Changeset 065ed6 in git for Tst/Long/monodromy_l.tst
 Timestamp:
 Dec 28, 1998, 3:37:14 PM (25 years ago)
 Branches:
 (u'fiekerDuVal', '117eb8c30fc9e991c4decca4832b1d19036c4c65')(u'spielwiese', 'b52fc4b2495505785981d640dcf7eb3e456778ef')
 Children:
 d77d7010323da74b6c03edd8c8f29a1577a1ace6
 Parents:
 66968388c61cc598cbf981f8917ef5bfcc506cfa
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

Tst/Long/monodromy_l.tst
r669683 r065ed6 1 1 LIB "tst.lib"; 2 2 tst_init(); 3 tst_ignore("CVS ID $Id: monodromy_l.tst,v 1. 4 19981221 12:37:23 obachmanExp $");3 tst_ignore("CVS ID $Id: monodromy_l.tst,v 1.5 19981228 14:37:14 mschulze Exp $"); 4 4 5 5 LIB "monodromy.lib"; 6 7 ring R=0,(x,y,z),ds; 6 LIB "jordan.lib"; 8 7 9 8 list unimodal= 10 "P[8]", x3+y3+z3+xyz,11 "X[9]", x4+y4+x2y2,12 "J[10]", x3+y6+x2y2,13 "T[3,4,5]", x3+y4+z5+xyz,14 "T[3,4,6]", x3+y4+z6+xyz,15 "T[ 3,5,6]",x3+y5+z6+xyz,16 "E[12]", x3+y7+xy5,17 "E[13]", x3+xy5+y8,18 "E[14]", x3+y8+xy6,19 "Z[11]", x3y+y5+xy4,20 "Z[12]", x3y+xy4+x2y3,21 "Z[13]", x3y+y6+xy5,22 "W[12]", x4+y5+x2y3,23 "W[13]", x4+xy4+y6,24 "Q[10]", x3+y4+yz2+xy3,25 "Q[11]", x3+y2z+xz3+z5,26 "Q[12]", x3+y5+yz2+xy4,27 "S[11]", x4+y2z+xz2+x3z,28 "S[12]", x2y+y2z+xz3+z5,29 "U[12]", x3+y3+z4+xyz2;9 "P[8]","x,y,z","x3+y3+z3+xyz", 10 "X[9]","x,y","x4+y4+x2y2", 11 "J[10]","x,y","x3+y6+x2y2", 12 "T[3,4,5]","x,y,z","x3+y4+z5+xyz", 13 "T[3,4,6]","x,y,z","x3+y4+z6+xyz", 14 "T[4,5,6]","x,y,z","x4+y5+z6+xyz", 15 "E[12]","x,y","x3+y7+xy5", 16 "E[13]","x,y","x3+xy5+y8", 17 "E[14]","x,y","x3+y8+xy6", 18 "Z[11]","x,y","x3y+y5+xy4", 19 "Z[12]","x,y","x3y+xy4+x2y32", 20 "Z[13]","x,y","x3y+y6+xy5", 21 "W[12]","x,y","x4+y5+x2y3", 22 "W[13]","x,y","x4+xy4+y6", 23 "Q[10]","x,y,z","x3+y4+yz2+xy3", 24 "Q[11]","x,y,z","x3+y2z+xz3+z5", 25 "Q[12]","x,y,z","x3+y5+yz2+xy4", 26 "S[11]","x,y,z","x4+y2z+xz2+x3z", 27 "S[12]","x,y,z","x2y+y2z+xz3+z5", 28 "U[12]","x,y,z","x3+y3+z4+xyz2"; 30 29 31 30 list bimodal= 32 //"J[3,0]", x3+x2y3+y9+xy7,33 "J[3,1]", x3+x2y3+y10,34 "J[3,2]", x3+x2y3+y11,35 //"Z[1,0]", x3y+x2y3+xy6+y7,36 //"Z[1,1]",x3y+x2y3+y8,37 //"Z[1,2]",x3y+x2y3+y9,38 "W[1,0]", x4+x2y3+y6,39 "W[1,1]", x4+x2y3+y7,40 "W[1,2]", x4+x2y3+y8,41 //"W#[1,1]",(x2+y3)^2+xy5,42 //"W#[1,2]",(x2+y3)^2+x2y4,43 //"W#[1,3]",(x2+y3)^2+xy6,44 //"W#[1,4]", (x2+y3)^2+x2y5,45 "Q[2,0]", x3+yz2+x2y2+xy4,46 "Q[2,1]", x3+yz2+x2y2+y7,47 "Q[2,2]", x3+yz2+x2y2+y8,48 "S[1,0]", x2z+yz2+y5+zy3,49 "S[1,1]", x2z+yz2+x2y2+y6,50 "S[1,2]", x2z+yz2+x2y2+y7,51 //"S#[1,1]",x2z+yz2+zy3+xy4,52 //"S#[1,2]",x2z+yz2+zy3+x2y3,53 //"S#[1,3]",x2z+yz2+zy3+xy5,54 //"S#[1,4]", x2z+yz2+zy3+x2y4,55 "U[1,0]", x3+xz2+xy3+y3z,56 "U[1,1]", x3+xz2+xy3+y2z2,57 "U[1,2]", x3+xz2+xy3+y4z,58 "U[1,3]", x3+xz2+xy3+y3z2,59 "U[1,4]", x3+xz2+xy3+y5z,60 "E[18]", x3+y10+xy7,61 "E[19]", x3+xy7+y11,62 "E[20]", x3+y11+xy8,63 "Z[17]", x3y+y8+xy6,64 "Z[18]", x3y+xy6+y9,65 "Z[19]", x3y+y9+xy7,66 "W[17]", x4+xy5+y7,67 "W[18]", x4+y7+x2y4,68 "Q[16]", x3+yz2+y7+xy5,69 "Q[17]",x2z+yz2+xy5+y8,70 "Q[18]", x3+yz2+y8+xy6,71 "S[16]", x2z+yz2+xy4+y6,72 "S[17]", x2z+yz2+y6+zy4,73 "U[16]", x3+xz2+y5+x2y2;31 //"J[3,0]","x,y","x3+x2y3+y9+xy7", 32 "J[3,1]","x,y","x3+x2y3+y10", 33 "J[3,2]","x,y","x3+x2y3+y11", 34 //"Z[1,0]","x,y","x3y+x2y3+xy6+y7", 35 "Z[1,1]","x,y","x3y+x2y3+y8", 36 "Z[1,2]","x,y","x3y+x2y3+y9", 37 "W[1,0]","x,y","x4+x2y3+y6", 38 "W[1,1]","x,y","x4+x2y3+y7", 39 "W[1,2]","x,y","x4+x2y3+y8", 40 "W#[1,1]","x,y","(x2+y3)^2+xy5", 41 "W#[1,2]","x,y","(x2+y3)^2+x2y4", 42 "W#[1,3]","x,y","(x2+y3)^2+xy6", 43 //"W#[1,4]","x,y","(x2+y3)^2+x2y5", 44 "Q[2,0]","x,y,z","x3+yz2+x2y2+xy4", 45 "Q[2,1]","x,y,z","x3+yz2+x2y2+y7", 46 "Q[2,2]","x,y,z","x3+yz2+x2y2+y8", 47 "S[1,0]","x,y,z","x2z+yz2+y5+zy3", 48 "S[1,1]","x,y,z","x2z+yz2+x2y2+y6", 49 "S[1,2]","x,y,z","x2z+yz2+x2y2+y7", 50 "S#[1,1]","x,y,z","x2z+yz2+zy3+xy4", 51 "S#[1,2]","x,y,z","x2z+yz2+zy3+x2y3", 52 "S#[1,3]","x,y,z","x2z+yz2+zy3+xy5", 53 //"S#[1,4]","x,y,z","x2z+yz2+zy3+x2y4", 54 "U[1,0]","x,y,z","x3+xz2+xy3+y3z", 55 "U[1,1]","x,y,z","x3+xz2+xy3+y2z2", 56 "U[1,2]","x,y,z","x3+xz2+xy3+y4z", 57 "U[1,3]","x,y,z","x3+xz2+xy3+y3z2", 58 "U[1,4]","x,y,z","x3+xz2+xy3+y5z", 59 "E[18]","x,y","x3+y10+xy7", 60 "E[19]","x,y","x3+xy7+y11", 61 "E[20]","x,y","x3+y11+xy8", 62 "Z[17]","x,y","x3y+y8+xy6", 63 "Z[18]","x,y","x3y+xy6+y9", 64 "Z[19]","x,y","x3y+y9+xy7", 65 "W[17]","x,y","x4+xy5+y7", 66 "W[18]","x,y","x4+y7+x2y4", 67 "Q[16]","x,y,z","x3+yz2+y7+xy5", 68 //"Q[17]","x,y,z","x2z+yz2+xy5+y8", 69 "Q[18]","x,y,z","x3+yz2+y8+xy6", 70 "S[16]","x,y,z","x2z+yz2+xy4+y6", 71 "S[17]","x,y,z","x2z+yz2+y6+zy4", 72 "U[16]","x,y,z","x3+xz2+y5+x2y2"; 74 73 75 proc tst_monodromy( string s,poly p)74 proc tst_monodromy(list data) 76 75 { 77 map m=basering,x,y,0; 78 if(p==m(p)) 76 int i; 77 string s,typ; 78 for(i=1;i<=size(data);i=i+3) 79 79 { 80 def R=basering; 81 ring r=0,(x,y),ds; 82 export r; 83 poly p=imap(R,p); 84 } 85 86 "**************** "+s+" ****************"; 87 print(monodromy(p)); 88 tst_status(); 89 90 if(nvars(basering)==2) 91 { 92 kill r; 80 s="typ=\""+data[i]+"\";"; 81 execute(s); 82 s="ring R=0,("+data[i+1]+"),ds;"; 83 execute(s); 84 export(R); 85 s="poly f="+data[i+2]+";"; 86 execute(s); 87 typ; 88 jordan(monodromy(f)); 89 tst_status(); 90 kill R; 93 91 } 94 92 } 95 93 96 int i; 97 list l=unimodal; 98 for(i=1;i<=size(l);i=i+2) 99 { 100 tst_monodromy(l[i],l[i+1]); 101 } 94 tst_monodromy(unimodal); 102 95 103 96 tst_status(1); $
Note: See TracChangeset
for help on using the changeset viewer.