Changeset 607fc7 in git


Ignore:
Timestamp:
Feb 18, 2011, 2:15:02 PM (13 years ago)
Author:
Hans Schoenemann <hannes@…>
Branches:
(u'spielwiese', '8e0ad00ce244dfd0756200662572aef8402f13d5')
Children:
c1dff83921acf6b85f3e88171ce4371c322c7a68
Parents:
7abf40bdd915198def06568f9d06325c0e1cdf08
Message:
format

git-svn-id: file:///usr/local/Singular/svn/trunk@13866 2c84dea3-7e68-4137-9b89-c4e89433aadc
Location:
Singular/LIB
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/gmspoly.lib

    r7abf40 r607fc7  
    11///////////////////////////////////////////////////////////////////////////////
    2 version="$Id: gmspoly.lib 12529 2010-02-08 15:57:48Z seelisch $";
     2version="$Id$";
    33category="Singularities";
    44
     
    88AUTHOR:   Mathias Schulze, mschulze at mathematik.uni-kl.de
    99
    10 OVERVIEW: 
    11 A library for computing the Gauss-Manin system of a cohomologically tame 
    12 polynomial f. Schulze's algorithm [Sch05], based on Sabbah's theory [Sab98], 
    13 is used to compute a good basis of (the Brieskorn lattice of) the Gauss-Manin system and the differential operation of f in terms of this basis. 
     10OVERVIEW:
     11A library for computing the Gauss-Manin system of a cohomologically tame
     12polynomial f. Schulze's algorithm [Sch05], based on Sabbah's theory [Sab98],
     13is used to compute a good basis of (the Brieskorn lattice of) the Gauss-Manin system and the differential operation of f in terms of this basis.
    1414In addition, there is a test for tameness in the sense of Broughton.
    15 Tame polynomials can be considered as an affine algebraic analogue of local 
    16 analytic isolated hypersurface singularities. They have only finitely many 
    17 citical points, and those at infinity do not give rise to atypical values 
    18 in a sense depending on the precise notion of tameness considered. Well-known 
    19 notions of tameness like tameness, M-tameness, Malgrange-tameness, and 
    20 cohomological tameness, and their relations, are reviewed in [Sab98,§8].
    21 For ordinary tameness, see Broughton [Bro88,§3].
    22 Sabbah [Sab98] showed that the Gauss-Manin system, the D-module direct image 
    23 of the structure sheaf, of a cohomologically tame polynomial carries a 
    24 similar structure as in the isolated singularity case, coming from a Mixed 
    25 Hodge structure on the cohomology of the Milnor (typical) fibre (see 
     15Tame polynomials can be considered as an affine algebraic analogue of local
     16analytic isolated hypersurface singularities. They have only finitely many
     17citical points, and those at infinity do not give rise to atypical values
     18in a sense depending on the precise notion of tameness considered. Well-known
     19notions of tameness like tameness, M-tameness, Malgrange-tameness, and
     20cohomological tameness, and their relations, are reviewed in [Sab98,8].
     21For ordinary tameness, see Broughton [Bro88,3].
     22Sabbah [Sab98] showed that the Gauss-Manin system, the D-module direct image
     23of the structure sheaf, of a cohomologically tame polynomial carries a
     24similar structure as in the isolated singularity case, coming from a Mixed
     25Hodge structure on the cohomology of the Milnor (typical) fibre (see
    2626gmssing.lib). The data computed by this library encodes the differential structure of the Gauss-Manin system, and the Mixed Hodge structure of the Milnor fibre over the complex numbers. As a consequence, it yields the Hodge numbers, spectral pairs, and monodromy at infinity.
    2727
    2828REFERENCES:
    29 [Bro88] S. Broughton: Milnor numbers and the topology of polynomial 
     29[Bro88] S. Broughton: Milnor numbers and the topology of polynomial
    3030        hypersurfaces. Inv. Math. 92 (1988) 217-241.
    31 [Sab98] C. Sabbah: Hypergeometric periods for a tame polynomial. 
     31[Sab98] C. Sabbah: Hypergeometric periods for a tame polynomial.
    3232        arXiv.org math.AG/9805077.
    33 [Sch05] M. Schulze: Good bases for tame polynomials. 
     33[Sch05] M. Schulze: Good bases for tame polynomials.
    3434        J. Symb. Comp. 39,1 (2005), 103-126.
    3535
     
    8383@format
    8484int k=
    85   1;  if f is tame in the sense of Broughton [Bro88,§3]
     85  1;  if f is tame in the sense of Broughton [Bro88,3]
    8686  0;  if f is not tame
    8787@end format
     
    450450proc goodBasis(poly f)
    451451"USAGE:    goodBasis(f); poly f
    452 ASSUME:   f is cohomologically tame in the sense of Sabbah [Sab98,§8]
     452ASSUME:   f is cohomologically tame in the sense of Sabbah [Sab98,8]
    453453RETURN:
    454454@format
  • Singular/LIB/gmssing.lib

    r7abf40 r607fc7  
    11///////////////////////////////////////////////////////////////////////////////
    2 version="$Id: gmssing.lib 13548 2010-10-19 07:45:40Z hannes $";
     2version="$Id$";
    33category="Singularities";
    44
     
    88AUTHOR:  Mathias Schulze, mschulze at mathematik.uni-kl.de
    99
    10 OVERVIEW: 
    11 A library for computing invariants related to the Gauss-Manin system of an 
     10OVERVIEW:
     11A library for computing invariants related to the Gauss-Manin system of an
    1212isolated hypersurface singularity.
    1313
    1414REFERENCES:
    15 [Sch01] M. Schulze: Algorithms for the Gauss-Manin connection. J. Symb. Comp. 
     15[Sch01] M. Schulze: Algorithms for the Gauss-Manin connection. J. Symb. Comp.
    1616        32,5 (2001), 549-564.
    17 [Sch02] M. Schulze: The differential structure of the Brieskorn lattice. 
    18         In: A.M. Cohen et al.: Mathematical Software - ICMS 2002. 
     17[Sch02] M. Schulze: The differential structure of the Brieskorn lattice.
     18        In: A.M. Cohen et al.: Mathematical Software - ICMS 2002.
    1919        World Scientific (2002).
    20 [Sch03] M. Schulze: Monodromy of Hypersurface Singularities. 
     20[Sch03] M. Schulze: Monodromy of Hypersurface Singularities.
    2121        Acta Appl. Math. 75 (2003), 3-13.
    22 [Sch04] M. Schulze: A normal form algorithm for the Brieskorn lattice. 
     22[Sch04] M. Schulze: A normal form algorithm for the Brieskorn lattice.
    2323        J. Symb. Comp. 38,4 (2004), 1207-1225.
    2424
     
    5050KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice;
    5151          mixed Hodge structure; V-filtration; weight filtration;
    52           Bernstein-Sato polynomial; monodromy; spectrum; spectral pairs; 
     52          Bernstein-Sato polynomial; monodromy; spectrum; spectral pairs;
    5353          good basis
    5454";
Note: See TracChangeset for help on using the changeset viewer.