# Changeset 2fede6 in git

Ignore:
Timestamp:
Jun 13, 2014, 9:48:07 AM (10 years ago)
Branches:
(u'fieker-DuVal', '117eb8c30fc9e991c4decca4832b1d19036c4c65')(u'spielwiese', '79dfb9a6d258bfeb991428bdb25b8f55e9e809b2')
Children:
09b10c0468bacceddd8595ab5b61128767ca0b49
Parents:
38a53c048e362151c5c6f95afd4ff65bb32f577c
Message:
`rewrite of crypto.lib: use bigint instead of number`
Files:
6 deleted
53 edited

Unmodified
Removed
• ## Singular/LIB/aksaka.lib

 r38a53c0 //////////////////////////////////////////////////////////////////////////////// version="version aksaka.lib 4.0.0.0 Jun_2013 "; // \$Id\$ version="version aksaka.lib 4.0.0.0 Jun_2014 "; // \$Id\$ category="Teaching"; info=" } ////////////////////////////////////////////////////////////////////////// proc euler(number r) proc euler(bigint r) "USAGE: euler(r); RETURN: number phi(r), where phi is Eulers phi-function RETURN: bigint phi(r), where phi is Eulers phi-function NOTE:   first r is factorized with proc PollardRho, then phi(r) is calculated with the help of phi(p) of every factor p; list l=PollardRho(r,5000,1);           //bestimmen der Primfaktoren von r int k; number phi=r; bigint phi=r; for(k=1;k<=size(l);k++) { phi=phi-phi/l[k];       //berechnen phi(r) mit Hilfe der phi=phi-phi div l[k];       //berechnen phi(r) mit Hilfe der }                         //Primfaktoren und Eigenschaften der phi-Fktn return(phi); example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; euler(99991); }
• ## Singular/LIB/atkins.lib

 r38a53c0 ////////////////////////////////////////////////////////////////////////////// version="version atkins.lib 4.0.0.0 Jun_2013 "; // \$Id\$ /////////////////////////////////////////////////////////////////////////////// version="version atkins.lib 4.0.0.0 Jun_2014 "; category="Teaching"; info=" proc Cornacchia(number d, number p) proc Cornacchia(bigint d, bigint p) "USAGE: Cornacchia(d,p); RETURN: x,y such that x^2+d*y^2=p with p prime, else { number k,x(0),a,b,l,r,c,i; bigint k,x(0),a,b,l,r,c,i; k=Jacobi(-d,p);             // (1)[Test if residue] { x(0)=squareRoot(-d,p);   // (2)[Compute square root] if((p/2>=x(0))||(p<=x(0))) if((p div 2>=x(0))||(p<=x(0))) { x(0)=-x(0) mod p+p; b=r; } c=(p-b^2)/d;             // (4)[Test solution] c=(p-b^2) div d;             // (4)[Test solution] i=intRoot(c); if((((p-b^2) mod d)!=0)||(c!=i^2)) example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; Cornacchia(55,9551); } proc CornacchiaModified(number D, number p) proc CornacchiaModified(bigint D, bigint p) "USAGE: CornacchiaModified(D,p); RETURN: x,y such that x^2+|D|*y^2=p with p prime, else { number k,x(0),a,b,l,r,c; bigint k,x(0),a,b,l,r,c; k=Jacobi(D,p);                 // (2)[Test if residue] if(k==-1) b=r; } c=(4*p-b^2)/absValue(D);     // (5)[Test solution] number root_c=intRoot(c); c=(4*p-b^2) div absValue(D);     // (5)[Test solution] bigint root_c=intRoot(c); if((((4*p-b^2) mod absValue(D))!=0)||(c!=root_c^2)) { example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; CornacchiaModified(-107,1319); } proc pFactor1(number n,int B, list P) static proc pFactor1(number n,int B, list P) "USAGE: pFactor1(n,B,P); n to be factorized, B a bound , P a list of primes RETURN: a list of factors of n or the message: no factor found proc HilbertClassPoly(number D, int k) proc HilbertClassPoly(bigint D, int k) "USAGE: HilbertClassPoly(D,k); RETURN: the monic polynomial of degree h(D) in Z[X] of which jOft((D+sqr(D))/2) is a root { def S=basering; ring R=0,x,dp; string s1,s2,s3; number a1,b1,t1,g1; number D=imap(S,D); number B=intRoot(absValue(D)/3); bigint B=intRoot(absValue(D) div 3); ring C=(complex,10*k,i),x,dp; number D=imap(S,D); number DD=D; poly P=1;                  // (1)[Initialize] number b=cmod(D,2); number B=imap(R,B); number b=cmod(DD,2); number t,a,g,tau,j; list L; bigint a1,b1,t1,g1; int step=2; while(1) if(step==2)              // (2)[Initialize a] { t=(b^2-D)/4; t=(b^2-DD)/4; L=b,1; a=maximum(L); s3=string(t); setring R; execute("a1="+s1+";"); execute("b1="+s2+";"); execute("t1="+s3+";"); g1=gcd(gcd(a1,b1),t1/a1); g1=gcd(gcd(a1,b1),t1 div a1); setring C; g=imap(R,g1); g=g1; if(g!=1) else { tau=(-b+i*sqr(absValue(D),5*k))/(2*a); tau=(-b+i*sqr(absValue(DD),5*k))/(2*a); j=jOft(tau,k); if((a==b)||(a^2==t)||(b==0)) { "EXAMPLE:"; echo = 2; ring r = 0,x,dp; number D=-23; bigint D=-23; HilbertClassPoly(D,50); } ring T=0,var(1),dp; number d=imap(R,d); number e=squareRoot(d,p); number e=squareRoot(bigint(d),bigint(p)); setring R; number e=imap(T,e);
• ## Singular/LIB/crypto.lib

 r38a53c0 ////////////////////////////////////////////////////////////////////////////// version="version crypto.lib 4.0.0.0 Jun_2013 "; // \$Id\$ version="version crypto.lib 4.0.0.0 Jun_2014 "; // \$Id\$ category="Teaching"; info=" PROCEDURES: decimal(s);                number corresponding to the hexadecimal number s exgcdN(a,n)                compute s,t,d such that d=gcd(a,n)=s*a+t*n eexgcdN(L)                 T with sum_i L[i]*T[i]=T[n+1]=gcd(L[1],...,L[n]) gcdN(a,b)                  compute gcd(a,b) lcmN(a,b)                  compute lcm(a,b) powerN(m,d,n)              compute m^d mod n } proc exgcdN(number a, number n) "USAGE:  exgcdN(a,n); RETURN: a list s,t,d of numbers satisfying d=gcd(a,n)=s*a+t*n EXAMPLE:example exgcdN; shows an example " { number x=a mod n; if(x==0){return(list(0,1,n))} if (x<0) { x=x+n;} list l=exgcdN(n,x); return(list(l[2],l[1]-(a-x)*l[2]/n,l[3])) } example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; exgcdN(24,15); } proc eexgcdN(list L) "USAGE:  eexgcdN(L); " { if(size(L)==2){return(exgcdN(L[1],L[2]));} number p=L[size(L)]; if(size(L)==2) { list LL=extgcd(L[1],L[2]);return(list(LL[2],LL[3],LL[1])); } bigint p=L[size(L)]; L=delete(L,size(L)); list T=eexgcdN(L); list S=exgcdN(T[size(T)],p); list S=extgcd(T[size(T)],p); int i; for(i=1;i<=size(T)-1;i++) { T[i]=T[i]*S[1]; T[i]=T[i]*S[2]; } p=T[size(T)]; T[size(T)]=S[2]; T[size(T)+1]=S[3]; T[size(T)]=S[3]; T[size(T)+1]=S[1]; return(T); } example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; eexgcdN(list(24,15,21)); } proc gcdN(number a, number b) "USAGE:  gcdN(a,b); RETURN: gcd(a,b) EXAMPLE:example gcdN; shows an example " { //if((a mod b)==0){return(b)} //return(gcdN(b,a mod b)); return(gcd(a,b)); } example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; gcdN(24,15); } proc lcmN(number a, number b) proc lcmN(bigint a, bigint b) "USAGE:  lcmN(a,b); RETURN: lcm(a,b); " { //number d=gcdN(a,b); //return(a*b/d); return (a*b/gcd(a,b)); } example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; lcmN(24,15); } proc powerN(number m, number d, number n) proc powerN(bigint m, bigint d, bigint n) "USAGE:  powerN(m,d,n); RETURN: m^d mod n " { if(d==0){return(1);} if(d==0){return(bigint(1));} int i; if(n==0) for(i=12;i>=2;i--) { if((d mod i)==0){return(powerN(m,d/i,n)^i);} if((d mod i)==0){return(powerN(m,d div i,n)^i);} } return(m*powerN(m,d-1,n)); if((d mod i)==0) { number rr=powerN(m,d/i,n)^i mod n; bigint rr=powerN(m,d div i,n)^i mod n; if (rr<0) { rr=rr+n;} return(rr); example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; powerN(24,15,7); } int i; int n=size(L); number N=1; bigint N=1; for(i=1;i<=n;i++) { for(i=1;i<=n;i++) { M[i]=N/L[i]; M[i]=N div L[i]; } list S=eexgcdN(M); number x; bigint x; for(i=1;i<=n;i++) { example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; chineseRem(list(24,15,7),list(2,3,5)); } proc Jacobi(number a, number n) proc Jacobi(bigint a, bigint n) "USAGE:  Jacobi(a,n); RETURN: the generalized Legendre symbol int i; int z=1; number t=1; number k; bigint t=1; bigint k; if((((n-1)/2) mod 2)!=0){z=-1;} while((a mod 2)==0) { a=a/2; a=a div 2; if(((n mod 8)==3)||((n mod 8)==5)){t=-t;} } example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; Jacobi(13580555397810650806,5792543); } } proc primL(number q) proc primL(bigint q) "USAGE:  primL(q); RETURN: list of the first primes p_1,...,p_r such that q>p_1*...*p_(r-1) re[1]=2; re[2]=3; number s=6; bigint s=6; i=3; while(s<=q) example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; primL(20); } if (x>=0) { return((numerator(x)-(numerator(x) mod denominator(x)))/denominator(x)); return(bigint((numerator(x)-(bigint(numerator(x)) mod bigint(denominator(x))))) div bigint(denominator(x))); } else { return((numerator(x)-(numerator(x) mod denominator(x)+denominator(x)))/denominator(x)); return(bigint((numerator(x)-(bigint(numerator(x)) mod bigint(denominator(x)+denominator(x))))) div bigint(denominator(x))); } } example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; ring r=0,x,dp; intPart(7/3); } proc intRoot(number m) proc intRoot(bigint mm) "USAGE:  intRoot(m); RETURN: the integral part of the square root of m " { ring R = 0,@x,dp; number m=mm; number x=1; number t=x^2; } } if(t>m){return(x-1);} if(s==m){return(x+1);} return(x); } example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; if(t>m){return(bigint(x-1));} if(s==m){return(bigint(x+1));} return(bigint(x)); } example { "EXAMPLE:"; echo = 2; intRoot(20); } proc squareRoot(number a, number p) proc squareRoot(bigint a, bigint p) "USAGE:  squareRoot(a,p); RETURN: the square root of a in Z/p, p prime { "p is not prime"; return(number(-5)); } number n=random(1,2147483647) mod p; return(bigint(-5)); } bigint n=random(1,2147483647) mod p; if(n==0){n=n+1;} number j=Jacobi(n,p); bigint j=Jacobi(n,p); if(j==0) { "p is not prime"; return(number(-5)); return(bigint(-5)); } if(j==1) return(squareRoot(a,p)); } number q=p-1; number e=0; number two=2; number z,m,t; bigint q=p-1; bigint e=0; bigint two=2; bigint z,m,t; while((q mod 2)==0) { e=e+1; q=q/2; } number y=powerN(n,q,p); number r=e; number x=powerN(a,(q-1)/2,p); number b=a*x^2 mod p; q=q div 2; } bigint y=powerN(n,q,p); bigint r=e; bigint x=powerN(a,(q-1) div 2,p); bigint b=a*x^2 mod p; x=a*x mod p; example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; squareRoot(8315890421938608,32003); } proc solutionsMod2(matrix M) proc solutionsMod2(bigintmat MM) "USAGE:  solutionsMod2(M); RETURN: an intmat containing a basis of the vector space of solutions of the " { def R=basering; ring Rhelp=2,z,(c,dp); matrix M=imap(R,M); int i,j; matrix M[nrows(MM)][ncols(MM)]; for(i=1;i<=nrows(MM);i++) { for(j=1;j<=ncols(MM);j++) { M[i,j]=MM[i,j]; } } matrix S=syz(M); setring(R); matrix S=imap(Rhelp,S); int i,j; intmat v[nrows(S)][ncols(S)]; for(i=1;i<=nrows(S);i++) example { "EXAMPLE:"; echo = 2; ring R = 0,x,dp; matrix M[3][3]=1,2,3,4,5,6,7,6,5; bigintmat M[3][3]=1,2,3,4,5,6,7,6,5; solutionsMod2(M); } //============== Shank's baby step - giant step ======================== proc babyGiant(number b, number y, number p) proc babyGiant(bigint b, bigint y, bigint p) "USAGE:  babyGiant(b,y,p); RETURN: the discrete logarithm x: b^x=y mod p int i,j,m; list l; number h=1; number x; bigint h=1; bigint x; //choose m minimal such that m^2>p //giant-step: compute b^(m+j), 1<=j<=m and search in the baby-step table //for an i with y*b^i=b^(m*j). If found then x=m*j-i number g=b^m mod p; bigint g=b^m mod p; while(j0) { } int i,j; number A=1; number p,a,g; bigint A=1; bigint p,a,g; list PA; list re; if(A<=m) { A=N/A; A=N div A; PA=list(S[size(S)]); } a=a+1; if(powerN(a,N-1,N)!=1){return("not prime");} g=gcd(powerN(a,(N-1)/PA[i],N),N); g=gcd(powerN(a,(N-1) div PA[i],N),N); if(g==1) { example { "EXAMPLE:"; echo = 2; ring R = 0,z,dp; number N=105554676553297; bigint N=105554676553297; PocklingtonLehmer(N); list L=primList(1000); //======================= Pollards rho  ================================= proc PollardRho(number n, int k, int allFactors, list #) proc PollardRho(bigint n, int k, int allFactors, list #) "USAGE:  PollardRho(n,k,allFactors); optional: PollardRho(n,k,allFactors,L); L a list of the first k primes while((n mod L[i])==0) { n=n/L[i]; n=n div L[i]; } } int e=size(re); //here the rho-algorithm starts number a,d,x,y; bigint a,d,x,y; while(n>1) { while((n mod d)==0) { n=n/d; n=n div d; } break; example { "EXAMPLE:"; echo = 2; ring R = 0,z,dp; number h=10; number p=h^30+4; bigint h=10; bigint p=h^30+4; PollardRho(p,5000,0); } //======================== Pollards p-factorization ================ proc pFactor(number n,int B, list P) proc pFactor(bigint n,int B, list P) "USAGE:  pFactor(n,B,P); n to be factorized, B a bound , P a list of primes RETURN: a list of factors of n or n if no factor found { int i; number k=1; number w; bigint k=1; bigint w; while(i1)&&(d0) { setring R; int w=int(squareRoot(q,l)); setring S; //=== +/-2w mod l zurueckgeben, wenn (x,y)^q=+/-[w](x,y) //==== the case t>0 :  (Q1/P1,Q2/P2)=[w](x,y) ============== pause(); } if(size(reduce(J,I))==0){setring R;return(t);} if(size(reduce(J,I))==0){return(t);} J=Q1*L1-P1*H1,Q2*L2+P2*H2; if(size(reduce(J,I))==0){setring R;return(l-t);} if(size(reduce(J,I))==0){return(l-t);} } ERROR("something is wrong in testElliptic"); example { "EXAMPLE:"; echo = 2; ring R = 0,z,dp; testElliptic(1267985441,338474977,64740730,3); } //============= Lenstra's ECM Factorization ================================== proc factorLenstraECM(number N, list S, int B, list #) proc factorLenstraECM(bigint N, list S, int B, list #) "USAGE:  factorLenstraECM(N,S,B); optional: factorLenstraECM(N,S,B,d); d+1 the number of loops in the algorithm (default d=0) { list L,P; number g,M,w; bigint g,M,w; int i,j,k,d; int l=size(S); example { "EXAMPLE:"; echo = 2; ring R = 0,z,dp; list L=primList(1000); factorLenstraECM(181*32003,L,10,5); number h=10; bigint h=10; h=h^30+25; factorLenstraECM(h,L,4,3); //================= ECPP (Goldwasser-Kilian) a primaly-test ============= proc ECPP(number N) proc ECPP(bigint N) "USAGE:  ECPP(N); RETURN: message:N is not prime or {L,P,m,q} as certificate for N being prime@* { list L,S,P; number m,q; bigint m,q; int i; number n=intRoot(intRoot(N)); bigint n=intRoot(intRoot(N)); n=(n+1)^2;                         //lower bound for q while(1) if(n0;i--) { } static proc numberToWord(number n) static proc numberToWord(bigint n) { int i,j; string v; list s; number t=27; number mm; number nn=n; bigint t=27; bigint mm; bigint nn=n; while(nn>t) { mm=nn mod t; s[j]=mm; nn=(nn-mm)/t; nn=(nn-mm) div t; } j++; "USAGE:  code(s); s a string ASSUME:  s contains only small letters and space COMPUTE: a number, RSA-coding of the string s COMPUTE: a bigint, RSA-coding of the string s RETURN:  return RSA-coding of the string s as string EXAMPLE: code;  shows an example { ring r=0,x,dp; number bigint p=398075086424064937397125500550386491199064362342526708406385189575946388957261768583317; number bigint q=472772146107435302536223071973048224632914695302097116459852171130520711256363590397527; number n=p*q; number phi=(p-1)*(q-1); number e=1234567891; list L=exgcdN(e,phi); number d=L[1]; number m=wordToNumber(s); number c=powerN(m,e,n); bigint n=p*q; bigint phi=(p-1)*(q-1); bigint e=1234567891; //bigint d=extgcd(e,phi)[2]; bigint m=wordToNumber(s); bigint c=powerN(m,e,n); string cc=string(c); return(cc); proc decodeString(string g) "USAGE:  decodeString(s); s a string ASSUME:  s is a string of a number, the output of code ASSUME:  s is a string of a bigint, the output of code COMPUTE: a string, RSA-decoding of the string s RETURN:  return RSA-decoding of the string s as string " { ring r=0,x,dp; number bigint p=398075086424064937397125500550386491199064362342526708406385189575946388957261768583317; number bigint q=472772146107435302536223071973048224632914695302097116459852171130520711256363590397527; number n=p*q; number phi=(p-1)*(q-1); number e=1234567891; list L=exgcdN(e,phi); number d=L[1]; execute("number c="+g+";"); number f=powerN(c,d,n); bigint n=p*q; bigint phi=(p-1)*(q-1); bigint e=1234567891; bigint d=extgcd(e,phi)[2]; execute("bigint c="+g+";"); bigint f=powerN(c,d,n); string s=numberToWord(f); return(s);
• ## Tst/Manual.lst

 r38a53c0 Manual/ERROR.tst Manual/exteriorBasis.tst Manual/gcdN.tst Manual/genericmat.tst Manual/GKdim.tst Manual/equidimMax.tst Manual/execute.tst Manual/exgcdN.tst Manual/extendring.tst Manual/farey.tst
• ## Tst/Manual/Cornacchia.res.gz.uu

 r38a53c0 begin 640 Cornacchia.res.gz M'XL("-`G8G)R1F:B7EYJN5YQ26()5S#4 M!".H"8DEV9EYQ1!#X)+&=@I%F7GI"D\$*M@H&.A4Z*04(.1-DP```` ` end
• ## Tst/Manual/Cornacchia.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "atkins.lib"; ring R = 0,x,dp; Cornacchia(55,9551); tst_status(1);\$
• ## Tst/Manual/HilbertClassPoly.res.gz.uu

 r38a53c0 begin 640 HilbertClassPoly.res.gz M'XL("/HGI6;YM2J>.C>7NR?GE*E]HH)@^>/*6^":E^ MJAD2#JV05V@A!=_IGM[H,#Y]U;GO/B"`"(PZ'8@JF5 M]CM1FRF,UT5(H2T[-:8\$SF\$ONKKI]:ZKE#K=N[O=*6->9BL@/Z_M7*7!F.M@3@D3!"CP8`] HBBC"210S.C@(,X;B.(AI0AA=5!'_KIH*/Y6%['1C?`"B>\$F/``\$````` ` end
• ## Tst/Manual/HilbertClassPoly.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:242812 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:673888 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:765440 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:107 1 >> tst_memory_0 :: 1402586655:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:307984 1 >> tst_memory_1 :: 1402586655:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2247776 1 >> tst_memory_2 :: 1402586655:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2339192 1 >> tst_timer_1 :: 1402586655:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:25
• ## Tst/Manual/HilbertClassPoly.tst

 r38a53c0 LIB "atkins.lib"; ring r = 0,x,dp; number D=-23; bigint D=-23; HilbertClassPoly(D,50); tst_status(1);\$
• ## Tst/Manual/MillerRabin.res.gz.uu

 r38a53c0 begin 640 MillerRabin.res.gz M'XL("`8H7FJY7G%)8@E7 M,-0((Z@1R465!27Y\$%/@DL9V"D69>>D*00JV"@8Z53HI!0@Y\$SN%O-+
• ## Tst/Manual/MillerRabin.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:244380 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:8482816 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:9039872 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:32 1 >> tst_memory_0 :: 1402587421:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:259432 1 >> tst_memory_1 :: 1402587421:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:9879552 1 >> tst_memory_2 :: 1402587421:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:9935744 1 >> tst_timer_1 :: 1402587421:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:9
• ## Tst/Manual/MillerRabin.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,z,dp; number x=2; bigint x=2; x=x^787-1; MillerRabin(x,3);
• ## Tst/Manual/ShanksMestre.res.gz.uu

 r38a53c0 begin 640 ShanksMestre.res.gz M'XL("\$PH:KE><4EB M"5
• ## Tst/Manual/ShanksMestre.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:235496 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:1171456 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:1265852 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:31 1 >> tst_memory_0 :: 1402586369:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:262640 1 >> tst_memory_1 :: 1402586369:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2265088 1 >> tst_memory_2 :: 1402586369:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2658440 1 >> tst_timer_1 :: 1402586369:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:5
• ## Tst/Manual/ShanksMestre.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,z,dp; ShanksMestre(32003,71,602); tst_status(1);\$
• ## Tst/Manual/SolowayStrassen.res.gz.uu

 r38a53c0 begin 640 SolowayStrassen.res.gz M'XL("\$PHHHL0'=K.A9:D8*NX*V*_/BW3Z#3#^V8>O,=/N^@```Z#?;0%74F% MBCS1`^BW2RYR99B!-DQ@#'A9E&W<<57'4J8"B;1%4L5*XZ,-&6VN=5>I\N,T M0/V./@6U_B4M] L0F?FHY&1GGF44/?G<8W^PQB91?NH>#K9L'<'0[Y&&HX9++07P>E/W"X!```` M'XL("*3\$F5,``U-O;&]W87E3=')A^IR3,\`P"2C#K35)>&:4;'D8+WDGP_2\)1,3%PD(R,3ZP4'`1_#Q&Y#^P <6V[%4(?.)WOY[CEV>%J7>?':>0\$P9U4_\$@\$````` ` end
• ## Tst/Manual/SolowayStrassen.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:226920 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:666332 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:699116 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:15 1 >> tst_memory_0 :: 1402586276:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:255056 1 >> tst_memory_1 :: 1402586276:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2240296 1 >> tst_memory_2 :: 1402586276:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2281280 1 >> tst_timer_1 :: 1402586276:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:1
• ## Tst/Manual/SolowayStrassen.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,z,dp; number h=10; number p=h^100+267; bigint h=10; bigint p=h^100+267; //p=h^100+43723; //p=h^200+632347;
• ## Tst/Manual/all.lst

 r38a53c0 evaluate_reynolds.tst execute.tst exgcdN.tst exp2pt.tst expo.tst
• ## Tst/Manual/babyGiant.res.gz.uu

 r38a53c0 begin 640 babyGiant.res.gz M'XL("/(H3!><`Y1"[N3M3)4-2_:F=H\$U5203@67UFKS_'4X.>=HI;KAB`()>9.K M]F[!H?J':%J((O4X<]@6+/%\Z;@>./-B]3B5Y>:KE><4EB"5F9>24*2;9&"&\$3N'"EK:\$!0MP4+EX`%#=\$2)@A F.4\$C2:=2IP#H."-3N+RY'=C9((>5%FL8:EJK<`\$`>W:YV>\$````` ` end
• ## Tst/Manual/babyGiant.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:227140 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:666332 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:699116 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:14 1 >> tst_memory_0 :: 1402586031:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:255168 1 >> tst_memory_1 :: 1402586031:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2240296 1 >> tst_memory_2 :: 1402586031:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2281280 1 >> tst_timer_1 :: 1402586031:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:1
• ## Tst/Manual/babyGiant.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,z,dp; number b=2; number y=10; number p=101; bigint b=2; bigint y=10; bigint p=101; babyGiant(b,y,p); tst_status(1);\$

 r38a53c0 begin 640 ellipticAdd.res.gz M'XL("%4I_Y%(/LH4(H)JVZ MNR4!Q8L@Q7\W*4MKRQ+H=DL;\$?WTSJ@D>LKC-[R7F;?;+Y8I``@-J^4W_(\4- M(PV=:7YA"PI&_,K+UL]B#;P;O'\M_66@H-`W M72/\$DG/+ISW/Y0#/>ES(T.)00:5;A(.76#A7<#CQ3`J+%H1\$)J<6+0D%V>`1 M/E&04#"PB!,RP9E%@M!_,/AKPHV]W"L\LY-IROA6C)9B1M--@IET-_%>8'Y- 2]5)]S];EXVC\$/L8%Q+^)`0`` ` end

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:229032 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:667928 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:702308 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:13 1 >> tst_memory_0 :: 1402587213:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:257192 1 >> tst_memory_1 :: 1402587213:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2242032 1 >> tst_memory_2 :: 1402587213:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2283016 1 >> tst_timer_1 :: 1402587213:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:1

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,z,dp; number N=11; number a=1; number b=6; bigint N=11; bigint a=1; bigint b=6; list P,Q; P[1]=2;
• ## Tst/Manual/ellipticAllPoints.res.gz.uu

 r38a53c0 begin 640 ellipticAllPoints.res.gz M'XL("%8I\$@' M!1\$W,RUQH>@B2\$1V6R3ZD'BPJ+0O(G]]FJ*'3F^886;>9*==L@<`+B!-MF"0 M)D?AU8B@16Z[UF3P!6AL"C-M.;X* M1W[9?B`')8^8Y/F:=0N#%9/S'KM,>@,[V@+QF]R->;6-5C1C7WN'BPJ+0OHKZ^-<4.G=XPP\R\*<^'_`@`7\$*1[V%! MAGR-MX4`BR[8(CFN8,,%*:'1&GO">J?UJ<.6C-\V3]_0E5@Y!8534'U_]=2- M6;,82=!H"(KM7Y+#4^XEW.-QX/X,*PD&WXU36(YGZC*EPQ`%3T<3.MK7\SAH>?MA&5RS9!_.D6"\$!`0`` ` end
• ## Tst/Manual/ellipticAllPoints.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:256216 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:672672 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:899120 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:67 1 >> tst_memory_0 :: 1402586477:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:309760 1 >> tst_memory_1 :: 1402586477:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2256896 1 >> tst_memory_2 :: 1402586477:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2475672 1 >> tst_timer_1 :: 1402586477:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:28
• ## Tst/Manual/ellipticAllPoints.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,z,dp; list L=ellipticAllPoints(181,71,150); size(L);
• ## Tst/Manual/ellipticMult.res.gz.uu

 r38a53c0 begin 640 ellipticMult.res.gz M'XL("%8IQ4,*2^@D MM6K#[D&\%#0\$ZTV")&V0A36&9(+HKW>7UMUZFLA[A;:_3S1]N-*!51Y->!-^H";P)NU2;B&PUK)D85T:U& M]4JURB*Z\RBKU3H@6GF4UQ& 3;]`7-\$\)+8LK\0L5`*39;`\$````` M'XL("+"]F5,``V5L;&EP=&EC375L="YR97,`59!-"X)`\$(;O^RL&Z:`@TJK9 MA^P>HHM0(M@M)%0D%A:3'(G^?;MHKIWFY1EXAGGSZRE)`8!R."='L+!'3XK* MBD&ENV@%VDY,]`3.H9%2="CJRR#1:YNWUV.)))\<_N2H7Y\.GZ-F7@8<*O\$0 M+4+**#4\G'G)%G@SXXI%!D<7YI6!,=#:HTG1+NH2AMZD3K\@7N?SV%%`!```` ` end
• ## Tst/Manual/ellipticMult.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:229700 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:684032 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:786432 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:8 1 >> tst_memory_0 :: 1402584496:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:257736 1 >> tst_memory_1 :: 1402584496:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2242032 1 >> tst_memory_2 :: 1402584496:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2292968 1 >> tst_timer_1 :: 1402584496:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2
• ## Tst/Manual/ellipticMult.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,z,dp; number N=11; number a=1; number b=6; bigint N=11; bigint a=1; bigint b=6; list P; P[1]=2;
• ## Tst/Manual/ellipticRandomPoint.res.gz.uu

 r38a53c0 begin 640 ellipticRandomPoint.res.gz M'XL("%XXHVAO+@1IK:@?T!
• ## Tst/Manual/ellipticRandomPoint.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:229072 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:666332 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:895820 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:9 1 >> tst_memory_0 :: 1402585540:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:257240 1 >> tst_memory_1 :: 1402585540:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2240296 1 >> tst_memory_2 :: 1402585540:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2469896 1 >> tst_timer_1 :: 1402585540:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:3
• ## Tst/Manual/ellipticRandomPoint.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,z,dp; ellipticRandomPoint(32003,3,181); tst_status(1);\$
• ## Tst/Manual/euler.res.gz.uu

 r38a53c0 begin 640 euler.res.gz M'XL("&`I7FJY7G%)8@E7,%2S\$51S8G9Q8G8B M1#]E`"%G`C52PQ((#(\$6@6@#N+2I'=@5(+M* /BS6`\BI<`*-_1^FP```` H1#]
• ## Tst/Manual/euler.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:232844 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:667972 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:833532 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:97 1 >> tst_memory_0 :: 1402586583:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:262224 1 >> tst_memory_1 :: 1402586583:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2248704 1 >> tst_memory_2 :: 1402586583:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2408992 1 >> tst_timer_1 :: 1402586583:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:37
• ## Tst/Manual/euler.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "aksaka.lib"; ring R = 0,x,dp; euler(99991); tst_status(1);\$
• ## Tst/Manual/factorLenstraECM.res.gz.uu

 r38a53c0 begin 640 factorLenstraECM.res.gz M'XL("'X&3K^?E[LI>KK^D<`+@\$ M-9U`CQS%1[WM9>"[C3::PB@+F@I2PK[8T=FJTCBRQ??G+#;E;^RHH&#YX"0/ MSL[^U72^H]JAD&"U.<`"[J5VY4."N9RVI84JY]BAAM(+U5K@>Y)VZNA%0.7!`R8:KFB- 58WG[3G/XQ84\RMZ"*Z)3<[](`0`` M'XL("#O%F5,``V9A8W1ORZ6H*XA_XB;]]:HH\Q-0284@XK:3=Z%;BQ)"[,GA_V98-*1SYA'"'.%0X@3:KJ5Q)>"0R9NL M\$<#_7\$/95\$[FAEO><@(BRP! "```` ` end
• ## Tst/Manual/factorLenstraECM.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:238616 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:913408 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:1798144 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:56 1 >> tst_memory_0 :: 1402586427:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:268232 1 >> tst_memory_1 :: 1402586427:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2318336 1 >> tst_memory_2 :: 1402586427:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2367488 1 >> tst_timer_1 :: 1402586427:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:16
• ## Tst/Manual/factorLenstraECM.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,z,dp; list L=primList(1000); factorLenstraECM(181*32003,L,10,5); number h=10; bigint h=10; h=h^30+25; factorLenstraECM(h,L,4,3);
• ## Tst/Manual/pFactor.res.gz.uu

 r38a53c0 begin 640 pFactor.res.gz M'XL("!Y?(2D!```` M'XL(",^^F5,``W!&86-T;W(N\@L`,`DJ/\(:MKC8I6'77G4;B MI]YT04H8SF6-_1AVCT]HL\$2O6.9\F=?C=\#^3W"AD-!J@Z"R8=0O925AE%)_ M;40.31B/&(M\$P\$2@;"..\$M>*)53ZJ3N\$)F-T7>^E-9J;H#L>KVZR,IN`TYDF 8>.SR@YQ?G-YX&\+\=.O]`(DL1Z8-`0`` ` end
• ## Tst/Manual/pFactor.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,z,dp; list L=primList(1000); pFactor(1241143,13,L); number h=10; bigint h=10; h=h^30+25; pFactor(h,20,L);
• ## Tst/Manual/rho.res.gz.uu

 r38a53c0 begin 640 rho.res.gz M'XL("(9?YU\A(\+&"OBY!"1W\$1C"\8 M0_=L\$]E\DEY?=5#/:3:GM\XHW?YK)YO.G`R\SC LW&%3TM3SM>/*:KE><4EB"5NM#4T0(B;PL4+@.*&"`DSL.4:23J5.@5`!QF9 :PF7,[
• ## Tst/Manual/rho.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:228308 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:667592 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:767200 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:11 1 >> tst_memory_0 :: 1402584682:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:256336 1 >> tst_memory_1 :: 1402584682:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2241648 1 >> tst_memory_2 :: 1402584682:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2341400 1 >> tst_timer_1 :: 1402584682:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2
• ## Tst/Manual/rho.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,x,dp; number b=2; number y=10; number p=101; bigint b=2; bigint y=10; bigint p=101; rho(b,y,p); tst_status(1);\$
• ## Tst/Manual/s.lst

 r38a53c0 ERROR.tst exteriorBasis.tst gcdN.tst genericmat.tst getdump.tst equidimMax.tst execute.tst exgcdN.tst extendring.tst farey.tst
• ## Tst/Manual/solutionsMod2.res.gz.uu

 r38a53c0 begin 640 solutionsMod2.res.gz M'XL(",Z)M)0K!##/POCP\Y7&;[P&`<=CE&[!)D]>( MJYV"^2Y""G+GJ2*KG"#!!+EU[Y;4CS.'(8=. MR`<<(`,?!ZS;)8LX/"OJQ`#%*3R;R1@&&&*\$,2:X-ALOY?C/PRF,(4,?V5Q) 4^%=_E.NUP]QT97T`LC/QR^D````` M'XL(""J^F5,``W-O;'5T:6]NF9>26YB24*OM'&L4!D:ZACI&.L M8Z)CJF.F8P[\$I@CU)FC6:?@"'6*H8Z!C"%=B:@=V)<@-I<4:AIK6*EP`9\$][ %#-`````` ` end
• ## Tst/Manual/solutionsMod2.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:227024 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:666332 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:699116 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:8 1 >> tst_memory_0 :: 1402584618:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:255024 1 >> tst_memory_1 :: 1402584618:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2240296 1 >> tst_memory_2 :: 1402584618:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2281280 1 >> tst_timer_1 :: 1402584618:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2
• ## Tst/Manual/solutionsMod2.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,x,dp; matrix M[3][3]=1,2,3,4,5,6,7,6,5; bigintmat M[3][3]=1,2,3,4,5,6,7,6,5; solutionsMod2(M); tst_status(1);\$
• ## Tst/Manual/squareRoot.res.gz.uu

 r38a53c0 begin 640 squareRoot.res.gz M'XL(".B)
• ## Tst/Manual/squareRoot.stat

 r38a53c0 1 >> tst_memory_0 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:228480 1 >> tst_memory_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:666332 1 >> tst_memory_2 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:813860 1 >> tst_timer_1 :: 1316104113:3132- exportiert :3-1-3:ix86-Linux:mamawutz:8 1 >> tst_memory_0 :: 1402584563:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:256512 1 >> tst_memory_1 :: 1402584563:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2240296 1 >> tst_memory_2 :: 1402584563:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2387896 1 >> tst_timer_1 :: 1402584563:4.0.0, 64 bit:4.0.0:x86_64-Linux:nepomuck:2
• ## Tst/Manual/squareRoot.tst

 r38a53c0 LIB "tst.lib"; tst_init(); LIB "crypto.lib"; ring R = 0,x,dp; squareRoot(8315890421938608,32003); tst_status(1);\$
• ## Tst/regress.lst

 r38a53c0 Manual/equidimMax.tst Manual/execute.tst Manual/exgcdN.tst Manual/extendring.tst Manual/farey.tst
Note: See TracChangeset for help on using the changeset viewer.