Changeset 91fc5e in git
 Timestamp:
 Mar 20, 2002, 8:55:39 PM (21 years ago)
 Branches:
 (u'jengelhdatetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', '0604212ebb110535022efecad887940825b97c3f')
 Children:
 dd2be3b773d286f5e2f5502c780f11d141c04458
 Parents:
 26a4bbca17dbbf5ab25f7eb164a6615485df5606
 Location:
 Singular/LIB
 Files:

 2 edited
Legend:
 Unmodified
 Added
 Removed

Singular/LIB/gaussman.lib
r26a4bb r91fc5e 1 1 /////////////////////////////////////////////////////////////////////////////// 2 version="$Id: gaussman.lib,v 1.7 8 20020320 14:03:00mschulze Exp $";2 version="$Id: gaussman.lib,v 1.79 20020320 19:55:38 mschulze Exp $"; 3 3 category="Singularities"; 4 4 … … 13 13 PROCEDURES: 14 14 gmsring(t,s); GaussManin system of t with variable s 15 gmsnf(p,K); GaussManin systemnormal form of p16 gmscoeffs(p,K); GaussManin systembasis representation of p17 monodromy(t); Jordan data of monodromy of t15 gmsnf(p,K); GaussManin normal form of p 16 gmscoeffs(p,K); GaussManin basis representation of p 17 monodromy(t); Jordan data of complex monodromy of t 18 18 spectrum(t); singularity spectrum of t 19 19 sppairs(t); spectral pairs of t … … 22 22 vfilt(t); Vfiltration of t on Brieskorn lattice 23 23 vwfilt(t); weighted Vfiltration of t on Brieskorn lattice 24 tmatrix(t); tmatrixon Brieskorn lattice24 tmatrix(t); C{{s}}matrix of t on Brieskorn lattice 25 25 endvfilt(V); endomorphism Vfiltration on Jacobian algebra 26 26 spprint(sp); print spectrum sp … … 31 31 spissemicont(sp[,opt]); semicontinuity test of spectrum sp 32 32 spsemicont(sp0,sp[,opt]); semicontinuous combinations of spectra sp0 in sp 33 spmilnor(sp); milnor number of spectrum sp33 spmilnor(sp); Milnor number of spectrum sp 34 34 spgeomgenus(sp); geometrical genus of spectrum sp 35 35 spgamma(sp); gamma invariant of spectrum sp … … 121 121 int gmsmaxdeg; maximal weight of variables 122 122 @end format 123 NOTE: gmsbasis is a C{{s}}basis of H'' and [t,s]=s^2 123 124 KEYWORDS: singularities; GaussManin connection; Brieskorn lattice 124 125 EXAMPLE: example gmsring; shows examples … … 218 219 @format 219 220 list nf; 220 ideal nf[1]; projection of p to gmsbasis mod s^(K+1)221 ideal nf[2]; p= nf[1]+nf[2]221 ideal nf[1]; projection of p to C{{s}}*gmsbasis mod s^(K+1) 222 ideal nf[2]; p==nf[1]+nf[2] 222 223 @end format 223 NOTE: thecomputation can be continued by setting p=nf[2]224 NOTE: computation can be continued by setting p=nf[2] 224 225 KEYWORDS: singularities; GaussManin connection; Brieskorn lattice 225 226 EXAMPLE: example gmsnf; shows examples … … 298 299 @format 299 300 list l; 300 matrix l[1]; gmsbasis representation of p mod s^(K+1)301 ideal l[2]; p= matrix(gmsbasis)*l[1]+l[2]301 matrix l[1]; C{{s}}basis representation of p mod s^(K+1) 302 ideal l[2]; p==matrix(gmsbasis)*l[1]+l[2] 302 303 @end format 303 NOTE: thecomputation can be continued by setting p=l[2]304 NOTE: computation can be continued by setting p=l[2] 304 305 KEYWORDS: singularities; GaussManin connection; Brieskorn lattice 305 306 EXAMPLE: example gmscoeffs; shows examples … … 920 921 list v; Vfiltration on H''/s*H'' 921 922 ideal v[1]; 922 number v[1][i]; Vfiltration index of ith spectral pair923 number v[1][i]; Vfiltration index of ith spectral number 923 924 intvec v[2]; 924 int v[2][i]; multiplicity of ith spectral pair925 int v[2][i]; multiplicity of ith spectral number 925 926 list v[3]; 926 927 module v[3][i]; vector space of ith graded part in terms of v[4] … … 1068 1069 ASSUME: characteristic 0; local degree ordering; 1069 1070 isolated critical point 0 of t 1070 RETURN: list A; matrix A[1]+s*A[2] of t on H'' 1071 RETURN: 1072 @format 1073 list A; C{{s}}matrix A[1]+s*A[2] of t on H'' 1074 matrix A[1]; 1075 matrix A[2]; 1076 @end format 1071 1077 KEYWORDS: singularities; GaussManin connection; Brieskorn lattice; 1072 1078 mixed Hodge structure; opposite Hodge filtration; Vfiltration 
Singular/LIB/linalg.lib
r26a4bb r91fc5e 1 1 //GMG last modified: 04/25/2000 2 2 ////////////////////////////////////////////////////////////////////////////// 3 version="$Id: linalg.lib,v 1. 29 20020320 14:03:00mschulze Exp $";3 version="$Id: linalg.lib,v 1.30 20020320 19:55:39 mschulze Exp $"; 4 4 category="Linear Algebra"; 5 5 info=" … … 1591 1591 @format 1592 1592 list l: 1593 module l[1]; Jordan normal form inverse(l[1])*M*l[1]1593 module l[1]; inverse(l[1])*M*l[1] in Jordan normal form 1594 1594 intvec l[2]; 1595 1595 int l[2][i]; weight filtration index of l[1][i]
Note: See TracChangeset
for help on using the changeset viewer.