Changeset 06df101 in git for libpolys/tests/polys_test.h
 Timestamp:
 Jul 6, 2011, 4:41:07 PM (12 years ago)
 Branches:
 (u'spielwiese', '91fdef05f09f54b8d58d92a472e9c4a43aa4656f')
 Children:
 6c19d854882ab99fd19b9b972a32606106c2f2ee
 Parents:
 2d3091c7bb239cd4787574560ab475ac88621da7
 gitauthor:
 Frank Seelisch <seelisch@mathematik.unikl.de>20110706 16:41:07+02:00
 gitcommitter:
 Mohamed Barakat <mohamed.barakat@rwthaachen.de>20111109 12:39:12+01:00
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

libpolys/tests/polys_test.h
r2d3091c r06df101 220 220 { 221 221 poly t = p_ISet(c, r); 222 if (exp > 0) { p_SetExp(t, i, exp, r); p_Setm(t, r); } 223 p = p_Add_q(p, t, r); 224 } 225 /* assumes that r is over Q; 226 replaces p by p + c1 / c2 * var(i)^exp (inplace); 227 expects exp >= 0, and c2 != 0 */ 228 void plusTermOverQ(poly &p, int c1, int c2, int i, int exp, const ring r) 229 { 230 number c1AsN = n_Init(c1, r>cf); 231 number c2AsN = n_Init(c2, r>cf); 232 number c = n_Div(c1AsN, c2AsN, r>cf); 233 poly t = p_ISet(1, r); p_SetCoeff(t, c, r); 222 234 if (exp > 0) { p_SetExp(t, i, exp, r); p_Setm(t, r); } 223 235 p = p_Add_q(p, t, r); … … 2493 2505 poly theProduct = p_Mult_q(entry, factor, s); 2494 2506 p_Write(theProduct, s); 2495 clog << " ending multiplication..." << endl;2507 clog << "...ending multiplication" << endl; 2496 2508 n_Delete(&qfactorAsN, cf); p_Delete(&theProduct, s); 2497 2509 … … 2508 2520 /* The following multiplication + output of the product is very slow 2509 2521 in the svn/trunk SINGULAR version; see trac ticket #308. 2510 Here, in the Spielwiese, the result is instantaneous !*/2522 Here, in the Spielwiese, the result is instantaneous. */ 2511 2523 theProduct = p_Mult_q(entry, factor, s); 2512 2524 p_Write(theProduct, s); 2513 clog << " ending very special multiplication..." << endl;2525 clog << "...ending very special multiplication" << endl; 2514 2526 n_Delete(&qfactorAsN, cf); p_Delete(&theProduct, s); 2527 2528 rDelete(s); // kills 'cf' and 'r' as well 2529 } 2530 void test_Q_Ext_s_t_NestedFractions() 2531 { 2532 clog << "Start by creating Q[s, t]..." << endl; 2533 2534 char* n[] = {"s", "t"}; 2535 ring r = rDefault( 0, 2, n); // Q[s, t] 2536 TS_ASSERT_DIFFERS( r, NULLp ); 2537 2538 PrintRing(r); 2539 2540 TS_ASSERT( rField_is_Domain(r) ); 2541 TS_ASSERT( rField_is_Q(r) ); 2542 2543 TS_ASSERT( !rField_is_Zp(r) ); 2544 TS_ASSERT( !rField_is_Zp(r, 17) ); 2545 2546 TS_ASSERT_EQUALS( rVar(r), 2); 2547 2548 n_coeffType type = nRegister(n_transExt, ntInitChar); 2549 TS_ASSERT(type == n_transExt); 2550 2551 TransExtInfo extParam; 2552 extParam.r = r; 2553 2554 clog << "Next create the rational function field Q(s, t)..." << endl; 2555 2556 const coeffs cf = nInitChar(type, &extParam); // Q(s, t) 2557 2558 if( cf == NULL ) 2559 TS_FAIL("Could not get needed coeff. domain"); 2560 2561 TS_ASSERT_DIFFERS( cf>cfCoeffWrite, NULLp ); 2562 2563 if( cf>cfCoeffWrite != NULL ) 2564 { 2565 clog << "Coeffdomain: " << endl; 2566 n_CoeffWrite(cf); PrintLn(); 2567 } 2568 2569 TS_ASSERT( !nCoeff_is_algExt(cf) ); 2570 TS_ASSERT( nCoeff_is_transExt(cf) ); 2571 2572 clog << "Finally create the polynomial ring Q(s, t)[x, y, z]..." 2573 << endl; 2574 2575 char* m[] = {"x", "y", "z"}; 2576 ring s = rDefault(cf, 3, m); // Q(s, t)[x, y, z] 2577 TS_ASSERT_DIFFERS(s, NULLp); 2578 2579 PrintRing(s); 2580 2581 TS_ASSERT( rField_is_Domain(s) ); 2582 TS_ASSERT( !rField_is_Q(s) ); 2583 TS_ASSERT( !rField_is_Zp(s) ); 2584 TS_ASSERT( !rField_is_Zp(s, 11) ); 2585 TS_ASSERT( !rField_is_Zp(s, 17) ); 2586 TS_ASSERT( !rField_is_GF(s) ); 2587 TS_ASSERT( rField_is_Extension(s) ); 2588 TS_ASSERT( !rField_is_GF(s, 25) ); 2589 TS_ASSERT_EQUALS(rVar(s), 3); 2590 2591 /* test 1 for nested fractions, i.e. fractional coefficients: */ 2592 poly v1 = NULL; 2593 plusTermOverQ(v1, 21, 2, 1, 1, cf>extRing); // 21/2*s 2594 plusTermOverQ(v1, 14, 3, 1, 0, cf>extRing); // 21/2*s + 14/3 2595 number v1_n = toFractionNumber(v1, cf); 2596 PrintSized(v1_n, cf); 2597 poly v2 = NULL; 2598 plusTermOverQ(v2, 7, 5, 1, 1, cf>extRing); // 7/5*s 2599 plusTermOverQ(v2, 49, 6, 2, 1, cf>extRing); // 7/5*s  49/6*t 2600 number v2_n = toFractionNumber(v2, cf); 2601 PrintSized(v2_n, cf); 2602 number v3_n = n_Div(v1_n, v2_n, cf); // (45*s + 20) / (6s  35*t) 2603 PrintSized(v3_n, cf); 2604 n_Delete(&v1_n, cf); n_Delete(&v2_n, cf); n_Delete(&v3_n, cf); 2605 2606 /* test 2 for nested fractions, i.e. fractional coefficients: */ 2607 v1 = NULL; 2608 plusTermOverQ(v1, 1, 2, 1, 1, cf>extRing); // 1/2*s 2609 plusTermOverQ(v1, 1, 1, 1, 0, cf>extRing); // 1/2*s + 1 2610 v2 = NULL; 2611 plusTermOverQ(v2, 1, 1, 1, 1, cf>extRing); // s 2612 plusTermOverQ(v2, 2, 3, 2, 1, cf>extRing); // s + 2/3*t 2613 poly v3 = p_Mult_q(v1, v2, cf>extRing); // (1/2*s + 1) * (s + 2/3*t) 2614 number v_n = toFractionNumber(v3, cf); 2615 PrintSized(v_n, cf); 2616 poly w1 = NULL; 2617 plusTermOverQ(w1, 1, 2, 1, 1, cf>extRing); // 1/2*s 2618 plusTermOverQ(w1, 1, 1, 1, 0, cf>extRing); // 1/2*s + 1 2619 poly w2 = NULL; 2620 plusTermOverQ(w2, 7, 5, 1, 0, cf>extRing); // 7/5 2621 poly w3 = p_Mult_q(w1, w2, cf>extRing); // (1/2*s + 1) * (7/5) 2622 number w_n = toFractionNumber(w3, cf); 2623 PrintSized(w_n, cf); 2624 number z_n = n_Div(v_n, w_n, cf); // 5/7*s  10/21*t 2625 PrintSized(z_n, cf); 2626 n_Delete(&v_n, cf); n_Delete(&w_n, cf); n_Delete(&z_n, cf); 2515 2627 2516 2628 rDelete(s); // kills 'cf' and 'r' as well
Note: See TracChangeset
for help on using the changeset viewer.