Changeset 1f9a84 in git
- Timestamp:
- May 5, 2011, 2:19:42 PM (12 years ago)
- Branches:
- (u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
- Children:
- 750e704356a16e0d46bd540f5fe07a831a40cded
- Parents:
- d44974deb309558594f4d26a7d11c490304c77cf
- Location:
- Singular/LIB
- Files:
-
- 20 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/atkins.lib
rd44974d r1f9a84 372 372 ring R=(real,k),var(1),dp; 373 373 poly f=imap(S,f); 374 ideal I=nt_solve(f,1.1,list(k, int(intPart(k/5))));374 ideal I=nt_solve(f,1.1,list(k,k div 5)); 375 375 number c=leadcoef(I[1]); 376 376 setring S; … … 427 427 ti=impart(t); 428 428 if(tr==-1/2){qr1=-1;} 429 if(tr==0){qr1=1;} 430 if((tr!=-1/2)&&(tr!=0)) 431 { 432 tr=tr-round(tr); 433 qr1=expo(2*i*pi*tr,10*k); 429 else 430 { 431 if(tr==0){qr1=1;} 432 else 433 { 434 tr=tr-round(tr); 435 qr1=expo(2*i*pi*tr,10*k); 436 } 434 437 } 435 438 … … 441 444 while(n<=k) 442 445 { 443 m1=m1+(-1)^n*(q1^(n*(3*n-1) /2)+q1^(n*(3*n+1)/2));444 m2=m2+(-1)^n*(q2^(n*(3*n-1) /2)+q2^(n*(3*n+1)/2));446 m1=m1+(-1)^n*(q1^(n*(3*n-1) div 2)+q1^(n*(3*n+1) div 2)); 447 m2=m2+(-1)^n*(q2^(n*(3*n-1) div 2)+q2^(n*(3*n+1) div 2)); 445 448 n++; 446 449 } … … 725 728 { 726 729 a=random(0,p-1); 727 B=gcd((var(1)+a)^((p-1) /2)-1,A);730 B=gcd((var(1)+a)^((p-1) div 2)-1,A); 728 731 C=A/B; 729 732 } … … 820 823 821 824 if(printlevel>=1) {"List H of possibly suitable discriminants will be calculated.";} 822 H=disc(N,K /2);825 H=disc(N,K div 2); 823 826 if(printlevel>=1) {"H = "+string(H);pause();"";} 824 827 -
Singular/LIB/bfun.lib
rd44974d r1f9a84 106 106 int i; 107 107 def save = basering; 108 int n = nvars(save) /2;108 int n = nvars(save) div 2; 109 109 if (nrows(u)<>n || nrows(v)<>n) 110 110 { … … 1638 1638 int i; 1639 1639 def save = basering; 1640 int n = nvars(save) /2;1640 int n = nvars(save) div 2; 1641 1641 int whichengine = 0; // default 1642 1642 int methodord = 0; // default -
Singular/LIB/cisimplicial.lib
rd44974d r1f9a84 51 51 { 52 52 answer[1] = 1; 53 54 53 answer[2] = 0; 54 return (answer); 55 55 } 56 56 … … 70 70 { 71 71 s = 0; 72 72 for (i = 1; i <= nrows(A); i++) 73 73 { 74 74 if ((v[i] == 0)&&(A[i,j] != 0)) 75 75 { 76 76 // it is not multiple of A_j 77 break; 78 } 79 if (v[i] != 0) 80 { 81 if (A[i,j] == 0) 82 { 83 // it is not multiple of A_j 84 break; 85 } 86 if (s == 0) 87 { 88 s = v[i] / A[i,j]; 89 } 90 if (v[i] != s * A[i,j]) 91 { 92 break; 93 } 94 } 95 if (i == nrows(A)) 96 { 97 answer[1] = j; 98 answer[2] = s; 99 // v = s * A_j 100 return (answer); 101 } 77 break; 102 78 } 79 if (v[i] != 0) 80 { 81 if (A[i,j] == 0) 82 { 83 // it is not multiple of A_j 84 break; 85 } 86 if (s == 0) 87 { 88 s = v[i] div A[i,j]; 89 } 90 if (v[i] != s * A[i,j]) 91 { 92 break; 93 } 94 } 95 if (i == nrows(A)) 96 { 97 answer[1] = j; 98 answer[2] = s; 99 // v = s * A_j 100 return (answer); 101 } 102 } 103 103 } 104 104 … … 149 149 { 150 150 // ---- n is multiple of v[i] 151 belong[i] = n /v[i];151 belong[i] = n div v[i]; 152 152 return (belong); 153 153 } … … 173 173 { 174 174 // ---- n belongs to the semigroup generated by v, 175 belong[cambio[1]] = (n - PartialSum) /w[1];175 belong[cambio[1]] = (n - PartialSum) div w[1]; 176 176 for (j = 2; j <= num; j++) 177 177 { … … 269 269 for (j = 1; j <= nrows(v); j++) 270 270 { 271 counters[j] = v[j] /d[j];271 counters[j] = v[j] div d[j]; 272 272 } 273 273 return(counters); … … 329 329 if (A[j,i] > 0) 330 330 { 331 order[i] = lcm(order[i], d[j] /gcd(A[j,i],d[j]));331 order[i] = lcm(order[i], d[j] div gcd(A[j,i],d[j])); 332 332 } 333 333 } … … 390 390 for (k = 1; k <= nrows(v); k++) 391 391 { 392 counters[k] = v[k] /d[k];392 counters[k] = v[k] div d[k]; 393 393 } 394 394 for (k = nrows(v) + 1; k <= nrows(counters2); k++) … … 620 620 { 621 621 gcdiv = extgcd(A[i,i],A[i,k]); 622 coef1 = A[i,k] /gcdiv[1];623 coef2 = A[i,i] /gcdiv[1];622 coef1 = A[i,k] div gcdiv[1]; 623 coef2 = A[i,i] div gcdiv[1]; 624 624 for (l = i; l <= nrows(A); l++) 625 625 { … … 965 965 if (A[j,i] > 0) 966 966 { 967 order[i] = lcm(order[i], d[j] /gcd(A[j,i],d[j]));967 order[i] = lcm(order[i], d[j] div gcd(A[j,i],d[j])); 968 968 } 969 969 } … … 1606 1606 int dp; 1607 1607 dp = gcd(B[k,i], B[k,j]); 1608 int factor = B[k,i] /dp;1608 int factor = B[k,i] div dp; 1609 1609 B[k,i] = dp; 1610 1610 k++; -
Singular/LIB/crypto.lib
rd44974d r1f9a84 1088 1088 for(l=1;l<=k;l++) 1089 1089 { 1090 y=y*B[l]^(v[l] /2) mod n;1090 y=y*B[l]^(v[l] div 2) mod n; 1091 1091 } 1092 1092 d=gcdN(x-y,n); … … 1584 1584 " 1585 1585 { 1586 poly f; 1587 if(m==0){return(f);} 1588 if(m==1){return(1);} 1589 if(m==2){f=2*var(1);return(f);} 1590 if(m==3){f=3*var(2)^4+6*a*var(2)^2+12*b*var(2)-a^2;return(f);} 1586 if(m==0){return(poly(0));} 1587 if(m==1){return(poly(1));} 1588 if(m==2){return(2*var(1));} 1589 if(m==3){return(3*var(2)^4+6*a*var(2)^2+12*b*var(2)-a^2);} 1591 1590 if(m==4) 1592 1591 { 1593 f=4*var(1)*(var(2)^6+5*a*var(2)^4+20*b*var(2)^3-5*a^2*var(2)^2 1594 -4*a*b*var(2)-8*b^2-a^3); 1595 return(f); 1592 return(4*var(1)*(var(2)^6+5*a*var(2)^4+20*b*var(2)^3-5*a^2*var(2)^2 1593 -4*a*b*var(2)-8*b^2-a^3)); 1596 1594 } 1597 1595 if((m mod 2)==0) 1598 1596 { 1599 f=(generateG(a,b,m/2+2)*generateG(a,b,m/2-1)^2 1600 -generateG(a,b,m/2-2)*generateG(a,b,m/2+1)^2) 1601 *generateG(a,b,m/2)/(2*var(1)); 1602 return(f); 1603 } 1604 f=generateG(a,b,(m-1)/2+2)*generateG(a,b,(m-1)/2)^3 1605 -generateG(a,b,(m-1)/2-1)*generateG(a,b,(m-1)/2+1)^3; 1606 return(f); 1597 return((generateG(a,b,m div 2+2)*generateG(a,b,m div 2-1)^2 1598 -generateG(a,b,m div 2-2)*generateG(a,b,m div 2+1)^2) 1599 *generateG(a,b,m div 2)/(2*var(1))); 1600 } 1601 return(generateG(a,b,(m-1) div 2+2)*generateG(a,b,(m-1) div 2)^3 1602 -generateG(a,b,(m-1) div 2-1)*generateG(a,b,(m-1) div 2+1)^3); 1607 1603 } 1608 1604 example … … 1784 1780 pause(); 1785 1781 } 1786 while(t<(l-1) /2)1782 while(t<(l-1) div 2) 1787 1783 { 1788 1784 t++; -
Singular/LIB/dmodapp.lib
rd44974d r1f9a84 210 210 // wrong sequence of vars 211 211 int i,n; 212 n = nvars(basering) /2;212 n = nvars(basering) div 2; 213 213 for (i=1; i<=n; i++) 214 214 { … … 920 920 setring @R2; 921 921 // now supply with Weyl algebra relations 922 int N = nvars(@R2) /2;922 int N = nvars(@R2) div 2; 923 923 matrix @D[2*N][2*N]; 924 924 for(i=1; i<=N; i++) … … 1259 1259 def @R4@ = ring(L); 1260 1260 setring @R4@; 1261 int N = Nnew /2;1261 int N = Nnew div 2; 1262 1262 matrix @D[Nnew][Nnew]; 1263 1263 for (i=1; i<=N; i++) … … 1570 1570 int ppl = printlevel - voice +2; 1571 1571 def save = basering; 1572 int n = nvars(save) /2;1572 int n = nvars(save) div 2; 1573 1573 int whichengine = 0; // default 1574 1574 int methodord = 0; // default … … 1992 1992 int ppl = printlevel; 1993 1993 int i,j,k; 1994 int n = nvars(basering) /2;1994 int n = nvars(basering) div 2; 1995 1995 if (w == 0:size(w)) 1996 1996 { … … 2122 2122 // returns ring, which contains module "str" 2123 2123 { 2124 int n = nvars(basering) /2;2124 int n = nvars(basering) div 2; 2125 2125 int i,j; 2126 2126 def save = basering; … … 2379 2379 } 2380 2380 } 2381 int n = nvars(basering) /2;2381 int n = nvars(basering) div 2; 2382 2382 int i; 2383 2383 if(v <> 0:size(v)) … … 2448 2448 } 2449 2449 } 2450 int n = nvars(basering) /2;2450 int n = nvars(basering) div 2; 2451 2451 int i; 2452 2452 if(v <> 0:size(v)) … … 2551 2551 int ppl = printlevel; 2552 2552 int i; 2553 int n = nvars(basering) /2;2553 int n = nvars(basering) div 2; 2554 2554 intvec v; 2555 2555 for (i=1; i<=n; i++) … … 2690 2690 " 2691 2691 { 2692 intvec w = 1:(nvars(basering) /2);2692 intvec w = 1:(nvars(basering) div 2); 2693 2693 int l0,l0set,Gset; 2694 2694 ideal G; … … 2734 2734 int ppl = printlevel; 2735 2735 int i,j; 2736 int n = nvars(basering) /2;2736 int n = nvars(basering) div 2; 2737 2737 intvec v; 2738 2738 for (i=1; i<=n; i++) … … 3050 3050 int ppl = printlevel - voice + 2; 3051 3051 def save = basering; 3052 int n = nvars(save) /2;3052 int n = nvars(save) div 2; 3053 3053 intvec u = 0:n; 3054 3054 intvec v = 1:n; -
Singular/LIB/freegb.lib
rd44974d r1f9a84 3265 3265 {int i,j,k,r1,r2; intvec D; 3266 3266 int n = attrib(basering,"lV"); 3267 k = size(V) /n; r1 = 0; r2 = 0;3267 k = size(V) div n; r1 = 0; r2 = 0; 3268 3268 for (i=1; i<= k; i++) 3269 3269 {for (j=(1+((i-1)*n)); j <= (i*n); j++) … … 3372 3372 } 3373 3373 3374 d = size(cq) /n;3374 d = size(cq) div n; 3375 3375 for (i = 1; i<= d; i++) 3376 3376 {bla = cq[((i-1)*n+1)..(i*n)]; -
Singular/LIB/grobcov.lib
rd44974d r1f9a84 1377 1377 int comment=0; 1378 1378 list L=#; 1379 for(i=1;i<=size(L) /2;i++)1379 for(i=1;i<=size(L) div 2;i++) 1380 1380 { 1381 1381 if(L[2*i-1]=="null"){N=L[2*i];} … … 2259 2259 { 2260 2260 comp0=compos0[r1]; 2261 if (comp0[1]<=bound /2)2261 if (comp0[1]<=bound div 2) 2262 2262 { 2263 2263 compos1=comp(comp0[1],ncols(PW1)); … … 2265 2265 while ((s1<=size(compos1)) and not(t)) 2266 2266 { 2267 if (comp0[2]<=bound /2)2267 if (comp0[2]<=bound div 2) 2268 2268 { 2269 2269 compos2=comp(comp0[2],ncols(PW2)); … … 3541 3541 def W=ideal(1); 3542 3542 list L=#; 3543 for(i=1;i<=size(L) /2;i++)3543 for(i=1;i<=size(L) div 2;i++) 3544 3544 { 3545 3545 if(L[2*i-1]=="null"){N=L[2*i];} … … 3906 3906 def W=ideal(1); 3907 3907 list L=#; 3908 for(i=1;i<=size(L) /2;i++)3908 for(i=1;i<=size(L) div 2;i++) 3909 3909 { 3910 3910 if(L[2*i-1]=="null"){N=L[2*i];} … … 4116 4116 // def W=ideal(1); 4117 4117 // list L=#; 4118 // for(i=1;i<=size(L) /2;i++)4118 // for(i=1;i<=size(L) div 2;i++) 4119 4119 // { 4120 4120 // if(L[2*i-1]=="null"){N=L[2*i];} … … 4975 4975 int comment=0; 4976 4976 list L=#; 4977 for(i=1;i<=size(L) /2;i++)4977 for(i=1;i<=size(L) div 2;i++) 4978 4978 { 4979 4979 if(L[2*i-1]=="null"){N=L[2*i];} … … 5820 5820 CGS=1; // CGS=1 if cgsdr is to be used (default) 5821 5821 // CGS=0 if buildtree is to be used instead 5822 for(i=1;i<=size(L) /2;i++)5822 for(i=1;i<=size(L) div 2;i++) 5823 5823 { 5824 5824 if(L[2*i-1]=="can"){canop=L[2*i];} … … 7066 7066 def RR=basering; list empty; int i; 7067 7067 setglobalrings(); 7068 for(i=1;i<=size(L) /2;i++)7068 for(i=1;i<=size(L) div 2;i++) 7069 7069 { 7070 7070 if(L[2*i-1]=="compbas"){compbas=L[2*i];} … … 7193 7193 int i; int comment=1; list L=#; ideal N; list gc; list GC; list GCA; 7194 7194 int start=timer; int ni; int nw; 7195 for(i=1;i<=size(L) /2;i++)7195 for(i=1;i<=size(L) div 2;i++) 7196 7196 { 7197 7197 if (L[2*i-1]=="comment"){comment=L[2*i];} … … 7349 7349 { 7350 7350 int i; list L=#; int oldop=1; 7351 for(i=1;i<=size(L) /2;i++)7351 for(i=1;i<=size(L) div 2;i++) 7352 7352 { 7353 7353 if(L[2*i-1]=="old"){oldop=L[2*i];} … … 7531 7531 // outop=1 for an output as in the old library redcgs.lib 7532 7532 // in form of tree that can be transformed into Maple. 7533 for(i=1;i<=size(LL) /2;i++)7533 for(i=1;i<=size(LL) div 2;i++) 7534 7534 { 7535 7535 if(LL[2*i-1]=="can"){canop=LL[2*i];} -
Singular/LIB/hyperel.lib
rd44974d r1f9a84 826 826 } 827 827 bas=double(bas,h,f); 828 exp=exp /2;828 exp=exp div 2; 829 829 } 830 830 if ( m < 0 ) -
Singular/LIB/multigrading.lib
rd44974d r1f9a84 15 15 16 16 OVERVIEW: This library allows one to virtually add multigradings to Singular: 17 grade multivariate polynomial rings with arbitrary (fin. gen. Abelian) groups. 17 grade multivariate polynomial rings with arbitrary (fin. gen. Abelian) groups. 18 18 For more see http://code.google.com/p/convex-singular/wiki/Multigrading 19 19 For theoretical references see: … … 425 425 // And now a quick-and-dirty fix of Singular inability to handle attribs of attribs: 426 426 // For the use of a group as an attribute for multigraded rings 427 G[3] = attrib(L, attrGroupHNF); 427 G[3] = attrib(L, attrGroupHNF); 428 428 G[4] = attrib(L, attrGroupSNF); 429 429 430 430 431 431 attrib(G, isGroup, (1==1)); // mark it "a group" … … 584 584 585 585 isGroup(G); 586 586 587 587 printGroup(G); 588 588 … … 960 960 961 961 962 def T = G[2]; 962 def T = G[2]; 963 963 964 964 if( size(#) >= i ) … … 970 970 ERROR("Sorry wrong arguments!"); 971 971 } 972 972 973 973 if( a == "hermite" ) 974 974 { … … 1107 1107 0,1,3,4; 1108 1108 setBaseMultigrading(MM); 1109 1109 1110 1110 module M = ideal( xw-yz, x2z-y3, xz2-y2w, yw2-z3); 1111 1111 … … 1131 1131 print(v); 1132 1132 print(setModuleGrading(v)); 1133 1133 1134 1134 isHomogeneous(v); 1135 1135 … … 1573 1573 while(av[1]*bv[1] != 0) 1574 1574 { 1575 bv = bv - (bv[1] - bv[1]%av[1]) /av[1] * av;1575 bv = bv - (bv[1] - bv[1]%av[1]) div av[1] * av; 1576 1576 save = bv; 1577 1577 bv = av; … … 1664 1664 -46,32,37,42,15; 1665 1665 lll(m); 1666 1666 1667 1667 list l = 1668 1668 intvec(13,25,37, 83, 294), … … 1698 1698 // D; 1699 1699 intvec v; 1700 if((cc==1)||(rr==1)){ 1700 if((cc==1)||(rr==1)) 1701 { 1701 1702 if(size(#)==0) 1702 1703 { 1703 1704 return(D); 1704 } else 1705 } 1706 else 1705 1707 { 1706 1708 return(list(P,D,Q)); 1707 1709 } 1708 1710 } 1709 while(D[k+1,k+1] !=0){ 1710 if(D[k+1,k+1]%D[k,k]!=0){ 1711 while(D[k+1,k+1] !=0) 1712 { 1713 if(D[k+1,k+1]%D[k,k]!=0) 1714 { 1711 1715 b = D[k, k]; c = D[k+1, k+1]; 1712 1716 v = gcdcomb(D[k,k],D[k+1,k+1]); 1713 1717 transform = unitMatrix(cc); 1714 1718 transform[k+1,k] = 1; 1715 a = -v[3]*D[k+1,k+1] /v[1];1719 a = -v[3]*D[k+1,k+1] div v[1]; 1716 1720 transform[k, k+1] = a; 1717 1721 transform[k+1, k+1] = a+1; … … 1723 1727 transform[k,k] = v[2]; 1724 1728 transform[k,k+1] = v[3]; 1725 transform[k+1,k] = -c /v[1];1726 transform[k+1,k+1] = b /v[1];1729 transform[k+1,k] = -c div v[1]; 1730 transform[k+1,k+1] = b div v[1]; 1727 1731 D = transform * D; 1728 1732 P = transform * P; … … 1734 1738 } 1735 1739 k++; 1736 if((k==rr) || (k==cc)){ 1740 if((k==rr) || (k==cc)) 1741 { 1737 1742 break; 1738 1743 } 1739 1744 } 1740 1745 //"here is the size ",size(#); 1741 if(size(#) == 0){ 1746 if(size(#) == 0) 1747 { 1742 1748 return(D); 1743 } else { 1749 } 1750 else 1751 { 1744 1752 return(list(P, D, Q)); 1745 1753 } … … 1821 1829 v2 = A[1..rr,j]; 1822 1830 transform = unitMatrix(cc); 1823 transform[j,j] = v1[row] /gcdvec[1];1831 transform[j,j] = v1[row] div gcdvec[1]; 1824 1832 transform[column, column] = gcdvec[2]; 1825 transform[column,j] = -v2[row] /gcdvec[1];1833 transform[column,j] = -v2[row] div gcdvec[1]; 1826 1834 transform[j,column] = gcdvec[3]; 1827 1835 q = q*transform; … … 1840 1848 if(A[row, j]!=0){ 1841 1849 transform = unitMatrix(cc); 1842 transform[column, j] = (-A[row,j]+A[row, j]%A[row, column]) /A[row, column];1850 transform[column, j] = (-A[row,j]+A[row, j]%A[row, column]) div A[row, column]; 1843 1851 if(A[row,j]<0){ 1844 1852 transform[column,j]=transform[column,j]+1;} … … 1930 1938 ideal I = a, b; 1931 1939 print(multiDeg(I)); 1932 1940 1933 1941 intmat m[5][2]=multiDeg(a),multiDeg(b); m=transpose(m); 1934 1942 … … 1937 1945 1938 1946 print(m); 1939 1947 1940 1948 areZeroElements(m); 1941 1949 … … 1974 1982 kill a; 1975 1983 } 1976 1984 1977 1985 if( i == 1 ) 1978 1986 { … … 2001 2009 { 2002 2010 v = H[1..r,i]; 2003 mdeg = mdeg-(mdeg[row]-mdeg[row]%v[row]) /v[row]*v;2011 mdeg = mdeg-(mdeg[row]-mdeg[row]%v[row]) div v[row]*v; 2004 2012 } 2005 2013 } … … 2198 2206 intmat newgrad[pp][np]; 2199 2207 2200 //This will set the finest grading on the image ring. We will proceed by coarsening this grading until f becomes homogeneous. 2208 //This will set the finest grading on the image ring. We will proceed by coarsening this grading until f becomes homogeneous. 2201 2209 for(i=1;i<=np;i++){ newgrad[p+i,i]=1;} 2202 2210 … … 2216 2224 for(j=1;j<=n;j++){ toadd1[i,j]=oldgrad[i,j];} 2217 2225 } 2218 2226 2219 2227 // This will make the images of homogeneous elements homogeneous, namely the variables of the preimage ring. 2220 2228 for(i=1;i<=n;i++){ … … 2263 2271 columns=columns+ncols(newlat[k]); 2264 2272 } 2265 2273 2266 2274 //The following is just for reducing the size of the matrices. 2267 2275 gragr=hermiteNormalForm(gragr); … … 4762 4770 3,6,12; 4763 4771 4764 intmat B = latticeBasis(L); 4772 intmat B = latticeBasis(L); 4765 4773 print(B); // should result in a matrix whose columns generate the same lattice as [1,2,3] and [0,3,6]: 4766 4774 … … 4843 4851 // generate the same lattice as [-1,2,-1,0],[2,-3,0,1] 4844 4852 intmat B = kernelLattice(LL); 4845 4853 4846 4854 print(B); 4847 4855 … … 5071 5079 // we want a matrix with column operations so we transpose 5072 5080 intmat BB = transpose(B); 5073 list L = hermiteNormalForm(BB, "transform"); 5081 list L = hermiteNormalForm(BB, "transform"); 5074 5082 intmat U = transpose(L[2]); 5075 5083 5076 5084 5077 5085 // delete rows 1 to r 5078 5086 intmat Udel[nrows(U) - r][ncols(U)]; … … 5298 5306 2,1, 5299 5307 3,2; 5300 5308 5301 5309 intmat D = intInverse(C); 5302 5310 … … 5601 5609 5602 5610 // should return a (3x2)-matrix whose columns 5603 // generate the same lattice as [1, 2, 3] and [0, 1, 2] 5611 // generate the same lattice as [1, 2, 3] and [0, 1, 2] 5604 5612 intmat R = primitiveSpan(V); 5605 5613 print(R); … … 5611 5619 5612 5620 // should return a (2x2)-matrix whose columns 5613 // generate the same lattice as [1, 0] and [0, 1] 5621 // generate the same lattice as [1, 0] and [0, 1] 5614 5622 intmat S = primitiveSpan(W); 5615 5623 print(S); -
Singular/LIB/ncalg.lib
rd44974d r1f9a84 324 324 for( k=1; k<=N; k++) 325 325 { 326 ik = 1 + ((k-1) /n);326 ik = 1 + ((k-1) div n); 327 327 jk = k - n*(ik-1); 328 328 329 329 for( l=k+1; l<=N; l++) 330 330 { 331 il = 1 + ((l-1) /n);331 il = 1 + ((l-1) div n); 332 332 jl = l - n*(il-1); 333 333 p = 0; -
Singular/LIB/nctools.lib
rd44974d r1f9a84 209 209 { 210 210 N=N[2..size(N)]; // Deleting the zero added in the definition of N 211 M=intmat(N,size(N) /nc,nc); // Conversion from vector to matrix211 M=intmat(N,size(N) div nc,nc); // Conversion from vector to matrix 212 212 } 213 213 else … … 252 252 { 253 253 T=T[2..size(T)]; // Deleting the zero added in the definition of T 254 intmat C = intmat(T,size(T) /k,k); // Conversion from vector to matrix254 intmat C = intmat(T,size(T) div k,k); // Conversion from vector to matrix 255 255 } 256 256 return (C); -
Singular/LIB/ntsolve.lib
rd44974d r1f9a84 55 55 int prot = printlevel-voice+2; // prot=printlevel (default:prot=0) 56 56 if (i1 < 1){itmax = 100;}else{itmax = ipar[1];} 57 if (i1 < 2){acc = prec /2;}else{acc = ipar[2];}57 if (i1 < 2){acc = prec div 2;}else{acc = ipar[2];} 58 58 if ((acc <= 0)||(acc > prec-1)){acc = prec-1;} 59 59 -
Singular/LIB/perron.lib
rd44974d r1f9a84 77 77 ERROR( "Wrong set of polynomials!" ); 78 78 } 79 D = D /min;79 D = D div min; 80 80 } 81 81 //////////////////////////////////////////////////////////////////////// -
Singular/LIB/poly.lib
rd44974d r1f9a84 809 809 { 810 810 q=gcd(p,i[k]); 811 p=p /q;811 p=p div q; 812 812 p=p*i[k]; 813 813 } … … 1188 1188 } 1189 1189 N = N[2..size(N)]; // Deletes the zero added in the definition of T 1190 intmat M=intmat(N,(size(N) /n),n); // Conversion from vector to matrix1190 intmat M=intmat(N,(size(N) div n),n); // Conversion from vector to matrix 1191 1191 return (M); 1192 1192 } -
Singular/LIB/presolve.lib
rd44974d r1f9a84 1090 1090 { 1091 1091 @L2=@L2+list("dp",0); 1092 if ( @L2[@ii /2] != 0)1092 if ( @L2[@ii div 2] != 0) 1093 1093 { 1094 1094 @v = @l[@ii]; 1095 1095 for ( @jj=1; @jj<=size(@v); @jj++ ) 1096 1096 { 1097 @o = @o+@L2[@ii /2 -1]+"("+string(@v[@jj])+"),";1097 @o = @o+@L2[@ii div 2 -1]+"("+string(@v[@jj])+"),"; 1098 1098 } 1099 1099 } 1100 1100 else 1101 1101 { 1102 @o = @o+@L2[@ii /2 -1]+"("+string(size(@l[@ii/2]))+"),";1102 @o = @o+@L2[@ii div 2 -1]+"("+string(size(@l[@ii div 2]))+"),"; 1103 1103 } 1104 1104 } … … 1264 1264 if ( size(m)!=0 ) 1265 1265 { 1266 l = 2*(l /2)+2;1266 l = 2*(l div 2)+2; 1267 1267 ideal a(l) = simplify(m,2); 1268 1268 intvec v(l) = compress(v); … … 1314 1314 vec = sort(L)[2]; 1315 1315 if ( n(kk) != 0 ) { vec = vec[size(vec)..1]; } 1316 blockvec[kk /2] = vec;1316 blockvec[kk div 2] = vec; 1317 1317 vec = sort(v(kk),vec)[1]; 1318 1318 varvec = varvec,vec; -
Singular/LIB/qhmoduli.lib
rd44974d r1f9a84 55 55 if(size(#) > 0) { opt = #[1]; } 56 56 else { opt = 7; } 57 if(opt /4 > 0) { imageQ = 1; opt = opt - 4;}57 if(opt div 4 > 0) { imageQ = 1; opt = opt - 4;} 58 58 else { imageQ = 0; } 59 59 … … 215 215 else { opt = 3; } 216 216 217 if(opt /2 > 0) { primaryDec = 1; opt = opt - 2; }217 if(opt div 2 > 0) { primaryDec = 1; opt = opt - 2; } 218 218 else { primaryDec = 0; } 219 219 if(opt > 0) { relationsQ = 1;} … … 879 879 maxSIZE = SUBSMAXSIZE / size(h); 880 880 //print(" SUBSMAXSIZE = "+string(SUBSMAXSIZE)+" exceeded by "+string(size(g)*size(h)) + ", maxSIZE = ", string(maxSIZE)); 881 nrParts = size(g) /maxSIZE + 1;882 partSize = size(g) /nrParts;881 nrParts = size(g) div maxSIZE + 1; 882 partSize = size(g) div nrParts; 883 883 gxh = 0; // 'g times h' 884 884 for(i = 1; i <= nrParts; i++) … … 1356 1356 1357 1357 parts = parts + restP; 1358 for(i = 1; i <= n /nr[1]; i = i + 1)1358 for(i = 1; i <= n div nr[1]; i = i + 1) 1359 1359 { 1360 1360 temp = Table(string(nr[1]), "i", 1, i); … … 1383 1383 " 1384 1384 { 1385 int c = int(b/a);1385 int c = b div a; 1386 1386 if(c*a == b) { return(c); } 1387 1387 else {return(0)} -
Singular/LIB/random.lib
rd44974d r1f9a84 433 433 r2 = random(-b,b); 434 434 r2 = r2 + (r2==0)*random(-b,-1); 435 i = i,r1*m[random(1,s /2)] + r1*m[random(s/2+1,s)];435 i = i,r1*m[random(1,s div 2)] + r1*m[random(s div 2+1,s)]; 436 436 if ( ii < c+u ) 437 437 { r1 = random(-b,b); … … 439 439 r2 = random(-b,b); 440 440 r2 = r2 + (r2==0)*random(-b,-1); 441 i = i,r1*m[random(1,s /2)] + r2*m[random(s/2+1,s)];441 i = i,r1*m[random(1,s div 2)] + r2*m[random(s div 2+1,s)]; 442 442 } 443 443 } -
Singular/LIB/reszeta.lib
rd44974d r1f9a84 1840 1840 for(i=1;i<=size(ast_list[1]);i++) 1841 1841 { 1842 if((((Nvec[ast_list[1][i][1][1]] /d)*d)-Nvec[ast_list[1][i][1][1]]==0)&&1842 if((((Nvec[ast_list[1][i][1][1]] div d)*d)-Nvec[ast_list[1][i][1][1]]==0)&& 1843 1843 (ast_list[1][i][2]!=0)) 1844 1844 { … … 1854 1854 for(i=1;i<=size(ast_list[2]);i++) 1855 1855 { 1856 if((((Nvec[ast_list[2][i][1][1]] /d)*d)-Nvec[ast_list[2][i][1][1]]==0)&&1857 (((Nvec[ast_list[2][i][1][2]] /d)*d)-Nvec[ast_list[2][i][1][2]]==0)&&1856 if((((Nvec[ast_list[2][i][1][1]] div d)*d)-Nvec[ast_list[2][i][1][1]]==0)&& 1857 (((Nvec[ast_list[2][i][1][2]] div d)*d)-Nvec[ast_list[2][i][1][2]]==0)&& 1858 1858 (ast_list[2][i][2]!=0)) 1859 1859 { … … 1867 1867 for(i=1;i<=size(ast_list[3]);i++) 1868 1868 { 1869 if((((Nvec[ast_list[3][i][1][1]] /d)*d)-Nvec[ast_list[3][i][1][1]]==0)&&1870 (((Nvec[ast_list[3][i][1][2]] /d)*d)-Nvec[ast_list[3][i][1][2]]==0)&&1871 (((Nvec[ast_list[3][i][1][3]] /d)*d)-Nvec[ast_list[3][i][1][3]]==0)&&1869 if((((Nvec[ast_list[3][i][1][1]] div d)*d)-Nvec[ast_list[3][i][1][1]]==0)&& 1870 (((Nvec[ast_list[3][i][1][2]] div d)*d)-Nvec[ast_list[3][i][1][2]]==0)&& 1871 (((Nvec[ast_list[3][i][1][3]] div d)*d)-Nvec[ast_list[3][i][1][3]]==0)&& 1872 1872 (ast_list[3][i][2]!=0)) 1873 1873 { … … 2592 2592 { 2593 2593 k=L[2][i] mod d; 2594 s=1/number((L[1][i])^(L[2][i] /d));2594 s=1/number((L[1][i])^(L[2][i] div d)); 2595 2595 if(!k){p=subst(p,t,s*t);} 2596 2596 } … … 2601 2601 { 2602 2602 k=L[2][i] mod d; 2603 s=(L[1][i])^(L[2][i] /d);2603 s=(L[1][i])^(L[2][i] div d); 2604 2604 if(!k){p=subst(p,t,s*t);} 2605 2605 } -
Singular/LIB/rootsur.lib
rd44974d r1f9a84 970 970 } 971 971 nofzeros = 0; 972 lastsign = temp /lastsign;972 lastsign = temp div lastsign; 973 973 } 974 974 i++; -
Singular/LIB/standard.lib
rd44974d r1f9a84 2117 2117 if(va==1) 2118 2118 { 2119 m2=drest /wwtop[1];2119 m2=drest div wwtop[1]; 2120 2120 if((m2*wwtop[1])==drest) 2121 2121 {
Note: See TracChangeset
for help on using the changeset viewer.