Changeset 979c4c in git
- Timestamp:
- Jul 24, 2006, 4:06:06 PM (17 years ago)
- Branches:
- (u'spielwiese', '91e5db82acc17434e4062bcfa44e6efa7d41fd30')
- Children:
- d420d9b1a7dfa526eb758fc647450e545bb219f8
- Parents:
- 79c8130c7014f76030430c9596e3175a30699670
- Location:
- Singular/LIB
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/algebra.lib
r79c813 r979c4c 1 1 /////////////////////////////////////////////////////////////////////////////// 2 version="$Id: algebra.lib,v 1.1 4 2006-07-18 15:48:09Singular Exp $";2 version="$Id: algebra.lib,v 1.15 2006-07-24 14:06:05 Singular Exp $"; 3 3 category="Commutative Algebra"; 4 4 info=" … … 39 39 - k=1 : a list, say l, of size 2, l[1] integer, l[2] ring, satisfying 40 40 l[1]=1 if p is in the subalgebra K[A[1],...,A[m]] and then the ring 41 l[2] contains poly check = h(y(1),...,y(m)) if p=h(A[1],...,A[m])41 l[2]: ring, contains poly check = h(y(1),...,y(m)) if p=h(A[1],...,A[m]) 42 42 l[1]=0 if p is not in the subalgebra K[A[1],...,A[m]] and then 43 43 l[2] contains the poly check = h(x,y(1),...,y(m)) if p satisfies … … 441 441 If, moreover, a string s is given, the algorithm creates, in the 442 442 preimage ring pr the kernel of phi with name s. 443 Three differ nt algorithms are used depending on c = 1,2,3.444 If c is not given or c=0, a heuristically best method is cho osen.445 (al ogrithm 1 uses the preimage command)443 Three different algorithms are used depending on c = 1,2,3. 444 If c is not given or c=0, a heuristically best method is chosen. 445 (algorithm 1 uses the preimage command) 446 446 NOTE: Since the kernel of phi lives in pr, it cannot be returned to the 447 447 basering. If s is given, the user has access to it in pr via s. … … 511 511 512 512 proc is_injective( map phi, pr,list #) 513 "USAGE: is_injective(phi [,c,s]); phi map, prreimage ring, c int, s string513 "USAGE: is_injective(phi,pr[,c,s]); phi map, pr preimage ring, c int, s string 514 514 RETURN: 515 515 @format … … 614 614 defining phi. Hence, if the basering has local or mixed ordering 615 615 or if the preimage ring is a quotient ring (in which case the map 616 may not be well defined) then the return value 1 means 617 \"surjectivity\"in this sense.616 may not be well defined) then the return value 1 means \"surjectivity\" 617 in this sense. 618 618 EXAMPLE: example is_surjective; shows an example 619 619 " … … 675 675 676 676 proc is_bijective ( map phi, pr ) 677 "USAGE: is_bijective(phi ); phi map to basering, pr preimage ring677 "USAGE: is_bijective(phi,pr); phi map to basering, pr preimage ring 678 678 RETURN: an integer, 1 if phi is bijective, 0 if not 679 679 NOTE: The algorithm checks first injectivity and then surjectivity … … 776 776 RETURN: 777 777 @format 778 a list l two ideals, say I,J:778 a list l of two ideals, say I,J: 779 779 - I is generated by a subset of the variables with size(I) = dim(id) 780 780 - J defines a map (coordinate change in the basering), such that: … … 897 897 - l[1] = 1 if var(v1),...,var(vr) are in l[2] and 0 else 898 898 - l[2] (resp. l[3]) contains those variables which occur, 899 (resp. occur not) as pure power in the leading term of one of the899 (resp. do not occur) as pure power in the leading term of one of the 900 900 generators of J, 901 901 - l[4] contains those J[i] for which the leading term is a pure power -
Singular/LIB/linalg.lib
r79c813 r979c4c 1 1 //GMG last modified: 04/25/2000 2 2 ////////////////////////////////////////////////////////////////////////////// 3 version="$Id: linalg.lib,v 1.3 8 2005-05-06 14:38:43 hannesExp $";3 version="$Id: linalg.lib,v 1.39 2006-07-24 14:06:05 Singular Exp $"; 4 4 category="Linear Algebra"; 5 5 info=" … … 237 237 proc sym_gauss(matrix A) 238 238 "USAGE: sym_gauss(A); A = symmetric matrix 239 RETURN: matrix, diagonalisation with symmetric gauss algorithm239 RETURN: matrix, diagonalisation of A with symmetric gauss algorithm 240 240 EXAMPLE: example sym_gauss; shows an example" 241 241 { … … 276 276 ////////////////////////////////////////////////////////////////////////////// 277 277 proc orthogonalize(matrix A) 278 "USAGE: orthogonalize(A); A = constant matrix278 "USAGE: orthogonalize(A); A = matrix of constants 279 279 RETURN: matrix, orthogonal basis of the colum space of A 280 280 EXAMPLE: example orthogonalize; shows an example " … … 313 313 proc diag_test(matrix A) 314 314 "USAGE: diag_test(A); A = const square matrix 315 RETURN: int, 1 if A is diagonalisable, 0 if not 316 -1 no statement is possible, since A does not split. 315 RETURN: int, 1 if A is diagonalizable,@* 316 0 if not@* 317 -1 if no statement is possible, since A does not split. 317 318 NOTE: The test works only for split matrices, i.e if eigenvalues of A 318 319 are in the ground field. … … 858 859 "USAGE: gaussred_pivot(A); A any constant matrix 859 860 RETURN: list Z: Z[1]=P , Z[2]=U , Z[3]=S , Z[4]=rank(A) 860 gives nrow reduced matrix S, a permutation matrix P and a861 gives a row reduced matrix S, a permutation matrix P and a 861 862 normalized lower triangular matrix U, with P*A=U*S 862 863 NOTE: with row pivoting … … 1417 1418 1418 1419 proc minipoly(matrix M,list #) 1419 "USAGE: min poly(M); matrix M1420 "USAGE: minipoly(M); matrix M 1420 1421 ASSUME: eigenvalues of M in basefield 1421 1422 RETURN: … … 1596 1597 1597 1598 proc spprint(list sp) 1598 "USAGE: spprint(sp); list sp 1599 "USAGE: spprint(sp); list sp (helper routine for spnf, gmssing.lib) 1599 1600 RETURN: string s; spectrum sp 1600 1601 EXAMPLE: example spprint; shows examples 1602 SEE ALSO: gmssing_lib, spnf 1601 1603 " 1602 1604 { -
Singular/LIB/matrix.lib
r79c813 r979c4c 1 1 /////////////////////////////////////////////////////////////////////////////// 2 version="$Id: matrix.lib,v 1.3 1 2006-07-20 17:02:38Singular Exp $";2 version="$Id: matrix.lib,v 1.32 2006-07-24 14:06:06 Singular Exp $"; 3 3 category="Linear Algebra"; 4 4 info=" … … 743 743 proc permrow (matrix A, int r1, int r2) 744 744 "USAGE: permrow(A,r1,r2); A matrix, r1,r2 positive integers 745 RETURN: matrix, A being modified by permuting row r1 and r2745 RETURN: matrix, A being modified by permuting rows r1 and r2 746 746 EXAMPLE: example permrow; shows an example 747 747 "
Note: See TracChangeset
for help on using the changeset viewer.