Changeset 7835f61 in git
 Timestamp:
 May 27, 2014, 3:20:05 PM (9 years ago)
 Branches:
 (u'spielwiese', '8e0ad00ce244dfd0756200662572aef8402f13d5')
 Children:
 d1df8403f1e5f64fed914d1e5be781a8fe2f763e
 Parents:
 89e00fe0d8e7a3f4bd8fc54c01ae113472268780
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

Singular/LIB/primdec.lib
r89e00f r7835f61 66 66 { 67 67 ASSUME(0, not isQuotientRing(basering) ) ; 68 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;68 ASSUME(0, hasGlobalOrdering(basering) ) ; 69 69 70 70 int @k; … … 94 94 { 95 95 ASSUME(0, not isQuotientRing(basering) ) ; 96 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;96 ASSUME(0, hasGlobalOrdering(basering) ) ; 97 97 int @k,@i; 98 98 def @P= basering; … … 161 161 { 162 162 ASSUME(0, not isQuotientRing(basering) ) ; 163 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;163 ASSUME(0, hasGlobalOrdering(basering) ) ; 164 164 int i,k; 165 165 poly f=1; … … 209 209 { 210 210 ASSUME(0, not isQuotientRing(basering) ) ; 211 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;211 ASSUME(0, hasGlobalOrdering(basering) ) ; 212 212 int i,j,k,action; 213 213 ideal verg; … … 271 271 { 272 272 ASSUME(0, not isQuotientRing(basering) ) ; 273 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;273 ASSUME(0, hasGlobalOrdering(basering) ) ; 274 274 poly keep=p; 275 275 … … 297 297 { 298 298 ASSUME(0, not isQuotientRing(basering) ) ; 299 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;299 ASSUME(0, hasGlobalOrdering(basering) ) ; 300 300 ideal @i; 301 301 list @l; … … 417 417 { 418 418 ASSUME(0, not isQuotientRing(basering) ) ; 419 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;419 ASSUME(0, hasGlobalOrdering(basering) ) ; 420 420 int m=1; 421 421 int n=nvars(basering); … … 512 512 { 513 513 ASSUME(0, not isQuotientRing(basering) ) ; 514 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;514 ASSUME(0, hasGlobalOrdering(basering) ) ; 515 515 int i,j; 516 516 if(size(act)<=1) … … 535 535 { 536 536 ASSUME(0, not isQuotientRing(basering) ) ; 537 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;537 ASSUME(0, hasGlobalOrdering(basering) ) ; 538 538 int i,j,k,s,r,w; 539 539 list keepresult,act,keepprime; … … 726 726 { 727 727 ASSUME(0, not isQuotientRing(basering) ) ; 728 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;728 ASSUME(0, hasGlobalOrdering(basering) ) ; 729 729 if((char(basering)==0)(npars(basering)>0)) 730 730 { … … 856 856 { 857 857 ASSUME(0, not isQuotientRing(basering) ) ; 858 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;858 ASSUME(0, hasGlobalOrdering(basering) ) ; 859 859 860 860 def @P = basering; … … 1316 1316 { 1317 1317 ASSUME(0, not isQuotientRing(basering) ) ; 1318 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;1318 ASSUME(0, hasGlobalOrdering(basering) ) ; 1319 1319 //zero_dimensional primary decomposition after finite field extension 1320 1320 def R=basering; … … 1409 1409 1410 1410 ASSUME(0, not isQuotientRing(basering) ) ; 1411 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;1411 ASSUME(0, hasGlobalOrdering(basering) ) ; 1412 1412 def R=basering; 1413 1413 1414 1414 //i has to be a reduced groebner basis 1415 ASSUME(1, dim(i)==0); 1415 1416 ideal F=finduni(i); 1416 1417 … … 1500 1501 1501 1502 ASSUME(0, not isQuotientRing(basering) ) ; 1502 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;1503 ASSUME(0, hasGlobalOrdering(basering) ) ; 1503 1504 if(homog(I)==1){return(maxideal(1));} 1504 1505 … … 1541 1542 1542 1543 ASSUME(0, not isQuotientRing(basering) ) ; 1543 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;1544 ASSUME(0, hasGlobalOrdering(basering) ) ; 1544 1545 def R=basering; 1545 1546 list pr=zeroSp(i); … … 1587 1588 { 1588 1589 ASSUME(0, not isQuotientRing(basering) ) ; 1589 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;1590 ASSUME(0, hasGlobalOrdering(basering) ) ; 1590 1591 int k,j; 1591 1592 poly m; … … 1666 1667 { 1667 1668 ASSUME(0, not isQuotientRing(basering) ) ; 1668 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;1669 ASSUME(0, hasGlobalOrdering(basering) ) ; 1669 1670 int k,j; 1670 1671 intvec m,n,v,w; … … 1792 1793 { 1793 1794 ASSUME(0, not isQuotientRing(basering) ) ; 1794 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;1795 ASSUME(0, hasGlobalOrdering(basering) ) ; 1795 1796 int n,k,di; 1796 1797 list resu,hilf; … … 1860 1861 { 1861 1862 ASSUME(0, not isQuotientRing(basering) ) ; 1862 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;1863 ASSUME(0, hasGlobalOrdering(basering) ) ; 1863 1864 ideal @ih,@jh; 1864 1865 int npar=npars(basering); … … 1926 1927 { 1927 1928 ASSUME(0, not isQuotientRing(basering) ) ; 1928 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;1929 ASSUME(0, hasGlobalOrdering(basering) ) ; 1929 1930 def @P=basering; 1930 1931 if(size(i)==0){return(list(ideal(0)));} … … 2054 2055 { 2055 2056 ASSUME(0, not isQuotientRing(basering) ) ; 2056 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;2057 ASSUME(0, hasGlobalOrdering(basering) ) ; 2057 2058 2058 2059 //assumes that all generators of i are irreducible … … 2084 2085 { 2085 2086 ASSUME(0, not isQuotientRing(basering) ) ; 2086 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;2087 ASSUME(0, hasGlobalOrdering(basering) ) ; 2087 2088 2088 2089 if(size(i) == 0){return(list(ideal(0)));} … … 2384 2385 ); 2385 2386 } 2386 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;2387 ASSUME(0, hasGlobalOrdering(basering) ) ; 2387 2388 2388 2389 intvec op ; … … 2493 2494 ); 2494 2495 } 2495 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;2496 ASSUME(0, hasGlobalOrdering(basering) ) ; 2496 2497 2497 2498 def P = basering; … … 2617 2618 { 2618 2619 ASSUME(0, not isQuotientRing(basering) ) ; 2619 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;2620 ASSUME(0, hasGlobalOrdering(basering) ) ; 2620 2621 2621 2622 //reduces primery decomposition over algebraic extensions to … … 2740 2741 { 2741 2742 ASSUME(0, not isQuotientRing(basering) ) ; 2742 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;2743 ASSUME(0, hasGlobalOrdering(basering) ) ; 2743 2744 2744 2745 list resu,tempo; … … 2767 2768 { 2768 2769 ASSUME(0, not isQuotientRing(basering) ) ; 2769 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;2770 ASSUME(0, hasGlobalOrdering(basering) ) ; 2770 2771 2771 2772 intvec op,@vv; … … 3750 3751 { 3751 3752 ASSUME(0, not isQuotientRing(basering) ) ; 3752 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;3753 ASSUME(0, hasGlobalOrdering(basering) ) ; 3753 3754 3754 3755 int i; … … 3773 3774 { 3774 3775 ASSUME(0, not isQuotientRing(basering) ) ; 3775 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;3776 ASSUME(0, hasGlobalOrdering(basering) ) ; 3776 3777 3777 3778 def R=basering; … … 3826 3827 { 3827 3828 ASSUME(0, not isQuotientRing(basering) ) ; 3828 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;3829 ASSUME(0, hasGlobalOrdering(basering) ) ; 3829 3830 3830 3831 if(homog(I)==1){return(maxideal(1));} … … 3850 3851 3851 3852 option(redSB); 3853 ASSUME(1, dim(I)==0); 3852 3854 ideal F=finduni(I);//F[i] generates I intersected with K[var(i)] 3853 3855 … … 3930 3932 ); 3931 3933 } 3932 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;3934 ASSUME(0, hasGlobalOrdering(basering) ) ; 3933 3935 3934 3936 if((char(basering)<100)&&(char(basering)!=0)) … … 4052 4054 { 4053 4055 ASSUME(0, not isQuotientRing(basering) ) ; 4054 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;4056 ASSUME(0, hasGlobalOrdering(basering) ) ; 4055 4057 4056 4058 if(homog(i)!=1) … … 4098 4100 { 4099 4101 ASSUME(0, not isQuotientRing(basering) ) ; 4100 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;4102 ASSUME(0, hasGlobalOrdering(basering) ) ; 4101 4103 4102 4104 int ii,jj; … … 4131 4133 { 4132 4134 ASSUME(0, not isQuotientRing(basering) ) ; 4133 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;4135 ASSUME(0, hasGlobalOrdering(basering) ) ; 4134 4136 4135 4137 def r=basering; … … 4238 4240 { 4239 4241 ASSUME(0, not isQuotientRing(basering) ) ; 4240 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;4242 ASSUME(0, hasGlobalOrdering(basering) ) ; 4241 4243 4242 4244 intvec op; … … 4342 4344 { 4343 4345 ASSUME(0, not isQuotientRing(basering) ) ; 4344 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;4346 ASSUME(0, hasGlobalOrdering(basering) ) ; 4345 4347 4346 4348 intvec op; … … 4484 4486 { 4485 4487 ASSUME(0, not isQuotientRing(basering) ) ; 4486 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;4488 ASSUME(0, hasGlobalOrdering(basering) ) ; 4487 4489 4488 4490 if((choose<0) or (choose>3)) … … 4710 4712 { 4711 4713 ASSUME(0, not isQuotientRing(basering) ) ; 4712 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;4714 ASSUME(0, hasGlobalOrdering(basering) ) ; 4713 4715 4714 4716 list L; // The list of minimal associated primes, … … 4763 4765 { 4764 4766 ASSUME(0, not isQuotientRing(basering) ) ; 4765 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;4767 ASSUME(0, hasGlobalOrdering(basering) ) ; 4766 4768 4767 4769 int i,j,l; … … 4864 4866 { 4865 4867 ASSUME(0, not isQuotientRing(basering) ) ; 4866 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;4868 ASSUME(0, hasGlobalOrdering(basering) ) ; 4867 4869 4868 4870 list Q; … … 4936 4938 { 4937 4939 ASSUME(0, not isQuotientRing(basering) ) ; 4938 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;4940 ASSUME(0, hasGlobalOrdering(basering) ) ; 4939 4941 4940 4942 list indsets=indepSet(SP,0); … … 5044 5046 { 5045 5047 ASSUME(0, not isQuotientRing(basering) ) ; 5046 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;5048 ASSUME(0, hasGlobalOrdering(basering) ) ; 5047 5049 5048 5050 ideal fac=factorize(p,1); //the irreducible factors of p … … 5093 5095 { 5094 5096 ASSUME(0, not isQuotientRing(basering) ) ; 5095 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;5097 ASSUME(0, hasGlobalOrdering(basering) ) ; 5096 5098 5097 5099 fac=sort(fac)[1]; … … 5140 5142 { 5141 5143 ASSUME(0, not isQuotientRing(basering) ) ; 5142 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;5144 ASSUME(0, hasGlobalOrdering(basering) ) ; 5143 5145 5144 5146 intvec op; … … 5213 5215 { 5214 5216 ASSUME(0, not isQuotientRing(basering) ) ; 5215 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;5217 ASSUME(0, hasGlobalOrdering(basering) ) ; 5216 5218 5217 5219 int j; … … 5770 5772 ); 5771 5773 } 5772 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;5774 ASSUME(0, hasGlobalOrdering(basering) ) ; 5773 5775 5774 5776 return(radical(i, 1)); … … 5985 5987 { 5986 5988 ASSUME(0, not isQuotientRing(basering) ) ; 5987 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;5989 ASSUME(0, hasGlobalOrdering(basering) ) ; 5988 5990 5989 5991 // ideal I The ideal for which the radical is computed … … 6025 6027 { 6026 6028 ASSUME(0, not isQuotientRing(basering) ) ; 6027 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;6029 ASSUME(0, hasGlobalOrdering(basering) ) ; 6028 6030 6029 6031 ideal rad = 1; … … 6110 6112 // It is used to set the value of done.) 6111 6113 ASSUME(0, not isQuotientRing(basering) ) ; 6112 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;6114 ASSUME(0, hasGlobalOrdering(basering) ) ; 6113 6115 6114 6116 attrib(I, "isSB", 1); // I needs to be a reduced standard basis … … 6385 6387 { 6386 6388 ASSUME(0, not isQuotientRing(basering) ) ; 6387 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;6389 ASSUME(0, hasGlobalOrdering(basering) ) ; 6388 6390 6389 6391 int k = 1; // Counter … … 6455 6457 { 6456 6458 ASSUME(0, not isQuotientRing(basering) ) ; 6457 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;6459 ASSUME(0, hasGlobalOrdering(basering) ) ; 6458 6460 6459 6461 int n, k, di; … … 6549 6551 { 6550 6552 ASSUME(0, not isQuotientRing(basering) ) ; 6551 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;6553 ASSUME(0, hasGlobalOrdering(basering) ) ; 6552 6554 6553 6555 ideal @ih,@jh; … … 6604 6606 ); 6605 6607 } 6606 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;6608 ASSUME(0, hasGlobalOrdering(basering) ) ; 6607 6609 6608 6610 ideal j=std(i); … … 6655 6657 ); 6656 6658 } 6657 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;6659 ASSUME(0, hasGlobalOrdering(basering) ) ; 6658 6660 6659 6661 ideal j=groebner(i); … … 6688 6690 { 6689 6691 ASSUME(0, not isQuotientRing(basering) ) ; 6690 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;6692 ASSUME(0, hasGlobalOrdering(basering) ) ; 6691 6693 6692 6694 int i; … … 6729 6731 ); 6730 6732 } 6731 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;6733 ASSUME(0, hasGlobalOrdering(basering) ) ; 6732 6734 6733 6735 def R=basering; … … 6843 6845 { 6844 6846 ASSUME(0, not isQuotientRing(basering) ) ; 6845 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;6847 ASSUME(0, hasGlobalOrdering(basering) ) ; 6846 6848 6847 6849 intvec op,@vv; … … 7748 7750 { 7749 7751 ASSUME(0, not isQuotientRing(basering) ) ; 7750 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;7752 ASSUME(0, hasGlobalOrdering(basering) ) ; 7751 7753 7752 7754 … … 8049 8051 { 8050 8052 ASSUME(0, not isQuotientRing(basering) ) ; 8051 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;8053 ASSUME(0, hasGlobalOrdering(basering) ) ; 8052 8054 8053 8055 ideal P = 1; … … 8092 8094 { 8093 8095 ASSUME(0, not isQuotientRing(basering) ) ; 8094 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;8096 ASSUME(0, hasGlobalOrdering(basering) ) ; 8095 8097 8096 8098 int k = 1; … … 8147 8149 { 8148 8150 ASSUME(0, not isQuotientRing(basering) ) ; 8149 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;8151 ASSUME(0, hasGlobalOrdering(basering) ) ; 8150 8152 8151 8153 int n, k, di; … … 8250 8252 { 8251 8253 ASSUME(0, not isQuotientRing(basering) ) ; 8252 ASSUME(0, hasGlobal MonomialOrdering(basering) ) ;8254 ASSUME(0, hasGlobalOrdering(basering) ) ; 8253 8255 8254 8256 def @P = basering;
Note: See TracChangeset
for help on using the changeset viewer.