Changeset 45c67dc in git
- Timestamp:
- Jul 20, 2009, 12:16:04 PM (14 years ago)
- Branches:
- (u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'c18334b998a8adbf0013b8e1ce0824774019443e')
- Children:
- 645a19587ae6d80e5d860f48654600b3300248b3
- Parents:
- 6ae83a06bcff3f02af32f42b3606969790cda282
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/gmssing.lib
r6ae83a r45c67dc 1 1 /////////////////////////////////////////////////////////////////////////////// 2 version="$Id: gmssing.lib,v 1.1 2 2008-10-09 09:31:57 SingularExp $";2 version="$Id: gmssing.lib,v 1.13 2009-07-20 10:16:04 levandov Exp $"; 3 3 category="Singularities"; 4 4 5 5 info=" 6 LIBRARY: g mssing.lib Gauss-Manin System of Isolated Singularities6 LIBRARY: gaussman.lib Gauss-Manin System of Isolated Singularities 7 7 8 8 AUTHOR: Mathias Schulze, email: mschulze@mathematik.uni-kl.de 9 9 10 OVERVIEW: A library to compute invariants related to the Gauss-Manin system10 OVERVIEW: A library to compute invariants related to the the Gauss-Manin system 11 11 of an isolated hypersurface singularity 12 12 … … 15 15 gmsnf(p,K); Gauss-Manin normal form of p 16 16 gmscoeffs(p,K); Gauss-Manin basis representation of p 17 bernstein(t); roots of the Bernsteinpolynomial of t17 bernstein(t); Bernstein-Sato polynomial of t 18 18 monodromy(t); Jordan data of complex monodromy of t 19 19 spectrum(t); singularity spectrum of t … … 38 38 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice; 39 39 mixed Hodge structure; V-filtration; weight filtration 40 Bernstein polynomial; monodromy; spectrum; spectral pairs;40 Bernstein-Sato polynomial; monodromy; spectrum; spectral pairs; 41 41 good basis 42 42 "; … … 122 122 @end format 123 123 NOTE: gmsbasis is a C[[s]]-basis of H'' and [t,s]=s^2 124 KEYWORDS: Gauss-Manin system; Brieskorn lattice124 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice 125 125 EXAMPLE: example gmsring; shows examples 126 126 " … … 194 194 195 195 attrib(gmsstd,"isSB",1); 196 export gmspoly, gmsjacob, gmsstd, gmsmatrix, gmsbasis; 197 if (system("with","Namespaces")) { exportto(Top, gmsmaxdeg);} 198 else { export(gmsmaxdeg);} 196 export gmspoly,gmsjacob,gmsstd,gmsmatrix,gmsbasis,gmsmaxdeg; 199 197 200 198 return(G); … … 220 218 RETURN: 221 219 list nf; 222 ideal nf[1]; projection of p to <gmsbasis>C{{s}} mod s^(K+1) @*220 ideal nf[1]; projection of p to <gmsbasis>C{{s}} mod s^(K+1) 223 221 ideal nf[2]; p==nf[1]+nf[2] 224 NOTE: computation can be continued by setting p to nf[2][1] 222 NOTE: computation can be continued by setting p=nf[2] 223 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice 225 224 EXAMPLE: example gmsnf; shows examples 226 225 " … … 298 297 @format 299 298 list l; 300 matrix l[1]; C @{@{s@}@}-basis representation of p mod s^(K+1)299 matrix l[1]; C{{s}}-basis representation of p mod s^(K+1) 301 300 ideal l[2]; p==matrix(gmsbasis)*l[1]+l[2] 302 301 @end format 303 NOTE: computation can be continued by setting p to l[2] 302 NOTE: computation can be continued by setting p=l[2] 303 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice 304 304 EXAMPLE: example gmscoeffs; shows examples 305 305 " … … 524 524 } 525 525 } 526 526 } 527 527 } 528 528 } … … 580 580 ASSUME: characteristic 0; local degree ordering; 581 581 isolated critical point 0 of t 582 RETURN: list: 583 roots of the Bernstein polynomial b (ideal) and its multiplicies 584 NOTE: the roots of b are negative rational numbers and -1 is a root of b 585 KEYWORDS: Bernstein polynomial 582 RETURN: 583 @format 584 list bs; Bernstein-Sato polynomial b(s) of t 585 ideal bs[1]; 586 number bs[1][i]; i-th root of b(s) 587 intvec bs[2]; 588 int bs[2][i]; multiplicity of i-th root of b(s) 589 @end format 590 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice; 591 Bernstein-Sato polynomial 586 592 EXAMPLE: example bernstein; shows examples 587 593 " … … 601 607 list l=minipoly(A); 602 608 e,m=l[1..2]; 603 604 for(int i=1;i<=ncols(e);i++) 605 { 606 e[i]=-e[i]; 607 if(e[i]==-1) 608 { 609 m[i]=m[i]+1; 610 } 611 } 609 e=-e; 610 l=spnf(spadd(list(e,m),list(ideal(-1),intvec(1)))); 612 611 613 612 setring(@R); 614 ideal e=imap(@G,e);613 list l=imap(@G,l); 615 614 kill @G,gmsmaxdeg; 616 615 617 return(l ist(e,m));616 return(l); 618 617 } 619 618 example … … 632 631 @format 633 632 list l; Jordan data jordan(M) of monodromy matrix exp(-2*pi*i*M) 634 ideal l[1]; 633 ideal l[1]; 635 634 number l[1][i]; eigenvalue of i-th Jordan block of M 636 intvec l[2]; 635 intvec l[2]; 637 636 int l[2][i]; size of i-th Jordan block of M 638 intvec l[3]; 637 intvec l[3]; 639 638 int l[3][i]; multiplicity of i-th Jordan block of M 640 639 @end format 641 640 SEE ALSO: mondromy_lib, linalg_lib 642 KEYWORDS: monodromy641 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice; monodromy 643 642 EXAMPLE: example monodromy; shows examples 644 643 " … … 686 685 @end format 687 686 SEE ALSO: spectrum_lib 688 KEYWORDS: mixed Hodge structure; V-filtration; spectrum 687 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice; 688 mixed Hodge structure; V-filtration; spectrum 689 689 EXAMPLE: example spectrum; shows examples 690 690 " … … 716 716 @end format 717 717 SEE ALSO: spectrum_lib 718 KEYWORDS: mixed Hodge structure; V-filtration; weight filtration; 718 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice; 719 mixed Hodge structure; V-filtration; weight filtration; 719 720 spectrum; spectral pairs 720 721 EXAMPLE: example sppairs; shows examples … … 749 750 @end format 750 751 SEE ALSO: spectrum_lib 751 KEYWORDS: mixed Hodge structure; V-filtration; spectrum 752 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice; 753 mixed Hodge structure; V-filtration; spectrum 752 754 EXAMPLE: example vfilt; shows examples 753 755 " … … 783 785 @end format 784 786 SEE ALSO: spectrum_lib 785 KEYWORDS: mixed Hodge structure; V-filtration; weight filtration; 787 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice; 788 mixed Hodge structure; V-filtration; weight filtration; 786 789 spectrum; spectral pairs 787 790 EXAMPLE: example vwfilt; shows examples … … 1033 1036 ideal M; monomial C-basis of H''/sH'' 1034 1037 @end format 1035 KEYWORDS: good basis 1038 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice; 1039 mixed Hodge structure; V-filtration; weight filtration; 1040 monodromy; spectrum; spectral pairs; good basis 1036 1041 EXAMPLE: example tmatrix; shows examples 1037 1042 " … … 1090 1095 ideal ev[5]; standard basis of Jacobian ideal 1091 1096 @end format 1092 KEYWORDS: V-filtration; endomorphism filtration 1097 KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice; 1098 mixed Hodge structure; V-filtration; endomorphism filtration 1093 1099 EXAMPLE: example endvfilt; shows examples 1094 1100 " … … 1233 1239 proc sppnf(list sp) 1234 1240 "USAGE: sppnf(list(a,w[,m])); ideal a, intvec w, intvec m 1235 ASSUME: ncols( a)==size(w)==size(m)1241 ASSUME: ncols(e)==size(w)==size(m) 1236 1242 RETURN: order (a[i][,w[i]]) with multiplicity m[i] lexicographically 1237 1243 EXAMPLE: example sppnf; shows examples
Note: See TracChangeset
for help on using the changeset viewer.