Changeset 4eba9ec in git
- Timestamp:
- Apr 8, 2009, 6:51:07 PM (14 years ago)
- Branches:
- (u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'f875bbaccd0831e36aaed09ff6adeb3eb45aeb94')
- Children:
- 21ebf68308bcf7db9c5f99b208152c3abfedece1
- Parents:
- e7778adedbf4b7cd363cb88f576d7b16023f2ca3
- Location:
- Singular/LIB
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/bfun.lib
re7778a r4eba9ec 1 1 ////////////////////////////////////////////////////////////////////////////// 2 version="$Id: bfun.lib,v 1. 6 2009-03-10 16:27:55 SingularExp $";2 version="$Id: bfun.lib,v 1.7 2009-04-08 16:51:07 seelisch Exp $"; 3 3 category="Noncommutative"; 4 4 info=" … … 9 9 THEORY: Given a polynomial ring R = K[x_1,...,x_n] and a polynomial F in R, 10 10 @* one is interested in the global b-function (also known as Bernstein-Sato 11 @* polynomial) b(s) in K[s], defined to be the monic polynomial of minimal11 @* polynomial) b(s) in K[s], defined to be the non-zero monic polynomial of minimal 12 12 @* degree, satisfying a functional identity L * F^{s+1} = b(s) F^s, 13 13 @* for some operator L in D[s] (* stands for the action of differential operator) … … 19 19 @* - the multiplicities of the roots. 20 20 @* 21 @* There is a general definition of a b-function of a holonomic ideal [SST]21 @* There is a constructive definition of a b-function of a holonomic ideal I in D 22 22 @* (that is, an ideal I in a Weyl algebra D, such that D/I is holonomic module) 23 23 @* with respect to the given weight vector w: For a poly p in D, its initial -
Singular/LIB/dmod.lib
re7778a r4eba9ec 1 1 ////////////////////////////////////////////////////////////////////////////// 2 version="$Id: dmod.lib,v 1.3 7 2009-03-09 18:34:51 levandovExp $";2 version="$Id: dmod.lib,v 1.38 2009-04-08 16:51:07 seelisch Exp $"; 3 3 category="Noncommutative"; 4 4 info=" … … 144 144 RETURN: ring 145 145 PURPOSE: compute the D-module structure of basering[1/f]*f^s with the algorithm 146 @* given in S and with the Groebner basis engine given in ' eng'146 @* given in S and with the Groebner basis engine given in ''eng'' 147 147 NOTE: activate the output ring with the @code{setring} command. 148 @* The value of a string S can be148 @* String S; S can be one of the following: 149 149 @* 'bm' (default) - for the algorithm of Briancon and Maisonobe, 150 150 @* 'ot' - for the algorithm of Oaku and Takayama, … … 727 727 proc bernsteinBM(poly F, list #) 728 728 "USAGE: bernsteinBM(f [,eng]); f a poly, eng an optional int 729 RETURN: list (of roots of the Bernstein polynomial b and itsmultiplicies)729 RETURN: list (of roots of the Bernstein polynomial b and their multiplicies) 730 730 PURPOSE: compute the global Bernstein-Sato polynomial for a hypersurface, 731 731 @* defined by f, according to the algorithm by Briancon and Maisonobe … … 1603 1603 PURPOSE: compute the B-operator and other relevant data for Ann F^s, 1604 1604 @* using e.g. algorithm by Briancon and Maisonobe for Ann F^s and BS. 1605 NOTE: activate th is ring with the @code{setring} command. In thisring D[s]1605 NOTE: activate the output ring with the @code{setring} command. In the output ring D[s] 1606 1606 @* - the polynomial F is the same as the input, 1607 1607 @* - the ideal LD is the annihilator of f^s in Dn[s],
Note: See TracChangeset
for help on using the changeset viewer.