Changeset 8dee80 in git


Ignore:
Timestamp:
Jun 7, 2006, 10:21:40 PM (18 years ago)
Author:
Viktor Levandovskyy <levandov@…>
Branches:
(u'fieker-DuVal', '117eb8c30fc9e991c4decca4832b1d19036c4c65')(u'spielwiese', '3720ae8bfcff4a4649ee98a15552089151d2d59b')
Children:
4b70490a6e3256b1c055ca790e7c971610b648e3
Parents:
32ed4fc37e1059f0d3c41fabbf67bc1a35b74faa
Message:
*levandov: enhancements in the documentation


git-svn-id: file:///usr/local/Singular/svn/trunk@9185 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/dmod.lib

    r32ed4f r8dee80  
    11///////////////////////////////////////////////////////////////////////////////
    2 version="$Id: dmod.lib,v 1.3 2006-05-08 14:43:21 levandov Exp $";
     2version="$Id: dmod.lib,v 1.4 2006-06-07 20:21:40 levandov Exp $";
    33category="Noncommutative";
    44info="
    55LIBRARY: dmod.lib     Algorithms for algebraic D-modules
    6 AUTHORS: Viktor Levandovskyy,     levandov@mathematik.uni-kl.de
    7 @*         Jorge Martin Morales,      jorge@unizar.es
     6AUTHORS: Viktor Levandovskyy,     levandov@risc.uni-linz.ac.at
     7@*       Jorge Martin Morales,    jorge@unizar.es
    88
    99THEORY: Given a polynomial ring R = K[x_1,...,x_n] and a polynomial F in R, one is interested in the ring R[1/F^s] for a natural number s.
     
    1313@* We provide two implementations:
    1414@* 1) the classical Ann F^s algorithm from Oaku and Takayama (J. Pure Applied Math., 1999) and
    15 @* 2) the newer Ann F^s algorithm by Briancon and Maisonobe.
     15@* 2) the newer Ann F^s algorithm by Briancon and Maisonobe (Remarques sur l ideal de Bernstein associe a des polynomes, preprint, 2002).
    1616
    1717PROCEDURES:
     
    3636proc engine(ideal I, int i)
    3737{
    38   /* std / slimgb mix */
     38  /* std - slimgb mix */
    3939  ideal J;
    4040  if (i==0)
     
    4444  else
    4545  {
    46     // without options -> buggy!!! (ringlist?)
     46    // without options -> strange! (ringlist?)
    4747    option(redSB);
    4848    option(redTail);
     
    11011101PURPOSE: check the modules for the property of holonomy
    11021102NOTE:    M is holonomic, if 2*dim(M) = dim(R), where R is a
    1103 ground ring
     1103ground ring; dim stays for Gelfand-Kirillov dimension
    11041104EXAMPLE: example isHolonomic; shows examples
    11051105"
     
    11281128  isHolonomic(LD);
    11291129  ideal I = std(LD[1]);
     1130  I;
    11301131  isHolonomic(I); 
    11311132}
     
    11491150    return(0);
    11501151  }
    1151   ring @r = 0,(x,y),ds;
     1152  ring @r = 0,(x,y),dp;
    11521153  poly RC = y^q +x^p + x*y^(q-1);
    11531154  export RC;
     
    13291330  LIB "gkdim.lib";
    13301331  gkdim(LD); // a holonomic check
    1331   //  poly F = x^3-y^2; // = x^7 - y^5; // x^3-y^4; // x^5 - y^4;
    13321332}
    13331333
Note: See TracChangeset for help on using the changeset viewer.