Changeset 8dee80 in git
- Timestamp:
- Jun 7, 2006, 10:21:40 PM (17 years ago)
- Branches:
- (u'spielwiese', '828514cf6e480e4bafc26df99217bf2a1ed1ef45')
- Children:
- 4b70490a6e3256b1c055ca790e7c971610b648e3
- Parents:
- 32ed4fc37e1059f0d3c41fabbf67bc1a35b74faa
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/dmod.lib
r32ed4f r8dee80 1 1 /////////////////////////////////////////////////////////////////////////////// 2 version="$Id: dmod.lib,v 1. 3 2006-05-08 14:43:21levandov Exp $";2 version="$Id: dmod.lib,v 1.4 2006-06-07 20:21:40 levandov Exp $"; 3 3 category="Noncommutative"; 4 4 info=" 5 5 LIBRARY: dmod.lib Algorithms for algebraic D-modules 6 AUTHORS: Viktor Levandovskyy, levandov@ mathematik.uni-kl.de7 @* Jorge Martin Morales,jorge@unizar.es6 AUTHORS: Viktor Levandovskyy, levandov@risc.uni-linz.ac.at 7 @* Jorge Martin Morales, jorge@unizar.es 8 8 9 9 THEORY: Given a polynomial ring R = K[x_1,...,x_n] and a polynomial F in R, one is interested in the ring R[1/F^s] for a natural number s. … … 13 13 @* We provide two implementations: 14 14 @* 1) the classical Ann F^s algorithm from Oaku and Takayama (J. Pure Applied Math., 1999) and 15 @* 2) the newer Ann F^s algorithm by Briancon and Maisonobe .15 @* 2) the newer Ann F^s algorithm by Briancon and Maisonobe (Remarques sur l ideal de Bernstein associe a des polynomes, preprint, 2002). 16 16 17 17 PROCEDURES: … … 36 36 proc engine(ideal I, int i) 37 37 { 38 /* std /slimgb mix */38 /* std - slimgb mix */ 39 39 ideal J; 40 40 if (i==0) … … 44 44 else 45 45 { 46 // without options -> buggy!!! (ringlist?)46 // without options -> strange! (ringlist?) 47 47 option(redSB); 48 48 option(redTail); … … 1101 1101 PURPOSE: check the modules for the property of holonomy 1102 1102 NOTE: M is holonomic, if 2*dim(M) = dim(R), where R is a 1103 ground ring 1103 ground ring; dim stays for Gelfand-Kirillov dimension 1104 1104 EXAMPLE: example isHolonomic; shows examples 1105 1105 " … … 1128 1128 isHolonomic(LD); 1129 1129 ideal I = std(LD[1]); 1130 I; 1130 1131 isHolonomic(I); 1131 1132 } … … 1149 1150 return(0); 1150 1151 } 1151 ring @r = 0,(x,y),d s;1152 ring @r = 0,(x,y),dp; 1152 1153 poly RC = y^q +x^p + x*y^(q-1); 1153 1154 export RC; … … 1329 1330 LIB "gkdim.lib"; 1330 1331 gkdim(LD); // a holonomic check 1331 // poly F = x^3-y^2; // = x^7 - y^5; // x^3-y^4; // x^5 - y^4;1332 1332 } 1333 1333
Note: See TracChangeset
for help on using the changeset viewer.