Changeset 8bb77b in git
- Timestamp:
- Dec 22, 2000, 3:57:44 PM (22 years ago)
- Branches:
- (u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
- Children:
- a23294c03b4cae79224ffe24e90efc7e57c01fbc
- Parents:
- 8942a5b3190ffdb5622125ddc7c005c0b1b725d2
- Location:
- Singular/LIB
- Files:
-
- 10 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/rinvar.lib
r8942a5 r8bb77b 1 /////////////////////////////////////////////////////////////////////////////// 2 version="Id: rinvar.lib,v 1.0 2000/12/10 17:32:15 Singular Exp $"; 1 // Last change 10.12.2000 (TB) 2 /////////////////////////////////////////////////////////////////////////////// 3 version="$Id: rinvar.lib,v 1.5 2000-12-22 14:43:04 greuel Exp $"; 3 4 category="Invariant theory"; 4 5 info=" 5 LIBRARY: rinvar.lib PROCEDURES FOR INVARIANT RINGS OF REDUCTIVE GROUPS 6 7 AUTHOR: Thomas Bayer, email: tbayer@in.tum.de 6 LIBRARY: rinvar.lib Invariant Rings of Reductive Groups 7 AUTHOR: Thomas Bayer, tbayer@in.tum.de 8 http://wwwmayr.informatik.tu-muenchen.de/personen/bayert/ 9 Current Adress: Institut fuer Informatik, TU Muenchen 10 OVERVIEW: 11 Implementation based on Derksen's algorithm. Written in the frame of the 12 diploma thesis (advisor: Prof. Gert-Martin Greuel) 'Computations of moduli 13 spaces of semiquasihomogenous singularities and an implementation in Singular' 8 14 9 15 PROCEDURES: 10 HilbertSeries(I, w) Hilbert series of the ideal I w.r.t. weight w 11 HilbertWeights(I, w) weighted degrees of the generators of I 12 ImageVariety(I, F) ideal of the image variety F(variety(I)) 13 ImageGroup(G, F) ideal of G w.r.t. the induced representation 14 InvariantRing(G, Gaction) generators of the invariant ring of G 15 InvariantQ(f, G, Gaction) decide if f is invariant w.r.t. G 16 LinearizeAction(G, Gaction) linearization of the action 'Gaction' of G 17 LinearActionQ(action,s,t) decide if action is linear in var(s..nvars) 18 LinearCombinationQ(base, f) decide if f is in the linear hull of 'base' 19 MinimalDecomposition(f,s,t) minimal decomposition of f (like coef) 20 NullCone(G, act) ideal of the nullcone of the action 'act' of G 21 ReynoldsImage(RO,f) image of f under the Reynolds operator 'RO' 22 ReynoldsOperator(G, Gaction) Reynolds operator of the group G 23 SimplifyIdeal(I[,m,s]) simplify the ideal I (try to reduce variables) 24 TransferIdeal(R,name,nA) transfer the ideal 'name' from R to basering 16 HilbertSeries(I, w); Hilbert series of the ideal I w.r.t. weight w 17 HilbertWeights(I, w); weighted degrees of the generators of I 18 ImageVariety(I, F); ideal of the image variety F(variety(I)) 19 ImageGroup(G, F); ideal of G w.r.t. the induced representation 20 InvariantRing(G, Gaction); generators of the invariant ring of G 21 InvariantQ(f, G, Gaction); decide if f is invariant w.r.t. G 22 LinearizeAction(G, Gaction); linearization of the action 'Gaction' of G 23 LinearActionQ(action,s,t); decide if action is linear in var(s..nvars) 24 LinearCombinationQ(base, f); decide if f is in the linear hull of 'base' 25 MinimalDecomposition(f,s,t); minimal decomposition of f (like coef) 26 NullCone(G, act); ideal of the nullcone of the action 'act' of G 27 ReynoldsImage(RO,f); image of f under the Reynolds operator 'RO' 28 ReynoldsOperator(G, Gaction); Reynolds operator of the group G 29 SimplifyIdeal(I[,m,s]); simplify the ideal I (try to reduce variables) 30 TransferIdeal(R,name,nA); transfer the ideal 'name' from R to basering 31 32 SEE ALSO: qhmoduli.lib, zeroset.lib 25 33 "; 26 27 // NOTE: This library has been written in the frame of the diploma thesis28 // 'Computing moduli spaces of semiquasihomogeneous singularites and an29 // implementation in Singular', Arbeitsgruppe Algebraische Geometrie,30 // Fachbereich Mathematik, University Kaiserslautern,31 // Advisor: Prof. Gert-Martin Greuel32 33 34 34 35 LIB "presolve.lib"; … … 40 41 proc EquationsOfEmbedding(ideal embedding, int nrs) 41 42 "USAGE: EquationsOfEmbedding(embedding, s); ideal embedding; int s; 42 PUR POSE: compute the ideal of the variety parameterized by 'embedding' by43 PUROPSE: compute the ideal of the variety parameterized by 'embedding' by 43 44 implicitation and change the variables to the old ones. 44 45 RETURN: ideal … … 70 71 proc ImageGroup(ideal Grp, ideal Gaction) 71 72 "USAGE: ImageGroup(G, action); ideal G, action; 72 PUR POSE: compute the ideal of the image of G in GL(m,K) induced by the linear73 PUROPSE: compute the ideal of the image of G in GL(m,K) induced by the linear 73 74 action 'action', where G is an algebraic group and 'action' defines 74 75 an action of G on K^m (size(action) = m). … … 84 85 variables s(1)...s(r). The action 'action' is given by polynomials 85 86 f_1,...,f_m in basering, s.t. on the ring level we have 86 K[t_1,...,t_m] --> K[s_1,...,s_r,t_1,...,t_m]/G 87 t_i --> f_i(s_1,...,s_r,t_1,...,t_m) 88 87 K[t_1,...,t_m] --> K[s_1,...,s_r,t_1,...,t_m]/G 88 t_i --> f_i(s_1,...,s_r,t_1,...,t_m) 89 89 EXAMPLE: example ImageGroup; shows an example 90 90 " … … 199 199 proc HilbertWeights(ideal I, wt) 200 200 "USAGE: HilbertWeights(I, w); ideal I, intvec wt 201 PUR POSE: compute the weights of the "slack" varaibles needed for the201 PUROPSE: compute the weights of the "slack" varaibles needed for the 202 202 computation of the algebraic relations of the generators of 'I' s.t. 203 203 the Hilbert driven 'std' can be used. … … 218 218 proc HilbertSeries(ideal I, wt) 219 219 "USAGE: HilbertSeries(I, w); ideal I, intvec wt 220 PUR POSE: compute the polynomial p of the Hilbert Series,represented by p/q, of220 PUROPSE: compute the polynomial p of the Hilbert Series,represented by p/q, of 221 221 the ring K[t_1,...,t_m,y_1,...,y_r]/I1 where 'w' are the weights of 222 222 the variables, computed, e.g., by 'HilbertWeights', 'I1' is of the … … 240 240 return(hs1); 241 241 } 242 /////////////////////////////////////////////////////////////////////////////// 242 243 243 244 proc HilbertSeries1(wt) 244 245 "USAGE: HilbertSeries1(wt); ideal I, intvec wt 245 PUR POSE: compute the polynomial p of the Hilbert Series represented by p/q of246 PUROPSE: compute the polynomial p of the Hilbert Series represented by p/q of 246 247 the ring K[t_1,...,t_m,y_1,...,y_r]/I where I is a complete inter- 247 248 section and the generator I[i] has degree wt[i] 248 249 RETURN: poly 249 EXAMPLE:250 250 " 251 251 { … … 273 273 proc ImageVariety(ideal I, F, list #) 274 274 "USAGE: ImageVariety(ideal I, F [, w]);ideal I; F is a list/ideal, intvec w. 275 PUR POSE: compute the Zariski closure of the image of the variety of I under275 PUROPSE: compute the Zariski closure of the image of the variety of I under 276 276 the morphism F. 277 277 NOTE: if 'I' and 'F' are quasihomogenous w.r.t. 'w' then the Hilbert-driven … … 359 359 proc LinearizeAction(ideal Grp, Gaction, int nrs) 360 360 "USAGE: LinearizeAction(G,action,r); ideal G, action; int r 361 PUR POSE: linearize the group action 'action' and find an equivariant362 embeddingof K^m where m = size(action).361 PUROPSE: linearize the group action 'action' and find an equivariant embedding 362 of K^m where m = size(action). 363 363 ASSUME: G contains only variables var(1..r) (r = nrs) 364 364 basering = K[s(1..r),t(1..m)], K = Q or K = Q(a) and minpoly != 0. 365 RETURN: polynomial ring contianing the ideals 'actionid', 'embedid','groupid'365 RETURN: polynomial ring contianing the ideals 'actionid', 'embedid', 'groupid' 366 366 - 'actionid' is the ideal defining the linearized action of G 367 - 'embedid' is a parameterization of an equivariant embedding 367 - 'embedid' is a parameterization of an equivariant embedding (closed) 368 368 - 'groupid' is the ideal of G in the new ring 369 369 NOTE: set printlevel > 0 to see a trace … … 504 504 proc LinearActionQ(Gaction, int nrs) 505 505 "USAGE: LinearActionQ(action,nrs,nrt); ideal action, int nrs 506 PUR POSE: check if the action defined by 'action' is linear wrt. the variables506 PUROPSE: check if the action defined by 'action' is linear w.r.t. the variables 507 507 var(nrs + 1...nvars(basering)). 508 508 RETURN: 0 action not linear … … 519 519 loop = 1; 520 520 i = 1; 521 while(loop){ 521 while(loop) 522 { 522 523 if(deg(Gaction[i], wt) > 1) { loop = 0; } 523 else { 524 else 525 { 524 526 i++; 525 527 if(i > ncols(Gaction)) { loop = 0;} … … 540 542 proc LinearCombinationQ(ideal I, poly f) 541 543 "USAGE: LinearCombination(I, f); ideal I, poly f 542 PUR POSE: test if f can be written as a linear combination of the gens. of I543 RETURN: 0 'f'is not a linear combination544 1 'f'is a linear combination544 PUROPSE: test if f can be written as a linear combination of the generators of I. 545 RETURN: 0 f is not a linear combination 546 1 f is a linear combination 545 547 " 546 548 { … … 558 560 loop = 1; 559 561 i = 1; 560 while(loop) { // look for a linear relation containing Y(nr) 561 if(deg(imageid[i]) == 1) { 562 while(loop) 563 { // look for a linear relation containing Y(nr) 564 if(deg(imageid[i]) == 1) 565 { 562 566 coMx = coef(imageid[i], var(sizeJ)); 563 if(coMx[1,1] == var(sizeJ)) { 567 if(coMx[1,1] == var(sizeJ)) 568 { 564 569 relation = imageid[i]; 565 570 loop = 0; 566 571 } 567 572 } 568 else { 573 else 574 { 569 575 i++; 570 576 if(i > ncols(imageid)) { loop = 0;} … … 578 584 proc InvariantRing(ideal G, ideal action, list #) 579 585 "USAGE: InvariantRing(G, Gact [, opt]); ideal G, Gact; int opt 580 PUR POSE: compute generators of the invariant ring of G wrt. the action 'Gact'586 PUROPSE: compute generators of the invariant ring of G w.r.t. the action 'Gact' 581 587 ASSUME: G is a finite group and 'Gact' is a linear action. 582 588 RETURN: polynomial ring over a simple extension of the groundfield of the … … 585 591 - 'invars' contains the algebra-generators of the invariant ring 586 592 - 'groupid' is the ideal of G in the new ring 587 - 'newA' if the minpoly changes this is the new representation of 588 thealgebraic number, otherwise it is set to 'a'.593 - 'newA' if the minpoly changes this is the new representation of the 594 algebraic number, otherwise it is set to 'a'. 589 595 NOTE: the delivered ring might have a different minimal polynomial 590 596 EXAMPLE: example InvariantRing; shows an example … … 636 642 export(RORN); 637 643 ideal groupid = std(id); 638 kill(id);639 644 attrib(groupid, "isSB", 1); 640 645 ideal action = actionid; … … 701 706 proc InvariantQ(poly f, ideal G, action) 702 707 "USAGE: InvariantQ(f, G, action); poly f; ideal G, action 703 PUR POSE: check if the polynomial f is invariant w.r.t. G where G acts via708 PUROPSE: check if the polynomial f is invariant w.r.t. G where G acts via 704 709 'action' on K^m. 705 710 ASSUME: basering = K[s_1,...,s_m,t_1,...,t_m] where K = Q of K = Q(a) and … … 726 731 proc MinimalDecomposition(poly f, int nrs, int nrt) 727 732 "USAGE: MinimalDecomposition(f,a,b); poly f; int a, b. 728 PUR POSE: decompose f as a sum M[1,1]*M[2,1] + ... + M[1,r]*M[2,r] where M[1,i]729 contains only s(1..a), M[2,i] contains only t(1...b) s t. r is minimal730 ASSUME: f polynomial in K[s(1..a),t(1..b)], K = Q or K = Q(a) and minpoly != 0733 PUROPSE: decompose f as a sum M[1,1]*M[2,1] + ... + M[1,r]*M[2,r] where M[1,i] 734 contains only s(1..a), M[2,i] contains only t(1...b) s.t. r is minimal 735 ASSUME: f polynomial in K[s(1..a),t(1..b)], K = Q or K = Q(a) and minpoly != 0 731 736 RETURN: 2 x r matrix M s.t. f = M[1,1]*M[2,1] + ... + M[1,r]*M[2,r] 732 737 EXAMPLE: example MinimalDecomposition; … … 822 827 proc NullCone(ideal G, action) 823 828 "USAGE: NullCone(G, action); ideal G, action 824 PUR POSE: compute the ideal of the nullcone of the linear action of G on K^n,829 PUROPSE: compute the ideal of the nullcone of the linear action of G on K^n, 825 830 given by 'action', by means of Deksen's algorithm 826 831 ASSUME: basering = K[s(1..r),t(1..n)], K = Q or K = Q(a) and minpoly != 0, … … 828 833 'action' is a linear group action of G on K^n (n = ncols(action)) 829 834 RETURN: ideal of the nullcone of G. 830 NOTE: the generators of the nullcone are homogenous, but i g. not invariant835 NOTE: the generators of the nullcone are homogenous, but i.g. not invariant 831 836 EXAMPLE: example NullCone; shows an example 832 837 " … … 897 902 proc ReynoldsOperator(ideal Grp, ideal Gaction, list #) 898 903 "USAGE: ReynoldsOperator(G, action [, opt); ideal G, action; int opt 899 PUR POSE: compute the Reynolds operator of the group G which act via 'action'904 PUROPSE: compute the Reynolds operator of the group G which act via 'action' 900 905 RETURN: polynomial ring R over a simple extension of the groundfield of the 901 906 basering (the extension might be trivial), containing a list … … 908 913 basering does not contain a parameter then 'newA' = 'a'. 909 914 ASSUME: basering = K[s(1..r),t(1..n)], K = Q or K = Q(a') and minpoly != 0, 910 G is the ideal of a finite group in K[s(1..r)], 'action' is a linear915 G is the ideal of a finite group in K[s(1..r)], 'action' is a linear 911 916 group action of G 912 917 EXAMPLE: example ReynoldsOperator; shows an example … … 956 961 proc ReynoldsImage(list reynoldsOp, poly f) 957 962 "USAGE: ReynoldsImage(RO, f); list RO, poly f 958 PUR POSE: compute the Reynolds image of the polynomial f where RO represents963 PUROPSE: compute the Reynolds image of the polynomial f where RO represents 959 964 the Reynolds operator 960 965 RETURN: poly … … 975 980 static proc SimplifyCoefficientMatrix(matrix coefMatrix) 976 981 "USAGE: SimplifyCoefficientMatrix(M); M matrix coming from coef(...) 977 PUR POSE: simplify the matrix, i.e. find linear dependencies among the columns982 PUROPSE: simplify the matrix, i.e. find linear dependencies among the columns 978 983 RETURN: matrix M, f = M[1,1]*M[2,1] + ... + M[1,n]*M[2,n] 979 984 " … … 1010 1015 1011 1016 proc SimplifyIdeal(ideal I, list #) 1012 "USAGE: SimplifyIdeal(I [,m, name]); ideal I; int m, string name 1017 "USAGE: SimplifyIdeal(I [,m, name]); ideal I; int m, string name" 1013 1018 PURPOSE: simplify ideal I to the ideal I', do not change the names of the 1014 1019 first m variables, new ideal I' might contain less variables. … … 1016 1021 RETURN: list 1017 1022 _[1] ideal I' 1018 _[2] ideal representing a map phi to a ring with probably less 1019 varsiables s.t.phi(I) = I'1023 _[2] ideal representing a map phi to a ring with probably less vars. s.t. 1024 phi(I) = I' 1020 1025 _[3] list of variables 1021 1026 _[4] list from 'elimpart' 1022 NOTE:1023 1027 " 1024 1028 { … … 1032 1036 mapId = sList[5]; 1033 1037 1034 if(size(#) > 0) { 1038 if(size(#) > 0) 1039 { 1035 1040 m = #[1]; 1036 1041 nameCMD = #[2]; … … 1038 1043 else { m = 0;} // nvars(basering); 1039 1044 k = 0; 1040 for(i = 1; i <= nvars(basering); i++) { 1041 if(sList[4][i] != 0) { 1045 for(i = 1; i <= nvars(basering); i++) 1046 { 1047 if(sList[4][i] != 0) 1048 { 1042 1049 k++; 1043 1050 if(k <= m) { mId[i] = sList[4][i]; } … … 1054 1061 } 1055 1062 1056 /////////////////////////////////////////////////////////////////////////////// /1063 /////////////////////////////////////////////////////////////////////////////// 1057 1064 1058 1065 static proc TransferIdeal(R, string name, poly newA) 1059 1066 " USAGE: TransferIdeal(R, name, newA); ring R, string name, poly newA 1060 PUR POSE: Maps an ideal with name 'name' in R to the basering, s.t. all1067 PUROPSE: Maps an ideal with name 'name' in R to the basering, s.t. all 1061 1068 variables are fixed but par(1) is replaced by 'newA'. 1062 1069 RETURN: ideal 1063 NOTE: this is used to transfor idealsif the minimal polynomial has changed1070 NOTE: this is used to transfor an ideal if the minimal polynomial has changed 1064 1071 " 1065 1072 { … … 1081 1088 { 1082 1089 poly f = 1; 1083 1084 for(int i = 1; i <= size(index); i++){1090 for(int i = 1; i <= size(index); i++) 1091 { 1085 1092 f = f * var(index[i]); 1086 1093 } -
Singular/LIB/sing.lib
r8942a5 r8bb77b 1 // $Id: sing.lib,v 1.2 1 2000-12-19 15:05:34 anneExp $1 // $Id: sing.lib,v 1.22 2000-12-22 14:45:41 greuel Exp $ 2 2 //(GMG/BM, last modified 26.06.96) 3 3 /////////////////////////////////////////////////////////////////////////////// 4 5 version="$Id: sing.lib,v 1.21 2000-12-19 15:05:34 anne Exp $"; 4 version="$Id: sing.lib,v 1.22 2000-12-22 14:45:41 greuel Exp $"; 6 5 category="Singularities"; 7 6 info=" 8 LIBRARY: sing.lib PROCEDURES FOR SINGULARITIES7 LIBRARY: sing.lib Invariants of Singularities 9 8 AUTHORS: Gert-Martin Greuel, email: greuel@mathematik.uni-kl.de 10 9 Bernd Martin, email: martin@math.tu-cottbus.de -
Singular/LIB/solve.lib
r8942a5 r8bb77b 1 1 /////////////////////////////////////////////////////////////////////////////// 2 3 version="$Id: solve.lib,v 1.17 2000-12-19 15:05:35 anne Exp $"; 2 version="$Id: solve.lib,v 1.18 2000-12-22 14:48:14 greuel Exp $"; 4 3 category="Symbolic-numerical solving"; 5 4 info=" 6 LIBRARY: solve.lib PROCEDURES TO SOLVE POLYNOMIAL SYSTEMS5 LIBRARY: solve.lib Complex Solving of Polynomial Systems 7 6 AUTHOR: Moritz Wenk, email: wenk@mathematik.uni-kl.de 8 7 9 8 PROCEDURES: 10 ures_solve(i,..); find all roots of 0-dimensional ideal i with resultants 11 mp_res_mat(i,..); multipolynomial resultant matrix of ideal i 12 laguerre_solve(p,..); find all roots of univariate polynom p 13 interpolate(i,j,d); interpolate poly from evaluation points i and results j 14 9 ures_solve(i,..); find all roots of 0-dimensional ideal i with resultants 10 mp_res_mat(i,..); multipolynomial resultant matrix of ideal i 11 laguerre_solve(p,..); find all roots of univariate polynom p 12 interpolate(i,j,d); interpolate poly from evaluation points i and results j 15 13 fglm_solve(i,p,...); find roots of 0-dim. ideal using FGLM and lex_solve 16 14 triangL_solve(l,p,...); find roots using triangular system (Lazard) 17 15 triangLf_solve(l,p,..); find roots using triangular sys. (factorizing Lazard) 18 16 triangM_solve(l,p,...); find roots of given triangular system (Moeller) 19 20 lex_solve(i,p,...); find roots of reduced lexicographic standard basis 21 triang_solve(l,p,...); find roots of given triangular system 22 23 pcheck(i,l,...); checks if elements (numbers) of l are roots of ideal i 17 lex_solve(i,p,...); find roots of reduced lexicographic standard basis 18 triang_solve(l,p,...); find roots of given triangular system 19 pcheck(i,l,...); checks if elements (numbers) of l are roots of ideal i 24 20 "; 25 21 26 LIB "triang.lib"; // needed for triang*_solve22 LIB "triang.lib"; // needed for triang*_solve 27 23 28 24 /////////////////////////////////////////////////////////////////////////////// -
Singular/LIB/spcurve.lib
r8942a5 r8bb77b 1 // $Id: spcurve.lib,v 1.12 2000-12-19 15:05:36 anne Exp $2 1 // (anne, last modified 31.5.99) 3 2 ///////////////////////////////////////////////////////////////////////////// 4 5 version="$Id: spcurve.lib,v 1.12 2000-12-19 15:05:36 anne Exp $"; 3 version="$Id: spcurve.lib,v 1.13 2000-12-22 14:49:25 greuel Exp $"; 6 4 category="Singularities"; 7 5 info=" 8 LIBRARY: spcurve.lib PROCEDURES FOR CM CODIMENSION 2 SINGULARITIES6 LIBRARY: spcurve.lib Deformations and Invariants of CM-codim 2 Singularities 9 7 AUTHOR: Anne Fruehbis-Krueger, anne@mathematik.uni-kl.de 10 8 last modified: 31.5.99 -
Singular/LIB/spectrum.lib
r8942a5 r8bb77b 1 // $Id: spectrum.lib,v 1.8 2000-12-19 15:05:37 anne Exp $2 1 /////////////////////////////////////////////////////////////////////////////// 3 4 version="$Id: spectrum.lib,v 1.8 2000-12-19 15:05:37 anne Exp $"; 2 version="$Id: spectrum.lib,v 1.9 2000-12-22 14:51:06 greuel Exp $"; 5 3 category="Singularities"; 6 4 info=" 7 LIBRARY: spectrum.lib PROCEDURES FOR COMPUTING SINGULARITY SPECTRA 5 LIBRARY: spectrum.lib Singularity Spectrum for Nondegenerate Singularities 6 AUTHOR: S. Endrass 8 7 9 8 PROCEDURES: 10 spectrum(poly[,1]); spectrum of a isolated singularity (with/without tests) 11 semic(s1,s2[,1]); tests if s2 is semicontinous for s1 using 12 half open intervalls 13 (and open intervalls for a 3rd paramater 1) 14 semicqh(s1,s2[,1]); tests if s2 is semicontinous for s1 using 15 open and half open intervalls 9 spectrum(poly[,1]); spectrum of a nondegenerate isolated singularity 10 semic(s1,s2[,1]); tests if s2 is semicontinous for s1 (open intervall) 11 semicqh(s1,s2[,1]); semicontinuity test with open and half open intervalls 16 12 spadd(s1,s2); sum of two spectra s1 and s2 17 13 spmul(s,k); multiplies the spectrum s with the int k … … 23 19 proc spectrum (poly f, list #) 24 20 "USAGE: spectrum(f[,1]); f polynomial 21 ASSUME: f has nondegenerate principal part 25 22 computes the spectrum of f 26 23 if a second argument 1 is given, -
Singular/LIB/standard.lib
r8942a5 r8bb77b 1 // $Id: standard.lib,v 1.51 2000-12-19 18:31:47 obachman Exp $2 1 ////////////////////////////////////////////////////////////////////////////// 3 4 version="$Id: standard.lib,v 1.51 2000-12-19 18:31:47 obachman Exp $"; 2 version="$Id: standard.lib,v 1.52 2000-12-22 14:52:32 greuel Exp $"; 5 3 category="Miscellaneous"; 6 4 info=" 7 LIBRARY: standard.lib P ROCEDURES WHICH ARE ALWAYS LOADED AT START-UP5 LIBRARY: standard.lib Procedures which are always loaded at Start-up 8 6 9 7 PROCEDURES: … … 13 11 quot(any,any[,n]) quotient using heuristically chosen method 14 12 res(ideal/module,[i]) free resolution of ideal or module 15 sprintf(fmt,...) returns fomatted string16 fprintf(link,fmt,..) writes formatted string to link17 printf(fmt,...) displays formatted string13 sprintf(fmt,...) returns fomatted string 14 fprintf(link,fmt,..) writes formatted string to link 15 printf(fmt,...) displays formatted string 18 16 "; 19 17 -
Singular/LIB/stratify.lib
r8942a5 r8bb77b 1 // $Id: stratify.lib,v 1.4 2000-12-20 16:49:37 Singular Exp $2 1 // (anne, last modified 23.5.00) 3 2 ///////////////////////////////////////////////////////////////////////////// 4 // LIBRARY HEADER 5 ///////////////////////////////////////////////////////////////////////////// 6 7 version="$Id: stratify.lib,v 1.4 2000-12-20 16:49:37 Singular Exp $"; 3 version="$Id: stratify.lib,v 1.5 2000-12-22 14:53:34 greuel Exp $"; 8 4 category="Invariant theory"; 9 5 info=" 10 LIBRARY: stratify.lib ALGORITHMIC STRATIFICATION BY THE11 Greuel-Pfister ALGORITHM 12 AUTHOR: Anne Fruehbis-Krueger, anne@mathematik.uni-kl.de 13 14 P ROCEDURES:15 prepMat(M,wr,ws,step); list of submatrices corresp. to thegiven filtration6 LIBRARY: stratify.lib Algorithmic Stratification for Unipotent Group-Actions 7 AUTHOR: Anne Fruehbis-Krueger, anne@mathematik.uni-kl.de 8 last modified: 12.12.2000 9 10 Procedures: 11 prepMat(M,wr,ws,step); list of submatrices corresp. to given filtration 16 12 stratify(M,wr,ws,step); algorithmic stratifcation (main procedure) 17 13 "; -
Singular/LIB/surf.lib
r8942a5 r8bb77b 1 // $Id: surf.lib,v 1.14 2000-12-20 11:15:50 obachman Exp $2 //3 // author : Hans Schoenemann4 //5 1 /////////////////////////////////////////////////////////////////////////////// 6 version="$Id: surf.lib,v 1.1 4 2000-12-20 11:15:50 obachmanExp $";2 version="$Id: surf.lib,v 1.15 2000-12-22 14:54:43 greuel Exp $"; 7 3 category="Visualization"; 8 4 info=" 9 LIBRARY: surf.lib P ROCEDURES FOR GRAPHICS WITH SURF10 11 AUTHOR:surf is written by Stefan Endrass5 LIBRARY: surf.lib Procedures for Graphics with Surf 6 AUTHOR: Hans Schoenemann, 7 the program surf is written by Stefan Endrass 12 8 13 9 NOTE: 14 @texinfo15 To use this library requires the program @code{surf} to be installed.16 @code{surf} is only available for Linux PCs and Sun workstations.17 You can download @code{surf} either from18 @uref{http://sourceforge.net/projects/surf}19 or from @uref{ftp://www.mathematik.uni-kl.de/pub/Math/Singular/utils/}.20 @end texinfo10 @texinfo 11 To use this library requires the program @code{surf} to be installed. 12 @code{surf} is only available for Linux PCs and Sun workstations. 13 You can download @code{surf} either from 14 @uref{http://sourceforge.net/projects/surf} 15 or from @uref{ftp://www.mathematik.uni-kl.de/pub/Math/Singular/utils/}. 16 @end texinfo 21 17 22 18 PROCEDURES: … … 46 42 RETURN: nothing 47 43 NOTE: requires the external program 'surf' to be installed 48 @*If the (string) variable extra_surf_opts is defined, the the value of49 this50 44 EXAMPLE: example plot; shows an example 51 45 " -
Singular/LIB/template.lib
r8942a5 r8bb77b 1 1 //////////////////////////////////////////////////////////////////// 2 2 // version string automatically expanded by CVS 3 version="$Id: template.lib,v 1.8 2000-12-19 18:31:48 obachman Exp $"; 3 4 version="$Id: template.lib,v 1.9 2000-12-22 14:55:56 greuel Exp $"; 5 category="Miscellaneous"; 4 6 // summary description of the library 5 category="Miscellaneous";6 7 info=" 7 LIBRARY: template.lib A TEMPLATE FOR A SINGULAR LIBRARY 8 8 LIBRARY: template.lib A Template for a Singular Library 9 9 AUTHOR: Olaf Bachmann, email: obachman@mathematik.uni-kl.de 10 10 … … 21 21 //////////////////////////////////////////////////////////////////// 22 22 proc mdouble(int i) 23 "USAGE: mdouble(i); i int24 RETURN: int: i+i25 NOTE: Help string is in pure ASCII26 this line starts on a new line since previous line is short27 mdouble(i): no new line23 "USAGE: mdouble(i); i int 24 RETURN: int: i+i 25 NOTE: Help string is in pure ASCII 26 this line starts on a new line since previous line is short 27 mdouble(i): no new line 28 28 SEE ALSO: msum, mtripple, Typesetting of help strings 29 29 KEYWORDS: procedure, ASCII help 30 EXAMPLE: example mdouble; shows an example"30 EXAMPLE: example mdouble; shows an example" 31 31 { 32 32 return (i + i); -
Singular/LIB/toric.lib
r8942a5 r8bb77b 1 // version="$Id: toric.lib,v 1.8 2000-12-19 14:41:45 anne Exp $";2 3 1 /////////////////////////////////////////////////////////////////////////////// 2 version="$Id: toric.lib,v 1.9 2000-12-22 14:57:44 greuel Exp $"; 4 3 category="Commutative Algebra"; 5 4 info=" 6 LIBRARY: toric.lib COMPUTING TORIC IDEALS 7 5 LIBRARY: toric.lib Standard Basis of Toric Ideals 8 6 AUTHOR: Christine Theis, email: ctheis@math.uni-sb.de 9 7 10 8 PROCEDURES: 11 12 toric_ideal(intmat A, string alg [,intvec prsv]); computes the toric ideal of A 13 14 toric_std(ideal I); computes the standard basis of I using a specialized Buchberger algorithm 9 toric_ideal(A,..); computes the toric ideal of A 10 toric_std(ideal I); standard basis of I by a specialized Buchberger algorithm 15 11 "; 16 12 17 13 /////////////////////////////////////////////////////////////////////////////// 18 19 20 14 21 15 static proc toric_ideal_1(intmat A, string alg) … … 351 345 return(I); 352 346 } 353 354 347 /////////////////////////////////////////////////////////////////////////////// 355 348 356 349 static proc toric_ideal_2(intmat A, string alg, intvec prsv) … … 668 661 return(I); 669 662 } 670 671 663 /////////////////////////////////////////////////////////////////////////////// 672 664 673 665 proc toric_ideal 674 "USAGE: 675 676 RETURN: 677 NOTE: These procedures return the standard basis of the toric ideal of A with respect to the term ordering in the actual basering. Not all term orderings are supported: The usual global term orderings may be used, but no block orderings combining them.678 679 One may call the procedure with several different algorithms: 680 681 - the algorithm of Conti/Traverso using elimination (ect), 682 683 - the algorithm of Pottier (pt),684 685 - an algorithm of Bigatti/La Scala/Robbiano (blr),686 687 - the algorithm of Hosten/Sturmfels (hs), 688 689 - the algorithm of DiBiase/Urbanke (du). 690 691 The argument `alg' should be the abbreviation for an algorithm as above: ect, pt, blr, hs or du. 692 693 If `alg' is chosen to be `blr' or `hs', the algorithm needs a vector with positive coefficcients in the row space of A. If no row of A contains only positive entries, one has to use the second version of toric_ideal which takes such a vector as its third argument. 694 695 For the mathematical background, see696 @texinfo697 @ref{Toric ideals and integer programming}.698 @end texinfo666 "USAGE: toric_ideal(A,alg); A intmat, alg string 667 toric_ideal(A,alg,prsv); A intmat, alg string, prsv intvec 668 RETURN: ideal: standard basis of the toric ideal of A 669 NOTE: These procedures return the standard basis of the toric ideal of A 670 with respect to the term ordering in the actual basering. Not all 671 term orderings are supported: The usual global term orderings may be 672 used, but no block orderings combining them. 673 One may call the procedure with several different algorithms: 674 - the algorithm of Conti/Traverso using elimination (ect), 675 - the algorithm of Pottier (pt), 676 - an algorithm of Bigatti/La Scala/Robbiano (blr), 677 - the algorithm of Hosten/Sturmfels (hs), 678 - the algorithm of DiBiase/Urbanke (du). 679 The argument `alg' should be the abbreviation for an algorithm as 680 above: ect, pt, blr, hs or du. 681 682 If `alg' is chosen to be `blr' or `hs', the algorithm needs a vector 683 with positive coefficcients in the row space of A. 684 If no row of A contains only positive entries, one has to use the 685 second version of toric_ideal which takes such a vector as its third 686 argument. 687 For the mathematical background, see 688 @texinfo 689 @ref{Toric ideals and integer programming}. 690 @end texinfo 699 691 EXAMPLE: example toric_ideal; shows an example 700 692 SEE ALSO: toric_std, toric_lib, intprog_lib, Toric ideals … … 735 727 736 728 } 737 738 729 /////////////////////////////////////////////////////////////////////////////// 739 730 740 731 proc toric_std(ideal I) 741 732 "USAGE: toric_std(I); I ideal 742 733 RETURN: ideal: standard basis of I 743 NOTE: This procedure computes the standard basis of I using a specialized Buchberger algorithm. The generating system by which I is given has to consist of binomials of the form x^u-x^v. There is no real check if I is toric. If I is generated by binomials of the above form, but not toric, toric_std computes an ideal `between' I and its saturation with respect to all variables. 744 For the mathematical background, see 745 @texinfo 746 @ref{Toric ideals and integer programming}. 747 @end texinfo 734 NOTE: This procedure computes the standard basis of I using a specialized 735 Buchberger algorithm. The generating system by which I is given has 736 to consist of binomials of the form x^u-x^v. There is no real check 737 if I is toric. If I is generated by binomials of the above form, 738 but not toric, toric_std computes an ideal `between' I and its 739 saturation with respect to all variables. 740 For the mathematical background, see 741 @texinfo 742 @ref{Toric ideals and integer programming}. 743 @end texinfo 748 744 EXAMPLE: example toric_std; shows an example 749 745 SEE ALSO: toric_ideal, toric_lib, intprog_lib, Toric ideals … … 1077 1073 return(J); 1078 1074 } 1079 1080 1081 1075 1082 1076 example … … 1110 1104 sat(H,xyz); 1111 1105 } 1106 ///////////////////////////////////////////////////////////////////////////////
Note: See TracChangeset
for help on using the changeset viewer.