Changeset 36b81ac in git for Singular/LIB/modwalk.lib


Ignore:
Timestamp:
Sep 1, 2015, 3:13:14 PM (9 years ago)
Author:
Stephan Oberfranz <oberfran@…>
Branches:
(u'spielwiese', 'fe61d9c35bf7c61f2b6cbf1b56e25e2f08d536cc')
Children:
510257fc6c7ff9c0c28e81f62f6fe06e63f024f8b430ca2b1337f52e1932f689e451e9abb002ec4a
Parents:
74fe3587102ed73b3858258975abbe6d63139abfcd38fbd954495900afc188a0e871f8586db00535
Message:
update
Merge branch 'spielwiese' of github.com:Singular/Sources into spielwiese
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/modwalk.lib

    • Property mode changed from 100644 to 100755
    rcd38fbd r36b81ac  
    1616
    1717PROCEDURES:
    18 modWalk(ideal,int,int[,int,int,int,int]);        standard basis conversion of I using modular methods (chinese remainder)
     18
     19modWalk(I,#);                   standard basis conversion of I by Groebner Walk using modular methods
     20modrWalk(I,radius,pertdeg,#);   standard basis conversion of I by Random Walk using modular methods
     21modfWalk(I,#);                  standard basis conversion of I by Fractal Walk using modular methods
     22modfrWalk(I,radius,#);          standard basis conversion of I by Random Fractal Walk using modular methods
    1923";
    2024
    21 LIB "poly.lib";
    22 LIB "ring.lib";
    23 LIB "parallel.lib";
    2425LIB "rwalk.lib";
    2526LIB "grwalk.lib";
    26 LIB "modstd.lib";
    27 
    28 
    29 ////////////////////////////////////////////////////////////////////////////////
    30 
    31 static proc modpWalk(def II, int p, int variant, list #)
    32 "USAGE:  modpWalk(I,p,#); I ideal, p integer, variant integer
    33 ASSUME:  If size(#) > 0, then
    34            #[1] is an intvec describing the current weight vector
    35            #[2] is an intvec describing the target weight vector
    36 RETURN:  ideal - a standard basis of I mod p, integer - p
    37 NOTE:    The procedure computes a standard basis of the ideal I modulo p and
    38          fetches the result to the basering.
    39 EXAMPLE: example modpWalk; shows an example
    40 "
    41 {
    42   option(redSB);
    43   int k,nvar@r;
    44   def R0 = basering;
    45   string ordstr_R0 = ordstr(R0);
    46   list rl = ringlist(R0);
    47   int sizerl = size(rl);
    48   int neg = 1 - attrib(R0,"global");
    49   if(typeof(II) == "ideal")
    50   {
    51     ideal I = II;
     27LIB "modular.lib";
     28
     29proc modWalk(ideal I, list #)
     30"USAGE:   modWalk(I, [, v, w]); I ideal, v intvec, w intvec
     31RETURN:   a standard basis of I
     32NOTE:     The procedure computes a standard basis of I (over the rational
     33          numbers) by using modular methods.
     34SEE ALSO: modular
     35EXAMPLE:  example modWalk; shows an example"
     36{
     37    /* read optional parameter */
     38    if (size(#) > 0) {
     39        if (size(#) == 1) {
     40            intvec w = #[1];
     41        }
     42        if (size(#) == 2) {
     43            intvec v = #[1];
     44            intvec w = #[2];
     45        }
     46        if (size(#) > 2 || typeof(#[1]) != "intvec") {
     47            ERROR("wrong optional parameter");
     48        }
     49    }
     50
     51    /* save options */
     52    intvec opt = option(get);
     53    option(redSB);
     54
     55    /* set additional parameters */
     56    int reduction = 1;
     57    int printout = 0;
     58
     59    /* call modular() */
     60    if (size(#) > 0) {
     61        I = modular("gwalk", list(I,reduction,printout,#));
     62    }
     63    else {
     64        I = modular("gwalk", list(I,reduction,printout));
     65    }
     66
     67    /* return the result */
     68    attrib(I, "isSB", 1);
     69    option(set, opt);
     70    return(I);
     71}
     72example
     73{
     74    "EXAMPLE:";
     75    echo = 2;
     76    ring R1 = 0, (x,y,z,t), dp;
     77    ideal I = 3x3+x2+1, 11y5+y3+2, 5z4+z2+4;
     78    I = std(I);
     79    ring R2 = 0, (x,y,z,t), lp;
     80    ideal I = fetch(R1, I);
     81    ideal J = modWalk(I);
     82    J;
     83}
     84
     85proc modrWalk(ideal I, int radius, int pertdeg, list #)
     86"USAGE:   modrWalk(I, radius, pertdeg[, v, w]);
     87          I ideal, radius int, pertdeg int, v intvec, w intvec
     88RETURN:   a standard basis of I
     89NOTE:     The procedure computes a standard basis of I (over the rational
     90          numbers) by using modular methods.
     91SEE ALSO: modular
     92EXAMPLE:  example modrWalk; shows an example"
     93{
     94    /* read optional parameter */
     95    if (size(#) > 0) {
     96        if (size(#) == 1) {
     97            intvec w = #[1];
     98        }
     99        if (size(#) == 2) {
     100            intvec v = #[1];
     101            intvec w = #[2];
     102        }
     103        if (size(#) > 2 || typeof(#[1]) != "intvec") {
     104            ERROR("wrong optional parameter");
     105        }
     106    }
     107
     108    /* save options */
     109    intvec opt = option(get);
     110    option(redSB);
     111
     112    /* set additional parameters */
     113    int reduction = 1;
     114    int printout = 0;
     115
     116    /* call modular() */
     117    if (size(#) > 0) {
     118        I = modular("rwalk", list(I,radius,pertdeg,reduction,printout,#));
     119    }
     120    else {
     121        I = modular("rwalk", list(I,radius,pertdeg,reduction,printout));
     122    }
     123
     124    /* return the result */
     125    attrib(I, "isSB", 1);
     126    option(set, opt);
     127    return(I);
     128}
     129example
     130{
     131    "EXAMPLE:";
     132    echo = 2;
     133    ring R1 = 0, (x,y,z,t), dp;
     134    ideal I = 3x3+x2+1, 11y5+y3+2, 5z4+z2+4;
     135    I = std(I);
     136    ring R2 = 0, (x,y,z,t), lp;
     137    ideal I = fetch(R1, I);
    52138    int radius = 2;
    53     int pert_deg = 2;
    54   }
    55   if(typeof(II) == "list" && typeof(II[1]) == "ideal")
    56   {
    57     ideal I = II[1];
    58     if(size(II) == 2)
    59     {
    60       int radius = II[2];
    61       int pert_deg = 2;
    62     }
    63     if(size(II) == 3)
    64     {
    65       int radius = II[2];
    66       int pert_deg = II[3];
    67     }
    68   }
    69   rl[1] = p;
    70   int h = homog(I);
    71   def @r = ring(rl);
    72   setring @r;
    73   ideal i = fetch(R0,I);
    74   string order;
    75   if(system("nblocks") <= 2)
    76   {
    77     if(find(ordstr_R0, "M") + find(ordstr_R0, "lp") + find(ordstr_R0, "rp") <= 0)
    78     {
    79       order = "simple";
    80     }
    81   }
    82 
    83 //-------------------------  make i homogeneous  -----------------------------
    84   if(!mixedTest() && !h)
    85   {
    86     if(!((find(ordstr_R0, "M") > 0) || (find(ordstr_R0, "a") > 0) || neg))
    87     {
    88       if(!((order == "simple") || (sizerl > 4)))
    89       {
    90         list rl@r = ringlist(@r);
    91         nvar@r = nvars(@r);
    92         intvec w;
    93         for(k = 1; k <= nvar@r; k++)
    94         {
    95           w[k] = deg(var(k));
    96         }
    97         w[nvar@r + 1] = 1;
    98         rl@r[2][nvar@r + 1] = "homvar";
    99         rl@r[3][2][2] = w;
    100         def HomR = ring(rl@r);
    101         setring HomR;
    102         ideal i = imap(@r, i);
    103         i = homog(i, homvar);
    104       }
    105     }
    106   }
    107 
    108 //-------------------------  compute a standard basis mod p  -----------------------------
    109 
    110   if(variant == 1)
    111   {
    112     if(size(#)>0)
    113     {
    114       i = rwalk(i,radius,pert_deg,#);
    115      // rwalk(i,radius,pert_deg,#); std(i);
    116     }
    117     else
    118     {
    119       i = rwalk(i,radius,pert_deg);
    120     }
    121   }
    122   if(variant == 2)
    123   {
    124     if(size(#) == 2)
    125     {
    126       i = gwalk(i,#);
    127     }
    128     else
    129     {
    130       i = gwalk(i);
    131     }
    132   }
    133   if(variant == 3)
    134   {
    135     if(size(#) == 2)
    136     {
    137       i = frandwalk(i,radius,#);
    138     }
    139     else
    140     {
    141       i = frandwalk(i,radius);
    142     }
    143   }
    144   if(variant == 4)
    145   {
    146     if(size(#) == 2)
    147     {
    148       i=fwalk(i,#);
    149     }
    150     else
    151     {
    152       i=fwalk(i);
    153     }
    154   }
    155   if(variant == 5)
    156   {
    157     if(size(#) == 2)
    158     {
    159      i=prwalk(i,radius,pert_deg,pert_deg,#);
    160     }
    161     else
    162     {
    163       i=prwalk(i,radius,pert_deg,pert_deg);
    164     }
    165   }
    166   if(variant == 6)
    167   {
    168     if(size(#) == 2)
    169     {
    170       i=pwalk(i,pert_deg,pert_deg,#);
    171     }
    172     else
    173     {
    174       i=pwalk(i,pert_deg,pert_deg);
    175     }
    176   }
    177 
    178   if(!mixedTest() && !h)
    179   {
    180     if(!((find(ordstr_R0, "M") > 0) || (find(ordstr_R0, "a") > 0) || neg))
    181     {
    182       if(!((order == "simple") || (sizerl > 4)))
    183       {
    184         i = subst(i, homvar, 1);
    185         i = simplify(i, 34);
    186         setring @r;
    187         i = imap(HomR, i);
    188         i = interred(i);
    189         kill HomR;
    190       }
    191     }
    192   }
    193   setring R0;
    194   return(list(fetch(@r,i),p));
    195 }
    196 example
    197 {
    198   "EXAMPLE:"; echo = 2;
    199   option(redSB);
    200 
    201   int p = 181;
    202   intvec a = 2,1,3,4;
    203   intvec b = 1,9,1,1;
    204   ring ra = 0,x(1..4),(a(a),lp);
    205   ideal I = std(cyclic(4));
    206   ring rb = 0,x(1..4),(a(b),lp);
    207   ideal I = imap(ra,I);
    208   modpWalk(I,p,1,a,b);
    209   std(I);
    210 }
    211 
    212 ////////////////////////////////////////////////////////////////////////////////
    213 
    214 proc modWalk(def II, int variant, list #)
    215 "USAGE:  modWalk(II); II ideal or list(ideal,int)
    216 ASSUME:  If variant =
    217 @*       - 1 the Random Walk algorithm with radius II[2] is applied
    218            to II[1] if II = list(ideal, int). It is applied to II with radius 2
    219            if II is an ideal.
    220 @*       - 2, the Groebner Walk algorithm is applied to II[1] or to II, respectively.
    221 @*       - 3, the Fractal Walk algorithm with random element is applied to II[1] or II,
    222            respectively.
    223 @*       - 4, the Fractal Walk algorithm is applied to II[1] or II, respectively.
    224 @*       - 5, the Perturbation Walk algorithm with random element is applied to II[1]
    225            or II, respectively, with radius II[3] and perturbation degree II[2].
    226 @*       - 6, the Perturbation Walk algorithm is applied to II[1] or II, respectively,
    227            with perturbation degree II[3].
    228          If size(#) > 0, then # contains either 1, 2 or 4 integers such that
    229 @*       - #[1] is the number of available processors for the computation,
    230 @*       - #[2] is an optional parameter for the exactness of the computation,
    231                 if #[2] = 1, the procedure computes a standard basis for sure,
    232 @*       - #[3] is the number of primes until the first lifting,
    233 @*       - #[4] is the constant number of primes between two liftings until
    234            the computation stops.
    235 RETURN:  a standard basis of I if no warning appears.
    236 NOTE:    The procedure converts a standard basis of I (over the rational
    237          numbers) from the ordering \"a(v),lp\", "dp\" or \"Dp\" to the ordering
    238          \"(a(w),lp\" or \"a(1,0,...,0),lp\" by using modular methods.
    239          By default the procedure computes a standard basis of I for sure, but
    240          if the optional parameter #[2] = 0, it computes a standard basis of I
    241          with high probability.
    242 EXAMPLE: example modWalk; shows an example
    243 "
    244 {
    245   int TT = timer;
    246   int RT = rtimer;
    247   int i,j,pTest,sizeTest,weighted,n1;
    248   bigint N;
    249 
    250   def R0 = basering;
    251   list rl = ringlist(R0);
    252   if((npars(R0) > 0) || (rl[1] > 0))
    253   {
    254     ERROR("Characteristic of basering should be zero, basering should have no parameters.");
    255   }
    256 
    257   if(typeof(II) == "ideal")
    258   {
    259     ideal I = II;
    260     kill II;
    261     list II;
    262     II[1] = I;
    263     II[2] = 2;
    264     II[3] = 2;
    265   }
    266   else
    267   {
    268     if(typeof(II) == "list" && typeof(II[1]) == "ideal")
    269     {
    270       ideal I = II[1];
    271       if(size(II) == 1)
    272       {
    273         II[2] = 2;
    274         II[3] = 2;
    275       }
    276       if(size(II) == 2)
    277       {
    278         II[3] = 2;
    279       }
    280 
    281     }
    282     else
    283     {
    284       ERROR("Unexpected type of input.");
    285     }
    286   }
    287 
    288 //--------------------  Initialize optional parameters  ------------------------
    289   n1 = system("--cpus");
    290   if(size(#) == 0)
    291   {
    292     int exactness = 1;
    293     int n2 = 10;
    294     int n3 = 10;
    295   }
    296   else
    297   {
    298     if(size(#) == 1)
    299     {
    300       if(typeof(#[1]) == "int")
    301       {
    302         if(#[1] < n1)
    303         {
    304           n1 = #[1];
    305         }
    306         int exactness = 1;
    307         if(n1 >= 10)
    308         {
    309           int n2 = n1 + 1;
    310           int n3 = n1;
    311         }
    312         else
    313         {
    314           int n2 = 10;
    315           int n3 = 10;
    316         }
    317       }
    318       else
    319       {
    320         ERROR("Unexpected type of input.");
    321       }
    322     }
    323     if(size(#) == 2)
    324     {
    325       if(typeof(#[1]) == "int" && typeof(#[2]) == "int")
    326       {
    327         if(#[1] < n1)
    328         {
    329           n1 = #[1];
    330         }
    331         int exactness = #[2];
    332         if(n1 >= 10)
    333         {
    334           int n2 = n1 + 1;
    335           int n3 = n1;
    336         }
    337         else
    338         {
    339           int n2 = 10;
    340           int n3 = 10;
    341         }
    342       }
    343       else
    344       {
    345         if(typeof(#[1]) == "intvec" && typeof(#[2]) == "intvec")
    346         {
    347           intvec curr_weight = #[1];
    348           intvec target_weight = #[2];
    349           weighted = 1;
    350           int n2 = 10;
    351           int n3 = 10;
    352           int exactness = 1;
    353         }
    354         else
    355         {
    356           ERROR("Unexpected type of input.");
    357         }
    358       }
    359     }
    360     if(size(#) == 3)
    361     {
    362       if(typeof(#[1]) == "intvec" && typeof(#[2]) == "intvec" && typeof(#[3]) == "int")
    363       {
    364         intvec curr_weight = #[1];
    365         intvec target_weight = #[2];
    366         weighted = 1;
    367         n1 = #[3];
    368         int n2 = 10;
    369         int n3 = 10;
    370         int exactness = 1;
    371       }
    372       else
    373       {
    374         ERROR("Unexpected type of input.");
    375       }
    376     }
    377     if(size(#) == 4)
    378     {
    379       if(typeof(#[1]) == "intvec" && typeof(#[2]) == "intvec" && typeof(#[3]) == "int"
    380           && typeof(#[4]) == "int")
    381       {
    382         intvec curr_weight = #[1];
    383         intvec target_weight = #[2];
    384         weighted = 1;
    385         if(#[1] < n1)
    386         {
    387           n1 = #[3];
    388         }
    389         int exactness = #[4];
    390         if(n1 >= 10)
    391         {
    392           int n2 = n1 + 1;
    393           int n3 = n1;
    394         }
    395         else
    396         {
    397           int n2 = 10;
    398           int n3 = 10;
    399         }
    400       }
    401       else
    402       {
    403         if(typeof(#[1]) == "int" && typeof(#[2]) == "int" && typeof(#[3]) == "int" && typeof(#[4]) == "int")
    404         {
    405           if(#[1] < n1)
    406           {
    407             n1 = #[1];
    408           }
    409           int exactness = #[2];
    410           if(n1 >= #[3])
    411           {
    412             int n2 = n1 + 1;
    413           }
    414           else
    415           {
    416             int n2 = #[3];
    417           }
    418           if(n1 >= #[4])
    419           {
    420             int n3 = n1;
    421           }
    422           else
    423           {
    424             int n3 = #[4];
    425           }
    426         }
    427         else
    428         {
    429           ERROR("Unexpected type of input.");
    430         }
    431       }
    432     }
    433     if(size(#) == 6)
    434     {
    435       if(typeof(#[1]) == "intvec" && typeof(#[2]) == "intvec" && typeof(#[3]) == "int" && typeof(#[4]) == "int" && typeof(#[5]) == "int" && typeof(#[6]) == "int")
    436       {
    437         intvec curr_weight = #[1];
    438         intvec target_weight = #[2];
    439         weighted = 1;
    440         if(#[3] < n1)
    441         {
    442           n1 = #[3];
    443         }
    444         int exactness = #[4];
    445         if(n1 >= #[5])
    446         {
    447           int n2 = n1 + 1;
    448         }
    449         else
    450         {
    451           int n2 = #[5];
    452         }
    453         if(n1 >= #[6])
    454         {
    455           int n3 = n1;
    456         }
    457         else
    458         {
    459           int n3 = #[6];
    460         }
    461       }
    462       else
    463       {
    464         ERROR("Expected list(intvec,intvec,int,int,int,int) as optional parameter list.");
    465       }
    466     }
    467     if(size(#) == 1 || size(#) == 5 || size(#) > 6)
    468     {
    469       ERROR("Expected 0,2,3,4 or 5 optional arguments.");
    470     }
    471   }
    472   if(printlevel >= 10)
    473   {
    474   "n1 = "+string(n1)+", n2 = "+string(n2)+", n3 = "+string(n3)+", exactness = "+string(exactness);
    475   }
    476 
    477 //-------------------------  Save current options  -----------------------------
    478   intvec opt = option(get);
    479   //option(redSB);
    480 
    481 //--------------------  Initialize the list of primes  -------------------------
    482   int tt = timer;
    483   int rt = rtimer;
    484   int en = 2134567879;
    485   int an = 1000000000;
    486   intvec L = primeList(I,n2);
    487   if(n2 > 4)
    488   {
    489   //  L[5] = prime(random(an,en));
    490   }
    491   if(printlevel >= 10)
    492   {
    493     "CPU-time for primeList: "+string(timer-tt)+" seconds.";
    494     "Real-time for primeList: "+string(rtimer-rt)+" seconds.";
    495   }
    496   int h = homog(I);
    497   list P,T1,T2,LL,Arguments,PP;
    498   ideal J,K,H;
    499 
    500 //-------------------  parallelized Groebner Walk in positive characteristic  --------------------
    501 
    502   if(weighted)
    503   {
    504     for(i=1; i<=size(L); i++)
    505     {
    506       Arguments[i] = list(II,L[i],variant,list(curr_weight,target_weight));
    507     }
    508   }
    509   else
    510   {
    511     for(i=1; i<=size(L); i++)
    512     {
    513       Arguments[i] = list(II,L[i],variant);
    514     }
    515   }
    516   P = parallelWaitAll("modpWalk",Arguments);
    517   for(i=1; i<=size(P); i++)
    518   {
    519     T1[i] = P[i][1];
    520     T2[i] = bigint(P[i][2]);
    521   }
    522 
    523   while(1)
    524   {
    525     LL = deleteUnluckyPrimes(T1,T2,h);
    526     T1 = LL[1];
    527     T2 = LL[2];
    528 //-------------------  Now all leading ideals are the same  --------------------
    529 //-------------------  Lift results to basering via farey  ---------------------
    530 
    531     tt = timer; rt = rtimer;
    532     N = T2[1];
    533     for(i=2; i<=size(T2); i++)
    534     {
    535       N = N*T2[i];
    536     }
    537     H = chinrem(T1,T2);
    538     J = parallelFarey(H,N,n1);
    539     //J=farey(H,N);
    540     if(printlevel >= 10)
    541     {
    542       "CPU-time for lifting-process is "+string(timer - tt)+" seconds.";
    543       "Real-time for lifting-process is "+string(rtimer - rt)+" seconds.";
    544     }
    545 
    546 //----------------  Test if we already have a standard basis of I --------------
    547 
    548     tt = timer; rt = rtimer;
    549     pTest = pTestSB(I,J,L,variant);
    550     //pTest = primeTestSB(I,J,L,variant);
    551     if(printlevel >= 10)
    552     {
    553       "CPU-time for pTest is "+string(timer - tt)+" seconds.";
    554       "Real-time for pTest is "+string(rtimer - rt)+" seconds.";
    555     }
    556     if(pTest)
    557     {
    558       if(printlevel >= 10)
    559       {
    560         "CPU-time for computation without final tests is "+string(timer - TT)+" seconds.";
    561         "Real-time for computation without final tests is "+string(rtimer - RT)+" seconds.";
    562       }
    563       attrib(J,"isSB",1);
    564       if(exactness == 0)
    565       {
    566         option(set, opt);
    567         return(J);
    568       }
    569       else
    570       {
    571         tt = timer;
    572         rt = rtimer;
    573         sizeTest = 1 - isIdealIncluded(I,J,n1);
    574         if(printlevel >= 10)
    575         {
    576           "CPU-time for checking if I subset <G> is "+string(timer - tt)+" seconds.";
    577           "Real-time for checking if I subset <G> is "+string(rtimer - rt)+" seconds.";
    578         }
    579         if(sizeTest == 0)
    580         {
    581           tt = timer;
    582           rt = rtimer;
    583           K = std(J);
    584           if(printlevel >= 10)
    585           {
    586             "CPU-time for last std-computation is "+string(timer - tt)+" seconds.";
    587             "Real-time for last std-computation is "+string(rtimer - rt)+" seconds.";
    588           }
    589           if(size(reduce(K,J)) == 0)
    590           {
    591             option(set, opt);
    592             return(J);
    593           }
    594         }
    595       }
    596     }
    597 //--------------  We do not already have a standard basis of I, therefore do the main computation for more primes  --------------
    598 
    599     T1 = H;
    600     T2 = N;
    601     j = size(L)+1;
    602     tt = timer; rt = rtimer;
    603     L = primeList(I,n3,L,n1);
    604     if(printlevel >= 10)
    605     {
    606       "CPU-time for primeList: "+string(timer-tt)+" seconds.";
    607       "Real-time for primeList: "+string(rtimer-rt)+" seconds.";
    608     }
    609     Arguments = list();
    610     PP = list();
    611     if(weighted)
    612     {
    613       for(i=j; i<=size(L); i++)
    614       {
    615         //Arguments[i-j+1] = list(II,L[i],variant,list(curr_weight,target_weight));
    616         Arguments[size(Arguments)+1] = list(II,L[i],variant,list(curr_weight,target_weight));
    617       }
    618     }
    619     else
    620     {
    621       for(i=j; i<=size(L); i++)
    622       {
    623         //Arguments[i-j+1] = list(II,L[i],variant);
    624         Arguments[size(Arguments)+1] = list(II,L[i],variant);
    625       }
    626     }
    627     PP = parallelWaitAll("modpWalk",Arguments);
    628     if(printlevel >= 10)
    629     {
    630       "parallel modpWalk";
    631     }
    632     for(i=1; i<=size(PP); i++)
    633     {
    634       //P[size(P) + 1] = PP[i];
    635       T1[size(T1) + 1] = PP[i][1];
    636       T2[size(T2) + 1] = bigint(PP[i][2]);
    637     }
    638   }
    639   if(printlevel >= 10)
    640   {
    641     "CPU-time for computation with final tests is "+string(timer - TT)+" seconds.";
    642     "Real-time for computation with final tests is "+string(rtimer - RT)+" seconds.";
    643   }
    644 }
    645 
    646 example
    647 {
    648   "EXAMPLE:";
    649   echo = 2;
    650   ring R=0,(x,y,z),lp;
    651   ideal I=-x+y2z-z,xz+1,x2+y2-1;
    652   // I is a standard basis in dp
    653   ideal J = modWalk(I,1);
    654   J;
    655 }
    656 
    657 ////////////////////////////////////////////////////////////////////////////////
    658 static proc isIdealIncluded(ideal I, ideal J, int n1)
    659 "USAGE:  isIdealIncluded(I,J,int n1); I ideal, J ideal, n1 integer
    660 "
    661 {
    662   if(n1 > 1)
    663   {
    664     int k;
    665     list args,results;
    666     for(k=1; k<=size(I); k++)
    667     {
    668       args[k] = list(ideal(I[k]),J,1);
    669     }
    670     results = parallelWaitAll("reduce",args);
    671     for(k=1; k<=size(results); k++)
    672     {
    673       if(results[k] == 0)
    674       {
    675         return(1);
    676       }
    677     }
    678     return(0);
    679   }
    680   else
    681   {
    682     if(reduce(I,J,1) == 0)
    683     {
    684       return(1);
    685     }
    686     else
    687     {
    688       return(0);
    689     }
    690   }
    691 }
    692 
    693 ////////////////////////////////////////////////////////////////////////////////
    694 static proc parallelChinrem(list T1, list T2, int n1)
    695 "USAGE:  parallelChinrem(T1,T2); T1 list of ideals, T2 list of primes, n1 integer"
    696 {
    697   int i,j,k;
    698 
    699   ideal H,J;
    700 
    701   list arguments_chinrem,results_chinrem;
    702   for(i=1; i<=size(T1); i++)
    703   {
    704     J = ideal(T1[i]);
    705     attrib(J,"isSB",1);
    706     arguments_chinrem[size(arguments_chinrem)+1] = list(list(J),T2);
    707   }
    708   results_chinrem = parallelWaitAll("chinrem",arguments_chinrem);
    709     for(j=1; j <= size(results_chinrem); j++)
    710     {
    711       J = results_chinrem[j];
    712       attrib(J,"isSB",1);
    713       if(isIdealIncluded(J,H,n1) == 0)
    714       {
    715         if(H == 0)
    716         {
    717           H = J;
    718         }
    719         else
    720         {
    721           H = H,J;
    722         }
    723       }
    724     }
    725   return(H);
    726 }
    727 
    728 ////////////////////////////////////////////////////////////////////////////////
    729 static proc parallelFarey(ideal H, bigint N, int n1)
    730 "USAGE:  parallelFarey(H,N,n1); H ideal, N bigint, n1 integer
    731 "
    732 {
    733   int i,j;
    734   int ii = 1;
    735   list arguments_farey,results_farey;
    736   for(i=1; i<=size(H); i++)
    737   {
    738     for(j=1; j<=size(H[i]); j++)
    739     {
    740       arguments_farey[size(arguments_farey)+1] = list(H[i][j],N);
    741     }
    742   }
    743   results_farey = parallelWaitAll("farey",arguments_farey);
    744   ideal J,K;
    745   poly f_farey;
    746   while(ii<=size(results_farey))
    747   {
    748     for(i=1; i<=size(H); i++)
    749     {
    750       f_farey = 0;
    751       for(j=1; j<=size(H[i]); j++)
    752       {
    753         f_farey = f_farey + results_farey[ii][1];
    754         ii++;
    755       }
    756       K = ideal(f_farey);
    757       attrib(K,"isSB",1);
    758       attrib(J,"isSB",1);
    759       if(isIdealIncluded(K,J,n1) == 0)
    760       {
    761         if(J == 0)
    762         {
    763           J = K;
    764         }
    765         else
    766         {
    767           J = J,K;
    768         }
    769       }
    770     }
    771   }
    772   return(J);
    773 }
    774 //////////////////////////////////////////////////////////////////////////////////
    775 static proc primeTestSB(def II, ideal J, list L, int variant, list #)
    776 "USAGE:  primeTestSB(I,J,L,variant,#); I,J ideals, L intvec of primes, variant int
    777 RETURN:  1 (resp. 0) if for a randomly chosen prime p that is not in L
    778          J mod p is (resp. is not) a standard basis of I mod p
    779 EXAMPLE: example primeTestSB; shows an example
    780 "
    781 {
    782 if(typeof(II) == "ideal")
    783   {
    784   ideal I = II;
    785   int radius = 2;
    786   }
    787 if(typeof(II) == "list")
    788   {
    789   ideal I = II[1];
    790   int radius = II[2];
    791   }
    792 
    793 int i,j,k,p;
    794 def R = basering;
    795 list r = ringlist(R);
    796 
    797 while(!j)
    798   {
    799   j = 1;
    800   p = prime(random(1000000000,2134567879));
    801   for(i = 1; i <= size(L); i++)
    802     {
    803     if(p == L[i])
    804       {
    805       j = 0;
    806       break;
    807       }
    808     }
    809   if(j)
    810     {
    811     for(i = 1; i <= ncols(I); i++)
    812       {
    813       for(k = 2; k <= size(I[i]); k++)
    814         {
    815         if((denominator(leadcoef(I[i][k])) mod p) == 0)
    816           {
    817           j = 0;
    818           break;
    819           }
    820         }
    821       if(!j)
    822         {
    823         break;
    824         }
    825       }
    826     }
    827   if(j)
    828     {
    829     if(!primeTest(I,p))
    830       {
    831       j = 0;
    832       }
    833     }
    834   }
    835 r[1] = p;
    836 def @R = ring(r);
    837 setring @R;
    838 ideal I = imap(R,I);
    839 ideal J = imap(R,J);
    840 attrib(J,"isSB",1);
    841 
    842 int t = timer;
    843 j = 1;
    844 if(isIncluded(I,J) == 0)
    845   {
    846   j = 0;
    847   }
    848 if(printlevel >= 11)
    849   {
    850   "isIncluded(I,J) takes "+string(timer - t)+" seconds";
    851   "j = "+string(j);
    852   }
    853 t = timer;
    854 if(j)
    855   {
    856   if(size(#) > 0)
    857     {
    858     ideal K = modpWalk(I,p,variant,#)[1];
    859     }
    860   else
    861     {
    862     ideal K = modpWalk(I,p,variant)[1];
    863     }
    864   t = timer;
    865   if(isIncluded(J,K) == 0)
    866     {
    867     j = 0;
    868     }
    869   if(printlevel >= 11)
    870     {
    871     "isIncluded(K,J) takes "+string(timer - t)+" seconds";
    872     "j = "+string(j);
    873     }
    874   }
    875 setring R;
    876 
    877 return(j);
    878 }
    879 example
    880 { "EXAMPLE:"; echo = 2;
    881    intvec L = 2,3,5;
    882    ring r = 0,(x,y,z),lp;
    883    ideal I = x+1,x+y+1;
    884    ideal J = x+1,y;
    885    primeTestSB(I,I,L,1);
    886    primeTestSB(I,J,L,1);
    887 }
    888 
    889 ////////////////////////////////////////////////////////////////////////////////
    890 static proc pTestSB(ideal I, ideal J, list L, int variant, list #)
    891 "USAGE:  pTestSB(I,J,L,variant,#); I,J ideals, L intvec of primes, variant int
    892 RETURN:  1 (resp. 0) if for a randomly chosen prime p that is not in L
    893          J mod p is (resp. is not) a standard basis of I mod p
    894 EXAMPLE: example pTestSB; shows an example
    895 "
    896 {
    897    int i,j,k,p;
    898    def R = basering;
    899    list r = ringlist(R);
    900 
    901    while(!j)
    902    {
    903       j = 1;
    904       p = prime(random(1000000000,2134567879));
    905       for(i = 1; i <= size(L); i++)
    906       {
    907          if(p == L[i]) { j = 0; break; }
    908       }
    909       if(j)
    910       {
    911          for(i = 1; i <= ncols(I); i++)
    912          {
    913             for(k = 2; k <= size(I[i]); k++)
    914             {
    915                if((denominator(leadcoef(I[i][k])) mod p) == 0) { j = 0; break; }
    916             }
    917             if(!j){ break; }
    918          }
    919       }
    920       if(j)
    921       {
    922          if(!primeTest(I,p)) { j = 0; }
    923       }
    924    }
    925    r[1] = p;
    926    def @R = ring(r);
    927    setring @R;
    928    ideal I = imap(R,I);
    929    ideal J = imap(R,J);
    930    attrib(J,"isSB",1);
    931 
    932    int t = timer;
    933    j = 1;
    934    if(isIncluded(I,J) == 0) { j = 0; }
    935 
    936    if(printlevel >= 11)
    937    {
    938       "isIncluded(I,J) takes "+string(timer - t)+" seconds";
    939       "j = "+string(j);
    940    }
    941 
    942    t = timer;
    943    if(j)
    944    {
    945       if(size(#) > 0)
    946       {
    947          ideal K = modpStd(I,p,variant,#[1])[1];
    948       }
    949       else
    950       {
    951          ideal K = groebner(I);
    952       }
    953       t = timer;
    954       if(isIncluded(J,K) == 0) { j = 0; }
    955 
    956       if(printlevel >= 11)
    957       {
    958          "isIncluded(J,K) takes "+string(timer - t)+" seconds";
    959          "j = "+string(j);
    960       }
    961    }
    962    setring R;
    963    return(j);
    964 }
    965 example
    966 { "EXAMPLE:"; echo = 2;
    967    intvec L = 2,3,5;
    968    ring r = 0,(x,y,z),dp;
    969    ideal I = x+1,x+y+1;
    970    ideal J = x+1,y;
    971    pTestSB(I,I,L,2);
    972    pTestSB(I,J,L,2);
    973 }
    974 ////////////////////////////////////////////////////////////////////////////////
    975 static proc mixedTest()
    976 "USAGE:  mixedTest();
    977 RETURN:  1 if ordering of basering is mixed, 0 else
    978 EXAMPLE: example mixedTest(); shows an example
    979 "
    980 {
    981    int i,p,m;
    982    for(i = 1; i <= nvars(basering); i++)
    983    {
    984       if(var(i) > 1)
    985       {
    986          p++;
    987       }
    988       else
    989       {
    990          m++;
    991       }
    992    }
    993    if((p > 0) && (m > 0)) { return(1); }
    994    return(0);
    995 }
    996 example
    997 { "EXAMPLE:"; echo = 2;
    998    ring R1 = 0,(x,y,z),dp;
    999    mixedTest();
    1000    ring R2 = 31,(x(1..4),y(1..3)),(ds(4),lp(3));
    1001    mixedTest();
    1002    ring R3 = 181,x(1..9),(dp(5),lp(4));
    1003    mixedTest();
    1004 }
     139    int pertdeg = 3;
     140    ideal J = modrWalk(I,radius,pertdeg);
     141    J;
     142}
     143
     144proc modfWalk(ideal I, list #)
     145"USAGE:   modfWalk(I, [, v, w]); I ideal, v intvec, w intvec
     146RETURN:   a standard basis of I
     147NOTE:     The procedure computes a standard basis of I (over the rational
     148          numbers) by using modular methods.
     149SEE ALSO: modular
     150EXAMPLE:  example modfWalk; shows an example"
     151{
     152    /* read optional parameter */
     153    if (size(#) > 0) {
     154        if (size(#) == 1) {
     155            intvec w = #[1];
     156        }
     157        if (size(#) == 2) {
     158            intvec v = #[1];
     159            intvec w = #[2];
     160        }
     161        if (size(#) > 2 || typeof(#[1]) != "intvec") {
     162            ERROR("wrong optional parameter");
     163        }
     164    }
     165
     166    /* save options */
     167    intvec opt = option(get);
     168    option(redSB);
     169
     170    /* set additional parameters */
     171    int reduction = 1;
     172    int printout = 0;
     173
     174    /* call modular() */
     175    if (size(#) > 0) {
     176        I = modular("fwalk", list(I,reduction,printout,#));
     177    }
     178    else {
     179        I = modular("fwalk", list(I,reduction,printout));
     180    }
     181
     182    /* return the result */
     183    attrib(I, "isSB", 1);
     184    option(set, opt);
     185    return(I);
     186}
     187example
     188{
     189    "EXAMPLE:";
     190    echo = 2;
     191    ring R1 = 0, (x,y,z,t), dp;
     192    ideal I = 3x3+x2+1, 11y5+y3+2, 5z4+z2+4;
     193    I = std(I);
     194    ring R2 = 0, (x,y,z,t), lp;
     195    ideal I = fetch(R1, I);
     196    ideal J = modfWalk(I);
     197    J;
     198}
     199
     200proc modfrWalk(ideal I, int radius, list #)
     201"USAGE:   modfrWalk(I, radius [, v, w]); I ideal, radius int, v intvec, w intvec
     202RETURN:   a standard basis of I
     203NOTE:     The procedure computes a standard basis of I (over the rational
     204          numbers) by using modular methods.
     205SEE ALSO: modular
     206EXAMPLE:  example modfrWalk; shows an example"
     207{
     208    /* read optional parameter */
     209    if (size(#) > 0) {
     210        if (size(#) == 1) {
     211            intvec w = #[1];
     212        }
     213        if (size(#) == 2) {
     214            intvec v = #[1];
     215            intvec w = #[2];
     216        }
     217        if (size(#) > 2 || typeof(#[1]) != "intvec") {
     218            ERROR("wrong optional parameter");
     219        }
     220    }
     221
     222    /* save options */
     223    intvec opt = option(get);
     224    option(redSB);
     225
     226    /* set additional parameters */
     227    int reduction = 1;
     228    int printout = 0;
     229
     230    /* call modular() */
     231    if (size(#) > 0) {
     232        I = modular("frandwalk", list(I,radius,reduction,printout,#));
     233    }
     234    else {
     235        I = modular("frandwalk", list(I,radius,reduction,printout));
     236    }
     237
     238    /* return the result */
     239    attrib(I, "isSB", 1);
     240    option(set, opt);
     241    return(I);
     242}
     243example
     244{
     245    "EXAMPLE:";
     246    echo = 2;
     247    ring R1 = 0, (x,y,z,t), dp;
     248    ideal I = 3x3+x2+1, 11y5+y3+2, 5z4+z2+4;
     249    I = std(I);
     250    ring R2 = 0, (x,y,z,t), lp;
     251    ideal I = fetch(R1, I);
     252    int radius = 2;
     253    ideal J = modfrWalk(I,radius);
     254    J;
     255}
Note: See TracChangeset for help on using the changeset viewer.