Changeset 359b792 in git
 Timestamp:
 Oct 7, 2008, 7:55:52 PM (16 years ago)
 Branches:
 (u'fiekerDuVal', '117eb8c30fc9e991c4decca4832b1d19036c4c65')(u'spielwiese', '4188d308699580d975efd0f6cca8dcb41c396f70')
 Children:
 0c97d628cec893e481da6229e10b8066c8a40642
 Parents:
 4f950e90480a2c27ecf206371f3402003926507e
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

Singular/LIB/control.lib
r4f950e r359b792 1 version="$Id: control.lib,v 1.3 8 20070620 22:31:00levandov Exp $";1 version="$Id: control.lib,v 1.39 20081007 17:55:52 levandov Exp $"; 2 2 category="System and Control Theory"; 3 3 info=" … … 22 22 leftInverse(R); a left inverse of R 23 23 rightInverse(R); a right inverse of R 24 smith(M); a Smith form of a module M25 24 colrank(M); a column rank of M as of matrix 26 25 genericity(M); analysis of the genericity of parameters … … 1140 1139 1141 1140 // 1142 proc smith( module M )1143 "USAGE: smith(M); M a module/matrix1141 proc oldsmith( module M ) 1142 "USAGE: oldsmith(M); M a module/matrix 1144 1143 PURPOSE: computes the Smith normal form of a matrix 1145 1144 RETURN: a list of length 4 with the following entries: … … 1149 1148 @* [4]: a unimodular matrix V, 1150 1149 such that U*M*V=S. An warning is returned when no Smith form exists. 1151 NOTE: The Smith form only exists over PIDs (principal ideal domains). Use global ordering for computations!1150 NOTE: Older experimental implementation. The Smith form only exists over PIDs (principal ideal domains). Use global ordering for computations! 1152 1151 " 1153 1152 { … … 1273 1272 module M = [x2,x,3x34], [2x21,4x,5x2], [2x5,3x,4x]; 1274 1273 print(M); 1275 list P = smith(M);1274 list P = oldsmith(M); 1276 1275 print(P[1]); 1277 1276 matrix N = matrix(M); … … 1281 1280 // see what happens when the matrix is already in SmithForm 1282 1281 // module M = [x,0,0],[0,x2,0],[0,0,x3]; 1283 // list L = smith(M);1282 // list L = oldsmith(M); 1284 1283 // print(L[1]); 1285 1284 //matrix N=matrix(M);
Note: See TracChangeset
for help on using the changeset viewer.