Changeset 185e5b in git
- Timestamp:
- Jan 26, 2017, 5:39:14 PM (6 years ago)
- Branches:
- (u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
- Children:
- de96278c020b8a3fb467b672cee2bd7527925e0f
- Parents:
- cbe2b1e3a78bf1b5422767113f7f157a793e1f65
- git-author:
- Janko Boehm <boehm@mathematik.uni-kl.de>2017-01-26 17:39:14+01:00
- git-committer:
- Yue Ren <ren@mathematik.uni-kl.de>2017-06-08 18:10:26+02:00
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/gitfan.lib
rcbe2b1e r185e5b 421 421 { 422 422 echo = 2; 423 // Note that simplexOrbitRepresentatives and simplexSymmetryGroup are subsets of the actual sets for G25. For the full example see the examples in the source code documentation. 423 LIB "gitfan.lib"; 424 424 ring R = 0,T(1..10),wp(1,1,1,1,1,1,1,1,1,1); 425 425 ideal J = … … 435 435 0, 1, 0, 1, 0, -1, 0, 0, 1, 0, 436 436 0, 0, 1, 1, -1, 0, 0, 0, 0, 1; 437 list simplexSymmetryGroup = G25Action(); 437 438 list simplexOrbitRepresentatives = intvec( 1, 2, 3, 4, 5 ), 438 intvec( 1, 2, 3, 5, 6 ), 439 intvec( 1, 2, 3, 5, 7 ), 440 intvec( 1, 2, 3, 5, 10 ), 441 intvec( 1, 2, 3, 7, 9 ), 442 intvec( 1, 2, 3, 4, 5, 6, 9, 10 ), 443 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9 ), 444 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ); 439 intvec( 1, 2, 3, 5, 6 ), 440 intvec( 1, 2, 3, 5, 7 ), 441 intvec( 1, 2, 3, 5, 10 ), 442 intvec( 1, 2, 3, 7, 9 ), 443 intvec( 1, 2, 6, 9, 10 ), 444 intvec( 1, 2, 3, 4, 5, 6 ), 445 intvec( 1, 2, 3, 4, 5, 10 ), 446 intvec( 1, 2, 3, 5, 6, 8 ), 447 intvec( 1, 2, 3, 5, 6, 9 ), 448 intvec( 1, 2, 3, 5, 7, 10 ), 449 intvec( 1, 2, 3, 7, 9, 10 ), 450 intvec( 1, 2, 3, 4, 5, 6, 7 ), 451 intvec( 1, 2, 3, 4, 5, 6, 8 ), 452 intvec( 1, 2, 3, 4, 5, 6, 9 ), 453 intvec( 1, 2, 3, 5, 6, 9, 10 ), 454 intvec( 1, 2, 3, 4, 5, 6, 7, 8 ), 455 intvec( 1, 2, 3, 4, 5, 6, 9, 10 ), 456 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9 ), 457 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ); 445 458 list afaceOrbitRepresentatives=afaces(J,simplexOrbitRepresentatives); 446 list simplexSymmetryGroup = permutationFromIntvec(intvec( 1 .. 10 )),447 permutationFromIntvec(intvec( 1, 2, 4, 3, 5, 7, 6, 9, 8, 10 )),448 permutationFromIntvec(intvec( 1, 3, 2, 4, 6, 5, 7, 8, 10, 9 )),449 permutationFromIntvec(intvec( 1, 3, 4, 2, 6, 7, 5, 10, 8, 9 )),450 permutationFromIntvec(intvec( 1, 4, 2, 3, 7, 5, 6, 9, 10, 8 )),451 permutationFromIntvec(intvec( 1, 4, 3, 2, 7, 6, 5, 10, 9, 8 ));452 459 list fulldimAfaceOrbitRepresentatives=fullDimImages(afaceOrbitRepresentatives,Q); 453 460 list afaceOrbits=computeAfaceOrbits(fulldimAfaceOrbitRepresentatives,simplexSymmetryGroup); 454 apply(afaceOrbits,size); 455 } 461 apply(afaceOrbits,size);} 456 462 457 463 … … 533 539 { 534 540 echo = 2; 535 // Note that simplexOrbitRepresentatives and simplexSymmetryGroup are subsets of the actual sets for G25. For the full example see the examples in the documentation536 541 ring R = 0,T(1..10),wp(1,1,1,1,1,1,1,1,1,1); 537 542 ideal J = … … 547 552 0, 1, 0, 1, 0, -1, 0, 0, 1, 0, 548 553 0, 0, 1, 1, -1, 0, 0, 0, 0, 1; 554 list simplexSymmetryGroup = G25Action(); 549 555 list simplexOrbitRepresentatives = intvec( 1, 2, 3, 4, 5 ), 550 intvec( 1, 2, 3, 5, 6 ), 551 intvec( 1, 2, 3, 5, 7 ), 552 intvec( 1, 2, 3, 5, 10 ), 553 intvec( 1, 2, 3, 7, 9 ), 554 intvec( 1, 2, 3, 4, 5, 6, 9, 10 ), 555 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9 ), 556 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ); 556 intvec( 1, 2, 3, 5, 6 ), 557 intvec( 1, 2, 3, 5, 7 ), 558 intvec( 1, 2, 3, 5, 10 ), 559 intvec( 1, 2, 3, 7, 9 ), 560 intvec( 1, 2, 6, 9, 10 ), 561 intvec( 1, 2, 3, 4, 5, 6 ), 562 intvec( 1, 2, 3, 4, 5, 10 ), 563 intvec( 1, 2, 3, 5, 6, 8 ), 564 intvec( 1, 2, 3, 5, 6, 9 ), 565 intvec( 1, 2, 3, 5, 7, 10 ), 566 intvec( 1, 2, 3, 7, 9, 10 ), 567 intvec( 1, 2, 3, 4, 5, 6, 7 ), 568 intvec( 1, 2, 3, 4, 5, 6, 8 ), 569 intvec( 1, 2, 3, 4, 5, 6, 9 ), 570 intvec( 1, 2, 3, 5, 6, 9, 10 ), 571 intvec( 1, 2, 3, 4, 5, 6, 7, 8 ), 572 intvec( 1, 2, 3, 4, 5, 6, 9, 10 ), 573 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9 ), 574 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ); 557 575 list afaceOrbitRepresentatives=afaces(J,simplexOrbitRepresentatives); 558 list simplexSymmetryGroup = permutationFromIntvec(intvec( 1 .. 10 )),559 permutationFromIntvec(intvec( 1, 2, 4, 3, 5, 7, 6, 9, 8, 10 )),560 permutationFromIntvec(intvec( 1, 3, 2, 4, 6, 5, 7, 8, 10, 9 )),561 permutationFromIntvec(intvec( 1, 3, 4, 2, 6, 7, 5, 10, 8, 9 )),562 permutationFromIntvec(intvec( 1, 4, 2, 3, 7, 5, 6, 9, 10, 8 )),563 permutationFromIntvec(intvec( 1, 4, 3, 2, 7, 6, 5, 10, 9, 8 ));564 576 list fulldimAfaceOrbitRepresentatives=fullDimImages(afaceOrbitRepresentatives,Q); 565 577 list afaceOrbits=computeAfaceOrbits(fulldimAfaceOrbitRepresentatives,simplexSymmetryGroup); … … 738 750 { 739 751 echo = 2; 740 // Note that simplexOrbitRepresentatives and simplexSymmetryGroup are subsets of the actual sets for G25. For the full example see the examples in the documentation741 752 ring R = 0,T(1..10),wp(1,1,1,1,1,1,1,1,1,1); 742 753 ideal J = … … 752 763 0, 1, 0, 1, 0, -1, 0, 0, 1, 0, 753 764 0, 0, 1, 1, -1, 0, 0, 0, 0, 1; 765 list simplexSymmetryGroup = G25Action(); 754 766 list simplexOrbitRepresentatives = intvec( 1, 2, 3, 4, 5 ), 755 intvec( 1, 2, 3, 5, 6 ), 756 intvec( 1, 2, 3, 5, 7 ), 757 intvec( 1, 2, 3, 5, 10 ), 758 intvec( 1, 2, 3, 7, 9 ), 759 intvec( 1, 2, 3, 4, 5, 6, 9, 10 ), 760 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9 ), 761 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ); 767 intvec( 1, 2, 3, 5, 6 ), 768 intvec( 1, 2, 3, 5, 7 ), 769 intvec( 1, 2, 3, 5, 10 ), 770 intvec( 1, 2, 3, 7, 9 ), 771 intvec( 1, 2, 6, 9, 10 ), 772 intvec( 1, 2, 3, 4, 5, 6 ), 773 intvec( 1, 2, 3, 4, 5, 10 ), 774 intvec( 1, 2, 3, 5, 6, 8 ), 775 intvec( 1, 2, 3, 5, 6, 9 ), 776 intvec( 1, 2, 3, 5, 7, 10 ), 777 intvec( 1, 2, 3, 7, 9, 10 ), 778 intvec( 1, 2, 3, 4, 5, 6, 7 ), 779 intvec( 1, 2, 3, 4, 5, 6, 8 ), 780 intvec( 1, 2, 3, 4, 5, 6, 9 ), 781 intvec( 1, 2, 3, 5, 6, 9, 10 ), 782 intvec( 1, 2, 3, 4, 5, 6, 7, 8 ), 783 intvec( 1, 2, 3, 4, 5, 6, 9, 10 ), 784 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9 ), 785 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ); 762 786 list afaceOrbitRepresentatives=afaces(J,simplexOrbitRepresentatives); 763 list simplexSymmetryGroup = permutationFromIntvec(intvec( 1 .. 10 )),764 permutationFromIntvec(intvec( 1, 2, 4, 3, 5, 7, 6, 9, 8, 10 )),765 permutationFromIntvec(intvec( 1, 3, 2, 4, 6, 5, 7, 8, 10, 9 )),766 permutationFromIntvec(intvec( 1, 3, 4, 2, 6, 7, 5, 10, 8, 9 )),767 permutationFromIntvec(intvec( 1, 4, 2, 3, 7, 5, 6, 9, 10, 8 )),768 permutationFromIntvec(intvec( 1, 4, 3, 2, 7, 6, 5, 10, 9, 8 ));769 787 list fulldimAfaceOrbitRepresentatives=fullDimImages(afaceOrbitRepresentatives,Q); 770 788 list afaceOrbits=computeAfaceOrbits(fulldimAfaceOrbitRepresentatives,simplexSymmetryGroup); … … 773 791 apply(minAfaceOrbits,size); 774 792 list listOfOrbitConeOrbits = orbitConeOrbits(minAfaceOrbits,Q); 793 apply(listOfOrbitConeOrbits,size); 775 794 list listOfMinimalOrbitConeOrbits = minimalOrbitConeOrbits(listOfOrbitConeOrbits); 776 795 size(listOfMinimalOrbitConeOrbits); … … 856 875 0, 1, 0, 1, 0, -1, 0, 0, 1, 0, 857 876 0, 0, 1, 1, -1, 0, 0, 0, 0, 1; 877 list simplexSymmetryGroup = G25Action(); 858 878 list simplexOrbitRepresentatives = intvec( 1, 2, 3, 4, 5 ), 859 intvec( 1, 2, 3, 5, 6 ), 860 intvec( 1, 2, 3, 5, 7 ), 861 intvec( 1, 2, 3, 5, 10 ), 862 intvec( 1, 2, 3, 7, 9 ), 863 intvec( 1, 2, 3, 4, 5, 6, 9, 10 ), 864 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9 ), 865 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ); 879 intvec( 1, 2, 3, 5, 6 ), 880 intvec( 1, 2, 3, 5, 7 ), 881 intvec( 1, 2, 3, 5, 10 ), 882 intvec( 1, 2, 3, 7, 9 ), 883 intvec( 1, 2, 6, 9, 10 ), 884 intvec( 1, 2, 3, 4, 5, 6 ), 885 intvec( 1, 2, 3, 4, 5, 10 ), 886 intvec( 1, 2, 3, 5, 6, 8 ), 887 intvec( 1, 2, 3, 5, 6, 9 ), 888 intvec( 1, 2, 3, 5, 7, 10 ), 889 intvec( 1, 2, 3, 7, 9, 10 ), 890 intvec( 1, 2, 3, 4, 5, 6, 7 ), 891 intvec( 1, 2, 3, 4, 5, 6, 8 ), 892 intvec( 1, 2, 3, 4, 5, 6, 9 ), 893 intvec( 1, 2, 3, 5, 6, 9, 10 ), 894 intvec( 1, 2, 3, 4, 5, 6, 7, 8 ), 895 intvec( 1, 2, 3, 4, 5, 6, 9, 10 ), 896 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9 ), 897 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ); 866 898 list afaceOrbitRepresentatives=afaces(J,simplexOrbitRepresentatives); 867 list simplexSymmetryGroup = permutationFromIntvec(intvec( 1 .. 10 )),868 permutationFromIntvec(intvec( 1, 2, 4, 3, 5, 7, 6, 9, 8, 10 )),869 permutationFromIntvec(intvec( 1, 3, 2, 4, 6, 5, 7, 8, 10, 9 )),870 permutationFromIntvec(intvec( 1, 3, 4, 2, 6, 7, 5, 10, 8, 9 )),871 permutationFromIntvec(intvec( 1, 4, 2, 3, 7, 5, 6, 9, 10, 8 )),872 permutationFromIntvec(intvec( 1, 4, 3, 2, 7, 6, 5, 10, 9, 8 ));873 899 list fulldimAfaceOrbitRepresentatives=fullDimImages(afaceOrbitRepresentatives,Q); 874 900 list afaceOrbits=computeAfaceOrbits(fulldimAfaceOrbitRepresentatives,simplexSymmetryGroup); … … 1283 1309 example 1284 1310 { 1285 ///// todo 1311 permutation sigma = permutationFromIntvec(intvec( 1, 2, 4, 3, 5, 7, 6, 9, 8, 10 )); 1312 sigma; 1313 permutationToIntvec(sigma); 1286 1314 } 1287 1315 … … 1476 1504 example 1477 1505 { 1478 ///// todo 1506 ring R = 0,T(1..10),wp(1,1,1,1,1,1,1,1,1,1); 1507 ideal J = 1508 T(5)*T(10)-T(6)*T(9)+T(7)*T(8), 1509 T(1)*T(9)-T(2)*T(7)+T(4)*T(5), 1510 T(1)*T(8)-T(2)*T(6)+T(3)*T(5), 1511 T(1)*T(10)-T(3)*T(7)+T(4)*T(6), 1512 T(2)*T(10)-T(3)*T(9)+T(4)*T(8); 1513 intmat Q[5][10] = 1514 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1515 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1516 0, 1, 1, 0, 0, 0, -1, 1, 0, 0, 1517 0, 1, 0, 1, 0, -1, 0, 0, 1, 0, 1518 0, 0, 1, 1, -1, 0, 0, 0, 0, 1; 1519 list simplexSymmetryGroup = G25Action(); 1520 list simplexOrbitRepresentatives = intvec( 1, 2, 3, 4, 5 ), 1521 intvec( 1, 2, 3, 5, 6 ), 1522 intvec( 1, 2, 3, 5, 7 ), 1523 intvec( 1, 2, 3, 5, 10 ), 1524 intvec( 1, 2, 3, 7, 9 ), 1525 intvec( 1, 2, 6, 9, 10 ), 1526 intvec( 1, 2, 3, 4, 5, 6 ), 1527 intvec( 1, 2, 3, 4, 5, 10 ), 1528 intvec( 1, 2, 3, 5, 6, 8 ), 1529 intvec( 1, 2, 3, 5, 6, 9 ), 1530 intvec( 1, 2, 3, 5, 7, 10 ), 1531 intvec( 1, 2, 3, 7, 9, 10 ), 1532 intvec( 1, 2, 3, 4, 5, 6, 7 ), 1533 intvec( 1, 2, 3, 4, 5, 6, 8 ), 1534 intvec( 1, 2, 3, 4, 5, 6, 9 ), 1535 intvec( 1, 2, 3, 5, 6, 9, 10 ), 1536 intvec( 1, 2, 3, 4, 5, 6, 7, 8 ), 1537 intvec( 1, 2, 3, 4, 5, 6, 9, 10 ), 1538 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9 ), 1539 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ); 1540 list afaceOrbitRepresentatives=afaces(J,simplexOrbitRepresentatives); 1541 list fulldimAfaceOrbitRepresentatives=fullDimImages(afaceOrbitRepresentatives,Q); 1542 list afaceOrbits=computeAfaceOrbits(fulldimAfaceOrbitRepresentatives,simplexSymmetryGroup); 1543 apply(afaceOrbits,size); 1544 list minAfaceOrbits = minimalAfaceOrbits(afaceOrbits); 1545 apply(minAfaceOrbits,size); 1546 list listOfOrbitConeOrbits = orbitConeOrbits(minAfaceOrbits,Q); 1547 apply(listOfOrbitConeOrbits,size); 1548 list listOfMinimalOrbitConeOrbits = minimalOrbitConeOrbits(listOfOrbitConeOrbits); 1549 size(listOfMinimalOrbitConeOrbits); 1550 list Asigma = groupActionOnQImage(simplexSymmetryGroup,Q); 1551 list actionOnOrbitconeIndices = groupActionOnHashes(Asigma,listOfOrbitConeOrbits); 1552 list OClist = listOfOrbitConeOrbits[1]; 1553 for (int i =2;i<=size(listOfOrbitConeOrbits);i++){ 1554 OClist = OClist + listOfOrbitConeOrbits[i]; 1555 } 1556 cone mov = coneViaPoints(transpose(Q)); 1557 mov = canonicalizeCone(mov); 1558 printlevel = 3; 1559 list Sigma = GITfanSymmetric(OClist, Q, mov, actionOnOrbitconeIndices); 1560 Sigma; 1479 1561 } 1480 1562 … … 1610 1692 example 1611 1693 { 1612 ///// todo 1694 ring R = 0,T(1..10),wp(1,1,1,1,1,1,1,1,1,1); 1695 ideal J = 1696 T(5)*T(10)-T(6)*T(9)+T(7)*T(8), 1697 T(1)*T(9)-T(2)*T(7)+T(4)*T(5), 1698 T(1)*T(8)-T(2)*T(6)+T(3)*T(5), 1699 T(1)*T(10)-T(3)*T(7)+T(4)*T(6), 1700 T(2)*T(10)-T(3)*T(9)+T(4)*T(8); 1701 intmat Q[5][10] = 1702 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1703 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1704 0, 1, 1, 0, 0, 0, -1, 1, 0, 0, 1705 0, 1, 0, 1, 0, -1, 0, 0, 1, 0, 1706 0, 0, 1, 1, -1, 0, 0, 0, 0, 1; 1707 list simplexSymmetryGroup = G25Action(); 1708 list simplexOrbitRepresentatives = intvec( 1, 2, 3, 4, 5 ), 1709 intvec( 1, 2, 3, 5, 6 ), 1710 intvec( 1, 2, 3, 5, 7 ), 1711 intvec( 1, 2, 3, 5, 10 ), 1712 intvec( 1, 2, 3, 7, 9 ), 1713 intvec( 1, 2, 6, 9, 10 ), 1714 intvec( 1, 2, 3, 4, 5, 6 ), 1715 intvec( 1, 2, 3, 4, 5, 10 ), 1716 intvec( 1, 2, 3, 5, 6, 8 ), 1717 intvec( 1, 2, 3, 5, 6, 9 ), 1718 intvec( 1, 2, 3, 5, 7, 10 ), 1719 intvec( 1, 2, 3, 7, 9, 10 ), 1720 intvec( 1, 2, 3, 4, 5, 6, 7 ), 1721 intvec( 1, 2, 3, 4, 5, 6, 8 ), 1722 intvec( 1, 2, 3, 4, 5, 6, 9 ), 1723 intvec( 1, 2, 3, 5, 6, 9, 10 ), 1724 intvec( 1, 2, 3, 4, 5, 6, 7, 8 ), 1725 intvec( 1, 2, 3, 4, 5, 6, 9, 10 ), 1726 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9 ), 1727 intvec( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ); 1728 list afaceOrbitRepresentatives=afaces(J,simplexOrbitRepresentatives); 1729 list fulldimAfaceOrbitRepresentatives=fullDimImages(afaceOrbitRepresentatives,Q); 1730 list afaceOrbits=computeAfaceOrbits(fulldimAfaceOrbitRepresentatives,simplexSymmetryGroup); 1731 apply(afaceOrbits,size); 1732 list minAfaceOrbits = minimalAfaceOrbits(afaceOrbits); 1733 apply(minAfaceOrbits,size); 1734 list listOfOrbitConeOrbits = orbitConeOrbits(minAfaceOrbits,Q); 1735 apply(listOfOrbitConeOrbits,size); 1736 list listOfMinimalOrbitConeOrbits = minimalOrbitConeOrbits(listOfOrbitConeOrbits); 1737 size(listOfMinimalOrbitConeOrbits); 1738 list Asigma = groupActionOnQImage(simplexSymmetryGroup,Q); 1739 list actionOnOrbitconeIndices = groupActionOnHashes(Asigma,listOfOrbitConeOrbits); 1740 list OClist = listOfOrbitConeOrbits[1]; 1741 for (int i =2;i<=size(listOfOrbitConeOrbits);i++){ 1742 OClist = OClist + listOfOrbitConeOrbits[i]; 1743 } 1744 cone mov = coneViaPoints(transpose(Q)); 1745 mov = canonicalizeCone(mov); 1746 list Sigma = GITfanParallelSymmetric(OClist, Q, mov, actionOnOrbitconeIndices); 1747 Sigma; 1613 1748 } 1614 1749
Note: See TracChangeset
for help on using the changeset viewer.