Changeset 96967e in git
- Timestamp:
- Dec 23, 2000, 6:11:30 PM (22 years ago)
- Branches:
- (u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
- Children:
- c2aa978105e99edf0b9fb6ca0fdd579277b7c665
- Parents:
- d1b71e049a353dc54585ba43727902aeadcd2653
- Location:
- Singular/LIB
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/all.lib
rd1b71e r96967e 1 // $Id: all.lib,v 1.3 1 2000-12-22 13:37:10greuel Exp $1 // $Id: all.lib,v 1.32 2000-12-23 17:08:07 greuel Exp $ 2 2 /////////////////////////////////////////////////////////////////////////////// 3 version="$Id: all.lib,v 1.3 1 2000-12-22 13:37:10greuel Exp $";4 category ="General purpose";3 version="$Id: all.lib,v 1.32 2000-12-23 17:08:07 greuel Exp $"; 4 category = "General purpose"; 5 5 info=" 6 6 LIBRARY: all.lib Load all libraries 7 7 8 @format 8 9 General purpose 9 general_lib: E LEMENTARY COMPUTATIONS OF GENERAL TYPE10 inout_lib: P RINTING AND MANIPULATING IN- AND OUTPUT11 poly_lib: CREATING AND MANIPULATING POLYS, IDEALS, MODULES12 random_lib: C REATING RANDOM AND SPARSE MATRICES, IDEALS, POLYS13 ring_lib: M ANIPULATING RINGS AND MAPS10 general_lib: Elementary Computations of General Type 11 inout_lib: Printing and Manipulating In- and Output 12 poly_lib: Procedures for Manipulating Polys, Ideals, Modules 13 random_lib: Creating Random and Sparse Matrices, Ideals, Polys 14 ring_lib: Manipulating Rings and Maps 14 15 15 16 Linear algebra 16 jordan_lib: J ORDAN NORMAL FORM OF A MATRIX WITH RATIONAL EIGENVALUES17 linalg_lib: A LGORITHMIC LINEAR ALGEBRA18 matrix_lib: E LEMENTARY MATRIX OPERATIONS17 jordan_lib: Jordan Normal Form of a Matrix with rational Eigenvalues 18 linalg_lib: Algorithmic Linear Algebra 19 matrix_lib: Elementary Matrix Operations 19 20 20 21 Commutative algebra 21 algebra_lib: C OMPUTE WITH ALGBRAS AND ALGEBRA MAPS22 elim_lib: E LIMINATION, SATURATION AND BLOWING UP23 homolog_lib: HOMOLOGICAL ALGEBRA AND CUP PRODUCT24 intprog_lib: I NTEGER PROGRAMMING WITH GROEBNER BASIS METHODS25 mregular_lib: C ASTELNUOVO-MUMFORD REGULARITY OF CM-SCHEMES AND CURVES26 normal_lib: N ORMALIZATION OF AN AFFINE RING27 primdec_lib: P RIMARY DECOMPOSITION AND RADICAL OF IDEALS28 primitiv_lib: C OMPUTING A PRIMITIVE ELEMENT29 reesclos_lib: R EES ALGEBRA AND INTEGRAL CLOSURE OF IDEALS30 toric_lib: S TANDARD BASIS OF TORIC IDEALS22 algebra_lib: Compute with Algbras and Algebra Maps 23 elim_lib: Elimination, Saturation and Blowing up 24 homolog_lib: Procedures for Homological Algebra 25 intprog_lib: Integer Programming with Groebner Basis Methods 26 mregular_lib: Castelnuovo-Mumford Regularity of CM-Schemes and Curves 27 normal_lib: Normalization of Affine Rings 28 primdec_lib: Primary Decomposition and Radical of Ideals 29 primitiv_lib: Computing a Primitive Element 30 reesclos_lib: Rees Algebra and Integral Closure of Ideals 31 toric_lib: Standard Basis of Toric Ideals 31 32 32 33 Singularities 33 classify_lib: A RNOLD CLASSIFIER OF SINGULARTIES34 deform_lib: M INIVERSAL DEFORMATION OF SINGULARITIES AND MODULES35 equising_lib: E QUISINGULARITY STRATUM OF A FAMILY OF PLANE CURVES36 gaussman_lib: G AUSS-MANIN CONNECTION OF A HYPERSURFACE SINGULARITY37 hnoether_lib: H AMBURGER-NOETHER (PUISEUX) DEVELOPMENT38 mondromy_lib: M ONODROMY OF AN ISOLATED HYPERSURFACE SINGULARITY39 qhmoduli.lib: M ODULI SPACES OF SEMI-QUASIHOMOGENEOUS SINGULARITIES40 sing_lib: I NVARIANTS OF SINGULARITIES41 spcurve_lib: D EFORMATIONS AND INVARIANTS OF CM-CODIM 2 SINGULARITIES42 spectrum_lib: S INGULARITY SPECTRA FOR NONDEGENERATE SINGULARITIES34 classify_lib: Arnold Classifier of Singularities 35 deform_lib: Miniversal Deformation of Singularities and Modules 36 equising_lib: Equisingularity Stratum of a Family of Plane Curves 37 gaussman_lib: Gauss-Manin Connection of a Singularity 38 hnoether_lib: Hamburger-Noether (Puiseux) Development 39 mondromy_lib: Monodromy of an Isolated Hypersurface Singularity 40 qhmoduli.lib: Moduli Spaces of Semi-Quasihomogeneous Singularities 41 sing_lib: Invariants of Singularities 42 spcurve_lib: Deformations and Invariants of CM-codim 2 Singularities 43 spectrum_lib: Singularity Spectrum for Nondegenerate Singularities 43 44 44 45 Invariant theory 45 ainvar_lib: I NVARIANTS RINGS OF THE ADDITIVE GROUP46 finvar_lib: I NVARIANT RINGS OF FINITE GROUPS47 rinvar_lib: I NVARIANT RINGS OF REDUCTIVE GROUPS48 stratify_lib: A LGORITHMIC STRATIFICATION FOR UNIPOTENT GROUP-ACTIONS46 ainvar_lib: Invariant Rings of the Additive Group 47 finvar_lib: Invariant Rings of Finite Groups 48 rinvar_lib: Invariant Rings of Reductive Groups 49 stratify_lib: Algorithmic Stratification for Unipotent Group-Actions 49 50 50 51 Symbolic-numerical solving 51 ntsolve_lib: R EAL NEWTON SOLVING OF POLYNOMIAL SYSTEMS52 presolve_lib: P RE-SOLVING OF POLYNOMIAL EQUATIONS53 solve_lib: C OMPLEX SOLVING OF POLYNOMIAL SYSTEMS54 triang_lib: D ECOMPOSE ZERO-DIMENSIONAL IDEALS INTO TRIANGULAR SETS55 zeroset_lib: procedures for roots and factorization52 ntsolve_lib: Real Newton Solving of Polynomial Systems 53 presolve_lib: Pre-Solving of Polynomial Equations 54 solve_lib: Complex Solving of Polynomial Systems 55 triang_lib: Decompose Zero-dimensional Ideals into Triangular Sets 56 zeroset_lib: Procedures For Roots and Factorization 56 57 57 58 Visualization 58 graphics_lib: P ROCEDURES TO USE GRAPHICS WITH MATHEMATICA59 latex_lib: T YPESETTING OF SINGULAR-OBJECTS IN LATEX2E60 paramet_lib: P ARAMETRIZATION OF VARIETIES61 surf_lib: P ROCEDURES FOR GRAPHICS WITH SURF59 graphics_lib: Procedures to use Graphics with Mathematica 60 latex_lib: Typesetting of Singular-Objects in LaTex2e 61 paramet_lib: Parametrization of Varieties 62 surf_lib: Procedures for Graphics with Surf 62 63 63 64 Coding theory 64 brnoeth_lib: B RILL-NOETHER ALGORITHM, WEIERSTRASS-SG AND AG-CODES65 brnoeth_lib: Brill-Noether Algorithm, Weierstrass-SG and AG-codes 65 66 66 67 Miscellaneous 67 makedbm_lib: D ATA BASE OF SINGULARITIES FOR THE ARNOLD-CLASSIFIER68 template_lib: A T EMPLATE FOR A SINGULAR LIBRARY68 makedbm_lib: Data Base of Singularities for the Arnold-Classifier 69 template_lib: A Template for a Singular Library 69 70 70 71 Utilities 71 tst_lib: PROCEDURES FOR RUNNING AUTOMATIC TST TESTS 72 tst_lib: Procedures for running automatic tst Tests 73 74 @end format 72 75 "; 73 76 -
Singular/LIB/classify.lib
rd1b71e r96967e 1 1 // KK,GMG last modified: 17.12.00 2 2 /////////////////////////////////////////////////////////////////////////////// 3 version = "$Id: classify.lib,v 1.4 5 2000-12-22 13:39:53greuel Exp $";3 version = "$Id: classify.lib,v 1.46 2000-12-23 17:10:16 greuel Exp $"; 4 4 category="Singularities"; 5 5 info=" 6 LIBRARY: classify.lib Arnold Classifier of Singular ties6 LIBRARY: classify.lib Arnold Classifier of Singularities 7 7 AUTHOR: Kai Krueger, krueger@mathematik.uni-kl.de 8 8 … … 12 12 13 13 PROCEDURES: 14 basicinvariants(f); computes Milnor number, determinacy-bound and corank off15 classify(f); 16 corank(f);computes the corank of f (i.e. of the Hessian of f)17 Hcode(v);coding of intvec v acoording to the number repetitions18 init_debug([n]);print trace and debugging information depending on int n19 internalfunctions();display names of internal procedures of this library20 milnorcode(f[,e]);Hilbert poly of [e-th] Milnor algebra coded with Hcode21 morsesplit(f);residual part of f after applying the splitting lemma22 quickclass(f)normal form of f determined by invariants (milnorcode)23 singularity(s,[]);normal form of singularity given by its name s and index24 swap(a,b); returns b,a25 A_L(s/f)shortcut for quickclass(f) or normalform(s)26 normalform(s);normal form of singularity given by its name s27 debug_log(lev,[])print trace and debugging information w.r.t level>@DeBug14 basicinvariants(f); computes Milnor number, determinacy-bound and corank of 15 classify(f); normal form of poly f determined with Arnold's method 16 corank(f); computes the corank of f (i.e. of the Hessian of f) 17 Hcode(v); coding of intvec v acoording to the number repetitions 18 init_debug([n]); print trace and debugging information depending on int n 19 internalfunctions();display names of internal procedures of this library 20 milnorcode(f[,e]); Hilbert poly of [e-th] Milnor algebra coded with Hcode 21 morsesplit(f); residual part of f after applying the splitting lemma 22 quickclass(f) normal form of f determined by invariants (milnorcode) 23 singularity(s,[]); normal form of singularity given by its name s and index 24 swap(a,b); returns b,a 25 A_L(s/f) shortcut for quickclass(f) or normalform(s) 26 normalform(s); normal form of singularity given by its name s 27 debug_log(lev,[]) print trace and debugging information w.r.t level>@DeBug 28 28 (parameters in square brackets [] are optional) 29 29 "; … … 2261 2261 proc singularity(string typ, list #) 2262 2262 "USAGE: singularity(t, l); t=string (name of singularity), 2263 l=list of integers (index/indices of singularity)2264 COMPUTE: get the Singularity named by type t from the database.2263 l=list of integers/polynomials (indices/parmeters of singularity) 2264 COMPUTE: get the singularity named by type t from the database. 2265 2265 list l is as follows: 2266 l= k [,r [,s [,a [,b [,c [,d] ]]]]] k,r,s=int a,b,c,d=poly2267 The name of the dbm-databasefile is: NFlist.[dir,pag] 2266 l= k [,r [,s [,a [,b [,c [,d]..]: k,r,s=int a,b,c,d=poly. 2267 The name of the dbm-databasefile is: NFlist.[dir,pag]. 2268 2268 The file is found in the current directory. If it does not 2269 2269 exists, please run the script MakeDBM first. 2270 2270 RETURN: Normal form and corank of the singularity named by type t and its 2271 index (indices) l 2271 index (indices) l. 2272 2272 EXAMPLE: example singularity; shows an example" 2273 2273 { … … 2528 2528 RETURN: the corank of the Hessian matrix of f, of type int 2529 2529 REMARK: corank(f) is the number of variables occuring in the residual 2530 singular tity after applying 'morsesplit' to f2530 singularity after applying 'morsesplit' to f 2531 2531 EXAMPLE: example corank; shows an example" 2532 2532 { … … 2761 2761 /////////////////////////////////////////////////////////////////////////////// 2762 2762 proc A_L 2763 "USAGE: A_L(f); f=poly2764 A_L( \"name\"); type=string2765 COMPUTE: the normal form in Arnold's list of the singularity given either2766 by a polynomial f or by its name.2767 RETURN: A_L(f): compute via 'milnorcode' the class of f and 2768 return the normalform of f found in the database.2769 A_L(\"name\"): Get the normal form from the database for2770 thesingularity given by its name.2763 "USAGE: A_L(f); f poly 2764 A_L(s); s string, the name of the singularity 2765 COMPUTE: the normal form of f in Arnold's list of singularities in case 1, 2766 in case 2 nothing has to be computed. 2767 RETURN: A_L(f): compute via 'milnorcode' the class of f and return the normal 2768 form of f found in the database. 2769 A_L(\"name\"): get the normal form from the database for the 2770 singularity given by its name. 2771 2771 EXAMPLE: example A_L; shows an example" 2772 2772 { … … 2861 2861 { " Internal functions for the classification using Arnold's method,"; 2862 2862 " the function numbers correspond to numbers in Arnold's classifier:"; 2863 "Klassifiziere(poly f); 2863 "Klassifiziere(poly f); //determine the type of the singularity f 2864 2864 Funktion1bis (poly f, list cstn) 2865 2865 Funktion3 (poly f, list cstn) … … 2886 2886 Isomorphie_s82_z (poly f, poly fk, int k) 2887 2887 Isomorphie_s17 (poly f, poly fk, int k, int ct) 2888 printresult (string f, string typ, int Mu, int m, int corank,int K)2888 printresult (string f,string typ,int Mu,int m,int corank,int K) 2889 2889 "; 2890 2890 " Internal functions for the classifcation by invariants: 2891 2891 Cubic (poly f) 2892 parity (int e) 2892 parity (int e) //return the parity of e 2893 2893 HKclass (intvec i) 2894 2894 HKclass3( intvec i, string SG_Typ, int cnt) … … 2901 2901 "; 2902 2902 " Internal functions for the Morse-splitting lemma: 2903 Morse(poly fi, int K, int corank) Splittinglemma itself2903 Morse(poly fi, int K, int corank) //splitting lemma itself 2904 2904 Coeffs (list #) 2905 2905 Coeff … … 2910 2910 RandomPolyK 2911 2911 Faktorisiere(poly f, poly g, int p, int k) compute g = (ax+by^k)^p 2912 Teile(poly f, poly g); Teilt f durch g.2912 Teile(poly f, poly g); //divides f by g 2913 2913 GetRf(poly f, int n); 2914 2914 Show(poly f); -
Singular/LIB/gaussman.lib
rd1b71e r96967e 1 1 /////////////////////////////////////////////////////////////////////////////// 2 2 3 version="$Id: gaussman.lib,v 1.1 8 2000-12-21 18:06:36 mschulzeExp $";3 version="$Id: gaussman.lib,v 1.19 2000-12-23 17:11:30 greuel Exp $"; 4 4 category="Singularities"; 5 5 info=" 6 LIBRARY: gaussman.lib G AUSS-MANIN CONNECTION OF A SINGULARITY6 LIBRARY: gaussman.lib Gauss-Manin Connection of a Singularity 7 7 8 8 AUTHOR: Mathias Schulze, email: mschulze@mathematik.uni-kl.de … … 368 368 369 369 proc vfiltration(poly f,list #) 370 "USAGE: vfiltration(f[,mode]); poly f, int mode[ =1]370 "USAGE: vfiltration(f[,mode]); poly f, int mode[default=1] 371 371 ASSUME: local ordering, f isolated singularity at 0 372 RETURN: list l : 373 if mode=0 or mode=1 : 374 ideal l[1] : spectral numbers in increasing order 375 intvec l[2] : 376 int l[2][i] : multiplicity of spectral number l[1][i] 372 RETURN: list l: 373 @format 374 if mode=0 or mode=1: 375 l[1]: ideal, spectral numbers in increasing order 376 l[2]: intvec 377 l[2][i]: int, multiplicity of spectral number l[1][i] 377 378 if mode=1 : 378 list l[3] : 379 module l[3][i] : vector space basis of l[1][i]-th graded part 380 of the V-filtration on H''/H' in terms of l[4] 381 ideal l[4] : monomial vector space basis of H''/H' 382 ideal l[5] : standard basis of Jacobian ideal 379 l[3]: list 380 l[3][i]: module, vector space basis of l[1][i]-th graded 381 part of the V-filtration on H''/H' in terms of l[4] 382 l[4]: ideal, monomial vector space basis of H''/H' 383 l[5]: ideal, standard basis of Jacobian ideal 384 @end format 383 385 NOTE: H' and H'' denote Brieskorn lattices 384 386 SEE ALSO: spectrum.lib … … 745 747 "USAGE: vfiltjacalg(vfiltration(f)); 746 748 ASSUME: local ordering, f isolated singularity at 0 747 RETURN: list l : 748 ideal l[1] : spectral numbers of the V-filtration on the 749 Jacobian algebra in increasing order 750 intvec l[2] : 751 int l[2][i] : multiplicity of spectral number l[1][i] 752 list l[3] : 753 module l[3][i] : vector space basis of l[1][i]-th graded part 754 of the V-filtration on the Jacobian algebra 755 in terms of l[4] 756 ideal l[4] : monomial vector space basis of the Jacobian algebra 757 ideal l[5] : standard basis of Jacobian ideal 749 RETURN: list l: 750 @format 751 l[1]: ideal, spectral numbers of the V-filtration on the 752 Jacobian algebra in increasing order 753 l[2]: intvec 754 l[2][i]: int, multiplicity of spectral number l[1][i] 755 l[3]: list 756 l[3][i]: module, vector space basis of l[1][i]-th graded part 757 of the V-filtration on the Jacobian algebra in terms 758 of l[4] 759 l[4]: ideal, monomial vector space basis of the Jacobian algebra 760 l[5]: ideal, standard basis of Jacobian ideal 761 @end format 758 762 EXAMPLE: example vfiltjacalg; shows an example 759 763 "
Note: See TracChangeset
for help on using the changeset viewer.