Changeset 906458 in git for Singular/LIB/phindex.lib


Ignore:
Timestamp:
Apr 7, 2009, 6:18:06 PM (15 years ago)
Author:
Frank Seelisch <seelisch@…>
Branches:
(u'spielwiese', '17f1d200f27c5bd38f5dfc6e8a0879242279d1d8')
Children:
5d98f437864469b655868be585350eeb57da2863
Parents:
2ae96e40fc5453bcb155aec76d376d79dd549cbe
Message:
removed some docu errors prior to release 3-1-0


git-svn-id: file:///usr/local/Singular/svn/trunk@11638 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/phindex.lib

    r2ae96e r906458  
    11//////////////////////////////////////////////////////////////////////////////
    2 version="$Id: phindex.lib,v 1.3 2008-10-09 09:31:57 Singular Exp $";
     2version="$Id: phindex.lib,v 1.4 2009-04-07 16:18:05 seelisch Exp $";
    33category=" ";
    44info="
     
    1010      germ  found by Eisenbud-Levine in 1997. This result was also proved by
    1111      Khimshiashvili. If the isolated singularity is non algebraically
    12       isolated  and the vector field has a reduced complex zeroes of
     12      isolated  and the vector field has similar reduced complex zeroes of
    1313      codimension 1, we use a formula as the Eisenbud-Levine found by Victor
    1414      Castellanos, in both cases is necessary to use a local order (ds,...).
     
    3030"USAGE:    signatureL(M[,r]); M symmetric matrix, r int (optional).
    3131RETURN:   the signature of M of type int or if r is given and !=0 then
    32           intvec with (signature, no of +, no of -) is returned.
    33 THEORY:   Given the matrix M we construct the quadratic form associated, after
     32          intvec with (signature, nr. of +, nr. of -) is returned.
     33THEORY:   Given the matrix M, we construct the quadratic form associated. Afterwards
    3434          we use the method of Lagrange to compute the signature. The law of
    35           inertia for a real quadratic form A(x,x) say that in a
     35          inertia for a real quadratic form A(x,x) says that in a
    3636          representation of A(x,x) as a sum of independent squares
    3737                            A(x,x)=sum_{i=1}^r a_iX_i^2.
     
    9898"USAGE:    signatureLqf(h); h quadratic form (poly type).
    9999RETURN:   the signature of h of type int or if r is given and !=0 then
    100           intvec with (signature, no of +, no of -) is returned.
     100          intvec with (signature, nr. of +, nr. of -) is returned.
    101101THEORY:   To compute the signature we use the method of Lagrange. The law of
    102           inertia for a real quadratic form h(x,x) say that in a
     102          inertia for a real quadratic form h(x,x) says that in a
    103103          representation  of h(x,x) as a sum of independent squares
    104                              h(x,x)=sum_{i=1}^r a_iX_i^ 2
    105           the number of positive and the number of negative squares are
     104          h(x,x)=sum_{i=1}^r a_i*X_i^2 the number of positive and the number of negative squares are
    106105          independent of the choice of representation. The signature -s- of
    107106          h(x,x) is the difference between the number -pi- of positive squares
     
    229228NOTE:     the isolated singularity must be algebraically isolated.
    230229THEORY:   The Poincare-Hopf index of a real vector field X at the isolated
    231           singularity 0 is the degree of map
    232                            (X/|X|) : S_epsilon ---> S,
     230          singularity 0 is the degree of the map (X/|X|) : S_epsilon ---> S,
    233231          where S is the unit sphere, and the spheres are oriented as
    234232          (n-1)-spheres in R^n. The degree depends only on the germ, X, of X
     
    245243          composition of the product in the algebra Qx with a linear
    246244          functional map
    247                                         .       L
    248                        <,> : (Qx)x(Qx)----->Qx----->R
     245                       <,> : (Qx)x(Qx) ---(.)--> Qx ---(L)--> R
    249246          with L(Jo)>0, where Jo is the residue class of the Jacobian
    250247          determinant in Qx. Here, we use a natural linear functional defined
    251           as follows. Suppose that E={E_1,..E_r} is a basis of Qx, then Jo is
    252           writing as
    253                       Jo=a_1E_{j1}+...+a_kE_{jk},  js\in {1...r}, s=1..k, k<=r.
     248          as follows. Suppose that E={E_1,..E_r} is a basis of Qx, then Jo can
     249          be written as
     250                      Jo=a_1E_{j1}+...+a_kE_{jk},  js\in {1...r}, s=1..k, k<=r,
    254251          where a_s are constant. The linear functional L:Qx--->R is defined as
    255252                                  L(E_{j1})=(a_1)/|a_1|=sign of a_1,
     
    355352          at 0, with reduced complex zeros of codimension 1.
    356353THEORY:   Suppose that 0 is an algebraically isolated singularity of the real
    357           analytic vector field X, geometrically its mean that the
     354          analytic vector field X, geometrically this corresponds to the fact that the
    358355          complexified vector field has positive dimension singular locus,
    359           algebraically this mean that the local ring
    360                       Qx=R[[x1..xn]]/Ix
     356          algebraically this mean that the local ring Qx=R[[x1..xn]]/Ix
    361357          where R[[x1,..,xn]] is the ring of germs at 0 of real-valued analytic
    362358          functions on R^n, and Ix is the ideal generated by the components
    363359          of X is infinite dimensional as real vector space. In the case that
    364           X has a reduced hypersurface as complex zeroes we have the next.
     360          X has a reduced hypersurface as complex zeros we have the next.
    365361          There exist a real analytic function f:R^n-->R, and a real analytic
    366362          vector field Y s. t. X=fY. The function f does not change of sign
     
    371367          bilinear form <,> obtained by composition of the product in the
    372368          algebra Mx with a linear functional map
    373                                         .       L
    374                        <,> : (Mx)x(Mx)----->Mx----->R
     369                       <,> : (Mx)x(Mx) ---(.)--> Mx ---(L)--> R
    375370          with L(Jp)>0, where Jp is the residue class of the Jacobian
    376371          determinant of X, JX, over f^n, JX/(f^n) in Mx. Here, we use a
    377372          natural linear functional defined as follows. Suppose that
    378373          E={E_1,..E_r} is a basis of Mx, then Jp is writing as
    379                       Jp=a_1E_{j1}+...+a_kE_{jk},  js\in {1...r}, s=1..k, k<=r.
     374                      Jp=a_1E_{j1}+...+a_kE_{jk},  js\in {1...r}, s=1..k, k<=r,
    380375          where a_s are constant. The linear functional L:M--->R is defined as
    381376                                  L(E_{j1})=(a_1)/|a_1|=sign of a_1,
Note: See TracChangeset for help on using the changeset viewer.