Ignore:
Timestamp:
Dec 18, 2013, 6:42:50 PM (10 years ago)
Author:
Hans Schoenemann <hannes@…>
Branches:
(u'spielwiese', 'fe61d9c35bf7c61f2b6cbf1b56e25e2f08d536cc')
Children:
1129351bca33bc8786735f0f6b3ef6e938ff6352
Parents:
b5bb857a49ad6ba995c35f60c39498abec0f46fc
Message:
fix: format, sum->lsum in ellipticcovers.lib
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/ellipticcovers.lib

    • Property mode changed from 100755 to 100644
    rb5bb857 r6ad6d7  
    1313We implement a formula for computing the number of covers of elliptic curves.
    1414It has beed obtained by proving mirror symmetry
    15 for arbitrary genus by tropical methods in [BBM]. A Feynman graph of genus 
    16 g is a trivalent, connected graph of genus g (with 2g-2 vertices 
    17 and 3g-3 edges). The branch type b=(b_1,...,b_(3g-3)) of a stable map is the 
     15for arbitrary genus by tropical methods in [BBM]. A Feynman graph of genus
     16g is a trivalent, connected graph of genus g (with 2g-2 vertices
     17and 3g-3 edges). The branch type b=(b_1,...,b_(3g-3)) of a stable map is the
    1818multiplicity of the the edge i over a fixed base point.
    1919
    20 Given a Feynman graph G and a branch type b, we obtain the number 
     20Given a Feynman graph G and a branch type b, we obtain the number
    2121N_(G,b) of stable maps of branch type b from a genus g curve of topological type G
    22 to the elliptic curve by computing a path integral 
     22to the elliptic curve by computing a path integral
    2323over a rational function. The path integral is computed as a residue.
    2424
     
    3737
    3838KEYWORDS:
    39 
    4039tropical geometry; mirror symmetry; tropical mirror symmetry; Gromov-Witten invariants; elliptic curves; propagator; Feynman graph; path integral
    4140
     
    5251computeConstant(number, number)           constant coefficient in the Laurent series expansion of a rational function in a given variable
    5352evalutateIntegral(number, list)           path integral for a given propagator and ordered sequence of variables
    54 gromovWitten(number)                      sum of path integrals for a given propagator over all orderings of the variables, or 
     53gromovWitten(number)                      sum of path integrals for a given propagator over all orderings of the variables, or
    5554                                          Gromov Witten invariant for a given graph and a fixed branch type, or
    5655                                          list of Gromov Witten invariants for a given graph and all branch types
     
    6059partitions(int, int)                      partitions of an integer into a fixed number of summands
    6160permute(list)                             all permutations of a list
    62 sum(list)                                 sum of the elements of a list
     61lsum(list)                                sum of the elements of a list
    6362
    6463";
     
    196195         product of propagator(list(v[i],w[i]),b[i]) over all edges i with multiplicity b[i] over the base point
    197196         and vertices v[i] and w[i].
    198      
    199 KEYWORDS: propagator; elliptic curve
     197
     198KEYWORDS: elliptic curve
    200199EXAMPLE:  example propagator; shows an example
    201200"
     
    231230{ "EXAMPLE:"; echo=2;
    232231  ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
    233   graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4))); 
     232  graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
    234233  propagator(list(x1,x2),0);
    235234  propagator(list(x1,x2),2);
     
    246245RETURN:  number, the constant coefficient of the Laurent series of f in the variable x.
    247246THEORY:  Computes the constant coefficient of the Laurent series by iterative differentiation.
    248      
     247
    249248KEYWORDS: Laurent series
    250249EXAMPLE:  example computeConstant; shows an example
     
    272271{ "EXAMPLE:"; echo=2;
    273272  ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
    274   graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4))); 
     273  graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
    275274  number P = propagator(G,list(1,1,1,0,0,0));
    276275  computeConstant(P,x2);
     
    287286
    288287         In the setting of covers of elliptic curves this is the path integral over the
    289          propagator divided by the product of all variables (corresponding to the vertices) 
     288         propagator divided by the product of all variables (corresponding to the vertices)
    290289         computed as a residue.
    291      
     290
    292291KEYWORDS: residue; Laurent series
    293292EXAMPLE:  example evaluateIntegral; shows an example
     
    302301{ "EXAMPLE:"; echo=2;
    303302  ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
    304   graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4))); 
     303  graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
    305304  number p = propagator(G,list(0,2,1,0,0,1));
    306305  evaluateIntegral(p,list(x1,x3,x4,x2));
     
    315314
    316315         This will eventually be deleted and become a more efficient kernel function.
    317      
     316
    318317KEYWORDS: permutations
    319318EXAMPLE:  example permute; shows an example
     
    350349
    351350         This may eventually be deleted and become a more efficient kernel function.
    352      
     351
    353352KEYWORDS: partitions
    354353EXAMPLE:  example partitions; shows an example
     
    384383         - the invariant N_(G,d)*|Aut(G)| where d is the degree of the covering, or @*
    385384
    386          - the number N_(G,b) of coverings with source G and target an elliptic curves with branch type a over a 
     385         - the number N_(G,b) of coverings with source G and target an elliptic curves with branch type a over a
    387386         fixed base point (that is, the i-th edge passes over the base point with multiplicity b[i]).@*
    388      
     387
    389388KEYWORDS: Gromov-Witten invariants; elliptic curves; coverings; Hurwitz numbers
    390389EXAMPLE:  example gromovWitten; shows an example
     
    420419       //print(string(j)+" / "+string(size(pa))+"    "+string(pa[j])+"     "+string(re[j])+"      "+string(sum(re))+"     "+string(ti));
    421420      }
    422      return(sum(re));
     421     return(lsum(re));
    423422     }
    424423  }
     
    427426{ "EXAMPLE:"; echo=2;
    428427  ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
    429   graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4))); 
     428  graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
    430429  number P = propagator(G,list(0,2,1,0,0,1));
    431430  gromovWitten(P);
     
    439438"USAGE:  computeGromovWitten(G, d, st, en [, vb] ); G graph, d int, st int, en  int, optional: vb int@*
    440439ASSUME:  G is a Feynman graph, d a non-negative integer, st specified the start- and en the end partition
    441          in the list pa = partition(d). Specifying a positive optional integer vb leads to intermediate printout.@* 
     440         in the list pa = partition(d). Specifying a positive optional integer vb leads to intermediate printout.@*
    442441         We assume that the coefficient ring has one rational variable for each vertex of G.@*
    443442RETURN:  list L, where L[i] is gromovWitten(G,pa[i]) and all others are zero.
    444443THEORY:  This function does essentially the same as the function gromovWitten, but is designed for handling complicated examples.
    445444         Eventually it will also run in parallel.@*
    446      
     445
    447446KEYWORDS: Gromov-Witten invariants; elliptic curves; coverings; Hurwitz numbers
    448447EXAMPLE:  example computeGromovWitten; shows an example
     
    463462       re[j]=gromovWitten(propagator(P,pa[j]));
    464463       ti=timer-ti;
    465        if (vb>0){print(string(j)+" / "+string(size(pa))+"    "+string(pa[j])+"     "+string(re[j])+"      "+string(sum(re))+"     "+string(ti));}
     464       if (vb>0){print(string(j)+" / "+string(size(pa))+"    "+string(pa[j])+"     "+string(re[j])+"      "+string(lsum(re))+"     "+string(ti));}
    466465      } else {re[j]=s;}
    467466     }
     
    473472  ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
    474473  graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
    475   partitions(6,2); 
     474  partitions(6,2);
    476475  computeGromovWitten(G,2,3,7);
    477476  computeGromovWitten(G,2,3,7,1);
     
    479478
    480479
    481 proc sum(list L)
    482 "USAGE:  sum(L); L list@*
    483 ASSUME:  L is a list of things with the binary operator + defined.@* 
     480proc lsum(list L)
     481"USAGE:  lsum(L); L list@*
     482ASSUME:  L is a list of things with the binary operator + defined.@*
    484483RETURN:  The sum of the elements of L.
    485 THEORY:  Sums the elements of a list. 
     484THEORY:  Sums the elements of a list.
    486485
    487486         Eventually this will be deleted and become a more efficient kernel function.@*
    488      
    489 KEYWORDS: sum
    490 EXAMPLE:  example sum; shows an example
     487
     488EXAMPLE:  example lsum; shows an example
    491489"
    492490{
     
    499497{ "EXAMPLE:"; echo=2;
    500498  list L = 1,2,3,4,5;
    501   sum(L);
     499  lsum(L);
    502500}
    503501
     
    507505"USAGE:  generatingFunction(G, d); G graph, d int@*
    508506ASSUME:  G is a Feynman graph, d a non-negative integer. The basering has one polynomial variable for each
    509          edge, and the coefficient ring has one rational variable for each vertex.@* 
     507         edge, and the coefficient ring has one rational variable for each vertex.@*
    510508RETURN:  poly.
    511509THEORY:  This function compute the multivariate generating function of all Gromov-Witten invariants up to
    512510         degree d, that is, the sum of all gromovWitten(G,b)*q^b.@*
    513      
     511
    514512KEYWORDS: generating function; Gromov-Witten invariants; elliptic curves; coverings; Hurwitz numbers
    515513EXAMPLE:  example generatingFunction; shows an example
Note: See TracChangeset for help on using the changeset viewer.