Changeset 7de8e4 in git


Ignore:
Timestamp:
Apr 6, 2009, 11:48:23 AM (15 years ago)
Author:
Frank Seelisch <seelisch@…>
Branches:
(u'spielwiese', '4a9821a93ffdc22a6696668bd4f6b8c9de3e6c5f')
Children:
1a3911abf7c4f6cd8f297ffcc0771fef2ae9389b
Parents:
0bc582ce3f42d033e854938a1175f56baba17b23
Message:
removed some docu errors prior to release 3-1-0


git-svn-id: file:///usr/local/Singular/svn/trunk@11625 2c84dea3-7e68-4137-9b89-c4e89433aadc
Location:
Singular/LIB
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/pointid.lib

    r0bc582c r7de8e4  
    1111    remark by Macaulay or Enhancing Lazard Structural Theorem. Bull. of the
    1212    Iranian Math. Soc., 29 (2003), 103-145] associates to each ordered set of
    13     points A:={a1,...,as} in K^n, ai:=(ai1,...,ain)
    14 @*      - a set of monomials N and
    15 @*      - a bijection phi: A --> N.
    16     Here I(A):={f in K[x(1),...,x(n)]|f(ai)=0, for all 1<=i<=s} denotes the
     13    points A:={a1,...,as} in K^n, ai:=(ai1,...,ain)@*
     14          - a set of monomials N and@*
     15          - a bijection phi: A --> N.
     16    Here I(A):={f in K[x(1),...,x(n)] | f(ai)=0, for all 1<=i<=s} denotes the
    1717    vanishing ideal of A and N = Mon(x(1),...,x(n)) \ {LM(f)|f in I(A)} is the
    18     set of monomials not in the leading ideal of I(A) (w.r.t. the lexicograph.
    19     ordering with x(n)>...>x(1)). N is also called the set of non-monomials of
    20     I(A). NOTE: #A = #N and N is a monomial basis of K[x(1..n)]/I(A).
    21     In particular, this allows to deduce the set of corner-monomials, i.e. the
    22     minimal basis M:={m1,...,mr}, m1<...<mr, of its associated monomial ideal
    23     M(I(A)), such that M(I(A))= {k*mi|k in Mon(x(1),...,x(n)), mi in M} and
    24     (by interpolation) the unique reduced lexicographical Groebner basis
    25     G := {f1,...,fr} such that LM(fi)=mi for each i, i.e. I(A)=<G>.
     18    set of monomials which do not lie in the leading ideal of I(A) (w.r.t. the
     19    lexicographical ordering with x(n)>...>x(1)). N is also called the set of
     20    non-monomials of I(A). NOTE: #A = #N and N is a monomial basis of
     21    K[x(1..n)]/I(A). In particular, this allows to deduce the set of
     22    corner-monomials, i.e. the minimal basis M:={m1,...,mr}, m1<...<mr, of its
     23    associated monomial ideal M(I(A)), such that@*
     24    M(I(A))= {k*mi | k in Mon(x(1),...,x(n)), mi in M},@*
     25    and (by interpolation) the unique reduced lexicographical Groebner basis
     26    G := {f1,...,fr} such that LM(fi)=mi for each i, that is, I(A)=<G>.
    2627    Moreover, a variation of this algorithm allows to deduce a canonical linear
    2728    factorization of each element of such a Groebner basis in the sense ot the
    28     Axis-of-Evil Theorem by M.G. Marinari and T. Mora. More precisely:
    29     A combinatorial algorithm and interpolation allow to deduce polynomials
     29    Axis-of-Evil Theorem by M.G. Marinari and T. Mora. More precisely, a
     30    combinatorial algorithm and interpolation allow to deduce polynomials
    3031@*
    3132@*                y_mdi = x(m) - g_mdi(x(1),...,x(m-1)),
    3233@*
    33     i=1,...,r, m=1,...,n, d in a finite index-set F, satisfying
     34    i=1,...,r; m=1,...,n; d in a finite index-set F, satisfying
    3435@*
    3536@*                 fi = (product of y_mdi) modulo (f1,...,f(i-1))
    3637@*
    37     where the product runs over all m=1,...,n and d in F.
     38    where the product runs over all m=1,...,n; and all d in F.
    3839
    3940PROCEDURES:
     
    7879proc nonMonomials(id)
    7980"USAGE:  nonMonomials(id); id = <list of vectors> or <list of lists> or <module>
    80          or <matrix>.
     81         or <matrix>.@*
    8182         Let A= {a1,...,as} be a set of points in K^n, ai:=(ai1,...,ain), then
    82          A can be given as
    83 @*         - a list of vectors (the ai are vectors) or
    84 @*         - a list of lists (the ai are lists of numbers) or
    85 @*         - a module s.t. the ai are generators or
    86 @*         - a matrix s.t. the ai are columns
    87 ASSUME:  basering must have ordering rp, i.e. of the form 0,x(1..n),rp;
     83         A can be given as@*
     84          - a list of vectors (the ai are vectors) or@*
     85          - a list of lists (the ai are lists of numbers) or@*
     86          - a module s.t. the ai are generators or@*
     87          - a matrix s.t. the ai are columns
     88ASSUME:  basering must have ordering rp, i.e., be of the form 0,x(1..n),rp;
    8889         (the first entry of a point belongs to the lex-smallest variable, etc.)
    8990RETURN:  ideal, the non-monomials of the vanishing ideal I(A) of A
     
    260261         The corner-monomials are the leading monomials of an ideal I s.t. N is
    261262         a basis of basering/I.
    262 NOTE:    In our applications I is the vanishing ideal of a finte set of points.
     263NOTE:    In our applications, I is the vanishing ideal of a finte set of points.
    263264EXAMPLE: example cornerMonomials; shows an example
    264265"
     
    273274  ideal M;
    274275
    275 //-------------------- Test: 1 in N ?, if no, return <1> ----------------------
     276//-------------------- Test: Is 1 in N ?, if no, return <1> ----------------------
    276277  for(i = 1; i <= size(N); i++)
    277278  {
     
    373374proc facGBIdeal(id)
    374375"USAGE:  facGBIdeal(id); id = <list of vectors> or <list of lists> or <module>
    375          or <matrix>.
     376         or <matrix>.@*
    376377         Let A= {a1,...,as} be a set of points in K^n, ai:=(ai1,...,ain), then
    377          A can be given as
    378 @*         - a list of vectors (the ai are vectors) or
    379 @*         - a list of lists (the ai are lists of numbers) or
    380 @*         - a module s.t. the ai are generators or
    381 @*         - a matrix s.t. the ai are columns
    382 ASSUME:  basering must have ordering rp, i.e. of the form 0,x(1..n),rp;
     378         A can be given as@*
     379          - a list of vectors (the ai are vectors) or@*
     380          - a list of lists (the ai are lists of numbers) or@*
     381          - a module s.t. the ai are generators or@*
     382          - a matrix s.t. the ai are columns
     383ASSUME:  basering must have ordering rp, i.e., be of the form 0,x(1..n),rp;
    383384         (the first entry of a point belongs to the lex-smallest variable, etc.)
    384385RETURN:  a list where the first entry contains the Groebner basis G of I(A)
     
    463464  poly f;
    464465  ideal G1;          // stores the elements of G, i.e. G1 = G the GB of I(A)
    465   ideal Y;           // stores the linear factors of GB-elements in each slope
     466  ideal Y;           // stores the linear factors of GB-elements in each loop
    466467  list G2;           // contains the linear factors of each element of G
    467468
  • Singular/LIB/qhmoduli.lib

    r0bc582c r7de8e4  
    11///////////////////////////////////////////////////////////////////////////////
    2 version="$Id: qhmoduli.lib,v 1.12 2008-10-01 15:29:23 Singular Exp $";
     2version="$Id: qhmoduli.lib,v 1.13 2009-04-06 09:48:23 seelisch Exp $";
    33category="Singularities";
    44info="
     
    480480"
    481481{
    482   int i, j, c, k, r, nrVars, offset, n, sln, dbPrt;
     482  int i, j, c, d, k, r, nrVars, offset, n, sln, dbPrt;
    483483  list Variables, rd, temp, sList, varSubsList;
    484484  poly mPoly;
    485485  string ringSTR, ringSTR1, varString, parString;
     486  matrix newcoMx, coMx;
    486487
    487488  dbPrt = printlevel-voice+2;
     
    555556  f = data[r];
    556557  f1 = F(f);
    557   int d = deg(f);
    558   matrix newcoMx = coef(f1, vars);        // coefficients of F(f)
    559   matrix coMx = coef(f, vars);          // coefficients of f
     558  d = deg(f);
     559  newcoMx = coef(f1, vars);        // coefficients of F(f)
     560  coMx = coef(f, vars);          // coefficients of f
    560561
    561562  for(i = 1; i <= ncols(newcoMx); i = i + 1) {      // build the system of eqns via coeff. comp.
Note: See TracChangeset for help on using the changeset viewer.