# Changeset 0a2f7d in git

Ignore:
Timestamp:
Sep 30, 2010, 9:58:57 PM (14 years ago)
Branches:
Children:
f4490f5c61db9f9a1ab08da7fe11fb449e09f040
Parents:
Message:
```*levandov: checklib changes of libs form Aachen

Location:
Singular/LIB
Files:
5 edited

Unmodified
Removed
• ## Singular/LIB/dmod.lib

 r3576f6 Jorge Martin Morales,    jorge@unizar.es THEORY: Let K be a field of characteristic 0. Given a polynomial ring OVERVIEW: Theory: Let K be a field of characteristic 0. Given a polynomial ring R = K[x_1,...,x_n] and a polynomial F in R, one is interested in the R[1/F]-module of rank one, generated by PS*F^(s+1) = bs*F^s holds in K[x_1,...,x_n,1/F]*F^s. REFERENCES: References: We provide the following implementations of algorithms: @*(OT) the classical Ann F^s algorithm from Oaku and Takayama (Journal of GUIDE: Guide: @*- Ann F^s = I(F^s) = LD in D(R)[s] can be computed by Sannfs [BM, OT, LOT] @*- Ann^(1) F^s in D(R)[s] can be computed by Sannfslog PROCEDURES: annfs(F[,S,eng]);       compute Ann F^s0 in D and Bernstein polynomial for a poly F annfspecial(I, F, m, n);  compute Ann F^n from Ann F^s for a polynomial F and a number n Sannfs(F[,S,eng]);      compute Ann F^s in D[s] for a polynomial F Sannfslog(F[,eng]);     compute Ann^(1) F^s in D[s] for a polynomial F bernsteinBM(F[,eng]);   compute global Bernstein polynomial for a polynomial F (algorithm of Briancon-Maisonobe) bernsteinLift(I,F [,eng]);  compute a possible multiple of Bernstein polynomial via lift-like procedure operatorBM(F[,eng]);    compute Ann F^s, Ann F^s0, BS and PS for a polynomial F (algorithm of Briancon-Maisonobe) bernsteinBM(F[,eng]);   compute global Bernstein-Sato polynomial of a poly F (alg of Briancon-Maisonobe) bernsteinLift(I,F [,eng]);  compute a multiple of Bernstein-Sato polynomial via lift-like procedure operatorBM(F[,eng]);    compute Ann F^s, Ann F^s0, BS and PS for a poly F (algorithm of Briancon-Maisonobe) operatorModulo(F, I, b); compute PS via the modulo approach annfsParamBM(F[,eng]);  compute the generic Ann F^s (algorithm by Briancon and Maisonobe) and exceptional parametric constellations for a polynomial F with parametric coefficients annfsRB(I,F [,eng]);          compute Ann F^s0 in D and Bernstein polynomial from the known Ann F^s in D[s] by using Jacobian ideal checkFactor(I,F,q[,eng]); check whether a polynomial q in K[s] is a factor of the global Bernstein polynomial of F from the known Ann F^s in D[s] arrange(p);           create a poly, describing a full hyperplane arrangement
• ## Singular/LIB/dmodapp.lib

 r3576f6 @*       Daniel Andres,   daniel.andres@math.rwth-aachen.de SUPPORT: DFG Graduiertenkolleg 1632 'Experimentelle und konstruktive Algebra' GUIDE: Let K be a field of characteristic 0, R = K[x1,...,xN] and Support: DFG Graduiertenkolleg 1632 'Experimentelle und konstruktive Algebra' OVERVIEW: Let K be a field of characteristic 0, R = K[x1,...,xN] and @* D be the Weyl algebra in variables x1,...,xN,d1,...,dN. @* In this library there are the following procedures for algebraic D-modules: REFERENCES: References: @* (SST) Saito, Sturmfels, Takayama 'Groebner Deformations of Hypergeometric @*         Differential Equations', Springer, 2000 MAIN PROCEDURES: PROCEDURES: annPoly(f);   annihilator of a polynomial f in the corr. Weyl algebra AUXILIARY PROCEDURES: appelF1();     create an ideal annihilating Appel F1 function D-module; D-integration; integration of D-module; characteristic variety; Appel function; Appel hypergeometric function ";