Changeset 0dd77c2 in git
 Timestamp:
 Jun 30, 2010, 2:51:00 PM (13 years ago)
 Branches:
 (u'jengelhdatetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'a800fe4b3e9d37a38c5a10cc0ae9dfa0c15a4ee6')
 Children:
 a33befbff5c55fd02acf5bab27860dc1da88b275
 Parents:
 33c80401859cb1e4a4821ef802c31f324cbd0e08
 Location:
 Singular/LIB
 Files:

 2 edited
Legend:
 Unmodified
 Added
 Removed

Singular/LIB/aksaka.lib
r33c8040 r0dd77c2 17 17 PerfectPowerTest(n) checks if there are a,b>1, so that a^b=n 18 18 wurzel(r) square root of number r 19 euler(r) phifunction of euler19 euler(r) phifunction of Euler 20 20 coeffmod(f,n) polynomial f modulo number n (coefficients mod n) 21 21 powerpolyX(q,n,a,r) (polynomial a)^q modulo (poly r,number n) … … 215 215 proc euler(number r) 216 216 "USAGE: euler(r); 217 RETURN: number phi(r), where phi is eulers phifunction217 RETURN: number phi(r), where phi is Eulers phifunction 218 218 NOTE: first r is factorized with proc PollardRho, then phi(r) is 219 219 calculated with the help of phi(p) of every factor p; 
Singular/LIB/atkins.lib
r33c8040 r0dd77c2 663 663 ASSUME: p>=3 664 664 NOTE: this algorithm will be called recursively, and it is understood 665 that all the operations are done in Z/pZ (excepting sq areRoot(d,p))665 that all the operations are done in Z/pZ (excepting squareRoot(d,p)) 666 666 EXAMPLE:example rootsModp; shows an example 667 667 "
Note: See TracChangeset
for help on using the changeset viewer.