Changeset 2a4328 in git
- Timestamp:
- Mar 19, 2004, 4:52:30 PM (20 years ago)
- Branches:
- (u'spielwiese', 'e7cc1ebecb61be8b9ca6c18016352af89940b21a')
- Children:
- 72391bbb1d0acd8a82fe089b6bb86b8c7e773a73
- Parents:
- b3082aecde5b2bf7ac5652c2bd96123ae61d04a9
- File:
-
- 1 moved
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/ncalg.lib
-
Property
mode
changed from
100755
to100644
rb3082ae r2a4328 1 1 /////////////////////////////////////////////////////////////////////////////// 2 version="$Id: lieA.lib,v 1.6 2004-03-18 21:34:54levandov Exp $";3 category=" Plural: Lie Theory";2 version="$Id: ncalg.lib,v 1.1 2004-03-19 15:52:29 levandov Exp $"; 3 category="Noncommutative"; 4 4 info=" 5 5 LIBRARY: lieA.lib definitions of important G-algebras 6 6 AUTHORS: Viktor Levandovskyy, levandov@mathematik.uni-kl.de, 7 @* Oleksandr Khomenko, Oleksandr.Khomenko@math.uni-freiburg.de, 8 @* Oleksandr Motsak, motsak@mathematik.uni-kl.de 9 7 Oleksandr Khomenko, Oleksandr.Khomenko@math.uni-freiburg.de, 8 Oleksandr Motsak, motsak@mathematik.uni-kl.de 10 9 11 10 PROCEDURES: 12 A (n[,p]); returns U(A(n))=U(sl_{n+1}) in char p, if an integer p is given, 13 sl(n[,p]); returns U(sl_n) in char p, if an integer p is given, 14 sl2([ p]); returns U(sl_2) in the {e,f,h} presentation; in char p, if an integer p is given, 15 g2 ([ p]); returns U(g_2) in the {x(i),y(i),Ha,Hb} presentation; in char p, if an integer p is given, 16 gl3([ p]); returns U(gl_3) in the {e_ij (1<i,j<3)} presentation; in char p, if an integer p is given, 11 sl(n[,p]); returns U(sl_n) in char p, if an integer p is given, 12 sl2([p]); returns U(sl_2) in the (e,f,h) presentation; in char p, if an integer p is given, 13 g2([p]); returns U(g_2) in the (x(i),y(i),Ha,Hb) presentation; in char p, if an integer p is given, 14 gl3([p]); returns U(gl_3) in the (e_ij (1<i,j<3)) presentation; in char p, if an integer p is given, 15 Qso3([n]); returns U_q(so_3) in the presentation of Klimyk, if integer n is given, the quantum parameter will be specialized at the n-th root of unity, 16 Qsl3([n]); returns ring, corresponding to the U_q(sl_3) as the factor algebra of V_q(sl3), if integer n is given, the quantum parameter q will be specialized at the n-th root of unity, 17 18 ALIAS PROCEDURES: 19 A(n[,p]); returns U(A(n))=U(sl_(n+1)) in char p, if an integer p is given. 17 20 "; 18 21 19 22 LIB "nctools.lib"; 20 23 /////////////////////////////////////////////////////////////////////////////// 21 24 … … 28 31 { 29 32 kill @@@_RING_NAME; 30 } ;33 } 31 34 32 35 if (string(#) != "0") 33 36 { 34 37 string @@@_RING_NAME = @baseName + "_" + string(#); 35 } else 38 } 39 else 36 40 { 37 41 string @@@_RING_NAME = @baseName; 38 } ;42 } 39 43 export(@@@_RING_NAME); 40 44 … … 42 46 { 43 47 kill @@@_RING; 44 } ;48 } 45 49 46 50 string @@@_RING = "" + @baseName +"(" + string(#) + ")"; … … 50 54 { 51 55 kill @@@_CHAR; 52 } ;56 } 53 57 54 58 int @@@_CHAR = char(basering); … … 62 66 { 63 67 return( @@@_RING ); 64 }; 65 68 } 66 69 return( "No lieA.lib ring defined" ); 67 70 } … … 73 76 { 74 77 return( @@@_RING_NAME ); 75 } ;78 } 76 79 77 80 return( "No lieA.lib ring defined" ); … … 84 87 { 85 88 return( @@@_CHAR ); 86 } ;89 } 87 90 88 91 return( char(basering) ); … … 135 138 "USAGE: sl(n,[p]); n an integer, n>1; p an optional integer (field characteristic) 136 139 RETURN: a ring, describing U(sl_n) 137 NOTE: You have to activate this ring with the "setring" command. 138 The presentation of U(sl_n) is derived from the 139 standard representation of sl_n, positive 140 resp. negative roots are denoted by x(i) resp. y(i), 141 the Cartan elements are denoted by h(i). 142 SEE ALSO: sl2 140 NOTE: You have to activate this ring with the "setring" command. The presentation of U(sl_n) is derived from the standard representation of sl_n, positive resp. negative roots are denoted by x(i) resp. y(i); Cartan elements are denoted by h(i). 141 SEE ALSO: sl2, g2, gl3, Qsl3, Qso3 143 142 EXAMPLE: example sl; shows examples 144 143 "{ … … 177 176 } 178 177 } 179 180 178 for(k=1; k<=n-1; k++) 181 179 { … … 204 202 D[k,l]=D[k,l]+leadcoef(TMP[i,j])*x(buf); 205 203 } 206 207 204 if (TMP[j,i]!=0) 208 205 { … … 210 207 } 211 208 } 212 } 209 } 213 210 i=1; 214 while ( (TMP[i,i]==0)&&(i<n)) {i++;}211 while ( (TMP[i,i]==0) && (i<n) ) { i++; } 215 212 for(j=i; j<=n-1; j++) 216 213 { … … 221 218 TMP[j+1,j+1]=TMP[j+1,j+1]+p; 222 219 } 223 224 220 } 225 221 } 226 222 ncalgebra(1,D); 227 mySetRing("sl", n, #); 223 mySetRing("sl", n, #); 228 224 return(@@@rr); 229 225 } … … 238 234 239 235 proc A(int n, list #) 240 "USAGE: A(n,[p]); n an integer, n>1 ;, p an optional integer (field characteristic)236 "USAGE: A(n,[p]); n an integer, n>1, p an optional integer (field characteristic) 241 237 RETURN: a ring, describing U(A(n)) 242 NOTE: You have to activate this ring with the setring command. 243 The presentation of U(A(n)) is derived from the 244 standard representation of sl(n+1), positive 245 resp. negative roots are denoted by x(i) resp. y(i), 246 the Cartan elements are denoted by h(i). 247 SEE ALSO: sl2, g2, gl3 238 NOTE: You have to activate this ring with the setring command. The presentation of U(A(n)) is derived from the standard representation of sl(n+1), positive resp. negative roots are denoted by x(i) resp. y(i), the Cartan elements are denoted by h(i). 239 SEE ALSO: sl2, g2, gl3, Qsl3, Qso3 248 240 EXAMPLE: example A; shows examples 249 241 "{ … … 254 246 } 255 247 def @@@a=sl(n+1, #); 256 mySetRing("A", n, #);257 248 return(@@@a); 258 249 } 259 250 example 260 251 { "EXAMPLE:"; echo = 2; 261 def a2=A(2);252 def a2 = A(2); 262 253 setring a2; 263 254 a2; … … 267 258 268 259 proc g2(list #) 269 270 "USAGE: g2([p]), p an optional integer (field characteristic) 260 "USAGE: g2([p]), p an optional integer (field characteristic) 271 261 RETURN: ring, corresponding to the U(g_2) in (x(i),y(i),Ha,Hb) presentation 272 262 NOTE: you have to activate this ring with the "setring" command … … 394 384 proc Qso3(list #) 395 385 "USAGE: Qso3([n]), n an optional integer 396 RETURN: ring, corresponding to the U'_q(so_3) in the presentation of Klimyk; 397 if n is specified, the quantum parameter Q will be specialized at the (2*n)-th root of unity 386 RETURN: ring, corresponding to the U_q(so_3) in the presentation of Klimyk; if n is specified, the quantum parameter Q will be specialized at the (2*n)-th root of unity 398 387 NOTE: you have to activate this ring with the "setring" command 399 SEE ALSO: sl, Qsl3, g2, gl3388 SEE ALSO: sl, g2, gl3, Qsl3 400 389 EXAMPLE: example Qso3; shows examples 401 " 402 { 403 int @p = myInt(#);390 "{ 391 int @p = myInt(#); 392 @p = 2*@p; 404 393 ring @@@r=(0,Q),(x,y,z),dp; 405 minpoly = RootOfUnity( 2*p);394 minpoly = RootOfUnity(@p); 406 395 matrix C[3][3]; 407 matrix D[3][3];408 409 396 C[1,2]=Q2; 410 397 C[1,3]=1/Q2; 411 398 C[2,3]=Q2; 412 399 matrix D[3][3]; 413 400 D[1,2]=-Q*z; 414 401 D[1,3]=1/Q*y; 415 402 D[2,3]=-Q*x; 416 417 403 ncalgebra(C,D); 418 404 mySetRing("Qso3", #); 419 405 return(@@@r); 420 406 } 407 example 408 { "EXAMPLE:"; echo = 2; 409 def K = Qso3(3); 410 setring K; 411 K; 412 } 421 413 422 414 /////////////////////////////////////////////////////////////////////////////// … … 424 416 proc Qsl3(list #) 425 417 "USAGE: Qsl3([n]), n an optional integer 426 RETURN: ring, corresponding to the U_q(sl_3) as the factor algebra of 427 V_q(sl3); if n is specified, the quantum parameter q will be specialized at the n-th root of unity 418 RETURN: ring, corresponding to the U_q(sl_3) as the factor algebra of V_q(sl3); if n is specified, the quantum parameter q will be specialized at the n-th root of unity 428 419 NOTE: you have to activate this ring with the "setring" command 429 420 SEE ALSO: sl, Qso3, g2, gl3 430 421 EXAMPLE: example Qso3; shows examples 431 " 432 { 422 "{ 433 423 int @p = myInt(#); 434 424 // ring @@@rrr=(@p, q), (f12, f13, f23, k1, k2, l1, l2, e12, e13, e23), wp(7, 10, 11, 1, 1, 1, 1, 7, 10, 11); … … 517 507 return(@@qr); 518 508 } 519 520 /////////////////////////////////////////////////////////////////////////////// 509 example 510 { "EXAMPLE:"; echo = 2; 511 def L = Qsl3(3); 512 setring L; 513 L; 514 } 515 516 /////////////////////////////////////////////////////////////////////////////// -
Property
mode
changed from
Note: See TracChangeset
for help on using the changeset viewer.