Changeset 4ad2bb in git
- Timestamp:
- Jun 22, 1999, 5:39:03 PM (24 years ago)
- Branches:
- (u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'a800fe4b3e9d37a38c5a10cc0ae9dfa0c15a4ee6')
- Children:
- 97a7b44e9344c736a265288ae4f2fa5ab105da59
- Parents:
- 1eb7af12ba2eda02be4f55b12705297ff94d3b13
- Location:
- Singular/LIB
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/jordan.lib
r1eb7af r4ad2bb 1 1 /////////////////////////////////////////////////////////////////////////////// 2 2 3 version="$Id: jordan.lib,v 1.1 2 1999-06-21 08:45:41mschulze Exp $";3 version="$Id: jordan.lib,v 1.13 1999-06-22 15:39:03 mschulze Exp $"; 4 4 info=" 5 5 LIBRARY: jordan.lib PROCEDURES TO COMPUTE THE JORDAN NORMAL FORM … … 70 70 By default, opt=0. 71 71 NOTE: A non constant polynomial matrix M is replaced by its constant part. 72 DISPLAY: The procedure displays comments if printlevel>=1. 72 73 EXAMPLE: example jordan; shows an example. 73 74 " … … 386 387 RETURN: The procedure returns the Jordan matrix J with eigenvalues jd[1] and 387 388 size jd[2][i][j] of j-th Jordan block with eigenvalue jd[1][i]. 389 DISPLAY: The procedure displays comments if printlevel>=1. 388 390 EXAMPLE: example jordanmatrix; shows an example. 389 391 " … … 477 479 RETURN: The procedure returns the Jordan normal form of M. 478 480 NOTE: A non constant polynomial matrix M is replaced by its constant part. 481 DISPLAY: The procedure displays more comments for higher printlevel. 479 482 EXAMPLE: example jordanform; shows an example. 480 483 " -
Singular/LIB/mondromy.lib
r1eb7af r4ad2bb 1 1 /////////////////////////////////////////////////////////////////////////////// 2 2 3 version="$Id: mondromy.lib,v 1. 2 1999-06-22 14:50:49mschulze Exp $";3 version="$Id: mondromy.lib,v 1.3 1999-06-22 15:38:54 mschulze Exp $"; 4 4 info=" 5 5 LIBRARY: mondromy.lib PROCEDURES TO COMPUTE THE MONODROMY OF A SINGULARITY … … 149 149 RETURN: The procedure returns the series inverse of u up to order n 150 150 or a zero polynomial if u is no series unit. 151 DISPLAY: printlevel>=1; shows comments.151 DISPLAY: The procedure displays comments if printlevel>=1. 152 152 EXAMPLE: example invunit; shows an example. 153 153 " … … 164 164 poly v=lift(fetch(br,u),1)[1,1]; 165 165 dbprint(printlevel-voice+2,"//...inverse computed ["+string(timer-t)+ 166 " secs ]");166 " secs, "+string(memory(1))+" bytes]"); 167 167 168 168 setring br; … … 190 190 If U is a square matrix and the determinant of U not zero, 191 191 then the second entry is the adjoint matrix of U. 192 DISPLAY: printlevel>=1; shows comments.192 DISPLAY: The procedure displays comments if printlevel>=1. 193 193 EXAMPLE: example detadj; shows an example. 194 194 " … … 200 200 poly detU=det(U); 201 201 dbprint(printlevel-voice+2,"//...determinant computed ["+string(timer-t)+ 202 " secs ]");202 " secs, "+string(memory(1))+" bytes]"); 203 203 204 204 if(detU==0) … … 218 218 matrix adjU=lift(U,detU*freemodule(nrows(U))); 219 219 dbprint(printlevel-voice+2,"//...adjoint matrix computed [" 220 +string(timer-t)+" secs ]");220 +string(timer-t)+" secs, "+string(memory(1))+" bytes]"); 221 221 222 222 setring br; … … 250 250 int, vector, poly such that kappa is minimal with f^kappa in jacob(f), 251 251 u is a unit, and u*f^kappa=(matrix(jacob(f))*xi)[1,1]. 252 DISPLAY: printlevel>=1; shows comments.252 DISPLAY: The procedure displays comments if printlevel>=1. 253 253 EXAMPLE: example jacoblift; shows an example. 254 254 " … … 267 267 } 268 268 dbprint(printlevel-voice+2,"//kappa="+string(kappa)); 269 dbprint(printlevel-voice+2,"//...kappa computed ["+string(timer-t)+" secs]"); 269 dbprint(printlevel-voice+2,"//...kappa computed ["+string(timer-t)+" secs, " 270 +string(memory(1))+" bytes]"); 270 271 271 272 dbprint(printlevel-voice+2,"//computing xi..."); 272 273 t=timer; 273 274 vector xi=lift(jf,fkappa)[1]; 274 dbprint(printlevel-voice+2,"//...xi computed ["+string(timer-t)+" secs]"); 275 dbprint(printlevel-voice+2,"//...xi computed ["+string(timer-t)+" secs, " 276 +string(memory(1))+" bytes]"); 275 277 276 278 dbprint(printlevel-voice+2,"//computing u..."); 277 279 t=timer; 278 280 poly u=(matrix(jf)*xi)[1,1]/fkappa; 279 dbprint(printlevel-voice+2,"//...u computed ["+string(timer-t)+" secs]"); 281 dbprint(printlevel-voice+2,"//...u computed ["+string(timer-t)+" secs, " 282 +string(memory(1))+" bytes]"); 280 283 281 284 return(list(kappa,xi,u)); … … 362 365 { 363 366 dbprint(printlevel-voice+2,"//...codimension computed ["+string(timer-t) 364 +" secs ]");367 +" secs, "+string(memory(1))+" bytes]"); 365 368 366 369 deltaP1=getdeltaP1(f,K,N,deltaN); … … 383 386 } 384 387 dbprint(printlevel-voice+2,"//...codimension computed ["+string(timer-t) 385 +" secs ]");388 +" secs, "+string(memory(1))+" bytes]"); 386 389 387 390 return(K,N,P1,P2,Pe,V1,V2,Ve); … … 423 426 Vnablae=nablaK(f,kappa,xi,u,N,prevN,Vnablae,e); 424 427 dbprint(printlevel-voice+2,"//...nabla(e) computed ["+string(timer-t) 425 +" secs ]");428 +" secs, "+string(memory(1))+" bytes]"); 426 429 427 430 dbprint(printlevel-voice+2, … … 434 437 matrix C=lift(W,module(Vnablae[1..size(Vnablae)])); 435 438 dbprint(printlevel-voice+2,"//...nabla(e) lifted ["+string(timer-t) 436 +" secs ]");439 +" secs, "+string(memory(1))+" bytes]"); 437 440 438 441 dbprint(printlevel-voice+2,"//computing e-lift of nabla(e)..."); … … 451 454 } 452 455 dbprint(printlevel-voice+2,"//...e-lift of nabla(e) computed [" 453 +string(timer-t)+" secs ]");456 +string(timer-t)+" secs, "+string(memory(1))+" bytes]"); 454 457 455 458 return(M,N,Vnablae); … … 493 496 U=syz(M0e)+U; 494 497 } 495 dbprint(printlevel-voice+2,"//...U computed ["+string(timer-t)+" secs]"); 498 dbprint(printlevel-voice+2,"//...U computed ["+string(timer-t)+" secs, " 499 +string(memory(1))+" bytes]"); 496 500 497 501 dbprint(printlevel-voice+2,"//transforming M to U..."); … … 500 504 daU[2]=(1/number(daU[1]))*daU[2]; 501 505 M=daU[2]*M*U; 502 dbprint(printlevel-voice+2,"//...M transformed ["+string(timer-t)+" secs]"); 506 dbprint(printlevel-voice+2,"//...M transformed ["+string(timer-t)+" secs, " 507 +string(memory(1))+" bytes]"); 503 508 504 509 dbprint(printlevel-voice+2, … … 536 541 dbprint(printlevel-voice+2, 537 542 "//...integer differences of eigenvalues of M0 computed ["+string(timer-t) 538 +" secs ]");543 +" secs, "+string(memory(1))+" bytes]"); 539 544 540 545 dbprint(printlevel-voice+2,"//transforming M..."); … … 561 566 } 562 567 } 563 dbprint(printlevel-voice+2,"//...M transformed ["+string(timer-t)+" secs]"); 568 dbprint(printlevel-voice+2,"//...M transformed ["+string(timer-t)+" secs, " 569 +string(memory(1))+" bytes]"); 564 570 565 571 return(M); … … 602 608 int t=timer; 603 609 e=pcvcv2p(quotV(V1+V2,N),0,N); 604 dbprint(printlevel-voice+2,"//...e computed ["+string(timer-t)+" secs]"); 610 dbprint(printlevel-voice+2,"//...e computed ["+string(timer-t)+" secs, " 611 +string(memory(1))+" bytes]"); 605 612 606 613 dbprint(printlevel-voice+2,"//e="); … … 631 638 { 632 639 dbprint(printlevel-voice+2,"//...compared with previous lattice [" 633 +string(timer-t)+" secs ]");640 +string(timer-t)+" secs, "+string(memory(1))+" bytes]"); 634 641 635 642 dbprint(printlevel-voice+2,"//increasing K and N..."); … … 649 656 module(mdivp(M*U,var(1)^(kappa-1))),(kappa-1)*(mu-1))); 650 657 dbprint(printlevel-voice+2,"//...lattice enlarged ["+string(timer-t) 651 +" secs ]");658 +" secs, "+string(memory(1))+" bytes]"); 652 659 653 660 dbprint(printlevel-voice+2,"//comparing with previous lattice..."); … … 655 662 } 656 663 dbprint(printlevel-voice+2,"//...compared with previous lattice [" 657 +string(timer-t)+" secs ]");664 +string(timer-t)+" secs, "+string(memory(1))+" bytes]"); 658 665 dbprint(printlevel-voice+2,"//...t*nabla-stable lattice computed"); 659 666 … … 666 673 dbprint(printlevel-voice+2, 667 674 "//...C{f}-basis of t*nabla-stable lattice computed ["+string(timer-t) 668 +" secs ]");675 +" secs, "+string(memory(1))+" bytes]"); 669 676 } 670 677 … … 699 706 leadcoef(daU[1])*var(1)^(kappa+pcvmindeg(daU[1])-1)); 700 707 dbprint(printlevel-voice+2,"//...M/t^kappa transformed to simple pole [" 701 +string(timer-t)+" secs ]");708 +string(timer-t)+" secs, "+string(memory(1))+" bytes]"); 702 709 } 703 710 … … 711 718 int delta=mid(eM0); 712 719 dbprint(printlevel-voice+2,"//...delta computed ["+string(timer-t) 713 +" secs ]");720 +" secs, "+string(memory(1))+" bytes]"); 714 721 715 722 dbprint(printlevel-voice+2,"//delta="+string(delta)); … … 743 750 dbprint(printlevel-voice+2, 744 751 "//...M/t^kappa transformed to simple pole ["+string(timer-t) 745 +" secs ]");752 +" secs, "+string(memory(1))+" bytes]"); 746 753 } 747 754 … … 776 783 int t=timer; 777 784 ideal e=kbase(std(jacob(f))); 778 dbprint(printlevel-voice+2,"//...e computed ["+string(timer-t)+" secs]"); 785 dbprint(printlevel-voice+2,"//...e computed ["+string(timer-t)+" secs, " 786 +string(memory(1))+" bytes]"); 779 787 780 788 dbprint(printlevel-voice+2, … … 812 820 Ann. Inst. Fourier, Grenoble 23,1 (1973), pp. 157-195) to transform 813 821 it to a simple pole. 814 DISPLAY: printlevel>=1; shows comments.822 DISPLAY: The procedure displays more comments for higher printlevel. 815 823 EXAMPLE: example monodromy; shows an example. 816 824 " … … 856 864 int t=timer; 857 865 int mu=milnor(f); 858 dbprint(printlevel-voice+2,"//...mu computed ["+string(timer-t)+" secs]"); 866 dbprint(printlevel-voice+2,"//...mu computed ["+string(timer-t)+" secs, " 867 +string(memory(1))+" bytes]"); 859 868 860 869 dbprint(printlevel-voice+2,"//mu="+string(mu)); … … 913 922 Brieskorn lattice H''=Omega^(n+1)/df^dOmega^(n-1). 914 923 THEORY: H'' is a free C{f}-module of rank milnor(f). 915 DISPLAY: printlevel>=1; shows comments.924 DISPLAY: The procedure displays more comments for higher printlevel. 916 925 EXAMPLE: example H''basis; shows an example. 917 926 " … … 943 952 int t=timer; 944 953 int mu=milnor(f); 945 dbprint(printlevel-voice+2,"//...mu computed ["+string(timer-t)+" secs]"); 954 dbprint(printlevel-voice+2,"//...mu computed ["+string(timer-t)+" secs, " 955 +string(memory(1))+" bytes]"); 946 956 947 957 dbprint(printlevel-voice+2,"//mu="+string(mu)); … … 994 1004 t=timer; 995 1005 e=pcvcv2p(quotV(V1+V2,N),0,N); 996 dbprint(printlevel-voice+2,"//...e computed ["+string(timer-t)+" secs]"); 1006 dbprint(printlevel-voice+2,"//...e computed ["+string(timer-t)+" secs, " 1007 +string(memory(1))+" bytes]"); 997 1008 998 1009 dbprint(printlevel-voice+2,"//e=");
Note: See TracChangeset
for help on using the changeset viewer.