Changeset 3599e9 in git


Ignore:
Timestamp:
Oct 20, 2008, 7:21:36 PM (15 years ago)
Author:
Stanislav Bulygin <bulygin@…>
Branches:
(u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
Children:
24f6cd90f7b9f99de4348fb8924de54d3986e660
Parents:
fb5093daa85a3988a544d1e70c8dc5b077c629ef
Message:
added references to the manual


git-svn-id: file:///usr/local/Singular/svn/trunk@11152 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/decodegb.lib

    rfb5093 r3599e9  
    11///////////////////////////////////////////////////////////////////////////////
    2 version="$Id: decodegb.lib,v 1.6 2008-10-08 16:52:24 bulygin Exp $";
     2version="$Id: decodegb.lib,v 1.7 2008-10-20 17:21:36 bulygin Exp $";
    33category="Coding theory";
    44info="
     
    1212 is worked out here as well. We also (for comparison) enable to work with the
    1313 system of Fitzgerald-Lax. We provide some auxiliary functions for further
    14  manipulations and decoding. For an overview of the methods mentioned above,
    15  cf.
    16  @format
    17   Stanislav Bulygin, Ruud Pellikaan: 'Decoding and finding the minimum
    18   distance with Groebner bases: history and new insights', in 'Selected Topics
    19   in Information and Coding Theory', World Scientific (2008) (to appear) (*).
    20  @end format
     14 manipulations and decoding. For an overview of the methods mentioned above @ref{Decoding codes with GB}
    2115 For the vanishing ideal computation the algorithm of Farr and Gao is
    2216 implemented.
     
    106100         error positions are either different or at least one of them is zero
    107101@end format
    108 RETURN: 
    109 @format
    110         the ring to work with the CRHT-ideal (with Sala's additions),
     102RETURN: the ring to work with the CRHT-ideal (with Sala's additions),
    111103        containig an ideal with name 'crht'
    112 @end format
     104THEORY:  Based on 'defset' of the given cyclic code, the procedure constructs
     105         the corresponding Cooper-Reed-Heleseth-Truong ideal 'crht'. With its
     106         help one can solve the decoding problem. For basics of the method @ref{Copper philosophy}.
     107SEE ALSO: sysNewton, sysBin
    113108EXAMPLE: example sysCRHT; shows an example
    114109"
     
    209204        - w is a candidate for the minimum distance
    210205@end format
    211 RETURN:
    212 @format
    213          the ring to work with the Sala's ideal for the minimum distance
     206RETURN:  the ring to work with the Sala's ideal for the minimum distance
    214207         containing the ideal with name 'crht_md'
    215 @end format
     208THEORY:  Based on 'defset' of the given cyclic code, the procedure constructs
     209         the corresponding Cooper-Reed-Heleseth-Truong ideal 'crht_md'. With
     210         its help one can find minimum distance of the code in the binary
     211         case. For basics of the method @ref{Copper philosophy}.
    216212EXAMPLE: example sysCRHTMindist; shows an example
    217213"
     
    295291           form should be constructed
    296292@end format
    297 RETURN:   
    298 @format
    299         the ring to work with the generalized Newton identities (in triangular
    300         form if applicable) containing the ideal with name 'newton'
    301 @end format
     293RETURN:  the ring to work with the generalized Newton identities (in
     294         triangular form if applicable) containing the ideal with name 'newton'
     295THEORY:  Based on 'defset' of the given cyclic code, the procedure constructs
     296         the corresponding ideal 'newton' with the generalized Newton
     297         identities. With its help one can solve the decoding problem. For
     298         basics of the method @ref{Copper philosophy}.
     299SEE ALSO: sysCRHT, sysBin
    302300EXAMPLE:  example sysNewton; shows an example
    303301"
     
    479477           which are 2^(some power)*(some elment in the gen.set) mod n
    480478@end format
    481 THEORY:   
    482 @format
    483           The system using Waring's function due to Augot et.al.
    484           is built as in [*].
    485 @end format
    486479RETURN:    the ring with the resulting system called 'bin'
     480THEORY:  Based on Q of the given cyclic code, the procedure constructs
     481         the corresponding ideal 'bin' with the use of Waring function.
     482         With its help one can solve the decoding problem.
     483         For basics of the method @ref{Generalized Newton identities}.
     484SEE ALSO: sysNewton, sysCRHT
    487485EXAMPLE:   example sysBin; shows an example
    488486"
     
    571569 export bin;
    572570 return(r);
    573 } example
     571}
     572example
    574573{
    575574     "EXAMPLE:";  echo = 2;
     
    593592 if (ncols(x)!=nrows(g)) {print("ERRORencode2!");}
    594593 return(x*g);
    595 } example
     594}
     595example
    596596{
    597597     "EXAMPLE:";  echo = 2;
     
    617617 if (ncols(c)!=ncols(h)) {print("ERRORsyndrome2!");}
    618618 return(h*transpose(c)); 
    619 } example
     619}
     620example
    620621{
    621622     "EXAMPLE:";  echo = 2;
     
    665666          needs to set formal>0 for the exponent
    666667@end format
    667 THEORY:   The system of quadratic equations is built as in [*].
    668668RETURN:   the ring to work with together with the resulting system called 'qe'
     669THEORY:  Based on 'check' of the given linear code, the procedure constructs
     670         the corresponding ideal that gives an opportunity to compute
     671         unknown syndrome of the received word y. Further
     672         one is able to solve the decoding problem.
     673         For basics of the method @ref{Decoding method based on quadratic equations}.
     674SEE ALSO: sysFL
    669675EXAMPLE:  example sysQE; shows an example
    670676"
     
    820826 export qe;
    821827 return(work);
    822 } example
     828}
     829example
    823830{
    824831     "EXAMPLE:";  echo = 2;
     
    870877 }
    871878 return(result);
    872 } example
     879}
     880example
    873881{
    874882     "EXAMPLE:";  echo = 2;
     
    937945 }
    938946 return(result);
    939 } example
     947}
     948example
    940949{
    941950  "EXAMPLE:";  echo = 2;
     
    981990 result=concat(rand,unitmat(m));
    982991 return(result);
    983 } example
     992}
     993example
    984994{
    985995  "EXAMPLE:";  echo = 2;     
     
    10041014        - a is a primitive element of the field.
    10051015@end format   
    1006 NOTE:     
    1007 @format
    1008         An MDS matrix is constructed in the following way. We take a to be a
     1016NOTE:   An MDS matrix is constructed in the following way. We take a to be a
    10091017        generator of the multiplicative group of the field. Then we construct
    10101018        the Vandermonde matrix with this a.
    1011 @end format
    10121019ASSUME:   extension field should already be defined
    10131020RETURN:   a matrix with the MDS property
     
    10251032 }
    10261033 return(result);
    1027 } example
     1034}
     1035example
    10281036{
    10291037     "EXAMPLE:";  echo = 2;
     
    10451053        - q is the field size
    10461054@end format
    1047 RETURN:
    1048 @format
    1049         minimum distance of the code together with the time needed for its
    1050         calculation
    1051 @end format
     1055RETURN:  minimum distance of the code together with the time needed for its
     1056         calculation
    10521057EXAMPLE: example mindist; shows an example
    10531058"
     
    11331138          - t is an upper bound for the number of errors one wants to correct
    11341139@end format
    1135 ASSUME:
    1136 @format
    1137           Errors in rec should be correctable, otherwise the output is
     1140ASSUME:   Errors in rec should be correctable, otherwise the output is
    11381141          unpredictable
    1139 @end format
    1140 RETURN:    a codeword that is closest to rec
    1141 EXAMPLE:   example decode; shows an example
     1142RETURN:   a codeword that is closest to rec
     1143EXAMPLE:  example decode; shows an example
    11421144"
    11431145{
     
    15011503proc vanishId (list points)
    15021504"USAGE:  vanishId (points); point is a list of matrices
    1503 @format
    1504         - points is a list of points for which the vanishing ideal is to be
     1505        'points' is a list of points for which the vanishing ideal is to be
    15051506        constructed       
    1506 @end format
    15071507RETURN:  Vanishing ideal corresponding to the given set of points
    15081508EXAMPLE: example vanishId; shows an example
     
    15451545     attrib(G,"isSB",1);
    15461546     return(G);
    1547 } example
     1547}
     1548example
    15481549{
    15491550     "EXAMPLE:";  echo = 2;
     
    17351736          - s is the dimension of the point for the vanishing ideal
    17361737@end format
    1737 RETURN:    the system of Fitzgerald-Lax for the given decoding problem
     1738RETURN:  the system of Fitzgerald-Lax for the given decoding problem
     1739THEORY:  Based on 'check' of the given linear code, the procedure constructs
     1740         the corresponding ideal constructed with a generalization of
     1741         Cooper's philosophy. For basics of the method @ref{Fitzgerald-Lax method}.
     1742SEE ALSO: sysQE
    17381743EXAMPLE:   example sysFL; shows an example
    17391744"
Note: See TracChangeset for help on using the changeset viewer.