Changeset 065ed6 in git for Tst/Long/monodromy_l.tst


Ignore:
Timestamp:
Dec 28, 1998, 3:37:14 PM (25 years ago)
Author:
Mathias Schulze <mschulze@…>
Branches:
(u'fieker-DuVal', '117eb8c30fc9e991c4decca4832b1d19036c4c65')(u'spielwiese', 'b52fc4b2495505785981d640dcf7eb3e456778ef')
Children:
d77d7010323da74b6c03edd8c8f29a1577a1ace6
Parents:
66968388c61cc598cbf981f8917ef5bfcc506cfa
Message:
*mschulze: now i use jordan.lib to give the result more meaning


git-svn-id: file:///usr/local/Singular/svn/trunk@2782 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Tst/Long/monodromy_l.tst

    r669683 r065ed6  
    11LIB "tst.lib";
    22tst_init();
    3 tst_ignore("CVS ID $Id: monodromy_l.tst,v 1.4 1998-12-21 12:37:23 obachman Exp $");
     3tst_ignore("CVS ID $Id: monodromy_l.tst,v 1.5 1998-12-28 14:37:14 mschulze Exp $");
    44
    55LIB "monodromy.lib";
    6 
    7 ring R=0,(x,y,z),ds;
     6LIB "jordan.lib";
    87
    98list unimodal=
    10 "P[8]",x3+y3+z3+xyz,
    11 "X[9]",x4+y4+x2y2,
    12 "J[10]",x3+y6+x2y2,
    13 "T[3,4,5]",x3+y4+z5+xyz,
    14 "T[3,4,6]",x3+y4+z6+xyz,
    15 "T[3,5,6]",x3+y5+z6+xyz,
    16 "E[12]",x3+y7+xy5,
    17 "E[13]",x3+xy5+y8,
    18 "E[14]",x3+y8+xy6,
    19 "Z[11]",x3y+y5+xy4,
    20 "Z[12]",x3y+xy4+x2y3,
    21 "Z[13]",x3y+y6+xy5,
    22 "W[12]",x4+y5+x2y3,
    23 "W[13]",x4+xy4+y6,
    24 "Q[10]",x3+y4+yz2+xy3,
    25 "Q[11]",x3+y2z+xz3+z5,
    26 "Q[12]",x3+y5+yz2+xy4,
    27 "S[11]",x4+y2z+xz2+x3z,
    28 "S[12]",x2y+y2z+xz3+z5,
    29 "U[12]",x3+y3+z4+xyz2;
     9"P[8]","x,y,z","x3+y3+z3+xyz",
     10"X[9]","x,y","x4+y4+x2y2",
     11"J[10]","x,y","x3+y6+x2y2",
     12"T[3,4,5]","x,y,z","x3+y4+z5+xyz",
     13"T[3,4,6]","x,y,z","x3+y4+z6+xyz",
     14"T[4,5,6]","x,y,z","x4+y5+z6+xyz",
     15"E[12]","x,y","x3+y7+xy5",
     16"E[13]","x,y","x3+xy5+y8",
     17"E[14]","x,y","x3+y8+xy6",
     18"Z[11]","x,y","x3y+y5+xy4",
     19"Z[12]","x,y","x3y+xy4+x2y32",
     20"Z[13]","x,y","x3y+y6+xy5",
     21"W[12]","x,y","x4+y5+x2y3",
     22"W[13]","x,y","x4+xy4+y6",
     23"Q[10]","x,y,z","x3+y4+yz2+xy3",
     24"Q[11]","x,y,z","x3+y2z+xz3+z5",
     25"Q[12]","x,y,z","x3+y5+yz2+xy4",
     26"S[11]","x,y,z","x4+y2z+xz2+x3z",
     27"S[12]","x,y,z","x2y+y2z+xz3+z5",
     28"U[12]","x,y,z","x3+y3+z4+xyz2";
    3029
    3130list bimodal=
    32 //"J[3,0]",x3+x2y3+y9+xy7,
    33 "J[3,1]",x3+x2y3+y10,
    34 "J[3,2]",x3+x2y3+y11,
    35 //"Z[1,0]",x3y+x2y3+xy6+y7,
    36 //"Z[1,1]",x3y+x2y3+y8,
    37 //"Z[1,2]",x3y+x2y3+y9,
    38 "W[1,0]",x4+x2y3+y6,
    39 "W[1,1]",x4+x2y3+y7,
    40 "W[1,2]",x4+x2y3+y8,
    41 //"W#[1,1]",(x2+y3)^2+xy5,
    42 //"W#[1,2]",(x2+y3)^2+x2y4,
    43 //"W#[1,3]",(x2+y3)^2+xy6,
    44 //"W#[1,4]",(x2+y3)^2+x2y5,
    45 "Q[2,0]",x3+yz2+x2y2+xy4,
    46 "Q[2,1]",x3+yz2+x2y2+y7,
    47 "Q[2,2]",x3+yz2+x2y2+y8,
    48 "S[1,0]",x2z+yz2+y5+zy3,
    49 "S[1,1]",x2z+yz2+x2y2+y6,
    50 "S[1,2]",x2z+yz2+x2y2+y7,
    51 //"S#[1,1]",x2z+yz2+zy3+xy4,
    52 //"S#[1,2]",x2z+yz2+zy3+x2y3,
    53 //"S#[1,3]",x2z+yz2+zy3+xy5,
    54 //"S#[1,4]",x2z+yz2+zy3+x2y4,
    55 "U[1,0]",x3+xz2+xy3+y3z,
    56 "U[1,1]",x3+xz2+xy3+y2z2,
    57 "U[1,2]",x3+xz2+xy3+y4z,
    58 "U[1,3]",x3+xz2+xy3+y3z2,
    59 "U[1,4]",x3+xz2+xy3+y5z,
    60 "E[18]",x3+y10+xy7,
    61 "E[19]",x3+xy7+y11,
    62 "E[20]",x3+y11+xy8,
    63 "Z[17]",x3y+y8+xy6,
    64 "Z[18]",x3y+xy6+y9,
    65 "Z[19]",x3y+y9+xy7,
    66 "W[17]",x4+xy5+y7,
    67 "W[18]",x4+y7+x2y4,
    68 "Q[16]",x3+yz2+y7+xy5,
    69 "Q[17]",x2z+yz2+xy5+y8,
    70 "Q[18]",x3+yz2+y8+xy6,
    71 "S[16]",x2z+yz2+xy4+y6,
    72 "S[17]",x2z+yz2+y6+zy4,
    73 "U[16]",x3+xz2+y5+x2y2;
     31//"J[3,0]","x,y","x3+x2y3+y9+xy7",
     32"J[3,1]","x,y","x3+x2y3+y10",
     33"J[3,2]","x,y","x3+x2y3+y11",
     34//"Z[1,0]","x,y","x3y+x2y3+xy6+y7",
     35"Z[1,1]","x,y","x3y+x2y3+y8",
     36"Z[1,2]","x,y","x3y+x2y3+y9",
     37"W[1,0]","x,y","x4+x2y3+y6",
     38"W[1,1]","x,y","x4+x2y3+y7",
     39"W[1,2]","x,y","x4+x2y3+y8",
     40"W#[1,1]","x,y","(x2+y3)^2+xy5",
     41"W#[1,2]","x,y","(x2+y3)^2+x2y4",
     42"W#[1,3]","x,y","(x2+y3)^2+xy6",
     43//"W#[1,4]","x,y","(x2+y3)^2+x2y5",
     44"Q[2,0]","x,y,z","x3+yz2+x2y2+xy4",
     45"Q[2,1]","x,y,z","x3+yz2+x2y2+y7",
     46"Q[2,2]","x,y,z","x3+yz2+x2y2+y8",
     47"S[1,0]","x,y,z","x2z+yz2+y5+zy3",
     48"S[1,1]","x,y,z","x2z+yz2+x2y2+y6",
     49"S[1,2]","x,y,z","x2z+yz2+x2y2+y7",
     50"S#[1,1]","x,y,z","x2z+yz2+zy3+xy4",
     51"S#[1,2]","x,y,z","x2z+yz2+zy3+x2y3",
     52"S#[1,3]","x,y,z","x2z+yz2+zy3+xy5",
     53//"S#[1,4]","x,y,z","x2z+yz2+zy3+x2y4",
     54"U[1,0]","x,y,z","x3+xz2+xy3+y3z",
     55"U[1,1]","x,y,z","x3+xz2+xy3+y2z2",
     56"U[1,2]","x,y,z","x3+xz2+xy3+y4z",
     57"U[1,3]","x,y,z","x3+xz2+xy3+y3z2",
     58"U[1,4]","x,y,z","x3+xz2+xy3+y5z",
     59"E[18]","x,y","x3+y10+xy7",
     60"E[19]","x,y","x3+xy7+y11",
     61"E[20]","x,y","x3+y11+xy8",
     62"Z[17]","x,y","x3y+y8+xy6",
     63"Z[18]","x,y","x3y+xy6+y9",
     64"Z[19]","x,y","x3y+y9+xy7",
     65"W[17]","x,y","x4+xy5+y7",
     66"W[18]","x,y","x4+y7+x2y4",
     67"Q[16]","x,y,z","x3+yz2+y7+xy5",
     68//"Q[17]","x,y,z","x2z+yz2+xy5+y8",
     69"Q[18]","x,y,z","x3+yz2+y8+xy6",
     70"S[16]","x,y,z","x2z+yz2+xy4+y6",
     71"S[17]","x,y,z","x2z+yz2+y6+zy4",
     72"U[16]","x,y,z","x3+xz2+y5+x2y2";
    7473
    75 proc tst_monodromy(string s,poly p)
     74proc tst_monodromy(list data)
    7675{
    77   map m=basering,x,y,0;
    78   if(p==m(p))
     76  int i;
     77  string s,typ;
     78  for(i=1;i<=size(data);i=i+3)
    7979  {
    80     def R=basering;
    81     ring r=0,(x,y),ds;
    82     export r;
    83     poly p=imap(R,p);
    84   }
    85 
    86   "**************** "+s+" ****************";
    87   print(monodromy(p));
    88   tst_status();
    89 
    90   if(nvars(basering)==2)
    91   {
    92     kill r;
     80    s="typ=\""+data[i]+"\";";
     81    execute(s);
     82    s="ring R=0,("+data[i+1]+"),ds;";
     83    execute(s);
     84    export(R);
     85    s="poly f="+data[i+2]+";";
     86    execute(s);
     87    typ;
     88    jordan(monodromy(f));
     89    tst_status();
     90    kill R;
    9391  }
    9492}
    9593
    96 int i;
    97 list l=unimodal;
    98 for(i=1;i<=size(l);i=i+2)
    99 {
    100   tst_monodromy(l[i],l[i+1]);
    101 }
     94tst_monodromy(unimodal);
    10295
    10396tst_status(1); $
Note: See TracChangeset for help on using the changeset viewer.