
---|
183 | { |
---|
184 | assume(c == 0); |
---|
185 | p->exp[place]= 0; |
---|
186 | } |
---|
187 | break; |
---|
188 | } |
---|
189 | // Prefix for Induced Schreyer ordering |
---|
190 | case ro_isTemp: // Do nothing?? (to be removed into suffix later on...?) |
---|
191 | { |
---|
192 | assume(p != NULL); |
---|
193 | |
---|
194 | #ifndef NDEBUG |
---|
195 | #if MYTEST |
---|
196 | Print("p_Setm_General: isTemp ord: pos: %d, p: ", pos); p_DebugPrint(p, r, r, 1); |
---|
197 | #endif |
---|
198 | #endif |
---|
199 | int c = p_GetComp(p, r); |
---|
200 | |
---|
201 | assume( c >= 0 ); |
---|
202 | |
---|
203 | // Let's simulate case ro_syz above.... |
---|
204 | // Should accumulate (by Suffix) and be a level indicator |
---|
205 | const int* const pVarOffset = o->data.isTemp.pVarOffset; |
---|
206 | |
---|
207 | assume( pVarOffset != NULL ); |
---|
208 | |
---|
209 | // TODO: Can this be done in the suffix??? |
---|
210 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
211 | { |
---|
212 | const int vo = pVarOffset[i]; |
---|
213 | if( vo != -1) // TODO: optimize: can be done once! |
---|
214 | { |
---|
215 | // Hans! Please don't break it again! p_SetExp(p, ..., r, vo) is correct: |
---|
216 | p_SetExp(p, p_GetExp(p, i, r), r, vo); // copy put them verbatim |
---|
217 | // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct: |
---|
218 | assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim |
---|
219 | } |
---|
220 | } |
---|
221 | |
---|
222 | #ifndef NDEBUG |
---|
223 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
224 | { |
---|
225 | const int vo = pVarOffset[i]; |
---|
226 | if( vo != -1) // TODO: optimize: can be done once! |
---|
227 | { |
---|
228 | // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct: |
---|
229 | assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim |
---|
230 | } |
---|
231 | } |
---|
232 | #if MYTEST |
---|
233 | // if( p->exp[o->data.isTemp.start] > 0 ) |
---|
234 | // { |
---|
235 | // PrintS("Initial Value: "); p_DebugPrint(p, r, r, 1); |
---|
236 | // } |
---|
237 | #endif |
---|
238 | #endif |
---|
239 | break; |
---|
240 | } |
---|
241 | |
---|
242 | // Suffix for Induced Schreyer ordering |
---|
243 | case ro_is: |
---|
244 | { |
---|
245 | #ifndef NDEBUG |
---|
246 | #if MYTEST |
---|
247 | Print("p_Setm_General: ro_is ord: pos: %d, p: ", pos); p_DebugPrint(p, r, r, 1); |
---|
248 | #endif |
---|
249 | #endif |
---|
250 | |
---|
251 | assume(p != NULL); |
---|
252 | |
---|
253 | int c = p_GetComp(p, r); |
---|
254 | |
---|
255 | assume( c >= 0 ); |
---|
256 | const ideal F = o->data.is.F; |
---|
257 | const int limit = o->data.is.limit; |
---|
258 | |
---|
259 | if( F != NULL && c > limit ) |
---|
260 | { |
---|
261 | #ifndef NDEBUG |
---|
262 | #if MYTEST |
---|
263 | Print("p_Setm_General: ro_is : in rSetm: pos: %d, c: %d > limit: %d\n", c, pos, limit); // p_DebugPrint(p, r, r, 1); |
---|
264 | #endif |
---|
265 | #endif |
---|
266 | |
---|
267 | c -= limit; |
---|
268 | assume( c > 0 ); |
---|
269 | c--; |
---|
270 | |
---|
271 | assume( c < IDELEMS(F) ); // What about others??? |
---|
272 | |
---|
273 | const poly pp = F->m[c]; // get reference monomial!!! |
---|
274 | |
---|
275 | #ifndef NDEBUG |
---|
276 | #if MYTEST |
---|
277 | Print("Respective F[c - %d: %d] pp: ", limit, c); |
---|
278 | p_DebugPrint(pp, r, r, 1); |
---|
279 | #endif |
---|
280 | #endif |
---|
281 | |
---|
282 | |
---|
283 | assume(pp != NULL); |
---|
284 | if(pp == NULL) break; |
---|
285 | |
---|
286 | const int start = o->data.is.start; |
---|
287 | const int end = o->data.is.end; |
---|
288 | |
---|
289 | assume(start <= end); |
---|
290 | |
---|
291 | // const int limit = o->data.is.limit; |
---|
292 | assume( limit >= 0 ); |
---|
293 | |
---|
294 | // const int st = o->data.isTemp.start; |
---|
295 | |
---|
296 | if( c > limit ) |
---|
297 | p->exp[start] = 1; |
---|
298 | // else |
---|
299 | // p->exp[start] = 0; |
---|
300 | |
---|
301 | |
---|
302 | #ifndef NDEBUG |
---|
303 | Print("p_Setm_General: is(-Temp-) :: c: %d, limit: %d, [st:%d] ===>>> %ld\n", c, limit, start, p->exp[start]); |
---|
304 | #endif |
---|
305 | |
---|
306 | |
---|
307 | for( int i = start; i <= end; i++) // v[0] may be here... |
---|
308 | p->exp[i] += pp->exp[i]; // !!!!!!!! ADD corresponding LT(F) |
---|
309 | |
---|
310 | |
---|
311 | |
---|
312 | |
---|
313 | #ifndef NDEBUG |
---|
314 | const int* const pVarOffset = o->data.is.pVarOffset; |
---|
315 | |
---|
316 | assume( pVarOffset != NULL ); |
---|
317 | |
---|
318 | for( int i = 1; i <= r->N; i++ ) // No v[0] here!!! |
---|
319 | { |
---|
320 | const int vo = pVarOffset[i]; |
---|
321 | if( vo != -1) // TODO: optimize: can be done once! |
---|
322 | // Hans! Please don't break it again! p_GetExp(p/pp, r, vo) is correct: |
---|
323 | assume( p_GetExp(p, r, vo) == (p_GetExp(p, i, r) + p_GetExp(pp, r, vo)) ); |
---|
324 | } |
---|
325 | // TODO: how to check this for computed values??? |
---|
326 | #endif |
---|
327 | } else |
---|
328 | { |
---|
329 | const int* const pVarOffset = o->data.is.pVarOffset; |
---|
330 | |
---|
331 | // What about v[0] - component: it will be added later by |
---|
332 | // suffix!!! |
---|
333 | // TODO: Test it! |
---|
334 | const int vo = pVarOffset[0]; |
---|
335 | if( vo != -1 ) |
---|
336 | p->exp[vo] = c; // initial component v[0]! |
---|
337 | |
---|
338 | #ifndef NDEBUG |
---|
339 | #if MYTEST |
---|
340 | Print("p_Setm_General: ro_is :: c: %d <= limit: %d, vo: %d, exp: %d\n", c, limit, vo, p->exp[vo]); |
---|
341 | p_DebugPrint(p, r, r, 1); |
---|
342 | #endif |
---|
343 | #endif |
---|
344 | } |
---|
345 | |
---|
346 | |
---|
347 | break; |
---|
348 | } |
---|
349 | default: |
---|
350 | dReportError("wrong ord in rSetm:%d\n",o->ord_typ); |
---|
351 | return; |
---|
352 | } |
---|
353 | pos++; |
---|
354 | if (pos == r->OrdSize) return; |
---|
355 | } |
---|
356 | } |
---|
357 | } |
---|
358 | |
---|
359 | void p_Setm_Syz(poly p, ring r, int* Components, long* ShiftedComponents) |
---|
360 | { |
---|
361 | _components = Components; |
---|
362 | _componentsShifted = ShiftedComponents; |
---|
363 | _componentsExternal = 1; |
---|
364 | p_Setm_General(p, r); |
---|
365 | _componentsExternal = 0; |
---|
366 | } |
---|
367 | |
---|
368 | // dummy for lp, ls, etc |
---|
369 | void p_Setm_Dummy(poly p, const ring r) |
---|
370 | { |
---|
371 | p_LmCheckPolyRing(p, r); |
---|
372 | } |
---|
373 | |
---|
374 | // for dp, Dp, ds, etc |
---|
375 | void p_Setm_TotalDegree(poly p, const ring r) |
---|
376 | { |
---|
377 | p_LmCheckPolyRing(p, r); |
---|
378 | p->exp[r->pOrdIndex] = p_Totaldegree(p, r); |
---|
379 | } |
---|
380 | |
---|
381 | // for wp, Wp, ws, etc |
---|
382 | void p_Setm_WFirstTotalDegree(poly p, const ring r) |
---|
383 | { |
---|
384 | p_LmCheckPolyRing(p, r); |
---|
385 | p->exp[r->pOrdIndex] = p_WFirstTotalDegree(p, r); |
---|
386 | } |
---|
387 | |
---|
388 | p_SetmProc p_GetSetmProc(ring r) |
---|
389 | { |
---|
390 | // covers lp, rp, ls, |
---|
391 | if (r->typ == NULL) return p_Setm_Dummy; |
---|
392 | |
---|
393 | if (r->OrdSize == 1) |
---|
394 | { |
---|
395 | if (r->typ[0].ord_typ == ro_dp && |
---|
396 | r->typ[0].data.dp.start == 1 && |
---|
397 | r->typ[0].data.dp.end == r->N && |
---|
398 | r->typ[0].data.dp.place == r->pOrdIndex) |
---|
399 | return p_Setm_TotalDegree; |
---|
400 | if (r->typ[0].ord_typ == ro_wp && |
---|
401 | r->typ[0].data.wp.start == 1 && |
---|
402 | r->typ[0].data.wp.end == r->N && |
---|
403 | r->typ[0].data.wp.place == r->pOrdIndex && |
---|
404 | r->typ[0].data.wp.weights == r->firstwv) |
---|
405 | return p_Setm_WFirstTotalDegree; |
---|
406 | } |
---|
407 | return p_Setm_General; |
---|
408 | } |
---|
409 | |
---|
410 | |
---|
411 | /* -------------------------------------------------------------------*/ |
---|
412 | /* several possibilities for pFDeg: the degree of the head term */ |
---|
413 | |
---|
414 | /* comptible with ordering */ |
---|
415 | long pDeg(poly a, const ring r) |
---|
416 | { |
---|
417 | p_LmCheckPolyRing(a, r); |
---|
418 | assume(p_GetOrder(a, r) == p_WTotaldegree(a, r)); |
---|
419 | return p_GetOrder(a, r); |
---|
420 | } |
---|
421 | |
---|
422 | // p_WTotalDegree for weighted orderings |
---|
423 | // whose first block covers all variables |
---|
424 | long p_WFirstTotalDegree(poly p, const ring r) |
---|
425 | { |
---|
426 | int i; |
---|
427 | long sum = 0; |
---|
428 | |
---|
429 | for (i=1; i<= r->firstBlockEnds; i++) |
---|
430 | { |
---|
431 | sum += p_GetExp(p, i, r)*r->firstwv[i-1]; |
---|
432 | } |
---|
433 | return sum; |
---|
434 | } |
---|
435 | |
---|
436 | /*2 |
---|
437 | * compute the degree of the leading monomial of p |
---|
438 | * with respect to weigths from the ordering |
---|
439 | * the ordering is not compatible with degree so do not use p->Order |
---|
440 | */ |
---|
441 | long p_WTotaldegree(poly p, const ring r) |
---|
442 | { |
---|
443 | p_LmCheckPolyRing(p, r); |
---|
444 | int i, k; |
---|
445 | long j =0; |
---|
446 | |
---|
447 | // iterate through each block: |
---|
448 | for (i=0;r->order[i]!=0;i++) |
---|
449 | { |
---|
450 | int b0=r->block0[i]; |
---|
451 | int b1=r->block1[i]; |
---|
452 | switch(r->order[i]) |
---|
453 | { |
---|
454 | case ringorder_M: |
---|
455 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
456 | { // in jedem block: |
---|
457 | j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn; |
---|
458 | } |
---|
459 | break; |
---|
460 | case ringorder_wp: |
---|
461 | case ringorder_ws: |
---|
462 | case ringorder_Wp: |
---|
463 | case ringorder_Ws: |
---|
464 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
465 | { // in jedem block: |
---|
466 | j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]; |
---|
467 | } |
---|
468 | break; |
---|
469 | case ringorder_lp: |
---|
470 | case ringorder_ls: |
---|
471 | case ringorder_rs: |
---|
472 | case ringorder_dp: |
---|
473 | case ringorder_ds: |
---|
474 | case ringorder_Dp: |
---|
475 | case ringorder_Ds: |
---|
476 | case ringorder_rp: |
---|
477 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
478 | { |
---|
479 | j+= p_GetExp(p,k,r); |
---|
480 | } |
---|
481 | break; |
---|
482 | case ringorder_a64: |
---|
483 | { |
---|
484 | int64* w=(int64*)r->wvhdl[i]; |
---|
485 | for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++) |
---|
486 | { |
---|
487 | //there should be added a line which checks if w[k]>2^31 |
---|
488 | j+= p_GetExp(p,k+1, r)*(long)w[k]; |
---|
489 | } |
---|
490 | //break; |
---|
491 | return j; |
---|
492 | } |
---|
493 | case ringorder_c: |
---|
494 | case ringorder_C: |
---|
495 | case ringorder_S: |
---|
496 | case ringorder_s: |
---|
497 | case ringorder_IS: |
---|
498 | case ringorder_aa: |
---|
499 | break; |
---|
500 | case ringorder_a: |
---|
501 | for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++) |
---|
502 | { // only one line |
---|
503 | j+= p_GetExp(p,k, r)*r->wvhdl[i][ k- b0 /*r->block0[i]*/]; |
---|
504 | } |
---|
505 | //break; |
---|
506 | return j; |
---|
507 | |
---|
508 | #ifndef NDEBUG |
---|
509 | default: |
---|
510 | Print("missing order %d in p_WTotaldegree\n",r->order[i]); |
---|
511 | break; |
---|
512 | #endif |
---|
513 | } |
---|
514 | } |
---|
515 | return j; |
---|
516 | } |
---|
517 | |
---|
518 | int pWeight(int i, const ring r) |
---|
519 | { |
---|
520 | if ((r->firstwv==NULL) || (i>r->firstBlockEnds)) |
---|
521 | { |
---|
522 | return 1; |
---|
523 | } |
---|
524 | return r->firstwv[i-1]; |
---|
525 | } |
---|
526 | |
---|
527 | long pWDegree(poly p, const ring r) |
---|
528 | { |
---|
529 | if (r->firstwv==NULL) return p_Totaldegree(p, r); |
---|
530 | p_LmCheckPolyRing(p, r); |
---|
531 | int i; |
---|
532 | long j =0; |
---|
533 | |
---|
534 | for(i=1;i<=r->firstBlockEnds;i++) |
---|
535 | j+=p_GetExp(p, i, r)*r->firstwv[i-1]; |
---|
536 | |
---|
537 | for (;i<=r->N;i++) |
---|
538 | j+=p_GetExp(p,i, r)*pWeight(i, r); |
---|
539 | |
---|
540 | return j; |
---|
541 | } |
---|
542 | |
---|
543 | |
---|
544 | /* ---------------------------------------------------------------------*/ |
---|
545 | /* several possibilities for pLDeg: the maximal degree of a monomial in p*/ |
---|
546 | /* compute in l also the pLength of p */ |
---|
547 | |
---|
548 | /*2 |
---|
549 | * compute the length of a polynomial (in l) |
---|
550 | * and the degree of the monomial with maximal degree: the last one |
---|
551 | */ |
---|
552 | long pLDeg0(poly p,int *l, const ring r) |
---|
553 | { |
---|
554 | p_CheckPolyRing(p, r); |
---|
555 | long k= p_GetComp(p, r); |
---|
556 | int ll=1; |
---|
557 | |
---|
558 | if (k > 0) |
---|
559 | { |
---|
560 | while ((pNext(p)!=NULL) && (p_GetComp(pNext(p), r)==k)) |
---|
561 | { |
---|
562 | pIter(p); |
---|
563 | ll++; |
---|
564 | } |
---|
565 | } |
---|
566 | else |
---|
567 | { |
---|
568 | while (pNext(p)!=NULL) |
---|
569 | { |
---|
570 | pIter(p); |
---|
571 | ll++; |
---|
572 | } |
---|
573 | } |
---|
574 | *l=ll; |
---|
575 | return r->pFDeg(p, r); |
---|
576 | } |
---|
577 | |
---|
578 | /*2 |
---|
579 | * compute the length of a polynomial (in l) |
---|
580 | * and the degree of the monomial with maximal degree: the last one |
---|
581 | * but search in all components before syzcomp |
---|
582 | */ |
---|
583 | long pLDeg0c(poly p,int *l, const ring r) |
---|
584 | { |
---|
585 | assume(p!=NULL); |
---|
586 | #ifdef PDEBUG |
---|
587 | _p_Test(p,r,PDEBUG); |
---|
588 | #endif |
---|
589 | p_CheckPolyRing(p, r); |
---|
590 | long o; |
---|
591 | int ll=1; |
---|
592 | |
---|
593 | if (! rIsSyzIndexRing(r)) |
---|
594 | { |
---|
595 | while (pNext(p) != NULL) |
---|
596 | { |
---|
597 | pIter(p); |
---|
598 | ll++; |
---|
599 | } |
---|
600 | o = r->pFDeg(p, r); |
---|
601 | } |
---|
602 | else |
---|
603 | { |
---|
604 | int curr_limit = rGetCurrSyzLimit(r); |
---|
605 | poly pp = p; |
---|
606 | while ((p=pNext(p))!=NULL) |
---|
607 | { |
---|
608 | if (p_GetComp(p, r)<=curr_limit/*syzComp*/) |
---|
609 | ll++; |
---|
610 | else break; |
---|
611 | pp = p; |
---|
612 | } |
---|
613 | #ifdef PDEBUG |
---|
614 | _p_Test(pp,r,PDEBUG); |
---|
615 | #endif |
---|
616 | o = r->pFDeg(pp, r); |
---|
617 | } |
---|
618 | *l=ll; |
---|
619 | return o; |
---|
620 | } |
---|
621 | |
---|
622 | /*2 |
---|
623 | * compute the length of a polynomial (in l) |
---|
624 | * and the degree of the monomial with maximal degree: the first one |
---|
625 | * this works for the polynomial case with degree orderings |
---|
626 | * (both c,dp and dp,c) |
---|
627 | */ |
---|
628 | long pLDegb(poly p,int *l, const ring r) |
---|
629 | { |
---|
630 | p_CheckPolyRing(p, r); |
---|
631 | long k= p_GetComp(p, r); |
---|
632 | long o = r->pFDeg(p, r); |
---|
633 | int ll=1; |
---|
634 | |
---|
635 | if (k != 0) |
---|
636 | { |
---|
637 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
638 | { |
---|
639 | ll++; |
---|
640 | } |
---|
641 | } |
---|
642 | else |
---|
643 | { |
---|
644 | while ((p=pNext(p)) !=NULL) |
---|
645 | { |
---|
646 | ll++; |
---|
647 | } |
---|
648 | } |
---|
649 | *l=ll; |
---|
650 | return o; |
---|
651 | } |
---|
652 | |
---|
653 | /*2 |
---|
654 | * compute the length of a polynomial (in l) |
---|
655 | * and the degree of the monomial with maximal degree: |
---|
656 | * this is NOT the last one, we have to look for it |
---|
657 | */ |
---|
658 | long pLDeg1(poly p,int *l, const ring r) |
---|
659 | { |
---|
660 | p_CheckPolyRing(p, r); |
---|
661 | long k= p_GetComp(p, r); |
---|
662 | int ll=1; |
---|
663 | long t,max; |
---|
664 | |
---|
665 | max=r->pFDeg(p, r); |
---|
666 | if (k > 0) |
---|
667 | { |
---|
668 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
669 | { |
---|
670 | t=r->pFDeg(p, r); |
---|
671 | if (t>max) max=t; |
---|
672 | ll++; |
---|
673 | } |
---|
674 | } |
---|
675 | else |
---|
676 | { |
---|
677 | while ((p=pNext(p))!=NULL) |
---|
678 | { |
---|
679 | t=r->pFDeg(p, r); |
---|
680 | if (t>max) max=t; |
---|
681 | ll++; |
---|
682 | } |
---|
683 | } |
---|
684 | *l=ll; |
---|
685 | return max; |
---|
686 | } |
---|
687 | |
---|
688 | /*2 |
---|
689 | * compute the length of a polynomial (in l) |
---|
690 | * and the degree of the monomial with maximal degree: |
---|
691 | * this is NOT the last one, we have to look for it |
---|
692 | * in all components |
---|
693 | */ |
---|
694 | long pLDeg1c(poly p,int *l, const ring r) |
---|
695 | { |
---|
696 | p_CheckPolyRing(p, r); |
---|
697 | int ll=1; |
---|
698 | long t,max; |
---|
699 | |
---|
700 | max=r->pFDeg(p, r); |
---|
701 | if (rIsSyzIndexRing(r)) |
---|
702 | { |
---|
703 | long limit = rGetCurrSyzLimit(r); |
---|
704 | while ((p=pNext(p))!=NULL) |
---|
705 | { |
---|
706 | if (p_GetComp(p, r)<=limit) |
---|
707 | { |
---|
708 | if ((t=r->pFDeg(p, r))>max) max=t; |
---|
709 | ll++; |
---|
710 | } |
---|
711 | else break; |
---|
712 | } |
---|
713 | } |
---|
714 | else |
---|
715 | { |
---|
716 | while ((p=pNext(p))!=NULL) |
---|
717 | { |
---|
718 | if ((t=r->pFDeg(p, r))>max) max=t; |
---|
719 | ll++; |
---|
720 | } |
---|
721 | } |
---|
722 | *l=ll; |
---|
723 | return max; |
---|
724 | } |
---|
725 | |
---|
726 | // like pLDeg1, only pFDeg == pDeg |
---|
727 | long pLDeg1_Deg(poly p,int *l, const ring r) |
---|
728 | { |
---|
729 | assume(r->pFDeg == pDeg); |
---|
730 | p_CheckPolyRing(p, r); |
---|
731 | long k= p_GetComp(p, r); |
---|
732 | int ll=1; |
---|
733 | long t,max; |
---|
734 | |
---|
735 | max=p_GetOrder(p, r); |
---|
736 | if (k > 0) |
---|
737 | { |
---|
738 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
739 | { |
---|
740 | t=p_GetOrder(p, r); |
---|
741 | if (t>max) max=t; |
---|
742 | ll++; |
---|
743 | } |
---|
744 | } |
---|
745 | else |
---|
746 | { |
---|
747 | while ((p=pNext(p))!=NULL) |
---|
748 | { |
---|
749 | t=p_GetOrder(p, r); |
---|
750 | if (t>max) max=t; |
---|
751 | ll++; |
---|
752 | } |
---|
753 | } |
---|
754 | *l=ll; |
---|
755 | return max; |
---|
756 | } |
---|
757 | |
---|
758 | long pLDeg1c_Deg(poly p,int *l, const ring r) |
---|
759 | { |
---|
760 | assume(r->pFDeg == pDeg); |
---|
761 | p_CheckPolyRing(p, r); |
---|
762 | int ll=1; |
---|
763 | long t,max; |
---|
764 | |
---|
765 | max=p_GetOrder(p, r); |
---|
766 | if (rIsSyzIndexRing(r)) |
---|
767 | { |
---|
768 | long limit = rGetCurrSyzLimit(r); |
---|
769 | while ((p=pNext(p))!=NULL) |
---|
770 | { |
---|
771 | if (p_GetComp(p, r)<=limit) |
---|
772 | { |
---|
773 | if ((t=p_GetOrder(p, r))>max) max=t; |
---|
774 | ll++; |
---|
775 | } |
---|
776 | else break; |
---|
777 | } |
---|
778 | } |
---|
779 | else |
---|
780 | { |
---|
781 | while ((p=pNext(p))!=NULL) |
---|
782 | { |
---|
783 | if ((t=p_GetOrder(p, r))>max) max=t; |
---|
784 | ll++; |
---|
785 | } |
---|
786 | } |
---|
787 | *l=ll; |
---|
788 | return max; |
---|
789 | } |
---|
790 | |
---|
791 | // like pLDeg1, only pFDeg == pTotoalDegree |
---|
792 | long pLDeg1_Totaldegree(poly p,int *l, const ring r) |
---|
793 | { |
---|
794 | p_CheckPolyRing(p, r); |
---|
795 | long k= p_GetComp(p, r); |
---|
796 | int ll=1; |
---|
797 | long t,max; |
---|
798 | |
---|
799 | max=p_Totaldegree(p, r); |
---|
800 | if (k > 0) |
---|
801 | { |
---|
802 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
803 | { |
---|
804 | t=p_Totaldegree(p, r); |
---|
805 | if (t>max) max=t; |
---|
806 | ll++; |
---|
807 | } |
---|
808 | } |
---|
809 | else |
---|
810 | { |
---|
811 | while ((p=pNext(p))!=NULL) |
---|
812 | { |
---|
813 | t=p_Totaldegree(p, r); |
---|
814 | if (t>max) max=t; |
---|
815 | ll++; |
---|
816 | } |
---|
817 | } |
---|
818 | *l=ll; |
---|
819 | return max; |
---|
820 | } |
---|
821 | |
---|
822 | long pLDeg1c_Totaldegree(poly p,int *l, const ring r) |
---|
823 | { |
---|
824 | p_CheckPolyRing(p, r); |
---|
825 | int ll=1; |
---|
826 | long t,max; |
---|
827 | |
---|
828 | max=p_Totaldegree(p, r); |
---|
829 | if (rIsSyzIndexRing(r)) |
---|
830 | { |
---|
831 | long limit = rGetCurrSyzLimit(r); |
---|
832 | while ((p=pNext(p))!=NULL) |
---|
833 | { |
---|
834 | if (p_GetComp(p, r)<=limit) |
---|
835 | { |
---|
836 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
837 | ll++; |
---|
838 | } |
---|
839 | else break; |
---|
840 | } |
---|
841 | } |
---|
842 | else |
---|
843 | { |
---|
844 | while ((p=pNext(p))!=NULL) |
---|
845 | { |
---|
846 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
847 | ll++; |
---|
848 | } |
---|
849 | } |
---|
850 | *l=ll; |
---|
851 | return max; |
---|
852 | } |
---|
853 | |
---|
854 | // like pLDeg1, only pFDeg == p_WFirstTotalDegree |
---|
855 | long pLDeg1_WFirstTotalDegree(poly p,int *l, const ring r) |
---|
856 | { |
---|
857 | p_CheckPolyRing(p, r); |
---|
858 | long k= p_GetComp(p, r); |
---|
859 | int ll=1; |
---|
860 | long t,max; |
---|
861 | |
---|
862 | max=p_WFirstTotalDegree(p, r); |
---|
863 | if (k > 0) |
---|
864 | { |
---|
865 | while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k)) |
---|
866 | { |
---|
867 | t=p_WFirstTotalDegree(p, r); |
---|
868 | if (t>max) max=t; |
---|
869 | ll++; |
---|
870 | } |
---|
871 | } |
---|
872 | else |
---|
873 | { |
---|
874 | while ((p=pNext(p))!=NULL) |
---|
875 | { |
---|
876 | t=p_WFirstTotalDegree(p, r); |
---|
877 | if (t>max) max=t; |
---|
878 | ll++; |
---|
879 | } |
---|
880 | } |
---|
881 | *l=ll; |
---|
882 | return max; |
---|
883 | } |
---|
884 | |
---|
885 | long pLDeg1c_WFirstTotalDegree(poly p,int *l, const ring r) |
---|
886 | { |
---|
887 | p_CheckPolyRing(p, r); |
---|
888 | int ll=1; |
---|
889 | long t,max; |
---|
890 | |
---|
891 | max=p_WFirstTotalDegree(p, r); |
---|
892 | if (rIsSyzIndexRing(r)) |
---|
893 | { |
---|
894 | long limit = rGetCurrSyzLimit(r); |
---|
895 | while ((p=pNext(p))!=NULL) |
---|
896 | { |
---|
897 | if (p_GetComp(p, r)<=limit) |
---|
898 | { |
---|
899 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
900 | ll++; |
---|
901 | } |
---|
902 | else break; |
---|
903 | } |
---|
904 | } |
---|
905 | else |
---|
906 | { |
---|
907 | while ((p=pNext(p))!=NULL) |
---|
908 | { |
---|
909 | if ((t=p_Totaldegree(p, r))>max) max=t; |
---|
910 | ll++; |
---|
911 | } |
---|
912 | } |
---|
913 | *l=ll; |
---|
914 | return max; |
---|
915 | } |
---|
916 | |
---|
917 | /*************************************************************** |
---|
918 | * |
---|
919 | * Maximal Exponent business |
---|
920 | * |
---|
921 | ***************************************************************/ |
---|
922 | |
---|
923 | static inline unsigned long |
---|
924 | p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, |
---|
925 | unsigned long number_of_exp) |
---|
926 | { |
---|
927 | const unsigned long bitmask = r->bitmask; |
---|
928 | unsigned long ml1 = l1 & bitmask; |
---|
929 | unsigned long ml2 = l2 & bitmask; |
---|
930 | unsigned long max = (ml1 > ml2 ? ml1 : ml2); |
---|
931 | unsigned long j = number_of_exp - 1; |
---|
932 | |
---|
933 | if (j > 0) |
---|
934 | { |
---|
935 | unsigned long mask = bitmask << r->BitsPerExp; |
---|
936 | while (1) |
---|
937 | { |
---|
938 | ml1 = l1 & mask; |
---|
939 | ml2 = l2 & mask; |
---|
940 | max |= ((ml1 > ml2 ? ml1 : ml2) & mask); |
---|
941 | j--; |
---|
942 | if (j == 0) break; |
---|
943 | mask = mask << r->BitsPerExp; |
---|
944 | } |
---|
945 | } |
---|
946 | return max; |
---|
947 | } |
---|
948 | |
---|
949 | static inline unsigned long |
---|
950 | p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r) |
---|
951 | { |
---|
952 | return p_GetMaxExpL2(l1, l2, r, r->ExpPerLong); |
---|
953 | } |
---|
954 | |
---|
955 | poly p_GetMaxExpP(poly p, const ring r) |
---|
956 | { |
---|
957 | p_CheckPolyRing(p, r); |
---|
958 | if (p == NULL) return p_Init(r); |
---|
959 | poly max = p_LmInit(p, r); |
---|
960 | pIter(p); |
---|
961 | if (p == NULL) return max; |
---|
962 | int i, offset; |
---|
963 | unsigned long l_p, l_max; |
---|
964 | unsigned long divmask = r->divmask; |
---|
965 | |
---|
966 | do |
---|
967 | { |
---|
968 | offset = r->VarL_Offset[0]; |
---|
969 | l_p = p->exp[offset]; |
---|
970 | l_max = max->exp[offset]; |
---|
971 | // do the divisibility trick to find out whether l has an exponent |
---|
972 | if (l_p > l_max || |
---|
973 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
974 | max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r); |
---|
975 | |
---|
976 | for (i=1; i<r->VarL_Size; i++) |
---|
977 | { |
---|
978 | offset = r->VarL_Offset[i]; |
---|
979 | l_p = p->exp[offset]; |
---|
980 | l_max = max->exp[offset]; |
---|
981 | // do the divisibility trick to find out whether l has an exponent |
---|
982 | if (l_p > l_max || |
---|
983 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
984 | max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r); |
---|
985 | } |
---|
986 | pIter(p); |
---|
987 | } |
---|
988 | while (p != NULL); |
---|
989 | return max; |
---|
990 | } |
---|
991 | |
---|
992 | unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max) |
---|
993 | { |
---|
994 | unsigned long l_p, divmask = r->divmask; |
---|
995 | int i; |
---|
996 | |
---|
997 | while (p != NULL) |
---|
998 | { |
---|
999 | l_p = p->exp[r->VarL_Offset[0]]; |
---|
1000 | if (l_p > l_max || |
---|
1001 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1002 | l_max = p_GetMaxExpL2(l_max, l_p, r); |
---|
1003 | for (i=1; i<r->VarL_Size; i++) |
---|
1004 | { |
---|
1005 | l_p = p->exp[r->VarL_Offset[i]]; |
---|
1006 | // do the divisibility trick to find out whether l has an exponent |
---|
1007 | if (l_p > l_max || |
---|
1008 | (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask))) |
---|
1009 | l_max = p_GetMaxExpL2(l_max, l_p, r); |
---|
1010 | } |
---|
1011 | pIter(p); |
---|
1012 | } |
---|
1013 | return l_max; |
---|
1014 | } |
---|
1015 | |
---|
1016 | |
---|
1017 | |
---|
1018 | |
---|
1019 | /*************************************************************** |
---|
1020 | * |
---|
1021 | * Misc things |
---|
1022 | * |
---|
1023 | ***************************************************************/ |
---|
1024 | // returns TRUE, if all monoms have the same component |
---|
1025 | BOOLEAN p_OneComp(poly p, const ring r) |
---|
1026 | { |
---|
1027 | if(p!=NULL) |
---|
1028 | { |
---|
1029 | long i = p_GetComp(p, r); |
---|
1030 | while (pNext(p)!=NULL) |
---|
1031 | { |
---|
1032 | pIter(p); |
---|
1033 | if(i != p_GetComp(p, r)) return FALSE; |
---|
1034 | } |
---|
1035 | } |
---|
1036 | return TRUE; |
---|
1037 | } |
---|
1038 | |
---|
1039 | /*2 |
---|
1040 | *test if a monomial /head term is a pure power |
---|
1041 | */ |
---|
1042 | int p_IsPurePower(const poly p, const ring r) |
---|
1043 | { |
---|
1044 | int i,k=0; |
---|
1045 | |
---|
1046 | for (i=r->N;i;i--) |
---|
1047 | { |
---|
1048 | if (p_GetExp(p,i, r)!=0) |
---|
1049 | { |
---|
1050 | if(k!=0) return 0; |
---|
1051 | k=i; |
---|
1052 | } |
---|
1053 | } |
---|
1054 | return k; |
---|
1055 | } |
---|
1056 | |
---|
1057 | /*2 |
---|
1058 | *test if a polynomial is univariate |
---|
1059 | * return -1 for constant, |
---|
1060 | * 0 for not univariate,s |
---|
1061 | * i if dep. on var(i) |
---|
1062 | */ |
---|
1063 | int p_IsUnivariate(poly p, const ring r) |
---|
1064 | { |
---|
1065 | int i,k=-1; |
---|
1066 | |
---|
1067 | while (p!=NULL) |
---|
1068 | { |
---|
1069 | for (i=r->N;i;i--) |
---|
1070 | { |
---|
1071 | if (p_GetExp(p,i, r)!=0) |
---|
1072 | { |
---|
1073 | if((k!=-1)&&(k!=i)) return 0; |
---|
1074 | k=i; |
---|
1075 | } |
---|
1076 | } |
---|
1077 | pIter(p); |
---|
1078 | } |
---|
1079 | return k; |
---|
1080 | } |
---|
1081 | |
---|
1082 | // set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 |
---|
1083 | int p_GetVariables(poly p, int * e, const ring r) |
---|
1084 | { |
---|
1085 | int i; |
---|
1086 | int n=0; |
---|
1087 | while(p!=NULL) |
---|
1088 | { |
---|
1089 | n=0; |
---|
1090 | for(i=r->N; i>0; i--) |
---|
1091 | { |
---|
1092 | if(e[i]==0) |
---|
1093 | { |
---|
1094 | if (p_GetExp(p,i,r)>0) |
---|
1095 | { |
---|
1096 | e[i]=1; |
---|
1097 | n++; |
---|
1098 | } |
---|
1099 | } |
---|
1100 | else |
---|
1101 | n++; |
---|
1102 | } |
---|
1103 | if (n==r->N) break; |
---|
1104 | pIter(p); |
---|
1105 | } |
---|
1106 | return n; |
---|
1107 | } |
---|
1108 | |
---|
1109 | |
---|
1110 | /*2 |
---|
1111 | * returns a polynomial representing the integer i |
---|
1112 | */ |
---|
1113 | poly p_ISet(int i, const ring r) |
---|
1114 | { |
---|
1115 | poly rc = NULL; |
---|
1116 | if (i!=0) |
---|
1117 | { |
---|
1118 | rc = p_Init(r); |
---|
1119 | pSetCoeff0(rc,n_Init(i,r)); |
---|
1120 | if (r->cf->nIsZero(p_GetCoeff(rc,r))) |
---|
1121 | p_LmDelete(&rc,r); |
---|
1122 | } |
---|
1123 | return rc; |
---|
1124 | } |
---|
1125 | |
---|
1126 | /*2 |
---|
1127 | * an optimized version of p_ISet for the special case 1 |
---|
1128 | */ |
---|
1129 | poly p_One(const ring r) |
---|
1130 | { |
---|
1131 | poly rc = p_Init(r); |
---|
1132 | pSetCoeff0(rc,n_Init(1,r)); |
---|
1133 | return rc; |
---|
1134 | } |
---|
1135 | |
---|
1136 | void p_Split(poly p, poly *h) |
---|
1137 | { |
---|
1138 | *h=pNext(p); |
---|
1139 | pNext(p)=NULL; |
---|
1140 | } |
---|
1141 | |
---|
1142 | /*2 |
---|
1143 | * pair has no common factor ? or is no polynomial |
---|
1144 | */ |
---|
1145 | BOOLEAN p_HasNotCF(poly p1, poly p2, const ring r) |
---|
1146 | { |
---|
1147 | |
---|
1148 | if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0) |
---|
1149 | return FALSE; |
---|
1150 | int i = rVar(r); |
---|
1151 | loop |
---|
1152 | { |
---|
1153 | if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0)) |
---|
1154 | return FALSE; |
---|
1155 | i--; |
---|
1156 | if (i == 0) |
---|
1157 | return TRUE; |
---|
1158 | } |
---|
1159 | } |
---|
1160 | |
---|
1161 | /*2 |
---|
1162 | * convert monomial given as string to poly, e.g. 1x3y5z |
---|
1163 | */ |
---|
1164 | const char * p_Read(const char *st, poly &rc, const ring r) |
---|
1165 | { |
---|
1166 | if (r==NULL) { rc=NULL;return st;} |
---|
1167 | int i,j; |
---|
1168 | rc = p_Init(r); |
---|
1169 | const char *s = r->cf->nRead(st,&(rc->coef)); |
---|
1170 | if (s==st) |
---|
1171 | /* i.e. it does not start with a coeff: test if it is a ringvar*/ |
---|
1172 | { |
---|
1173 | j = r_IsRingVar(s,r); |
---|
1174 | if (j >= 0) |
---|
1175 | { |
---|
1176 | p_IncrExp(rc,1+j,r); |
---|
1177 | while (*s!='\0') s++; |
---|
1178 | goto done; |
---|
1179 | } |
---|
1180 | } |
---|
1181 | while (*s!='\0') |
---|
1182 | { |
---|
1183 | char ss[2]; |
---|
1184 | ss[0] = *s++; |
---|
1185 | ss[1] = '\0'; |
---|
1186 | j = r_IsRingVar(ss,r); |
---|
1187 | if (j >= 0) |
---|
1188 | { |
---|
1189 | const char *s_save=s; |
---|
1190 | s = eati(s,&i); |
---|
1191 | if (((unsigned long)i) > r->bitmask) |
---|
1192 | { |
---|
1193 | // exponent to large: it is not a monomial |
---|
1194 | p_LmDelete(&rc,r); |
---|
1195 | return s_save; |
---|
1196 | } |
---|
1197 | p_AddExp(rc,1+j, (long)i, r); |
---|
1198 | } |
---|
1199 | else |
---|
1200 | { |
---|
1201 | // 1st char of is not a varname |
---|
1202 | p_LmDelete(&rc,r); |
---|
1203 | s--; |
---|
1204 | return s; |
---|
1205 | } |
---|
1206 | } |
---|
1207 | done: |
---|
1208 | if (r->cf->nIsZero(pGetCoeff(rc))) p_LmDelete(&rc,r); |
---|
1209 | else |
---|
1210 | { |
---|
1211 | #ifdef HAVE_PLURAL |
---|
1212 | // in super-commutative ring |
---|
1213 | // squares of anti-commutative variables are zeroes! |
---|
1214 | if(rIsSCA(r)) |
---|
1215 | { |
---|
1216 | const unsigned int iFirstAltVar = scaFirstAltVar(r); |
---|
1217 | const unsigned int iLastAltVar = scaLastAltVar(r); |
---|
1218 | |
---|
1219 | assume(rc != NULL); |
---|
1220 | |
---|
1221 | for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++) |
---|
1222 | if( p_GetExp(rc, k, r) > 1 ) |
---|
1223 | { |
---|
1224 | p_LmDelete(&rc, r); |
---|
1225 | goto finish; |
---|
1226 | } |
---|
1227 | } |
---|
1228 | #endif |
---|
1229 | |
---|
1230 | p_Setm(rc,r); |
---|
1231 | } |
---|
1232 | finish: |
---|
1233 | return s; |
---|
1234 | } |
---|
1235 | poly p_mInit(const char *st, BOOLEAN &ok, const ring r) |
---|
1236 | { |
---|
1237 | poly p; |
---|
1238 | const char *s=p_Read(st,p,r); |
---|
1239 | if (*s!='\0') |
---|
1240 | { |
---|
1241 | if ((s!=st)&&isdigit(st[0])) |
---|
1242 | { |
---|
1243 | errorreported=TRUE; |
---|
1244 | } |
---|
1245 | ok=FALSE; |
---|
1246 | p_Delete(&p,r); |
---|
1247 | return NULL; |
---|
1248 | } |
---|
1249 | #ifdef PDEBUG |
---|
1250 | _p_Test(p,r,PDEBUG); |
---|
1251 | #endif |
---|
1252 | ok=!errorreported; |
---|
1253 | return p; |
---|
1254 | } |
---|
1255 | |
---|
1256 | /*2 |
---|
1257 | * returns a polynomial representing the number n |
---|
1258 | * destroys n |
---|
1259 | */ |
---|
1260 | poly p_NSet(number n, const ring r) |
---|
1261 | { |
---|
1262 | if (r->cf->nIsZero(n)) |
---|
1263 | { |
---|
1264 | r->cf->cfDelete(&n, r); |
---|
1265 | return NULL; |
---|
1266 | } |
---|
1267 | else |
---|
1268 | { |
---|
1269 | poly rc = p_Init(r); |
---|
1270 | pSetCoeff0(rc,n); |
---|
1271 | return rc; |
---|
1272 | } |
---|
1273 | } |
---|
1274 | |
---|
1275 | /*************************************************************** |
---|
1276 | * |
---|
1277 | * p_ShallowDelete |
---|
1278 | * |
---|
1279 | ***************************************************************/ |
---|
1280 | #undef LINKAGE |
---|
1281 | #define LINKAGE |
---|
1282 | #undef p_Delete |
---|
1283 | #define p_Delete p_ShallowDelete |
---|
1284 | #undef n_Delete |
---|
1285 | #define n_Delete(n, r) ((void)0) |
---|
1286 | |
---|
1287 | #include <kernel/p_Delete__T.cc> |
---|
1288 | |
---|