Changeset 821b26 in git
- Timestamp:
- Apr 10, 2009, 9:28:58 PM (14 years ago)
- Branches:
- (u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'a800fe4b3e9d37a38c5a10cc0ae9dfa0c15a4ee6')
- Children:
- 71a293d2c41550db6c408d972d02ee810465fbfa
- Parents:
- 88e5d02561990a0b8b126978b31a19f6dcb68b1c
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/sheafcoh.lib
r88e5d0 r821b26 1 1 /////////////////////////////////////////////////////////////////////////////// 2 version="$Id: sheafcoh.lib,v 1.1 6 2009-04-07 16:18:06 seelischExp $";2 version="$Id: sheafcoh.lib,v 1.17 2009-04-10 19:28:58 motsak Exp $"; 3 3 category="Commutative Algebra"; 4 4 info=" … … 10 10 PROCEDURES: 11 11 truncate(phi,d); truncation of coker(phi) at d 12 truncateFast(phi,d); truncation of coker(phi) at d (fast+ experimental) 12 13 CM_regularity(M); Castelnuovo-Mumford regularity of coker(M) 13 14 sheafCohBGG(M,l,h); cohomology of sheaf associated to coker(M) … … 15 16 sheafCoh(M,l,h); cohomology of sheaf associated to coker(M) 16 17 dimH(i,M,d); compute h^i(F(d)), F sheaf associated to coker(M) 18 dimGradedPart() 17 19 18 20 AUXILIARY PROCEDURES: … … 26 28 LIB "nctools.lib"; 27 29 LIB "homolog.lib"; 30 31 32 /////////////////////////////////////////////////////////////////////////////// 33 // testing for consistency of the library: 34 proc testSheafCohLibrary() 35 { 36 printlevel = printlevel + 1; 37 example truncate; 38 example truncateFast; 39 example CM_regularity; 40 example sheafCoh; 41 example sheafCohBGG; 42 example dimH; 43 example dimGradedPart; 44 example sheafCohBGG2; 45 example getStructureSheaf; 46 printlevel = printlevel - 1; 47 } 48 49 28 50 29 51 /////////////////////////////////////////////////////////////////////////////// … … 40 62 } 41 63 42 // returns transposed Jacobian of a module M 43 static proc tJacobian(module M) 44 { 45 M = transpose(M); 46 47 int N = nvars(basering); 48 int k = ncols(M); 49 int r = nrows(M); 50 51 module Result; 52 Result[N*k] = 0; 53 54 int i, j; 55 int l = 1; 56 57 for( j = 1; j <= N; j++ ) // for all variables 58 { 59 for( i = 1; i <= k; i++ ) // for every v \in transpose(M) 60 { 61 Result[l] = diff(M[i], var(j)); 62 l++; 63 } 64 } 65 66 return(Result); 67 } 68 69 64 65 /////////////////////////////////////////////////////////////////////////////// 70 66 /** 71 67 let M = { w_1, ..., w_k }, k = size(M) == ncols(M), n = nvars(currRing). … … 91 87 static proc TensorModuleMult(int m, module M) 92 88 { 89 return( system("tensorModuleMult", m, M) ); // trick! 90 93 91 int n = nvars(basering); 94 92 int k = ncols(M); … … 142 140 return(j); 143 141 } 142 143 /////////////////////////////////////////////////////////////////////////////// 144 static proc min(int i,int j) 145 { 146 if(i>j){return(j);} 147 return(i); 148 } 149 144 150 145 151 /////////////////////////////////////////////////////////////////////////////// … … 171 177 int i,m,dummy; 172 178 int s = nrows(phi); 173 module L; 179 module L; // TOO BIG!!! 174 180 for (i=1; i<=s; i++) { 175 181 if (d>v[i]) { … … 218 224 /////////////////////////////////////////////////////////////////////////////// 219 225 226 proc truncateFast(module M, int d) 227 "USAGE: truncateFast(M,d); M module, d int 228 ASSUME: @code{M} is graded, and it comes assigned with an admissible degree 229 vector as an attribute 'isHomog' 230 RETURN: module 231 NOTE: Output is a presentation matrix for the truncation of coker(M) 232 at d. 233 Fast + experimental version. M shoud be a SB! 234 DISPLAY: If @code{printlevel}>=1, step-by step timings will be printed. 235 If @code{printlevel}>=2 we add progress debug messages 236 if @code{printlevel}>=3, even all intermediate results... 237 EXAMPLE: example truncateFast; shows an example 238 KEYWORDS: truncated module 239 " 240 { 241 // int PL = printlevel + 1; 242 int PL = printlevel - voice + 2; 243 244 dbprint(PL-1, "// truncateFast(M: "+ string(nrows(M)) + " x " + string(ncols(M)) +", " + string(d) + "):"); 245 dbprint(PL-2, M); 246 247 intvec save = option(get); 248 if( PL >= 2 ) 249 { 250 option(prot); 251 option(mem); 252 } 253 254 int tTruncateBegin=timer; 255 256 if (attrib(M,"isSB")!=1) 257 { 258 ERROR("M must be a standard basis!"); 259 }; 260 261 dbprint(PL-1, "// M is a SB! "); 262 263 if ( typeof(attrib(M,"isHomog"))=="string" ) { 264 if (size(M)==0) { 265 // assign weights 0 to generators of R^n (n=nrows(M)) 266 intvec v; 267 v[nrows(M)]=0; 268 attrib(M,"isHomog",v); 269 } 270 else { 271 ERROR("No admissible degree vector assigned"); 272 } 273 } 274 else { 275 intvec v=attrib(M,"isHomog"); 276 } 277 278 dbprint(PL-1, "// weighting(M): ["+ string(v) + "]"); 279 280 int i,m,dummy; 281 int s = nrows(M); 282 283 int tKBaseBegin = timer; 284 module L = kbase(M, d); // TODO: check whether this is always correct!?! 285 286 287 dbprint(PL-1, "// L = kbase(M,d): "+string(nrows(L)) + " x " + string(ncols(L)) +""); 288 dbprint(PL-2, L); 289 dbprint(PL-1, "// weighting(L): ["+ string(attrib(L, "isHomog")) + "]"); 290 291 int tModuloBegin = timer; 292 L = modulo(L,M); 293 294 dbprint(PL-1, "// L = modulo(L,M): "+string(nrows(L)) + " x " + string(ncols(L)) +""); 295 dbprint(PL-2, L); 296 dbprint(PL-1, "// weighting(L): ["+ string(attrib(L, "isHomog")) + "]"); 297 298 int tPruneBegin = timer; 299 L = prune(L); 300 301 dbprint(PL-1, "// L = prune(L): "+string(nrows(L)) + " x " + string(ncols(L)) +""); 302 dbprint(PL-2, L); 303 dbprint(PL-1, "// weighting(L): ["+ string(attrib(L, "isHomog")) + "]"); 304 305 int tPruneEnd = timer; 306 L = minbase(L); 307 int tMinBaseEnd = timer; 308 309 dbprint(PL-1, "// L = minbase(L): "+string(nrows(L)) + " x " + string(ncols(L)) +""); 310 dbprint(PL-2, L); 311 dbprint(PL-1, "// weighting(L): ["+ string(attrib(L, "isHomog")) + "]"); 312 313 314 315 316 if (size(L)!=0) 317 { 318 319 // it only remains to set the degrees for L: 320 // ------------------------------------------ 321 m = v[1]; 322 for(i=2; i<=size(v); i++) { if(v[i]<m) { m = v[i]; } } 323 dummy = homog(L); 324 intvec vv = attrib(L,"isHomog"); 325 if (d>m) { vv = vv+d; } 326 else { vv = vv+m; } 327 attrib(L,"isHomog",vv); 328 } 329 330 int tTruncateEnd=timer; 331 332 dbprint(PL-1, "// corrected weighting(L): ["+ string(attrib(L, "isHomog")) + "]"); 333 334 335 if(PL > 0) 336 { 337 " 338 -------------- TIMINGS -------------- 339 Trunc Time: ", tTruncateEnd - tTruncateBegin, " 340 :: Before .Time: ", tKBaseBegin - tTruncateBegin, " 341 :: kBase Time: ", tModuloBegin - tKBaseBegin, " 342 :: Modulo Time: ", tPruneBegin - tModuloBegin, " 343 :: Prune Time: ", tPruneEnd - tPruneBegin, " 344 :: Minbase Time: ", tMinBaseEnd - tPruneEnd, " 345 :: After .Time: ", tTruncateEnd - tMinBaseEnd; 346 } 347 348 option(set, save); 349 350 return(L); 351 } 352 example 353 {"EXAMPLE:"; 354 echo = 2; 355 ring R=0,(x,y,z,u,v),dp; 356 module M=maxideal(3); 357 homog(M); 358 // compute presentation matrix for truncated module (R/<x,y,z,u>^3)_(>=2) 359 int t=timer; 360 module M2t=truncate(M,2); 361 t = timer - t; 362 "// Simple truncate: ", t; 363 t=timer; 364 module M2=truncateFast(std(M),2); 365 t = timer - t; 366 "// Fast truncate: ", t; 367 print(M2); 368 "// Check: M2t == M2?: ", size(NF(M2, std(M2t))) + size(NF(M2t, std(M2))); 369 370 dimGradedPart(M2,1); 371 dimGradedPart(M2,2); 372 // this should coincide with: 373 dimGradedPart(M,2); 374 // shift grading by 1: 375 intvec v=1; 376 attrib(M,"isHomog",v); 377 t=timer; 378 M2t=truncate(M,2); 379 t = timer - t; 380 "// Simple truncate: ", t; 381 t=timer; 382 M2=truncateFast(std(M),2); 383 t = timer - t; 384 "// Fast truncate: ", t; 385 print(M2); 386 "// Check: M2t == M2?: ", size(NF(M2, std(M2t))) + size(NF(M2t, std(M2))); //? 387 dimGradedPart(M2,3); 388 } 389 390 /////////////////////////////////////////////////////////////////////////////// 391 392 393 394 395 220 396 proc dimGradedPart(module phi, int d) 221 397 "USAGE: dimGradedPart(M,d); M module, d int … … 304 480 } 305 481 } 306 def L = mres(M,0); 482 483 if( attrib(CM_regularity,"Algorithm") != "mres" ) 484 { 485 def L = minres( res(M,0) ); // let's try it out! 486 } else 487 { 488 def L = mres(M,0); 489 } 490 307 491 intmat BeL = betti(L); 308 492 int r = nrows(module(matrix(BeL))); // last non-zero row … … 445 629 } 446 630 631 632 /////////////////////////////////////////////////////////////////////////////// 633 static proc showResult( def R, int l, int h ) 634 { 635 int PL = printlevel - voice + 2; 636 // int PL = printlevel + 1; 637 638 intmat Betti; 639 if(typeof(R)=="resolution") 640 { 641 Betti = betti(R); 642 } else 643 { 644 if(typeof(R)!="intmat") 645 { 646 ERROR("Wrong input!!!"); 647 }; 648 649 Betti = R; 650 } 651 652 int n=nvars(basering)-1; 653 int ell = l + n; 654 655 int k = ncols(Betti); 656 int row = nrows(Betti); 657 int shift = attrib(Betti,"rowShift") + (k + ell - 1); 658 659 intmat newBetti[ n + 1 ][ h - l + 1 ]; 660 661 int i, j; 662 663 for (j=1; j<=row; j++) { 664 for (i=l; i<=h; i++) { 665 if( (n+2-shift-j)>0 ) { 666 667 if ( (k+1-j-i+ell-shift>0) and (j+i-ell+shift>=1)) { 668 newBetti[n+2-shift-j,i-l+1]=Betti[j,k+1-j-i+ell-shift]; 669 } 670 else { newBetti[n+2-shift-j,i-l+1]=-1; } 671 672 } 673 } 674 } 675 676 int iWTH = h-l+1; 677 for (j=2; j<=n+1; j++) { 678 for (i=1; i<min(j, iWTH); i++) { 679 newBetti[j,i]=-1; 680 } 681 } 682 int d = k - h + ell - 1; 683 for (j=1; j<=n; j++) { 684 for (i=iWTH; i>=k+j; i--) { 685 newBetti[j,i]=-1; 686 } 687 } 688 689 if( PL > 0 ) 690 { 691 "Cohomology table:"; 692 displayCohom(newBetti, l, h, n); 693 } 694 695 return(newBetti); 696 } 697 /////////////////////////////////////////////////////////////////////////////// 698 699 700 447 701 /////////////////////////////////////////////////////////////////////////////// 448 702 proc sheafCohBGG2(module M,int l,int h) … … 468 722 refers to a negative entry (= dimension not yet determined). 469 723 refers to a not computed dimension. @* 724 If @code{printlevel}>=1, step-by step timings will be printed. 725 If @code{printlevel}>=2 we add progress debug messages 726 if @code{printlevel}>=3, even all intermediate results... 470 727 NOTE: This procedure is based on the Bernstein-Gel'fand-Gel'fand 471 728 correspondence and on Tate resolution ( see [Eisenbud, Floystad, … … 480 737 " 481 738 { 739 int PL = printlevel - voice + 2; 740 // int PL = printlevel; 741 742 dbprint(PL-1, "// sheafCohBGG2(M: "+ string(nrows(M)) + " x " + string(ncols(M)) +", " + string(l) + ", " + string(h) + "):"); 743 dbprint(PL-2, M); 744 745 intvec save = option(get); 746 747 if( PL >= 2 ) 748 { 749 option(prot); 750 option(mem); 751 } 752 753 def isCoker = attrib(M, "isCoker"); 754 if( typeof(isCoker) == "int" ) 755 { 756 if( isCoker > 0 ) 757 { 758 dbprint(PL-1, "We are going to assume that M is given by coker matrix (that is, M is not a submodule presentation!)"); 759 } 760 } 761 762 482 763 int i,j,k,row,col; 764 483 765 if( typeof(attrib(M,"isHomog"))!="intvec" ) { 484 766 if (size(M)==0) { attrib(M,"isHomog",0); } 485 767 else { ERROR("No admissible degree vector assigned"); } 486 768 } 487 intvec ivOptionsSave = option(get); 769 770 dbprint(PL-1, "// weighting(M): ["+ string(attrib(M, "isHomog")) + "]"); 771 488 772 option(redSB); option(redTail); 489 773 490 int n=nvars(basering)-1;491 int ell=l+n;492 774 def R=basering; 493 int reg = CM_regularity(M); 494 int bound=max(reg+1,h-1); 495 module MT=truncate(M,bound); 775 776 int n = nvars(R) - 1; 777 int ell = l + n; 778 779 780 ///////////////////////////////////////////////////////////////////////////// 781 // computations 782 783 int tBegin=timer; 784 int reg = CM_regularity(M); 785 int tCMEnd = timer; 786 787 dbprint(PL-1, "// CM_reg(M): "+ string(reg)); 788 789 int bound = max(reg + 1, h - 1); 790 791 dbprint(PL-1, "// bound: "+ string(bound)); 792 793 /////////////////////////////////////////////////////////////// 794 int tSTDBegin=timer; 795 M = std(M); // for kbase! // NOTE: this should be after CM_regularity, since otherwise CM_regularity computes JUST TOOOOOOO LONG sometimes (see Reg_Hard examples!) 796 int tSTDEnd = timer; 797 798 dbprint(PL-1, "// M = std(M: "+string(nrows(M)) + " x " + string(ncols(M)) + ")"); 799 dbprint(PL-2, M); 800 dbprint(PL-1, "// weighting(M): ["+ string(attrib(M, "isHomog")) + "]"); 801 802 803 printlevel = printlevel + 1; 804 int tTruncateBegin=timer; 805 module MT = truncateFast(M, bound); 806 int tTruncateEnd=timer; 807 printlevel = printlevel - 1; 808 809 dbprint(PL-1, "// MT = truncateFast(M: "+string(nrows(MT)) + " x " + string(ncols(MT)) +", " + string(bound) + ")"); 810 dbprint(PL-2, MT); 811 dbprint(PL-1, "// weighting(MT): ["+ string(attrib(MT, "isHomog")) + "]"); 812 496 813 int m=nrows(MT); 497 MT = tJacobian(MT); // transpose(jacobM(MT)); 498 MT=syz(MT); 499 814 815 /////////////////////////////////////////////////////////////// 816 int tTransposeJacobBegin=timer; 817 MT = jacob(MT); // ! :( 818 int tTransposeJacobEnd=timer; 819 820 821 dbprint(PL-1, "// MT = jacob(MT: "+string(nrows(MT)) + " x " + string(ncols(MT)) + ")"); 822 dbprint(PL-2, MT); 823 dbprint(PL-1, "// weighting(MT): ["+ string(attrib(MT, "isHomog")) + "]"); 824 825 826 int tSyzBegin=timer; 827 MT = syz(MT); 828 int tSyzEnd=timer; 829 830 831 dbprint(PL-1, "// MT = syz(MT: "+string(nrows(MT)) + " x " + string(ncols(MT)) + ")"); 832 dbprint(PL-2, MT); 833 dbprint(PL-1, "// weighting(MT): ["+ string(attrib(MT, "isHomog")) + "]"); 834 835 836 int tMatrixOppBegin=timer; 500 837 module SS = TensorModuleMult(m, MT); 501 838 int tMatrixOppEnd=timer; 839 840 dbprint(PL-1, "// SS = TensorModuleMult("+ string(m)+ ", MT: "+string(nrows(MT)) + " x " + string(ncols(MT)) + ")"); 841 dbprint(PL-2, SS); 842 dbprint(PL-1, "// weighting(SS): ["+ string(attrib(SS, "isHomog")) + "]"); 843 844 502 845 //--- to the exterior algebra 503 846 def AR = Exterior(); setring AR; 504 847 848 dbprint(PL-1, "// Test: var(1) * var(1): "+ string(var(1) * var(1))); 849 850 int maxbound = max(1, bound - ell + 1); 851 // int maxbound = max(1, bound - l + 1); // As In M2!!! 852 853 dbprint(PL-1, "// maxbound: "+ string(maxbound)); 854 855 //--- here we are with our matrix 505 856 module EM=imap(R,SS); 506 857 intvec w; 507 //--- here we are with our matrix508 int bound1=max(1,bound-ell+1);509 858 for (i=1; i<=nrows(EM); i++) 510 859 { 511 860 w[i]=-bound-1; 512 861 } 862 513 863 attrib(EM,"isHomog",w); 514 resolution RE = minres(nres(EM,bound1)); 515 intmat Betti=betti(RE); 516 k=ncols(Betti); 517 row=nrows(Betti); 518 int shift=attrib(Betti,"rowShift")+(k+ell-1); 519 intmat newBetti[n+1][h-l+1]; 520 for (j=1; j<=row; j++) { 521 for (i=l; i<=h; i++) { 522 if ((k+1-j-i+ell-shift>0) and (j+i-ell+shift>=1)) { 523 newBetti[n+2-shift-j,i-l+1]=Betti[j,k+1-j-i+ell-shift]; 524 } 525 else { newBetti[n+2-shift-j,i-l+1]=-1; } 526 } 527 } 528 for (j=2; j<=n+1; j++) { 529 for (i=1; i<j; i++) { 530 newBetti[j,i]=-1; 531 } 532 } 533 int d=k-h+ell-1; 534 for (j=1; j<=n; j++) { 535 for (i=h-l+1; i>=k+j; i--) { 536 newBetti[j,i]=-1; 537 } 538 } 539 displayCohom(newBetti,l,h,n); 540 864 865 866 867 /////////////////////////////////////////////////////////////// 868 869 dbprint(PL-1, "// EM: "+string(nrows(EM)) + " x " + string(ncols(EM)) + ")"); 870 dbprint(PL-2, EM); 871 dbprint(PL-1, "// weighting(EM): ["+ string(attrib(EM, "isHomog")) + "]"); 872 873 874 int tResulutionBegin=timer; 875 resolution RE = nres(EM, maxbound); 876 int tMinResBegin=timer; 877 RE = minres(RE); 878 int tBettiBegin=timer; 879 intmat Betti = betti(RE); // betti(RE, 1);? 880 int tResulutionEnd=timer; 881 882 int tEnd = tResulutionEnd; 883 884 if( PL > 0 ) 885 { 886 " 887 ---- RESULTS ---- 888 Tate Resolution (Length: ", size(RE), "): 889 "; 890 RE; 891 "Betti numbers for Tate resolution (diagonal cohomology table):"; 892 print(Betti, "betti"); // Diagonal form! 893 }; 894 895 896 printlevel = printlevel + 1; 897 Betti = showResult(Betti, l, h ); // Show usual form of cohomology table 898 printlevel = printlevel - 1; 899 900 901 if(PL > 0) 902 { 903 " 904 ---- TIMINGS ------- 905 Trunc Time: ", tTruncateEnd - tTruncateBegin, " 906 Reg Time: ", tCMEnd - tBegin, " 907 kStd Time: ", tSTDEnd - tSTDBegin, " 908 Jacob Time: ", tTransposeJacobEnd - tTransposeJacobBegin, " 909 Syz Time: ", tSyzEnd - tSyzBegin, " 910 Mat Time: ", tMatrixOppEnd - tMatrixOppBegin, " 911 ------------------------------ 912 Res Time: ", tResulutionEnd - tResulutionBegin, " 913 :: NRes Time: ", tMinResBegin - tResulutionBegin, " 914 :: MinRes .Time: ", tBettiBegin - tMinResBegin, " 915 :: Betti .Time: ", tResulutionEnd - tBettiBegin, " 916 --------------------------------------------------------- 917 Total Time: ", tEnd - tBegin, " 918 --------------------------------------------------------- 919 "; 920 }; 921 541 922 setring R; 542 option(set, ivOptionsSave); 543 544 return(newBetti); 923 924 option(set, save); 925 926 return(Betti); 545 927 } 546 928 example 547 929 {"EXAMPLE:"; 548 930 echo = 2; 931 int pl = printlevel; 549 932 // cohomology of structure sheaf on P^4: 550 933 //------------------------------------------- 551 ring r=0,x(1..5),dp; 552 module M=0; 553 def A=sheafCohBGG2(0,-9,4); 934 ring r=32001,x(1..5),dp; 935 module M= getStructureSheaf(); 936 937 int t = timer; 938 def A=sheafCohBGG(0,-9,4); 939 timer - t; 940 941 printlevel = voice; A=sheafCohBGG2(0,-9,4); printlevel = pl; 942 554 943 // cohomology of cotangential bundle on P^3: 555 944 //------------------------------------------- 556 ring R=0,(x,y,z,u),dp; 557 resolution T1=mres(maxideal(1),0); 558 module M=T1[3]; 559 intvec v=2,2,2,2,2,2; 560 attrib(M,"isHomog",v); 561 def B=sheafCohBGG2(M,-8,4); 945 ring R=32001,(x,y,z,u),dp; 946 947 module M = getCotangentialBundle(); 948 949 int t = timer; 950 def B=sheafCohBGG(M,-8,4); 951 timer - t; 952 953 printlevel = voice; B=sheafCohBGG2(M,-8,4); printlevel = pl; 562 954 } 563 955 … … 790 1182 } 791 1183 /////////////////////////////////////////////////////////////////////////////// 1184 1185 proc getStructureSheaf(list #) 1186 { 1187 1188 if( size(#) == 0 ) 1189 { 1190 1191 module M = 0; 1192 intvec v = 0; 1193 attrib(M,"isHomog",v); 1194 homog(M); 1195 1196 attrib(M, "isCoker", 1); 1197 1198 attrib(M); 1199 return(M); 1200 }; 1201 1202 1203 1204 1205 1206 if( typeof(#[1]) == "ideal") 1207 { 1208 1209 1210 ideal I = #[1]; 1211 1212 if( size(#) == 2 ) 1213 { 1214 if( typeof(#[2]) == "int" ) 1215 { 1216 if( #[2] != 0 ) 1217 { 1218 qring @@@@QQ = std(I); 1219 1220 module M = getStructureSheaf(); 1221 1222 export M; 1223 1224 // keepring @@@@QQ; // This is a bad idea... :( 1225 return (@@@@QQ); 1226 } 1227 } 1228 } 1229 1230 /* 1231 // This seems to be wrong!!! 1232 module M = I * gen(1); 1233 homog(M); 1234 1235 M = modulo(gen(1), module(I * gen(1))); // basering^1 / I 1236 1237 homog(M); 1238 1239 attrib(M, "isCoker", 1); 1240 1241 attrib(M); 1242 return(M); 1243 */ 1244 } 1245 1246 ERROR("Wrong argument"); 1247 1248 } 1249 example 1250 {"EXAMPLE:"; 1251 echo = 2; int pl = printlevel; 1252 printlevel = voice; 1253 1254 1255 //////////////////////////////////////////////////////////////////////////////// 1256 ring r; 1257 module M = getStructureSheaf(); 1258 "Basering: "; 1259 basering; 1260 "Module: ", string(M), ", grading is given by weights: ", attrib(M, "isHomog"); 1261 1262 def A=sheafCohBGG2(M,-9,9); 1263 print(A); 1264 1265 //////////////////////////////////////////////////////////////////////////////// 1266 setring r; 1267 module M = getStructureSheaf(ideal(var(1)), 0); 1268 1269 "Basering: "; 1270 basering; 1271 "Module: ", string(M), ", grading is given by weights: ", attrib(M, "isHomog"); 1272 1273 def A=sheafCohBGG2(M,-9,9); 1274 print(A); 1275 1276 //////////////////////////////////////////////////////////////////////////////// 1277 setring r; 1278 def Q = getStructureSheaf(ideal(var(1)), 1); // returns a new ring! 1279 setring Q; // M was exported in the new ring! 1280 1281 "Basering: "; 1282 basering; 1283 "Module: ", string(M), ", grading is given by weights: ", attrib(M, "isHomog"); 1284 1285 def A=sheafCohBGG2(M,-9,9); 1286 print(A); 1287 1288 printlevel = pl; 1289 } 1290 1291 1292 proc getCotangentialBundle() 1293 { 1294 resolution T1=mres(maxideal(1),3); 1295 module M=T1[3]; 1296 attrib(M,"isHomog"); 1297 homog(M); 1298 attrib(M, "isCoker", 1); 1299 attrib(M); 1300 return (M); 1301 }; 1302 1303 proc getIdealSheafPullback(ideal I, ideal pi) 1304 { 1305 def save = basering; 1306 map P = save, pi; 1307 return( P(I) ); 1308 } 1309 1310 // TODO: set attributes! 1311 1312 1313 proc getIdealSheaf(ideal I) 1314 { 1315 resolution FI = mres(I,2); // Syz + grading... 1316 module M = FI[2]; 1317 attrib(M, "isCoker", 1); 1318 attrib(M); 1319 return(M); 1320 }; 1321 1322 1323 792 1324 793 1325
Note: See TracChangeset
for help on using the changeset viewer.