Changeset 26a4bb in git
- Timestamp:
- Mar 20, 2002, 3:03:00 PM (21 years ago)
- Branches:
- (u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', '0604212ebb110535022efecad887940825b97c3f')
- Children:
- 91fc5ef6793434c854736648be840a3d14e17c1b
- Parents:
- 69b4b7a15e2f228b9e5ff38623a872696f30a94f
- Location:
- Singular/LIB
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/gaussman.lib
r69b4b7a r26a4bb 1 1 /////////////////////////////////////////////////////////////////////////////// 2 version="$Id: gaussman.lib,v 1.7 7 2002-03-08 10:30:56mschulze Exp $";2 version="$Id: gaussman.lib,v 1.78 2002-03-20 14:03:00 mschulze Exp $"; 3 3 category="Singularities"; 4 4 … … 12 12 13 13 PROCEDURES: 14 gmsring(t,s); Gauss-Manin connectionof t with variable s15 gmsnf(p,K); Gauss-Manin connectionnormal form of p16 gmscoeffs(p,K); Gauss-Manin connectionbasis representation of p14 gmsring(t,s); Gauss-Manin system of t with variable s 15 gmsnf(p,K); Gauss-Manin system normal form of p 16 gmscoeffs(p,K); Gauss-Manin system basis representation of p 17 17 monodromy(t); Jordan data of monodromy of t 18 18 spectrum(t); singularity spectrum of t … … 113 113 RETURN: 114 114 @format 115 ring G; Gauss-Manin connectionof t with variable s115 ring G; Gauss-Manin system of t with variable s 116 116 poly gmspoly=t; 117 117 ideal gmsjacob; Jacobian ideal of t … … 221 221 ideal nf[2]; p=nf[1]+nf[2] 222 222 @end format 223 NOTE: by setting p=nf[2] the computation can be continued223 NOTE: the computation can be continued by setting p=nf[2] 224 224 KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice 225 225 EXAMPLE: example gmsnf; shows examples … … 301 301 ideal l[2]; p=matrix(gmsbasis)*l[1]+l[2] 302 302 @end format 303 NOTE: by setting p=l[2] the computation can be continued303 NOTE: the computation can be continued by setting p=l[2] 304 304 KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice 305 305 EXAMPLE: example gmscoeffs; shows examples … … 564 564 RETURN: 565 565 @format 566 list l =jordan(M); Jordan dataof monodromy matrix exp(-2*pi*i*M)566 list l; Jordan data jordan(M) of monodromy matrix exp(-2*pi*i*M) 567 567 ideal l[1]; 568 568 number l[1][i]; eigenvalue of i-th Jordan block of M … … 1068 1068 ASSUME: characteristic 0; local degree ordering; 1069 1069 isolated critical point 0 of t 1070 RETURN: list A; t-matrix A[1]+s*A[2]on H''1070 RETURN: list A; matrix A[1]+s*A[2] of t on H'' 1071 1071 KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice; 1072 1072 mixed Hodge structure; opposite Hodge filtration; V-filtration … … 1261 1261 list ev; V-filtration on Jacobian algebra 1262 1262 ideal ev[1]; 1263 number ev[1][i]; V-filtration index of i-th spectral pair1263 number ev[1][i]; i-th V-filtration index 1264 1264 intvec ev[2]; 1265 int ev[2][i]; multiplicity of i-th spectral pair1265 int ev[2][i]; i-th multiplicity 1266 1266 list ev[3]; 1267 1267 module ev[3][i]; vector space of i-th graded part in terms of ev[4] -
Singular/LIB/linalg.lib
r69b4b7a r26a4bb 1 1 //GMG last modified: 04/25/2000 2 2 ////////////////////////////////////////////////////////////////////////////// 3 version="$Id: linalg.lib,v 1.2 8 2002-03-08 10:30:56mschulze Exp $";3 version="$Id: linalg.lib,v 1.29 2002-03-20 14:03:00 mschulze Exp $"; 4 4 category="Linear Algebra"; 5 5 info=" … … 1591 1591 @format 1592 1592 list l: 1593 module l[1]; inverse(l[1])*M*l[1] Jordan normal form1593 module l[1]; Jordan normal form inverse(l[1])*M*l[1] 1594 1594 intvec l[2]; 1595 1595 int l[2][i]; weight filtration index of l[1][i] … … 1690 1690 RETURN: 1691 1691 @format 1692 matrix J; list(e,s,m)==jordan(J)1692 matrix J; Jordan matrix with list(e,s,m)==jordan(J) 1693 1693 @end format 1694 1694 EXAMPLE: example jordanmatrix; shows examples
Note: See TracChangeset
for help on using the changeset viewer.