Changeset 3da61f in git
 Timestamp:
 Jan 20, 2007, 10:20:25 PM (17 years ago)
 Branches:
 (u'fiekerDuVal', '117eb8c30fc9e991c4decca4832b1d19036c4c65')(u'spielwiese', 'b21a664aa22dc6e196223af8a74ad4885e83547c')
 Children:
 05a31dd1bac7c8886acb526ecf5503742a948378
 Parents:
 2a38938492546de508a73077c8791bf124d3edd5
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

Singular/LIB/sagbi.lib
r2a38938 r3da61f 1 1 ////////////////////////////////////////////////////////////////////////////// 2 version="$Id: sagbi.lib,v 1. 6 20070104 12:49:27 SingularExp $";2 version="$Id: sagbi.lib,v 1.7 20070120 21:20:25 levandov Exp $"; 3 3 category="Commutative Algebra"; 4 4 info=" … … 8 8 9 9 PROCEDURES: 10 proc reduction(p,I); Perform one step subalgebra reducton (for short Sreduction) of p w.r.t I11 proc sagbiSPoly(I); Compute the Spolynomilas of the Subalgebra defined by the genartors of I12 proc sagbiNF(id,I); Perform iterated Sreductions in order to compute Subalgebras normal forms13 proc sagbi(I); Construct SAGBI basis for the Subalgebra defined by I14 proc sagbiPart(I); Construct partial SAGBI basis for the Subalgebra defined by I10 reduction(p,I); perform one step subalgebra reducton (for short Sreduction) of p w.r.t I 11 sagbiSPoly(I); compute the Spolynomials of the Subalgebra defined by the genartors of I 12 sagbiNF(id,I); perform iterated Sreductions in order to compute Subalgebras normal forms 13 sagbi(I); construct SAGBI basis for the Subalgebra defined by I 14 sagbiPart(I); construct partial SAGBI basis for the Subalgebra defined by I 15 15 "; 16 16 … … 73 73 //==================create anew ring with extra variables================ 74 74 75 execute("ring R1= "+charstr(bsr)+",("+varstr(bsr)+",@y(1..m)),(dp(n),dp(m));");75 execute("ring R1=("+charstr(bsr)+"),("+varstr(bsr)+",@y(1..m)),(dp(n),dp(m));"); 76 76 execute("minpoly=number("+mp+");"); 77 77 ideal id=imap(bsr,id); … … 202 202 //================create a new ring with extra variables============== 203 203 204 execute("ring R1="+charstr(R)+",("+varstr(R)+",@y((ii+1)..(ii+jj))),(dp(n),dp(kk+jjn));"); 204 execute("ring R1=("+charstr(R)+"),("+varstr(R)+",@y((ii+1)..(ii+jj))),(dp(n),dp(kk+jjn));"); 205 // *levandov: would it not be easier and better to use 206 // ring @Y = char(R),(@y((ii+1)..(ii+jj))),dp; 207 // def R1 = R + @Y; 208 // setring R1; 209 // > thus 205 210 ideal kern1; 206 211 ideal A=fetch(R,A); … … 272 277 if(b !=0) //means that the basering is a quotient ring 273 278 { 274 p=reduce(p, groebner(0));275 dom=reduce( groebner,std(0));279 p=reduce(p,std(0)); 280 dom=reduce(dom,std(0)); 276 281 } 277 282 … … 320 325 321 326 // change the basering bsr to bsr[@(0),...,@(z)]  322 execute("ring s= "+charstr(basering)+",("+varstr(basering)+",@(0..z)),dp;");327 execute("ring s=("+charstr(basering)+"),("+varstr(basering)+",@(0..z)),dp;"); 323 328 // Ev hier die Reihenfolge der Vars aendern. Dazu muss unten aber entsprechend 324 329 // geaendert werden: … … 429 434 RETURN: depends On the type of id; ideal or polynomial. 430 435 @format 431 The integer k determine waht kind of sreduction is performad:432  if (k=0) no tail sreduction is perform aed.433  if (k=1) tail sreduction is per ofrmed.436 The integer k determines what kind of sreduction is performed: 437  if (k=0) no tail sreduction is performed. 438  if (k=1) tail sreduction is performed. 434 439 Three Algorthim variants are used to perform Subalgebra reduction. 435 440 The positive integer n determine which variant should be used. … … 481 486 poly p=x4+x2y+y; 482 487 sagbiNF(p,dom,0); 483 sagbiNF(p,dom,1);// tail subalgebra reduction is per ofrmed488 sagbiNF(p,dom,1);// tail subalgebra reduction is performed 484 489 } 485 490 … … 512 517 513 518 proc sagbi(id,int k,list#) 514 "USAGE: sagbi(id,k[,n]); id ideal, k and n positive integer .519 "USAGE: sagbi(id,k[,n]); id ideal, k and n positive integers. 515 520 RETURN: A SAGBI basis for the subalgebra defined by the generators of id. 516 521 @format 517 k determine w aht kind of sreduction is performad:518  if (k=0) no tail sreduction is perform aed.519  if (k=1) tail sreduction is per ofrmed, and Sintereduced SAGBI basis522 k determine what kind of sreduction is performed: 523  if (k=0) no tail sreduction is performed. 524  if (k=1) tail sreduction is performed, and Sinterreduced SAGBI basis 520 525 is returned. 521 Three Algor thim variantsare used to perform Subalgebra reduction.526 Three Algorithm variants are used to perform Subalgebra reduction. 522 527 The positive interger n determine which variant should be used. 523 528 n may take the values (0 or default),1 or 2. … … 550 555 proc sagbiPart(id,int k,int c,list #) 551 556 "USAGE: sagbi(id,k,c[,n]); id ideal, k, c and n positive integer. 552 RETURN: A partial SAGBI basis for the subalgebra defined by the gen rators of id.557 RETURN: A partial SAGBI basis for the subalgebra defined by the generators of id. 553 558 @format 554 should stop. k determine waht kind of sreduction is performad:555  if (k=0) no tail sreduction is perform aed.556  if (k=1) tail sreduction is per ofrmed, and Sintereduced SAGBI basis559 should stop. k determine what kind of sreduction is performed: 560  if (k=0) no tail sreduction is performed. 561  if (k=1) tail sreduction is performed, and Sintereduced SAGBI basis 557 562 is returned. 558 c determine ;after which turn Sagbi basis computations should stop559 Three Algor thim variantsare used to perform Subalgebra reduction.560 The positive inte rger n determinewhich variant should be used.563 c determines, after which turn Sagbi basis computations should stop 564 Three Algorithm variants are used to perform Subalgebra reduction. 565 The positive integer n determines which variant should be used. 561 566 n may take the values (0 or default),1 or 2. 562 567 @end format
Note: See TracChangeset
for help on using the changeset viewer.