Changeset 370468 in git for Singular/LIB/schreyer.lib


Ignore:
Timestamp:
Dec 19, 2013, 6:36:35 PM (9 years ago)
Author:
Oleksandr Motsak <motsak@…>
Branches:
(u'spielwiese', '8d54773d6c9e2f1d2593a28bc68b7eeab54ed529')
Children:
43e3e74830c90e9c4a1409347f434e8cb047c435
Parents:
7280036259d95d6c7793c260fbf5358e2c3f17c2
git-author:
Oleksandr Motsak <motsak@mathematik.uni-kl.de>2013-12-19 18:36:35+01:00
git-committer:
Oleksandr Motsak <motsak@mathematik.uni-kl.de>2013-12-19 18:37:22+01:00
Message:
Final overview of schreyer.lib
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/schreyer.lib

    r728003 r370468  
    77KEYWORDS: Schreyer ordering; Schreyer resolution; syzygy
    88OVERVIEW:
    9 @* The library contains helper procedures for computing a Schreyer resultion (cf. [SFO])
    10    for @code{derham.lib} also in non-commutative setting (cf. [MO]).
    11    We call a free resulution a Schreyer resolution if any higher syzygy is a Goebner base of a previous one
     9@* The library contains helper procedures for computing a Schreyer resoltion (cf. [SFO]),
     10   originally meant to be used by @code{derham.lib} (which requires resolutions over the homogenized Weyl algebra).
     11   The library works both in the commutative and non-commutative setting (cf. [MO]).
     12   Here, we call a free resolution a Schreyer resolution if any higher syzygy module is a Groebner basis of a previous one
    1213   with respect to the corresponding Schreyer ordering.
    13    Schreyer resolution can be much bigger than a minimal resolution of the same module one but can be easier to construct.
    14 @* Input for resolution computations is a set of vectors @code{M} in form of a module over some basering @code{R}.
     14   A Schreyer resolution can be much bigger than a minimal resolution of the same module, but may be easier to construct.
     15@* The input for the resolution computations is a set of vectors @code{M} in form of a module over some basering @code{R}.
    1516   The ring @code{R} may be non-commutative, in which case the ring ordering should be global.
    1617@* These procedures produce/work with partial Schreyer resolutions of @code{(R^rank(M))/M} in form of
    1718   a ring (endowed with a special ring ordering that will be extended in the course of a resolution computation)
    1819   containing a list of modules @code{RES} and a module @code{MRES}:
    19 @* The list of modules @code{RES} contains the images of maps (also called syzygies) substituting the
    20    computed beginning of a Schreyer resolution, that is, each syzygy module is a Groebner Basis
    21    of the previous one with respect to corresponding Schreyer induced ordering.
     20@* The list of modules @code{RES} contains the images of maps (also called syzygy modules) substituting the
     21   computed beginning of a Schreyer resolution, that is, each syzygy module is a Groebner basis
     22   of the previous one with respect to a corresponding Schreyer induced ordering.
    2223@* The list @code{RES} starts with a zero map given by @code{rank(M)} zero generators indicating that the image of
    2324   the first differential map is zero. The second map @code{RES[2]} is given by @code{M}, which indicates that
    24    the resolution is of @code{(R^rank(M))/M} is being computed.
     25   the resolution of @code{(R^rank(M))/M} is being computed.
    2526@* The module @code{MRES} is a direct sum of modules from @code{RES} and thus comprises all computed differentials.
    2627@* Syzygies are shifted so that @code{gen(i)} is mapped to @code{MRES[i]} under the differential map.
    27 @* Schreyer ordering extends the starting module ordering on @code{M} (defined in Singular by the basering @code{R})
     28@* The Schreyer ordering succesively extends the starting module ordering on @code{M} (defined in Singular by the basering @code{R})
    2829   and is extended to higher syzygies using the following definition:
    2930@*        a < b if and only if (d(a) < d(b)) OR ( (d(a) = d(b) AND (comp(a) < comp(b)) ),
    3031@* where @code{d(a)} is the image of a under the differential (given by @code{MRES}),
    31    and @code{comp(a)} is the mod. component, for any module terms @code{a} and @code{b} from the same free module.
     32   and @code{comp(a)} is the module component, for any module terms @code{a} and @code{b} from the same higher syzygy module.
    3233REFERENCES:
    3334[SFO] Schreyer, F.O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrassschen Divisionssatz,
Note: See TracChangeset for help on using the changeset viewer.