Changeset 1e1990 in git
- Timestamp:
- Dec 9, 2022, 11:43:57 AM (4 months ago)
- Branches:
- (u'spielwiese', 'a800fe4b3e9d37a38c5a10cc0ae9dfa0c15a4ee6')
- Children:
- c9d548b553dc5c68b96208a1a69eea9c2e5921ea
- Parents:
- a26d28d708999ea2f59a21ad34587f50825593e2
- Files:
-
- 25 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/arr.lib
ra26d28 r1e1990 2968 2968 example 2969 2969 { 2970 "EXAMPLE: The poincare polynomial of the braid arrangement in k dimensions is given as: " +2970 "EXAMPLE: The Poincare polynomial of the braid arrangement in k dimensions is given as: " + 2971 2971 "pi(A,t) = (1 + t)*...*(1 + (k-1)*t)"; echo = 2; 2972 2972 ring R = 0,(x,y,z,u,v),dp; … … 2981 2981 proc arrCharPoly(def input) 2982 2982 "USAGE: arrCharPoly(arr A) 2983 RETURN: [intvec] coefficients of the characteristic polynomial of A in incre sing order2983 RETURN: [intvec] coefficients of the characteristic polynomial of A in increasing order 2984 2984 REMARKS: The algorithm only returns the coefficients of the characteristic polynomial since they 2985 2985 are whole numbers but the basering could be something different. -
Singular/LIB/chern.lib
ra26d28 r1e1990 2545 2545 print( chProj(2) ); 2546 2546 2547 // the coefficients of the Chern character of the complex 3-dimen tional projectice space2547 // the coefficients of the Chern character of the complex 3-dimensional projective space 2548 2548 print( chProj(3) ); 2549 2549 } -
Singular/LIB/gitfan.lib
ra26d28 r1e1990 1627 1627 To obtain the whole GIT-fan Qgamma has to be take the cone generated by the columns of Q. 1628 1628 RETURN: a list containing the bigint hashes of the GIT cones. 1629 NOTE: The procedu ce uses parallel computation for the construction of the GIT-cones.1629 NOTE: The procedure uses parallel computation for the construction of the GIT-cones. 1630 1630 EXAMPLE: example GITfanParallelSymmetric; shows an example 1631 1631 " … … 2290 2290 To obtain the whole GIT-fan Qgamma has to be take the cone generated by the columns of Q. 2291 2291 RETURN: a list containing the bigint hashes of the GIT cones. 2292 NOTE: The procedu ce uses parallel computation for the construction of the GIT-cones.2292 NOTE: The procedure uses parallel computation for the construction of the GIT-cones. 2293 2293 EXAMPLE: example GITfanParallel; shows an example 2294 2294 " … … 2524 2524 PURPOSE: Computes the GIT fan associated to J and Q. Optionally a symmetry group action on the column space of Q can be specified. 2525 2525 RETURN: a fan, the GIT fan. 2526 NOTE: The procedu ce uses parallel computation for the construction of the GIT-cones. The a-faces are not computed in parallel. This can be done by calling the aface procedure specifying a list of simplex faces. If used with the optional argument G, the orbit decomposition of the simplex of columns of Q is computed. Refer to the Singular documentation on how to do this more efficiently using GAP.2526 NOTE: The procedure uses parallel computation for the construction of the GIT-cones. The a-faces are not computed in parallel. This can be done by calling the aface procedure specifying a list of simplex faces. If used with the optional argument G, the orbit decomposition of the simplex of columns of Q is computed. Refer to the Singular documentation on how to do this more efficiently using GAP. 2527 2527 EXAMPLE: example GITfan; shows an example 2528 2528 " -
Singular/LIB/grobcov.lib
ra26d28 r1e1990 7382 7382 about the values of the variables determined 7383 7383 for every value of the parameters. 7384 If the prop sition is false for every values of the7385 parameters, then the emp ly list is returned.7384 If the proposition is false for every values of the 7385 parameters, then the empty list is returned. 7386 7386 OPTIONS: An option is a pair of arguments: string, 7387 7387 integer. To modify the default options, pairs -
Singular/LIB/monomialideal.lib
ra26d28 r1e1990 3634 3634 (returns -1 if I is not a monomial ideal). 3635 3635 ASSUME: I is a monomial ideal of the basering k[x(1)..x(n)]. 3636 NOTE: This proce sure returns the irreducible decomposition of I.3636 NOTE: This procedure returns the irreducible decomposition of I. 3637 3637 One may call the procedure with different algorithms using 3638 3638 the optional argument 'alg': -
Singular/LIB/mprimdec.lib
ra26d28 r1e1990 783 783 784 784 /////////////////////////////////////////////////////////////////////// 785 // The optimized procedures and proc dures needed for this optimization785 // The optimized procedures and procedures needed for this optimization 786 786 /////////////////////////////////////////////////////////////////////// 787 787 -
Singular/LIB/polylib.lib
ra26d28 r1e1990 633 633 int e = -1; i=u; 634 634 } 635 else //case: indedis nonnegative635 else //case: mindeg is nonnegative 636 636 { 637 637 while ( jet(c,i,v) == 0 ) { i = 2*(i+1); } -
Singular/LIB/schubert.lib
ra26d28 r1e1990 3 3 category="Algebraic Geometry"; 4 4 info=" 5 LIBRARY: schubert.lib Procedu ces for Intersection Theory5 LIBRARY: schubert.lib Procedures for Intersection Theory 6 6 7 7 AUTHOR: Hiep Dang, email: hiep@mathematik.uni-kl.de -
Singular/LIB/tropical.lib
ra26d28 r1e1990 522 522 if(dd!=0) 523 523 { 524 // the procedur ce cutdown computes a new ring, in which there lives a524 // the procedure cutdown computes a new ring, in which there lives a 525 525 // zero-dimensional 526 526 // ideal which has been computed by cutting down the input with -
Singular/LIB/zeroset.lib
ra26d28 r1e1990 1385 1385 RETURN: ring 1386 1386 ASSUME: R = K[x_1,...,x_n] where K = Q or K = Q(a). 1387 NOTE: Creates the ring needed for all pro decures with name 'proc-name'Main1387 NOTE: Creates the ring needed for all procedures with name 'proc-name'Main 1388 1388 " 1389 1389 { -
Singular/RULES
ra26d28 r1e1990 45 45 - report internal errors via dReportError 46 46 47 Indent iation:48 ------------ -49 - matching { } should be in the same line (for very short sta ements)47 Indentation: 48 ------------ 49 - matching { } should be in the same line (for very short statements) 50 50 or in the same column 51 51 -
Singular/countedref.cc
ra26d28 r1e1990 288 288 BOOLEAN count(leftv res) { return construct(res, m_data.count() - 1); } 289 289 290 // Get internal i ndentifier290 // Get internal identifier 291 291 BOOLEAN enumerate(leftv res) { return construct(res, (long)(data_type*)m_data); } 292 292 -
Singular/iparith.cc
ra26d28 r1e1990 191 191 unsigned nCmdUsed; /**< number of commands used */ 192 192 unsigned nCmdAllocated; /**< number of commands-slots allocated */ 193 unsigned nLastIdentifier; /**< valid i ndentifieres are slot 1..nLastIdentifier */193 unsigned nLastIdentifier; /**< valid identifiers are slot 1..nLastIdentifier */ 194 194 } SArithBase; 195 195 -
doc/texi2html
ra26d28 r1e1990 411 411 # 412 412 # -l2h_l2h 413 # name/location of latex2html prog am413 # name/location of latex2html program 414 414 $T2H_L2H_L2H = "latex2html"; 415 415 $T2H_OPTIONS -> {l2h_l2h} = -
factory/README
ra26d28 r1e1990 205 205 Algorithms for manipulation of polynomial ideals via the characteristic set 206 206 methods (e.g., calculating the characteristic set and the irreducible 207 characteristic series) are now incorp areted into factory.207 characteristic series) are now incorporated into factory. 208 208 If you want to learn about characteristic sets, the next is a good point 209 209 to start with: -
factory/int_poly.cc
ra26d28 r1e1990 1003 1003 // point instead of testing on "less than" at the 1004 1004 // last `else' in the enclosed `if' statement since a 1005 // test on inequal tiy in general is cheaper1005 // test on inequality in general is cheaper 1006 1006 if ( (cursor1->exp != cursor2->exp) || (cursor1->coeff != cursor2->coeff) ) 1007 1007 { -
gfanlib/gfanlib_zcone.cpp
ra26d28 r1e1990 551 551 552 552 /* this number is same as poly->m, except when 553 poly is given by nonhomogeneous inequal ty:553 poly is given by nonhomogeneous inequality: 554 554 !(poly->homogeneous) && poly->representation==Inequality, 555 555 it is poly->m+1. See dd_ConeDataLoad. … … 1128 1128 /* At this point we know lineality space, implied equations and 1129 1129 also inequalities for the ray. To construct a vector on the 1130 ray which is stable under (or inde ndent of) angle and1131 lin arity preserving transformation we find the dimension 11132 subspace ortho rgonal to the implied equations and the1130 ray which is stable under (or independant of) angle and 1131 linearity preserving transformation we find the dimension 1 1132 subspace orthogonal to the implied equations and the 1133 1133 lineality space and pick a suitable primitive generator */ 1134 1134 -
gfanlib/gfanlib_zcone.h
ra26d28 r1e1990 126 126 public: 127 127 /** 128 * Constructs a polyhedral cone with specified equations and ineq alities. They are read off as rows129 * of the matrices. For efficiency it is possible to specify inga PolyhedralConePreassumptions flag128 * Constructs a polyhedral cone with specified equations and inequalities. They are read off as rows 129 * of the matrices. For efficiency it is possible to specify a PolyhedralConePreassumptions flag 130 130 * which tells what is known about the description already. 131 131 */ -
kernel/linear_algebra/linearAlgebra.h
ra26d28 r1e1990 178 178 * With A denoting the matrix to be inverted, the method expects the 179 179 * LU-decomposition of A, that is, pMat * A = lMat * uMat, where 180 * the argument matrices have the appropriate pro teries; see method180 * the argument matrices have the appropriate properties; see method 181 181 * 'luDecomp(const matrix aMat, matrix &pMat, matrix &lMat, 182 182 * matrix &uMat)'.<br> … … 231 231 * The method expects the LU-decomposition of A, that is, 232 232 * pMat * A = lMat * uMat, where the argument matrices have the 233 * appropriate pro teries; see method233 * appropriate properties; see method 234 234 * 'luDecomp(const matrix aMat, matrix &pMat, matrix &lMat, 235 235 * matrix &uMat)'.<br> … … 276 276 * The method expects the LDU-decomposition of A, that is, 277 277 * pMat * A = lMat * dMat^(-1) * uMat, where the argument matrices have 278 * the appropriate pro teries; see method278 * the appropriate properties; see method 279 279 * 'lduDecomp(const matrix aMat, matrix &pMat, matrix &lMat, 280 280 * matrix &dMat, matrix &uMat, poly &l, poly &u, poly &lTimesU)'.<br> -
libpolys/coeffs/mpr_complex.cc
ra26d28 r1e1990 105 105 } 106 106 #else 107 // problem ns with solve_s.tst107 // problems with solve_s.tst 108 108 void gmp_float::setFromStr(const char * in ) 109 109 { -
libpolys/polys/monomials/ring.cc
ra26d28 r1e1990 3710 3710 if(s == 0) // Prefix IS 3711 3711 rO_ISPrefix(j, j_bits, prev_ordsgn, tmp_ordsgn, r->N, v, tmp_typ[typ_i++]); // What about prev_ordsgn? 3712 else // s = +1 or -1 // Note: typ_i might be incr imented here inside!3712 else // s = +1 or -1 // Note: typ_i might be incremented here inside! 3713 3713 { 3714 3714 rO_ISSuffix(j, j_bits, prev_ordsgn, tmp_ordsgn, r->N, v, tmp_typ, typ_i, s); // Suffix. -
libpolys/polys/templates/p_Procs_Impl.h
ra26d28 r1e1990 22 22 Here is how it works: 23 23 At run-time, SetProcs is used to choose the appropriate PolyProcs 24 based on the ring proper ies.24 based on the ring properties. 25 25 At generate-time, SetProcs is used to generate all 26 26 possible PolyProcs.
Note: See TracChangeset
for help on using the changeset viewer.