Changeset 7a051de in git
- Timestamp:
- Jul 23, 2010, 7:28:28 PM (13 years ago)
- Branches:
- (u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'a800fe4b3e9d37a38c5a10cc0ae9dfa0c15a4ee6')
- Children:
- 6ffcdfa261c4242fc6d748ecd4529fc5920ab7c3
- Parents:
- 77e09dc401b1e40ae64c4756637d51f60281cd65
- Location:
- Singular/LIB
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/bfun.lib
r77e09d r7a051de 38 38 39 39 40 MAIN PROCEDURES: 41 40 PROCEDURES: 42 41 bfct(f[,s,t,v]); compute the BS polynomial of f with linear reductions 43 42 bfctSyz(f[,r,s,t,u,v]); compute the BS polynomial of f with syzygy-solver … … 51 50 linSyzSolve(I[,s]); compute a linear dependency of elements of ideal I 52 51 53 AUXILIARY PROCEDURES:54 55 allPositive(v); checks whether all entries of an intvec are positive56 scalarProd(v,w); computes the standard scalar product of two intvecs57 vec2poly(v[,i]); constructs an univariate polynomial with given coefficients58 59 52 SEE ALSO: dmod_lib, dmodapp_lib, dmodvar_lib, gmssing_lib 60 53 61 54 KEYWORDS: D-module; global Bernstein-Sato polynomial; Bernstein-Sato polynomial; b-function; 62 55 graded Weyl algebra; initial ideal; initial form; principal intersection; linear interreduction; 63 initial ideal approach ;56 initial ideal approach 64 57 "; 58 59 //AUXILIARY PROCEDURES: 60 // 61 //allPositive(v); checks whether all entries of an intvec are positive 62 //scalarProd(v,w); computes the standard scalar product of two intvecs 63 //vec2poly(v[,i]); constructs an univariate polynomial with given coefficients 65 64 66 65 -
Singular/LIB/dmod.lib
r77e09d r7a051de 91 91 KEYWORDS: D-module; D-module structure; left annihilator ideal; Bernstein-Sato polynomial; global Bernstein-Sato polynomial; 92 92 Weyl algebra; Bernstein operator; logarithmic annihilator ideal; parametric annihilator; root of Bernstein-Sato polynomial; 93 hyperplane arrangement; Oaku-Takayama algorithm; Briancon-Maisonobe algorithm; LOT algorithm ;93 hyperplane arrangement; Oaku-Takayama algorithm; Briancon-Maisonobe algorithm; LOT algorithm 94 94 "; 95 95 -
Singular/LIB/dmodapp.lib
r77e09d r7a051de 31 31 @* (ONW) Oaku, Takayama, Walther 'A Localization Algorithm for D-modules', 2000 32 32 33 MAINPROCEDURES:33 PROCEDURES: 34 34 35 35 annPoly(f); annihilator of a polynomial f in the corr. Weyl algebra … … 44 44 isFsat(I, F); check whether the ideal I is F-saturated 45 45 46 AUXILIARY PROCEDURES:47 48 bFactor(F); computes the roots of irreducible factors of an univariate poly49 appelF1(); create an ideal annihilating Appel F1 function50 appelF2(); create an ideal annihilating Appel F2 function51 appelF4(); create an ideal annihilating Appel F4 function52 engine(I,i); computes a Groebner basis with the algorithm given by i53 poly2list(f); decompose a polynomial into a list of terms and exponents54 fl2poly(L,s); reconstruct a monic univariate polynomial from its factorization55 insertGenerator(id,p[,k]); insert an element into an ideal/module56 deleteGenerator(id,k); delete the k-th element from an ideal/module57 58 59 46 SEE ALSO: bfun_lib, dmod_lib, dmodvar_lib, gmssing_lib 60 47 61 48 KEYWORDS: D-module; annihilator of polynomial; annihilator of rational function; D-localization; 62 localization of D-module; Appel function; Appel hypergeometric function ;49 localization of D-module; Appel function; Appel hypergeometric function 63 50 "; 51 //AUXILIARY PROCEDURES: 52 // 53 //bFactor(F); computes the roots of irreducible factors of an univariate poly 54 //appelF1(); create an ideal annihilating Appel F1 function 55 //appelF2(); create an ideal annihilating Appel F2 function 56 //appelF4(); create an ideal annihilating Appel F4 function 57 //engine(I,i); computes a Groebner basis with the algorithm given by i 58 //poly2list(f); decompose a polynomial into a list of terms and exponents 59 //fl2poly(L,s); reconstruct a monic univariate polynomial from its factorization 60 //insertGenerator(id,p[,k]); insert an element into an ideal/module 61 //deleteGenerator(id,k); delete the k-th element from an ideal/module 62 64 63 65 64 LIB "poly.lib"; -
Singular/LIB/dmodvar.lib
r77e09d r7a051de 27 27 (ALM09) Andres, Levandovskyy, Martin-Morales : Principal Intersection and Bernstein-Sato Polynomial of an Affine Variety (2009). 28 28 29 MAINPROCEDURES:29 PROCEDURES: 30 30 bfctVarIn(F[,L]); compute the roots of the Bernstein-Sato polynomial b(s) of the variety V(F) using initial ideal approach 31 31 bfctVarAnn(F[,L]); compute the roots of the Bernstein-Sato polynomial b(s) of the variety V(F) using Sannfs approach 32 32 SannfsVar(F[,O,e]); compute the annihilator of F^s in the ring D<S> 33 33 34 AUXILIARY PROCEDURES:35 makeIF(F[,ORD]); create the Malgrange ideal, associated with F = F[1],..,F[P]36 37 34 SEE ALSO: bfun_lib, dmod_lib, dmodapp_lib, gmssing_lib 38 35 39 36 KEYWORDS: D-module; D-module structure; Bernstein-Sato polynomial for variety; global Bernstein-Sato polynomial for variety; 40 Weyl algebra; parametric annihilator for variety; Budur-Mustata-Saito approach; initial ideal approach ;37 Weyl algebra; parametric annihilator for variety; Budur-Mustata-Saito approach; initial ideal approach 41 38 "; 39 //AUXILIARY PROCEDURES: 40 //makeIF(F[,ORD]); create the Malgrange ideal, associated with F = F[1],..,F[P] 41 42 42 43 43 // Static procs: -
Singular/LIB/jacobson.lib
r77e09d r7a051de 42 42 SEE ALSO: control_lib 43 43 44 KEYWORDS: Jacobson form; Jacobson normal form; Smith form; Smith normal form; matrix diagonalization ;44 KEYWORDS: Jacobson form; Jacobson normal form; Smith form; Smith normal form; matrix diagonalization 45 45 46 46 "; 47 47 48 49 50 51 48 LIB "poly.lib"; 49 LIB "involut.lib"; // involution 50 LIB "dmodapp.lib"; // engine 51 LIB "qhmoduli.lib"; // Min 52 52 53 53 proc tstjacobson()
Note: See TracChangeset
for help on using the changeset viewer.