Changeset 2dbc42 in git


Ignore:
Timestamp:
Apr 26, 2005, 7:19:41 PM (18 years ago)
Author:
Hans Schönemann <hannes@…>
Branches:
(u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'f875bbaccd0831e36aaed09ff6adeb3eb45aeb94')
Children:
128cc4a1980147be32a8058a40a0f77f8ff85537
Parents:
bc80a9d82c63066b897f69d21b4b613d17162dd2
Message:
*anne: avoid keepring


git-svn-id: file:///usr/local/Singular/svn/trunk@7907 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/spcurve.lib

    rbc80a9 r2dbc42  
    11// (anne, last modified 31.5.99)
    22/////////////////////////////////////////////////////////////////////////////
    3 version="$Id: spcurve.lib,v 1.17 2002-05-17 12:20:44 anne Exp $";
     3version="$Id: spcurve.lib,v 1.18 2005-04-26 17:19:41 Singular Exp $";
    44category="Singularities";
    55info="
     
    188188         and t1 is a presentation of the space of first order deformations
    189189         of i ((M,t1) as returned by the procedure matrixT1)
    190 CREATE:  new basering with name rneu
    191 RETURN:  ideal in rneu describing the semiuniversal deformation of i;
     190RETURN:  new ring in which the ideal semi describing the semiuniversal
     191        deformation of i;
    192192         if the optional third argument is given, the perturbation matrix
    193          of the semiuniversal deformation is returned.
     193         of the semiuniversal deformation is returned instead of the ideal.
    194194NOTE:    The current basering should not contain any variables named
    195195         A(j) where j is some integer!
     
    250250  if(size(#)>0)
    251251  {
    252     matrix result=O;
     252    matrix semi=O;
    253253  }
    254254  else
    255255  {
    256     ideal result=minor(O,gt);
    257   }
    258   export rneu;
    259   keepring rneu;
    260   return(result);
     256    ideal semi=minor(O,gt);
     257  }
     258  export semi;
     259  return(rneu);
    261260}
    262261example
     
    266265  matrix M=isCMcod2(curve);
    267266  list l=matrixT1(M,3);
    268   semiCMcod2(l[1],std(l[2]));
     267  def rneu=semiCMcod2(l[1],std(l[2]));
     268  setring rneu;
     269  semi;
    269270}
    270271/////////////////////////////////////////////////////////////////////////////
     
    318319  matrix M=isCMcod2(curve);
    319320  list l=matrixT1(M,3);
    320   def sem=semiCMcod2(l[1],std(l[2]));
    321   basering;
    322   discr(sem,3);
     321  def rneu=semiCMcod2(l[1],std(l[2]));
     322  setring rneu;
     323  discr(semi,3);
    323324}
    324325/////////////////////////////////////////////////////////////////////////////
     
    567568         n=1 : only non-constant deformations of non-negative weight @*
    568569         n=2 : all deformations of positive weight @*
    569          As an optional parameter the name of a new ring may be
    570          specified.
    571570ASSUME:  M is a presentation matrix of a Cohen-Macaulay codimension 2
    572571         ideal and t1 is its T1 space in matrix notation
    573 CREATE:  new basering (default name: rneu); a different name for this ring
    574          may be given as a 4th parameter
    575 RETURN:  list, consisting of a presentation matrix describing the deformation
    576          given by the generators of T1 of non-negative/positive weight
    577          and the weight vector for the new variables
     572RETURN:  new ring containing a list posw, consisting of a presentation
     573         matrix describing the deformation given by the generators of T1
     574         of non-negative/positive weight and the weight vector for the new
     575         variables
    578576NOTE:   The current basering should not contain any variables named
    579577         T(i) where i is some integer!
     
    693691  matrix O[gt+1][gt]=n;
    694692//---------------------------------------------------------------------------
    695 // Keep the ring and return the matrix
    696 //---------------------------------------------------------------------------
    697   if (defined(newname)>1)
    698   {
    699     def `newname`=rneu;
    700     setring `newname`;
    701     export `newname`;
    702     keepring `newname`;
    703   }
    704   else
    705   {
    706     export rneu;
    707     keepring rneu;
    708   }
    709   list ret=O,iv;
    710   return(ret);
     693// Keep the matrix and return the ring in which it lives
     694//---------------------------------------------------------------------------
     695  list posw=O,iv;
     696  export posw;
     697  return(rneu);
    711698}
    712699example
     
    716703  matrix M=isCMcod2(curve);
    717704  list l=matrixT1(M,3);
    718   list li=posweight(l[1],std(l[2]),0);
    719   pmat(li[1]);
    720   li[2];
     705  def rneu=posweight(l[1],std(l[2]),0);
     706  setring rneu;
     707  pmat(posw[1]);
     708  posw[2];
    721709}
    722710/////////////////////////////////////////////////////////////////////////////
     
    733721ASSUME:    M is a quasihomogeneous n x (n+1) matrix where the n minors define
    734722           an isolated space curve singularity
    735 CREATE:    2 new rings (default names: rneu and reneu)
    736            different ring names may be specified as a 2nd parameter
    737 RETURN:    coefficient matrix representing the kernel of the Kodaira-
    738            Spencer map of the family of non-negative deformations
    739            having the given singularity as special fibre
     723RETURN:    new ring containing the coefficient matrix KS representing
     724           the kernel of the Kodaira-Spencer map of the family of
     725           non-negative deformations having the given singularity as
     726           special fibre
    740727NOTE:      * the initial basering should not contain variables with name
    741728             e(i) or T(i), since those variable names will internally be
     
    903890// matrix M, compute T1 and pass again to the ring with the variables e(i)
    904891//--------------------------------------------------------------------------
    905   if (defined(newname)>1)
    906   {
    907     list li=posweight(M,mo,2,newname+"1");
    908     def rneu=basering;
    909   }
    910   else
    911   {
    912     list li=posweight(M,mo,2);
    913   }
     892  def rneu=posweight(M,mo,2);
     893  setring rneu;
     894  list li=posw;
    914895  if (size(li)<=1)
    915896  {
     
    10681049  }
    10691050  option(set,optvec);
    1070 // make sure that the exported ring has the right name
    1071   if (defined(newname)>1)
    1072   {
    1073     def `newname`=reneu;
    1074     setring `newname`;
    1075     export `newname`;
    1076     keepring `newname`;
    1077   }
    1078   else
    1079   {
    1080     export reneu;
    1081     keepring reneu;
    1082   }
    1083   return(ret[2]);
     1051  def KS=ret[2];
     1052  export KS;
     1053  return(reneu);
    10841054}
    10851055example
     
    10871057  ring r=0,(x,y,z),ds;
    10881058  matrix M[3][2]=z-x^7,0,y^2,z,x^9,y;
    1089   def KS=KSpencerKernel(M,"ar");
     1059  def rneu=KSpencerKernel(M,"ar");
     1060  setring rneu;
     1061  basering;
    10901062  print(KS);
    1091   nameof(basering);
    1092   basering;
    10931063}
    10941064///////////////////////////////////////////////////////////////////////////
Note: See TracChangeset for help on using the changeset viewer.