Changeset 816868 in git
- Timestamp:
- May 9, 2005, 12:31:30 PM (18 years ago)
- Branches:
- (u'spielwiese', '91fdef05f09f54b8d58d92a472e9c4a43aa4656f')
- Children:
- f6c9006209a9d3dd56eda544c0153792c2522afd
- Parents:
- eb716b0a6899ddce95c849b7761d45f58580c170
- Location:
- Singular/LIB
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/ncall.lib
reb716b0 r816868 1 // $Id: ncall.lib,v 1. 2 2004-12-22 21:16:15levandov Exp $1 // $Id: ncall.lib,v 1.3 2005-05-09 10:31:29 levandov Exp $ 2 2 /////////////////////////////////////////////////////////////////////////////// 3 version="$Id: ncall.lib,v 1. 2 2004-12-22 21:16:15levandov Exp $";3 version="$Id: ncall.lib,v 1.3 2005-05-09 10:31:29 levandov Exp $"; 4 4 category = "Noncommutative"; 5 5 info=" … … 14 14 qmatrix.lib: Quantum matrices, quantum minors and symmetric groups 15 15 involution.lib: Computations and operations with involutions 16 nchomolog.lib: Noncommutative homological algebra17 16 @end format 18 17 "; 19 18 19 // nchomolog.lib: Noncommutative homological algebra 20 20 /////////////////////////////////////////////////////////////////////////////// 21 21 … … 27 27 LIB "qmatrix.lib"; 28 28 LIB "involution.lib"; 29 LIB "nchomolog.lib";29 //LIB "nchomolog.lib"; -
Singular/LIB/qmatrix.lib
reb716b0 r816868 1 version="$Id: qmatrix.lib,v 1.1 0 2005-05-06 14:39:06 hannesExp $";1 version="$Id: qmatrix.lib,v 1.11 2005-05-09 10:31:30 levandov Exp $"; 2 2 category="Noncommutative"; 3 3 info=" 4 4 LIBRARY: qmatrix.lib Quantum matrices, quantum minors and symmetric groups 5 5 AUTHORS: Lobillo, F.J., jlobillo@ugr.es 6 @* 6 @* Rabelo, C., crabelo@ugr.es 7 7 8 8 SUPPORT: 'Metodos algebraicos y efectivos en grupos cuanticos', BFM2001-3141, MCYT, Jose Gomez-Torrecillas (Main researcher). 9 9 10 10 MAIN PROCEDURES: 11 quant (n, [p]);generates the quantum matrix ring of order n;11 quantMat(n, [p]); generates the quantum matrix ring of order n; 12 12 qminor(u, v, nr); calculate a quantum minor of a quantum matrix 13 13 14 14 AUXILIARY PROCEDURES: 15 SymGroup(n); 15 SymGroup(n); generates an intmat containing S(n), each row is an element of S(n) 16 16 LengthSymElement(v); calculates the length of the element v of S(n) 17 LengthSym(M); 17 LengthSym(M); calculates the length of each element of M, being M a subset of S(n) 18 18 "; 19 19 … … 23 23 24 24 proc SymGroup(int n) 25 "USAGE: SymGroup(n); n an integer, n>0 26 PURPOSE: present the symmetric group S(n) via integer vectors 25 "USAGE: SymGroup(n); n an integer (positive) 27 26 RETURN: intmat 27 PURPOSE: represent the symmetric group S(n) via integer vectors (permutations) 28 28 NOTE: each row of the output integer matrix is an element of S(n) 29 SEE ALSO: LengthSym, LengthSymElement ;29 SEE ALSO: LengthSym, LengthSymElement 30 30 EXAMPLE: example SymGroup; shows examples 31 31 "{ … … 79 79 80 80 proc LengthSymElement(intvec v) 81 "USAGE: LengthSymElement(v); v an intvec representing an element of S(n) 81 "USAGE: LengthSymElement(v); v intvec 82 RETURN: int 82 83 PURPOSE: determine the length of v 83 RETURN: int 84 NOTE: if v doesn't represent an element of S(n), the output may have no sense 84 ASSUME: v represents an element of S(n); otherwise the output may have no sense 85 85 SEE ALSO: SymGroup, LengthSym 86 86 EXAMPLE: example LengthSymElement; shows examples … … 108 108 109 109 proc LengthSym(intmat M) 110 "USAGE: LengthSym(M); M an intmat representing a subset of S(n) (each row must be an element of S(n)) 111 PURPOSE: determine a vector, which i-th element is the length of the i-th row of M 110 "USAGE: LengthSym(M); M an intmat 112 111 RETURN: intvec 113 NOTE: If M is not a subset of S(n), the output may not have meaning 112 PURPOSE: determine a vector, where the i-th element is the length of the i-th row of M 113 ASSUME: M represents a subset of S(n) (each row must be an element of S(n)); otherwise, the output may have no sense 114 114 SEE ALSO: SymGroup, LengthSymElement 115 115 EXAMPLE: example LengthSym; shows examples … … 129 129 { 130 130 "EXAMPLE:";echo=2; 131 def M=SymGroup(3); 132 M; 131 def M = SymGroup(3); M; 133 132 LengthSym(M); 134 133 } … … 136 135 /////////////////////////////////////////////////////////////////////////////// 137 136 138 proc quant(int n, list #) 139 "USAGE: quant(n [, p]); n integer (n>1), p an optional integer 140 PURPOSE: compute the quantum matrix ring of order n; 137 proc quantMat(int n, list #) 138 "USAGE: quantMat(n [, p]); n integer (n>1), p an optional integer 141 139 RETURN: ring (of quantum matrices). If p is specified, the quantum parameter q 142 @* will be specialized at p-th root of unity 143 NOTE: You have to activate this ring with the 'setring' command. 140 @* will be specialized at the p-th root of unity 141 PURPOSE: compute the quantum matrix ring of order n 142 NOTE: activate this ring with the 'setring' command. 144 143 @* The usual representation of the variables in this quantum 145 @* 146 @* in the variables. Instead the variables are listedreading147 @* 144 @* algebra is not used because double indexes are not allowed 145 @* in the variables. Instead the variables are listed by reading 146 @* the rows of the usual matrix representation. 148 147 SEE ALSO: qminor 149 EXAMPLE: example quant ; shows examples148 EXAMPLE: example quantMat; shows examples 150 149 "{ 151 150 if (n>1) … … 207 206 { 208 207 "EXAMPLE:"; echo=2; 209 def r =quant(2); // generate O_q(M_2) at q generic208 def r = quantMat(2); // generate O_q(M_2) at q generic 210 209 setring r; r; 211 210 kill r; 212 def r =quant(2,5); // generate O_q(M_2) at q^5=1211 def r = quantMat(2,5); // generate O_q(M_2) at q^5=1 213 212 setring r; r; 214 213 } … … 217 216 218 217 proc qminor(intvec I, intvec J, int nr) 219 "USAGE: qminor(I,J,n r); where220 @* I is the ordered list of the rows to consider in the minor, 221 @* J is the ordered list of the columns to consider in the minor and 222 @* nr is the order of the quantum matrix algebra you are working with (quant(nr)).223 RETURN: poly, the quantum minor. 224 NOTE: I and J must have the same number of elements.225 SEE ALSO: quant 218 "USAGE: qminor(I,J,n); I,J intvec, n int 219 RETURN: poly, the quantum minor 220 ASSUME: I is the ordered list of the rows to consider in the minor, 221 @* J is the ordered list of the columns to consider in the minor, 222 @* I and J must have the same number of elements, 223 @* n is the order of the quantum matrix algebra you are working with (quantMat(n)). 224 SEE ALSO: quantMat 226 225 EXAMPLE: example qminor; shows examples 227 226 "{ … … 255 254 example 256 255 { 257 "EXAMPLE: Let r be the quantum matrix of order 3."; echo=2; 258 def r=quant(3); setring r; 259 intvec u=1,2; 260 intvec v=2,3; 261 intvec w=1,2,3; 256 "EXAMPLE:"; 257 echo=2; 258 def r = quantMat(3); // let r be a quantum matrix of order 3 259 setring r; 260 intvec u = 1,2; 261 intvec v = 2,3; 262 intvec w = 1,2,3; 262 263 qminor(w,w,3); 263 264 qminor(u,v,3);
Note: See TracChangeset
for help on using the changeset viewer.