Changeset 9a03c2d in git
- Timestamp:
- Mar 9, 2018, 1:35:32 PM (5 years ago)
- Branches:
- (u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
- Children:
- 7b12a30e21c5626e320d213a12828d1a2dbc6084
- Parents:
- 1af34f3a9d6f48f7bc59d937c310ee496a6c725859b9fdb6e4914ed681cc7907561abf9361bae474
- Files:
-
- 58 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/arr.lib
r1af34f r9a03c2d 1340 1340 after a tranformation x -> Tx + c we have the arrangement has the matrix representation 1341 1341 [AT^-1|b+AT^-1c] such that [AT^-1]_v = I and [b+AT^-1c]_v = 0; 1342 NOTE: algorith performs a base change if H_k is homogenous (i.e. has no)1342 NOTE: algorithm performs a base change if H_k is homogenous (i.e. has no) 1343 1343 constant term and an affine transformation otherwise 1344 1344 Ax+b = 0, Transformation x = Ty+c: AT^-1y + AT^-1c + b = 0 -
Singular/LIB/autgradalg.lib
r1af34f r9a03c2d 1 1 //////////////////////////////////////////////////////////////////////////////// 2 version="version autgradalg.lib 4.1.1. 0 Dec_2017 "; //$Id$2 version="version autgradalg.lib 4.1.1.1 Feb_2018 "; // $Id$ 3 3 category="Commutative Algebra, Algebraic Geometry"; 4 4 info=" … … 27 27 autX(I0, w, TOR): compute the automorphism group of X=X(R,w) as an algebraic subgroup V(I) of some GL(n). 28 28 29 NOTE: the following functions were taken from 'quotsingcox.lib' by M.Donten-Bury and S.Keicher: 'hilbBas'. 29 NOTE: the following functions were taken from 'quotsingcox.lib' by M.Donten-Bury and S.Keicher: 'hilbertBas'. 30 NOTE: This library comes without any warranty whatsoever. Use it at your own risk. 30 31 31 32 KEYWORDS: automorphisms; graded algebra; Mori dream spaces; automorphism group; symmetries … … 301 302 } else { 302 303 // if delta is not in cQ, then there is no monomial of this degree: 303 if(containsInSupport Old(cQ, delta)){304 if(containsInSupport(cQ, delta)){ 304 305 // calculate all monomials of degree delta 305 306 list deltaMON = wmonomials(delta, 0, TOR); … … 659 660 for(k = 1; k <= size(DL); k++){ 660 661 intmat A = concatBCD(AUT0[i], CL[j], DL[k]); 662 661 663 // M * Origs = Origs?: 662 664 if(fixesOrig(A, Origs, OrigDim, TOR)){ … … 2972 2974 // compute generators for the veronese subalgebra 2973 2975 static proc veron(intmat P){ 2974 cone V = linearHull(P);//coneViaPoints(M); 2976 // linear hull of P: 2977 intmat Pplusminus[2*nrows(P)][ncols(P)] = P, -P; 2978 2979 cone V = coneViaPoints(Pplusminus); 2975 2980 cone posorth = coneViaPoints(getIdMat(ambientDimension(V))); 2976 2981 cone c = convexIntersection(V, posorth); … … 3046 3051 example 3047 3052 { 3048 echo=2; 3049 3050 ///////////// 3051 // PP2 3052 // intmat Q[1][4] = 3053 // 1,1,1,1; 3054 // 3055 // ring R = 0,T(1..ncols(Q)),dp; 3056 // 3057 // // attach degree matrix Q to R: 3058 // setBaseMultigrading(Q); 3059 // ideal I = 0; 3060 // intvec w0 = 1; 3061 // 3062 // def RR = autX(I, w0); 3063 // setring RR; 3064 // Iexported; 3065 // 3066 // basering; 3067 // dim(std(Iexported)); 3068 // 3069 // kill RR, Q, R; 3070 // 3071 // quit; 3072 // ///////////// 3073 // // example 3.14 from the paper 3074 // intmat Q[3][5] = 3075 // 1,1,1,1,1, 3076 // 1,-1,0,0,1, 3077 // 1,1,1,0,0; 3078 // 3079 // list TOR = 2; 3080 // ring R = 0,T(1..5),dp; 3081 // 3082 // // attach degree matrix Q to R: 3083 // setBaseMultigrading(Q); 3084 // 3085 // ideal I = T(1)*T(2) + T(3)^2 + T(4)^2; 3086 // list TOR = 2; 3087 // 3088 // intvec w0 = 2,1,0; 3089 // def RR = autX(I, w0, TOR); 3090 // setring RR; 3091 // 3092 // kill RR, Q, R; 3053 /////////////// 3054 //// CAREFUL: the following examples seems to be unfeasible at the moment, see remark in the paper 3055 3056 //echo=2; 3057 /////////////// 3058 //// PP2 3059 //intmat Q[1][4] = 3060 // 1,1,1,1; 3061 3062 //ring R = 0,T(1..ncols(Q)),dp; 3063 3064 //// attach degree matrix Q to R: 3065 //setBaseMultigrading(Q); 3066 //ideal I = 0; 3067 //intvec w0 = 1; 3068 3069 //def RR = autX(I, w0); 3070 //setring RR; 3071 //Iexported; 3072 3073 //basering; 3074 //dim(std(Iexported)); 3075 3076 //kill RR, Q, R; 3077 3078 /////////////// 3079 //// example 3.14 from the paper 3080 //intmat Q[3][5] = 3081 // 1,1,1,1,1, 3082 // 1,-1,0,0,1, 3083 // 1,1,1,0,0; 3084 3085 //list TOR = 2; 3086 //ring R = 0,T(1..5),dp; 3087 3088 //// attach degree matrix Q to R: 3089 //setBaseMultigrading(Q); 3090 3091 //ideal I = T(1)*T(2) + T(3)^2 + T(4)^2; 3092 //list TOR = 2; 3093 3094 //intvec w0 = 2,1,0; 3095 //def RR = autX(I, w0, TOR); 3096 //setring RR; 3097 3098 //kill RR, Q, R; 3093 3099 } 3094 3100 … … 3111 3117 1,3; 3112 3118 3113 intmat B = hilb Bas(coneViaPoints(A));3119 intmat B = hilbertBas(coneViaPoints(A)); 3114 3120 print(B); 3115 3121 … … 3120 3126 6, 3, 4, 2; 3121 3127 3122 intmat D = hilb Bas(coneViaPoints(C));3128 intmat D = hilbertBas(coneViaPoints(C)); 3123 3129 print(D); 3124 3130 -
Singular/LIB/fpadim.lib
r1af34f r9a03c2d 2385 2385 ivMaxIdeal(2,0); 2386 2386 ivMaxIdeal(2,1); 2387 ivMaxIdeal(4,0);2388 ivMaxIdeal(4,1);2389 2387 } 2390 2388 … … 2408 2406 lpMaxIdeal(2,0); 2409 2407 lpMaxIdeal(2,1); 2410 lpMaxIdeal(4,0);2411 lpMaxIdeal(4,1);2412 2408 } 2413 2409 -
Singular/LIB/fpaprops.lib
r59b9fdb r9a03c2d 605 605 maxCycleCount = cycleCount; 606 606 } 607 kill cycleCount; 607 608 if (path[j] == w) { 608 609 break; 609 610 } 610 kill cycleCount;611 611 } kill j; 612 612 if (maxCycleCount >= cycles) { -
Singular/LIB/freegb.lib
r59b9fdb r9a03c2d 976 976 " 977 977 { 978 int alternativeVersion = 2; // temporary until makeLetterplaceRing4() is fixed978 int alternativeVersion = 0; 979 979 if ( size(#)>0 ) 980 980 { -
Singular/LIB/goettsche.lib
r1af34f r9a03c2d 1 1 //////////////////////////////////////////////////////////////// 2 version = "version goettsche.lib 4.1.1.0 Sep_2017 "; // $Id$ 3 category = "Betti numbers"; 2 version = "version goettsche.lib 0.931 Feb_2018 "; //$Id$ 4 3 info=" 5 4 LIBRARY: goettsche.lib Drezet's formula for the Betti numbers of the moduli space 6 of Kronecker modules ,5 of Kronecker modules; 7 6 Goettsche's formula for the Betti numbers of the Hilbert scheme 8 of points on a surface, 7 of points on a surface; 8 Nakajima's and Yoshioka's formula for the Betti numbers 9 of the punctual Quot-schemes on a plane or, equivalently, 10 of the moduli spaces of the framed torsion-free planar sheaves; 9 11 Macdonald's formula for the symmetric product 10 12 … … 21 23 [3] Macdonald, I. G., The Poincare polynomial of a symmetric product, 22 24 Mathematical proceedings of the Cambridge Philosophical Society: 23 58, 563 - 568, (1962). 25 58, 563-568, (1962). 26 27 [4] Nakajima, Hiraku; Lectures on instanton counting, CRM Proceedings and Lecture Notes, 28 Yoshioka, Kota Volume 88, 31-101, (2004). 24 29 25 30 PROCEDURES: … … 27 32 PPolyH(z, n, b); Poincare Polynomial of the Hilbert scheme of n points on a surface 28 33 BettiNumsH(n, b); Betti numbers of the Hilbert scheme of n points on a surface 34 NakYoshF(z, t, r, n); The Nakajima-Yoshioka formula up to n-th degree 35 PPolyQp(z, n, b); Poincare Polynomial of the punctual Quot-scheme 36 of rank r on n planar points 37 BettiNumsQp(n, b); Betti numbers of the punctual Quot-scheme 38 of rank r on n planar points 29 39 MacdonaldF(z, t, n, b); The Macdonald's formula up to n-th degree 30 40 PPolyS(z, n, b); Poincare Polynomial of the n-th symmetric power of a variety … … 35 45 of Kronecker modules N (q; m, n) 36 46 37 KEYWORDS: betti number; Goettsche's formula; Macdonald's formula;Kronecker modules47 KEYWORDS: Betty number; Goettsche's formula; Macdonald's formula; Kronecker module; Hilbert scheme; Quot-scheme; framed sheaves; symmetric product 38 48 "; 39 49 //---------------------------------------------------------- … … 61 71 return( poly(0) ); 62 72 } 63 // now is non-negative and b is a list of non-negative integers73 // now n is non-negative and b is a list of non-negative integers 64 74 if(size(b) < 5) // if there are not enough Betti numbers 65 75 { … … 124 134 return( poly(0) ); 125 135 } 126 // now is non-negative and b is a list of non-negative integers136 // now n is non-negative and b is a list of non-negative integers 127 137 if(size(b) < 5) // if there are not enough Betti numbers 128 138 { … … 188 198 return(list()); 189 199 } 190 // now is non-negative and b is a list of non-negative integers200 // now n is non-negative and b is a list of non-negative integers 191 201 if(size(b) < 5) // if there are not enough Betti numbers 192 202 { … … 229 239 // get the Betti numbers of the Hilbert scheme of 3 points on P_2 230 240 print( BettiNumsH(3, b) ); 241 } 242 //---------------------------------------------------------- 243 244 proc NakYoshF(poly z, poly t, int r, int n) 245 "USAGE: NakYoshF(z, t, r, n); z, t polynomials, r, n integers 246 RETURN: polynomial in z and t 247 PURPOSE: computes the formula of Nakajima and Yoshioka 248 up to degree n in t 249 EXAMPLE: example NakYoshF; shows an example 250 NOTE: zero is returned if n<0 or r<=0 251 " 252 { 253 // check the input data 254 if(n<0) 255 { 256 print("the number of points must be non-negative"); 257 print("zero polynomial is returned"); 258 return( poly(0) ); 259 } 260 if(r<=0) 261 { 262 print("r must be positive"); 263 print("zero polynomial is returned"); 264 return( poly(0) ); 265 } 266 // now n is non-negative and r is positive 267 def br@=basering; // remember the base ring 268 // add additional variables z@, t@ to the base ring 269 execute("ring r@= (" + charstr(basering) + "),("+varstr(basering)+", z@, t@), dp;" ); 270 execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings 271 // compute the generating function by the Nakajima-Yoshioka formula up to degree n in t@ 272 poly rez=1; 273 int k,i; 274 ideal I=std(t@^(n+1)); 275 for(k=1;k<=n;k++) 276 { 277 for(i=1;i<=r;i++) 278 { 279 rez=NF( rez*generFactor( z@^(2*(r*k-i))*t@^k, k, 0, 1, n), I); 280 } 281 } 282 setring br@; // come back to the initial base ring 283 // define the specialization homomorphism z@=z, t@=t 284 execute( "map FF= r@,"+varstr(br@)+", z, t;" ); 285 poly rez=FF(rez); // bring the result to the base ring 286 return(rez); 287 } 288 example 289 { 290 "EXAMPLE:"; echo=2; 291 ring r=0, (t, z), ls; 292 // get the Nakajima-Yoshioka formula for r=1 up to degree 3, i.e., 293 // the generating function for the Poincare polynomials of the 294 // punctual Hilbert schemes of n planar points 295 print( NakYoshF(z, t, 1, 3) ); 296 } 297 //---------------------------------------------------------- 298 299 proc PPolyQp(poly z, int r, int n) 300 "USAGE: PPolyQp(z, r, n); z polynomial, r, n integers 301 RETURN: polynomial in z 302 PURPOSE: computes the Poincare polynomial of the punctual Quot-scheme 303 of rank r on n planar points 304 EXAMPLE: example PPolyQp; shows an example 305 NOTE: zero is returned if n<0 or r<=0 306 " 307 { 308 // check the input data 309 if(n<0) 310 { 311 print("the number of points must be non-negative"); 312 print("zero polynomial is returned"); 313 return( poly(0) ); 314 } 315 if(r<=0) 316 { 317 print("r must be positive"); 318 print("zero polynomial is returned"); 319 return( poly(0) ); 320 } 321 // now n is non-negative and r is positive 322 def br@=basering; // remember the base ring 323 // add additional variables z@, t@ to the base ring 324 execute("ring r@= (" + charstr(basering) + "),("+varstr(basering)+", z@, t@), dp;" ); 325 execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings 326 // compute the generating function by the Nakajima-Yoshioka formula up to degree n in t@ 327 poly rez=1; 328 int k,i; 329 ideal I=std(t@^(n+1)); 330 for(k=1;k<=n;k++) 331 { 332 for(i=1;i<=r;i++) 333 { 334 rez=NF(rez*generFactor( z@^(2*(r*k-i))*t@^k, k, 0, 1, n), I); 335 } 336 } 337 rez= coeffs(rez, t@)[n+1, 1]; // take the coefficient of the n-th power of t@ 338 setring br@; // come back to the initial base ring 339 // define the specialization homomorphism z@=z, t@=0 340 execute( "map FF= r@,"+varstr(br@)+",z, 0;" ); 341 poly rez=FF(rez); // bring the result to the base ring 342 return(rez); 343 } 344 example 345 { 346 "EXAMPLE:"; echo=2; 347 ring r=0, (z), ls; 348 // get the Poincare polynomial of the punctual Hilbert scheme (r=1) 349 // of 3 planar points 350 print( PPolyQp(z, 1, 3) ); 351 } 352 //---------------------------------------------------------- 353 354 proc BettiNumsQp(int r, int n) 355 "USAGE: BettiNumsQp(r, n); n, r integers 356 RETURN: list of non-negative integers 357 PURPOSE: computes the Betti numbers of the punctual Quot-scheme 358 of rank r on n points on a plane 359 EXAMPLE: example BettiNumsQp; shows an example 360 NOTE: an empty list is returned if n<0 or r<=0 361 " 362 { 363 // check the input data 364 if(n<0) 365 { 366 print("the number of points must be non-negative"); 367 print("zero polynomial is returned"); 368 return( poly(0) ); 369 } 370 if(r<=0) 371 { 372 print("r must be positive"); 373 print("zero polynomial is returned"); 374 return( poly(0) ); 375 } 376 // now n is non-negative and r is positive 377 def br@=basering; // remember the base ring 378 // add additional variables z@, t@ to the base ring 379 execute("ring r@= (" + charstr(basering) + "),("+varstr(basering)+", z@, t@), dp;" ); 380 execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings 381 poly rez=1; 382 int k,i; 383 ideal I=std(t@^(n+1)); 384 for(k=1;k<=n;k++) 385 { 386 for(i=1;i<=r;i++) 387 { 388 rez=NF(rez*generFactor( z@^(2*(r*k-i))*t@^k, k, 0, 1, n), I); 389 } 390 } 391 rez= coeffs(rez, t@)[n+1, 1]; // take the coefficient of the n-th power of t@ 392 matrix CF=coeffs(rez, z@); // take the matrix of the coefficients 393 list res; // and transform it to a list 394 int d=size(CF); 395 for(i=1; i<=d; i++) 396 { 397 res=res+ list(int(CF[i, 1])) ; 398 } 399 setring br@; // come back to the initial base ring 400 return(res); 401 } 402 example 403 { 404 "EXAMPLE:"; echo=2; 405 ring r=0, (z), ls; 406 // get the Betti numbers of the punctual Hilbert scheme (r=1) 407 // of 3 points on a plane 408 print( BettiNumsQp(1, 3) ); 231 409 } 232 410 //---------------------------------------------------------- … … 728 906 } 729 907 //---------------------------------------------------------- 730 -
Singular/LIB/multigrading.lib
r1af34f r9a03c2d 3119 3119 " 3120 3120 { 3121 if( system("sh","which hilbert 2> /dev/null 1> /dev/null") != 0 ) 3121 // find the name of hilbert/4ti2-hilbert 3122 string s_name=system("executable","hilbert"); 3123 if (size(s_name)==0) { s_name=system("executable","4ti2-hilbert"); /* debian*/ } 3124 3125 if( size(s_name)==0 ) 3122 3126 { 3123 3127 ERROR("Sorry: cannot find 'hilbert' command from 4ti2. Please install 4ti2!"); … … 3177 3181 3178 3182 3179 j=system("sh", "hilbert-q sing4ti2 >/dev/null 2>&1"); ////////// be quiet + no loggin!!!3183 j=system("sh",s_name+" -q sing4ti2 >/dev/null 2>&1"); ////////// be quiet + no loggin!!! 3180 3184 3181 3185 j=system("sh", "awk \'BEGIN{ORS=\",\";}{print $0;}\' sing4ti2.hil " + -
Singular/LIB/schreyer.lib
r1af34f r9a03c2d 1 1 /////////////////////////////////////////////////////////////////////////////// 2 version="version schreyer.lib 4.1.1. 0 Dec_2017"; // $Id$2 version="version schreyer.lib 4.1.1.1 Feb_2018 "; // $Id$ 3 3 category="General purpose"; 4 4 info=" 5 LIBRARY: schreyer.lib Schreyer resolution computations andhelpers for derham.lib5 LIBRARY: schreyer.lib helpers for derham.lib 6 6 AUTHOR: Oleksandr Motsak <U@D>, where U={motsak}, D={mathematik.uni-kl.de} 7 7 KEYWORDS: Schreyer ordering; Schreyer resolution; syzygy … … 55 55 56 56 PROCEDURES: 57 s_res(M,l) compute Schreyer resolution via LiftTree method from [BMSS]58 57 Sres(M,l) helper for computing Schreyer resolution 59 58 Ssyz(M) helper for computing Schreyer resolution of module M of length 1 60 59 Scontinue(l) helper for extending currently active resolution 61 SSres(M,l) helper2 for computing Schreyer resolution 62 SSsyz(M) helper2 for computing Schreyer resolution of module M of length 1 63 SScontinue(l) helper2 for extending currently active resolution 64 65 SEE ALSO: syz, sres, lres, res 60 61 SEE ALSO: syz, sres, lres, res, fres 66 62 "; 67 63 … … 121 117 return (list(G, II)); 122 118 } 123 124 static proc splitSyzGB( module J, int c )125 {126 module JJ; vector v, vv; int i;127 128 for( i = ncols(J); i > 0; i-- )129 {130 v = J[i];131 132 vv = 0;133 134 while( Syzextra::leadcomp(v) <= c )135 {136 vv = vv + lead(v);137 v = v - lead(v);138 }139 140 J[i] = vv;141 JJ[i] = v;142 }143 144 J = simplify(J, 2);145 JJ = simplify(JJ, 2);146 147 return (list(J, JJ));148 }149 150 119 151 120 static proc Sinit(module M) … … 302 271 } 303 272 304 proc Ssyz(module M)305 "USAGE: Ssyz(module M)306 RETURN: ring, containing a Schreyer resolution307 PURPOSE: computes a Schreyer resolution of M of length 1 (see the library overview)308 SEE ALSO: Sres309 EXAMPLE: example Ssyz; shows an example310 "311 {312 def S = Sinit(M); setring S;313 314 Sstep(); // NOTE: what if M is zero?315 316 return (S);317 }318 example319 { "EXAMPLE:"; echo = 2;320 ring r;321 module M = maxideal(1); M;322 def S = Ssyz(M); setring S; S;323 "Only the first syzygy: ";324 RES;325 MRES; // Note gen(i)326 kill S;327 setring r; kill M;328 329 module M = 0;330 def S = Ssyz(M); setring S; S;331 "Only the first syzygy: ";332 RES;333 MRES;334 }335 336 273 proc Sres(module M, int l) 337 274 "USAGE: Sres(module M, int len) … … 377 314 } 378 315 379 380 381 316 // ================================================================== // 382 317 383 384 LIB "general.lib"; // for sort385 386 static proc MySort(def M)387 " Sorts the given ideal or module wrt >_{(c, ds)} (.<.<.<.<) "388 {389 if( typeof( attrib(basering, "DEBUG") ) == "int" )390 {391 int @DEBUG = attrib(basering, "DEBUG");392 } else393 {394 int @DEBUG = 0; // !system("with", "ndebug");395 }396 397 if( typeof( attrib(basering, "KERCHECK") ) == "int" )398 {399 int @KERCHECK = attrib(basering, "KERCHECK");400 } else401 {402 int @KERCHECK = @DEBUG;403 }404 405 def @N = M;406 407 if( size(M) > 0 )408 {409 Syzextra::Sort_c_ds(@N);410 411 if( @KERCHECK )412 {413 def iv = sort(lead(M), "c,ds", 1)[2]; // ,1 => reversed! // TODO: not needed?414 def @M = M;415 @M = M[iv];416 417 // 0^th syz. property418 if( (size(@N) + size(@M)) > 0 )419 {420 if( size(module( matrix(module(matrix(@N))) - matrix(module(matrix(@M))) )) > 0 )421 {422 "ERROR: MySort: wrong sorting in 'MySort': @N != @M!!!";423 424 "@M:"; @M;425 "@N:"; @N;426 427 "module( matrix(module(matrix(@N))) - matrix(module(matrix(@M))) ): ";428 module( matrix(module(matrix(@N))) - matrix(module(matrix(@M))) );429 430 "ERROR: MySort: wrong sorting in 'MySort': @N != @M!!!";431 }432 }433 }434 }435 436 return (@N);437 }438 439 440 /* static */441 proc SSinit(def M)442 {443 // rtimer, "***TIMESNAP0 for SSinit: on level: [",-1,"] :: t: ", timer, ", r: ", rtimer;444 if( (typeof(M) != "module") && (typeof(M) != "ideal") )445 {446 ERROR("Sorry: need an ideal or a module for input");447 }448 def @save = basering;449 450 int @DEBUG = 0; // !system("with", "ndebug");451 452 if( typeof( attrib(SSinit, "DEBUG") ) == "int" )453 {454 @DEBUG = attrib(SSinit, "DEBUG");455 }456 457 int @SYZCHECK = 0; // @DEBUG;458 459 if( typeof( attrib(SSinit, "SYZCHECK") ) == "int" )460 {461 @SYZCHECK = attrib(SSinit, "SYZCHECK");462 }463 464 int @KERCHECK = 0; // @DEBUG;465 466 if( typeof( attrib(SSinit, "KERCHECK") ) == "int" )467 {468 @KERCHECK = attrib(SSinit, "KERCHECK");469 }470 471 int @IGNORETAILS = 0;472 473 if( typeof( attrib(SSinit, "IGNORETAILS") ) == "int" )474 {475 @IGNORETAILS = attrib(SSinit, "IGNORETAILS");476 }477 478 int @TREEOUTPUT = 0;479 480 if( typeof( attrib(SSinit, "TREEOUTPUT") ) == "int" )481 {482 @TREEOUTPUT = attrib(SSinit, "TREEOUTPUT");483 }484 485 int @RINGCHANGE = 0;486 487 if( typeof( attrib(SSinit, "RINGCHANGE") ) == "int" )488 {489 @RINGCHANGE = attrib(SSinit, "RINGCHANGE");490 }491 492 def opts = option(get);493 option(redSB); option(redTail);494 M = simplify(interred(groebner(M)), 1 + 2 + 4 + 32); // NOTE: we require interreduced GB for input495 option(set, opts); kill opts;496 497 // int @IS_A_SB = attrib(M, "isSB"); if( !@IS_A_SB ) { } else { }498 // attrib(M, "isSB", 1);499 500 if( @IGNORETAILS )501 {502 M = lead(M);503 }504 505 def @N = MySort(M); // TODO: replace with inplace sorting!!!506 def LEAD = lead(@N);507 508 if( @KERCHECK )509 {510 def @LEAD = lead(M);511 512 // sort wrt neg.deg.rev.lex!513 intvec iv_ds = sort(@LEAD, "c,ds", 1)[2]; // ,1 => reversed!514 515 M = M[iv_ds]; // sort M wrt ds on current leading terms516 @LEAD = @LEAD[iv_ds];517 518 if( size(module( matrix(@N) - matrix(M) )) > 0 )519 {520 "M:"; M;521 "@N:"; @N;522 523 "module( matrix(@N) - matrix(M) ): ";524 module( matrix(@N) - matrix(M) );525 526 "ERROR: wrong sorting (in SSnit): @N != M!!!";527 }528 529 if( size(module( matrix(@LEAD) - matrix(LEAD) )) > 0 )530 {531 "LEAD:"; LEAD;532 "@LEAD:"; @LEAD;533 534 "module( matrix(@LEAD) - matrix(LEAD) ): ";535 module( matrix(@LEAD) - matrix(LEAD) );536 537 "ERROR: wrong sorting (in SSnit): @LEAD != LEAD!!!";538 }539 540 }541 542 M = @N;543 544 def TAIL = Syzextra::Tail(M);545 546 int @RANK = nrows(M); int @SIZE = ncols(M);547 548 intvec @DEGS = deg(M[1..@SIZE]); // store actuall degrees of input elements549 550 // TODO: what about real modules? weighted ones?551 552 if( @RINGCHANGE )553 {554 list @l = ringlist(@save);555 int @z = 0; ideal @m = maxideal(1); intvec @wdeg = deg(@m[1..ncols(@m)]);556 // NOTE: @wdeg will be ignored anyway :(557 @l[3] = list(list("C", @z), list("lp", @wdeg));558 kill @z, @m, @wdeg; // since these vars are ring independent!559 def S = ring(@l); // -- Syzextra::MakeInducedSchreyerOrdering(1);560 kill @l;561 setring S; // ring with an easy divisibility test ("C, lex") // or not!???562 } else563 { def S = basering; }564 565 // Setup the leading syzygy^{-1} module to zero:566 module Z = 0; Z[@RANK] = 0; attrib(Z, "isHomog", intvec(0));567 568 if( !@RINGCHANGE )569 {570 if( defined(RES) ) { kill RES; }571 if( defined(MRES) ) { kill MRES; }572 if( defined(LRES) ) { kill LRES; }573 if( defined(TRES) ) { kill TRES; }574 }575 576 module MRES = Z;577 578 list RES; RES[1] = Z;579 list LRES; LRES[1] = Z;580 list TRES; TRES[1] = Z;581 582 if( !defined(M) )583 {584 def M = imap(@save, M);585 }586 587 module F = freemodule(@RANK); intvec @V = deg(F[1..@RANK]); kill F;588 589 attrib(M, "isHomog", @V);590 attrib(M, "isSB", 1);591 attrib(M, "degrees", @DEGS);592 593 if( !defined(LEAD) )594 {595 def LEAD = imap(@save, LEAD);596 }597 598 attrib(LEAD, "isHomog", @V);599 attrib(LEAD, "isSB", 1);600 601 if( !defined(TAIL) )602 {603 def TAIL = imap(@save, TAIL);604 }605 606 if( @SYZCHECK )607 {608 // 0^th syz. property609 if( size(module(transpose( transpose(M) * transpose(MRES) ))) > 0 )610 {611 transpose( transpose(M) * transpose(MRES) );612 "ERROR: transpose( transpose(M) * transpose(MRES) ) != 0!!!";613 }614 }615 616 RES [size(RES)+1] = M; // list of all syzygy modules617 LRES[size(LRES)+1] = LEAD; // list of all syzygy modules618 TRES[size(TRES)+1] = TAIL; // list of all syzygy modules619 620 MRES = MRES, M; //?621 622 attrib(MRES, "isHomog", @V);623 624 // attrib(S, "InducionStart", @RANK);625 626 627 if( typeof( attrib(SSinit, "LEAD2SYZ") ) == "int" )628 {629 attrib(S, "LEAD2SYZ", attrib(SSinit, "LEAD2SYZ") );630 } else631 {632 attrib(S, "LEAD2SYZ", 0);633 }634 635 if( typeof( attrib(SSinit, "TAILREDSYZ") ) == "int" )636 {637 attrib(S, "TAILREDSYZ", attrib(SSinit, "TAILREDSYZ") );638 } else639 {640 attrib(S, "TAILREDSYZ", 1);641 }642 643 if( typeof( attrib(SSinit, "HYBRIDNF") ) == "int" )644 {645 attrib(S, "HYBRIDNF", attrib(SSinit, "HYBRIDNF") );646 } else647 {648 attrib(S, "HYBRIDNF", 0);649 }650 651 if( typeof( attrib(SSinit, "NOCACHING") ) == "int" )652 {653 attrib(S, "NOCACHING", attrib(SSinit, "NOCACHING") );654 } else655 {656 attrib(S, "NOCACHING", 0);657 }658 659 660 // maybe resetting existing ring attributes!661 attrib(S, "DEBUG", @DEBUG);662 attrib(S, "SYZCHECK", @SYZCHECK);663 attrib(S, "KERCHECK", @KERCHECK);664 attrib(S, "IGNORETAILS", @IGNORETAILS);665 attrib(S, "TREEOUTPUT", @TREEOUTPUT);666 attrib(S, "SYZNUMBER", 0);667 668 export RES;669 export MRES;670 export LRES;671 export TRES;672 673 // rtimer, "***TIMESNAP1 for SSinit: on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;674 675 return (S);676 }677 example678 { "EXAMPLE:"; echo = 2;679 ring R = 0, (w, x, y, z), dp;680 681 def M = maxideal(1);682 def S = SSinit(M); setring S; S;683 684 "Only the first initialization: ";685 RES; LRES; TRES;686 MRES;687 688 kill S; setring R; kill M;689 690 ideal M = w^2 - x*z, w*x - y*z, x^2 - w*y, x*y - z^2, y^2 - w*z;691 def S = SSinit(M); setring S; S;692 693 "Only the first initialization: ";694 RES; LRES; TRES;695 MRES;696 697 kill S; setring R; kill M;698 }699 700 701 LIB "poly.lib"; // for lcm702 703 704 705 // -------------------------------------------------------- //706 707 /// TODO: save shortcut (syz: |-.->) LM(LM(m) * "t") -> syz?708 709 /// TODO: save shortcut (syz: |-.->) LM(m) * "t" -> ?710 711 // TODO: store m * @tail -.-^-.-^-.--> ?712 static proc SSTraverseTail(poly m, def @tail, def L, def T, list #)713 {714 if( typeof( attrib(basering, "DEBUG") ) == "int" )715 {716 int @DEBUG = attrib(basering, "DEBUG");717 } else718 {719 int @DEBUG = 0; // !system("with", "ndebug");720 }721 722 if( typeof( attrib(basering, "KERCHECK") ) == "int" )723 {724 int @KERCHECK = attrib(basering, "KERCHECK");725 } else726 {727 int @KERCHECK = @DEBUG;728 }729 730 if( typeof(#[1]) == "module" )731 {732 vector ss = Syzextra::TraverseTail(m, @tail, L, T, #[1]);733 } else734 {735 vector ss = Syzextra::TraverseTail(m, @tail, L, T);736 }737 738 if( @KERCHECK )739 {740 vector s = 0;741 742 def @l, @p;743 @p = @tail;744 745 // iterate tail-terms in ANY order!746 while( size(@p) > 0 )747 {748 @l = lead(@p);749 s = s + SSReduceTerm(m, @l, [0], L, T, #); // :(750 @p = @p - @l;751 }752 753 if( s != ss )754 {755 "ERROR in Syzextra::TraverseTail => old: ", s, " != ker: ", ss;756 "m: ", m;757 "@tail: ", @tail;758 L; T; #;759 }760 }761 762 return (ss);763 }764 765 // -------------------------------------------------------- //766 767 // -------------------------------------------------------- //768 769 // module (N, LL, TT) = SSComputeSyzygy(L, T);770 // Compute Syz(L ++ T) = N = LL ++ TT771 772 // resolution/syzygy step:773 /* static */774 proc SSstep()775 {776 // rtimer, "***TIMESNAP0 for SSstep(): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;777 778 int @DEBUG = attrib(basering, "DEBUG");779 int @SYZCHECK = attrib(basering, "SYZCHECK");780 781 /*782 // is initial weights are all zeroes!783 def L = lead(M);784 intvec @V = deg(M[1..ncols(M)]); @W; @V; @W = @V; attrib(L, "isHomog", @W);785 Syzextra::SetInducedReferrence(L, @RANK, 0);786 */787 788 // def L = lead(MRES);789 // @W = @W, @V;790 // attrib(L, "isHomog", @W);791 792 793 // General setting:794 // Syzextra::SetInducedReferrence(MRES, 0, 0); // limit: 0!795 int @l = size(RES);796 797 def M = RES[@l];798 799 def L = LRES[@l];800 def T = TRES[@l];801 802 803 //// TODO: wrong !!!!!804 int @RANK = ncols(MRES) - ncols(M); // nrows(M); // what if M is zero?!805 806 807 808 /*809 if( @RANK != nrows(M) )810 {811 type(MRES);812 @RANK;813 type(M);814 pause();815 }816 */817 818 intvec @W = attrib(M, "isHomog"); intvec @V = attrib(M, "degrees"); @V = @W, @V;819 820 // TODO: N = SYZ( M )!!!821 module N, LL, TT; (N, LL, TT) = SSComputeSyzygy(/*M, */L, T/*, @RANK*/);822 823 // shift syz.comp by @RANK:824 module Z;825 Z = 0; Z[@RANK] = 0; Z = Z, transpose(LL); LL = transpose(Z);826 Z = 0; Z[@RANK] = 0; Z = Z, transpose(TT); TT = transpose(Z);827 Z = 0; Z[@RANK] = 0; Z = Z, transpose(N); N = transpose(Z);828 829 830 if( @SYZCHECK )831 {832 if( size(N) > 0 )833 {834 // next syz. property835 if( size(module(transpose( transpose(N) * transpose(MRES) ))) > 0 )836 {837 "MRES", MRES;838 839 "N: "; N;840 841 "LL:"; LL;842 "TT:"; TT;843 844 "RANKS: ", @RANK;845 846 "transpose( transpose(N) * transpose(MRES) ) != 0!!!";847 transpose( transpose(N) * transpose(MRES) );848 849 "transpose(N) * transpose(MRES): ";850 transpose(N) * transpose(MRES);851 }852 }853 }854 855 attrib(N, "isHomog", @V);856 857 // TODO: correct the following:858 intvec @DEGS = deg(N[1..ncols(N)]); // no mod. comp. weights :(859 860 861 attrib(N, "degrees", @DEGS);862 863 RES[@l + 1] = N; // list of all syzygy modules864 LRES[@l + 1] = LL; // list of all syzygy modules865 TRES[@l + 1] = TT; // list of all syzygy modules866 867 MRES = MRES, N;868 869 attrib(MRES, "isHomog", @V);870 871 // L = L, lead(N); attrib(basering, "InducionLeads", L);872 873 int ss = attrib(basering, "SYZNUMBER");874 attrib(basering, "SYZNUMBER", ss + 1 );875 876 // rtimer, "***TIMESNAP1 for SSstep(): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;877 }878 879 /* static */880 proc SScontinue(int l)881 "USAGE: SScontinue(l)882 RETURN: nothing, instead it changes RES and MRES variables in the current ring883 PURPOSE: computes further (at most l) syzygies884 NOTE: must be used within a ring returned by Sres or Ssyz. RES and MRES are885 explained in Sres886 EXAMPLE: example Scontinue; shows an example887 "888 {889 // rtimer, "***TIMESNAP0 for SScontinue: on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;890 891 /// TODO!892 // def data = Syzextra::GetInducedData();893 894 if( (!defined(RES)) || (!defined(MRES)) ) /* || (typeof(data) != "list") || (size(data) != 2) */895 {896 ERROR("Sorry, but basering does not seem to be returned by Sres or Ssyz");897 }898 for (; (l != 0) && (size(RES[size(RES)]) > 0); l-- )899 {900 SSstep();901 }902 903 // rtimer, "***TIMESNAP1 for SScontinue: on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;904 905 }906 example907 { "EXAMPLE:"; echo = 2;908 ring r;909 module M = maxideal(1); M;910 def S = SSsyz(M); setring S; S;911 "Only the first syzygy: ";912 RES; MRES;913 "More syzygies: ";914 SScontinue(10);915 RES; MRES;916 }917 918 /* static */919 proc SSsyz(def M)920 "USAGE: SSsyz(M)921 RETURN: ring, containing a list of modules RES and a module MRES922 PURPOSE: computes the first syzygy module of M (wrt some Schreyer ordering)?923 NOTE: The output is explained in Sres924 EXAMPLE: example Ssyz; shows an example925 "926 {927 if( (typeof(M) != "module") && (typeof(M) != "ideal") )928 {929 ERROR("Sorry: need an ideal or a module for input");930 }931 932 def SS = SSinit(M); setring SS;933 934 SSstep(); // NOTE: what if M is zero?935 936 return (SS);937 }938 example939 { "EXAMPLE:"; echo = 2;940 ring r;941 942 /* ideal M = 0;943 def S = SSsyz(M); setring S; S;944 "Only the first syzygy: ";945 RES; LRES; TRES;946 MRES;947 948 kill S; setring r; kill M;949 */950 951 ideal M = maxideal(1); M;952 953 def S = SSres(M, 0); setring S; S;954 MRES;955 print(_);956 RES;957 958 kill S; setring r; kill M;959 960 kill r;961 962 ring R = 0, (w, x, y, z), dp;963 ideal M = w^2 - x*z, w*x - y*z, x^2 - w*y, x*y - z^2, y^2 - w*z;964 965 def S = SSres(M, 0); setring S; S;966 "";967 LRES;968 "";969 TRES;970 "";971 MRES;972 print(_);973 RES;974 }975 976 /* static */977 proc SSres(def M, int l)978 "USAGE: SSres(I, l)979 RETURN: ring, containing a list of modules RES and a module MRES980 PURPOSE: computes (at most l) syzygy modules of M wrt the classical Schreyer981 induced ordering with gen(i) > gen(j) if i > j, provided both gens982 are from the same syzygy level.???983 NOTE: RES contains the images of maps subsituting the beginning of the984 Schreyer free resolution of baseRing^r/M, while MRES is a sum of985 these images in a big free sum, containing all the syzygy modules.986 The syzygy modules are shifted so that gen(i) correspons to MRES[i].987 The leading zero module RES[0] indicates the fact that coker of the988 first map is zero. The number of zeroes inducates the rank of input.989 NOTE: If l == 0 then l is set to be nvars(basering) + 1990 EXAMPLE: example SSres; shows an example991 "992 {993 if( (typeof(M) != "module") && (typeof(M) != "ideal") )994 {995 ERROR("Sorry: need an ideal or a module for input");996 }997 /*998 "KERCHECK: ", attrib(SSinit, "KERCHECK");999 "SYZCHECK: ", attrib(SSinit, "SYZCHECK");1000 "DEBUG: ", attrib(SSinit, "DEBUG");1001 "HYBRIDNF: ", attrib(SSinit, "HYBRIDNF");1002 "TAILREDSYZ: ", attrib(SSinit, "TAILREDSYZ");1003 "LEAD2SYZ: ", attrib(SSinit, "LEAD2SYZ");1004 */1005 1006 def SS = SSinit(M); setring SS;1007 /*1008 "KERCHECK: ", attrib(SS, "KERCHECK");1009 "SYZCHECK: ", attrib(SS, "SYZCHECK");1010 "DEBUG: ", attrib(SS, "DEBUG");1011 "HYBRIDNF: ", attrib(SS, "HYBRIDNF");1012 "TAILREDSYZ: ", attrib(SS, "TAILREDSYZ");1013 "LEAD2SYZ: ", attrib(SS, "LEAD2SYZ");1014 "";1015 "IGNORETAILS: ", attrib(SS, "IGNORETAILS");1016 "SYZNUMBER: ", attrib(SS, "SYZNUMBER");1017 */1018 if (l == 0)1019 {1020 l = nvars(basering) + 2; // not really an estimate...?!1021 }1022 1023 SSstep(); l = l - 1;1024 1025 SScontinue(l);1026 /*1027 "KERCHECK: ", attrib(SS, "KERCHECK");1028 "SYZCHECK: ", attrib(SS, "SYZCHECK");1029 "DEBUG: ", attrib(SS, "DEBUG");1030 "HYBRIDNF: ", attrib(SS, "HYBRIDNF");1031 "TAILREDSYZ: ", attrib(SS, "TAILREDSYZ");1032 "LEAD2SYZ: ", attrib(SS, "LEAD2SYZ");1033 "";1034 "IGNORETAILS: ", attrib(SS, "IGNORETAILS");1035 "SYZNUMBER: ", attrib(SS, "SYZNUMBER");1036 */1037 return (SS);1038 }1039 example1040 { "EXAMPLE:"; echo = 2;1041 ring r;1042 module M = maxideal(1); M;1043 def S = SSres(M, 0); setring S; S;1044 RES;1045 MRES;1046 }1047 1048 static proc SRES_betti2(SRES SR, def a)1049 {1050 def R = SR.r; setring R;1051 return ( betti(SR.rsltn, a) );1052 }1053 1054 static proc SRES_betti1(SRES SR)1055 {1056 def R = SR.r; setring R;1057 return ( betti(SR.rsltn) );1058 }1059 1060 static proc SRES_print(SRES SR)1061 {1062 def R = SR.r; setring R;1063 "Schreyer resolution: ";1064 SR.rsltn; // print ();1065 "over the ring: "; R;1066 }1067 1068 static proc SRES_minres(SRES SR)1069 {1070 def save = basering;1071 SRES S;1072 def R = SR.r; S.r = R;1073 setring R;1074 S.rsltn = minres(SR.rsltn); // in target ring :(1075 return (S);1076 }1077 1078 1079 // cannot be automatically used via overloading :(1080 static proc SRES_list(def SR)1081 "USAGE: SRES_list(resolution)1082 RETURN: list1083 PURPOSE: convert given resolution to a list1084 NOTE: result is over basering1085 SEE ALSO: s_res, resolution1086 EXAMPLE: example s_res; shows an example1087 "1088 {1089 if( typeof(SR) != "SRES" )1090 {1091 list @@@L = SR;1092 return (@@@L);1093 }1094 1095 def save = basering;1096 def R = SR.r;1097 1098 // if( 0 ) // ( save == R ) // TODO: not implemented :(((1099 // { list L = SR.rsltn; return (L); }1100 1101 setring R;1102 1103 list @@@L = SR.rsltn;1104 setring save;1105 return (imap( R, @@@L ));1106 }1107 1108 318 static proc mod_init() 1109 319 { 1110 320 load("syzextra.so"); 1111 1112 if( 1 ) // !defined(Syzextra) ) 1113 { 1114 // TODO: SSres - return SRESOLUTION? 1115 newstruct("SRES","ring r,resolution rsltn"); // http://www.singular.uni-kl.de/Manual/latest/sing_179.htm#SEC218 1116 system("install","SRES","print",SRES_print, 1); 1117 system("install","SRES","betti",SRES_betti1, 1); // http://www.singular.uni-kl.de/Manual/latest/sing_260.htm#SEC299 1118 system("install","SRES","betti",SRES_betti2, 2); // http://www.singular.uni-kl.de/Manual/latest/sing_260.htm#SEC299 1119 system("install","SRES","minres",SRES_minres, 1); // http://www.singular.uni-kl.de/Manual/latest/sing_344.htm#SEC383 1120 // system("install","SRES","list", SRES_list, 1); // will never work :((( 1121 // system("install","SRES","string",SRES_string, 1); 1122 } 1123 } 1124 1125 1126 static proc testallSexamples() 1127 { 1128 example Ssyz; 1129 example Scontinue; 1130 example Sres; 1131 } 1132 1133 static proc testallSSexamples() 1134 { 1135 example SSsyz; 1136 example SScontinue; 1137 example SSres; 1138 } 1139 example 1140 { "EXAMPLE:"; echo = 2; 1141 testallSexamples(); 1142 testallSSexamples(); 1143 } 1144 1145 static proc StartResTesting(list #) 1146 { 1147 int @treeout = attrib(SSinit, "TREEOUTPUT"); 1148 1149 if( defined(@save_res_list) ) 1150 { ERROR("Sorry: existing global variable @save_res_list - run StopAddResTesting before another Start!!!"); } 1151 1152 string @save_res_desc = string(#); 1153 1154 if( !@treeout ) 1155 { 1156 ">>>>>>>>> {{{{{{{{{ STARTING TESTING ('" + @save_res_desc + "') :::::::::::: "; 1157 } else 1158 { 1159 "{ \"Example\": \"" + @save_res_desc + "\", \"computations\": ["; 1160 } 1161 1162 list @save_res_list = list(); 1163 export @save_res_list; 1164 export @save_res_desc; 1165 } 1166 1167 static proc StopResTesting() 1168 { 1169 int @treeout = attrib(SSinit, "TREEOUTPUT"); 1170 1171 if( defined(@save_opts) || defined(@save_method) || defined(@save_desc) ) 1172 { ERROR("Sorry: existing global variables - run StopAddResTest before another Start!!!"); } 1173 1174 if( !defined(@save_res_list) || !defined(@save_res_desc) ) 1175 { ERROR("Sorry: no global variable - run StartResTesting beforehand!!!"); } 1176 1177 int i, j; 1178 int f = 0; 1179 def m, mm; 1180 1181 if( !@treeout ) 1182 { 1183 for (i = size(@save_res_list); i > 0; i--) 1184 { 1185 "Total Time: ", @save_res_list[i][5], ", Res: ", @save_res_list[i][6], ", Minimal Betti: ", @save_res_list[i][5] - @save_res_list[i][6], ", ", @save_res_list[i][1], " :with: ", @save_res_list[i][2]; 1186 } 1187 1188 } 1189 1190 for (i = size(@save_res_list); i > 1; i--) 1191 { 1192 m = @save_res_list[i][4]; 1193 1194 for (j = i-1; j > 0; j--) 1195 { 1196 mm = @save_res_list[j][4]; 1197 if( (nrows(m) != nrows(mm)) || (ncols(m) != ncols(mm)) ) 1198 { 1199 "ERROR: SIZE(Betti[j: ", j, "]) != SIZE(Betti[i: ", i, "]):"; 1200 "j: ", j; 1201 print( @save_res_list[j][4], "betti"); 1202 print(@save_res_list[j]); 1203 1204 "i: ", i; 1205 print( @save_res_list[i][4], "betti"); 1206 print(@save_res_list[i]); 1207 1208 f = 1; 1209 1210 } else 1211 { 1212 if( m != mm ) 1213 { 1214 "ERROR: Betti[j: ", j, "] != Betti[i: ", i, "]:"; 1215 "j: ", j; 1216 print( @save_res_list[j][4], "betti"); 1217 print(@save_res_list[j]); 1218 1219 "i: ", i; 1220 print( @save_res_list[i][4], "betti"); 1221 print(@save_res_list[i]); 1222 1223 f = 1; 1224 }; 1225 }; 1226 1227 }; 1228 1229 }; 1230 1231 if( f ) 1232 { 1233 print(@save_res_list); 1234 "<<<<<<<<< }}}}}}}}} STOP TESTING (", @save_res_desc, ") !!!!!!!!!!!! "; 1235 1236 "ERROR: There were some wrong betti numbers... "; 1237 } else 1238 { 1239 if( !@treeout ) 1240 { 1241 "BETTI: "; print( @save_res_list[1][4], "betti"); 1242 } 1243 } 1244 1245 kill @save_res_list; 1246 1247 if( !@treeout ) 1248 { 1249 "<<<<<<<<< }}}}}}}}} STOP TESTING (", @save_res_desc, ") !!!!!!!!!!!! "; 1250 } else 1251 { 1252 // "{ \"Example\": \"" + @save_res_desc + "\", \"computations\": ["; 1253 "] },"; 1254 } 1255 kill @save_res_desc; 1256 } 1257 1258 static proc StartAddResTest(string method, string desc) 1259 { 1260 int @treeout = attrib(SSinit, "TREEOUTPUT"); 1261 1262 if( !defined(@save_res_list) ) 1263 { ERROR("Sorry: no global variable - run StartResTesting beforehand!!!"); } 1264 1265 if( defined(@save_opts) || defined(@save_method) || defined(@save_desc) ) 1266 { ERROR("Sorry: existing global variables - run StopAddResTest before another Start!!!"); } 1267 1268 1269 def @save_opts = option(get); export @save_opts; 1270 def @save_method = method; export @save_method; 1271 def @save_desc = desc; export @save_desc; 1272 1273 if( !@treeout ) 1274 { 1275 "< START RES TEST{{{ ", @save_method, ", with:", @save_desc, " ... "; 1276 } else 1277 { 1278 // Print("{ \"RESOLUTION: HYBRIDNF:%d, TAILREDSYZ: %d, LEAD2SYZ: %d, IGNORETAILS: %d\": [\n", 1279 // attributes.__HYBRIDNF__, attributes.__TAILREDSYZ__, attributes.__LEAD2SYZ__, attributes.__IGNORETAILS__); 1280 " { \"RESOLUTION: " + @save_method + ", with: " + @save_desc + "\": ["; 1281 } 1282 } 1283 1284 1285 static proc StopAddResTest(def RR, intmat S, int @t, int @m) 1286 { 1287 int @treeout = attrib(SSinit, "TREEOUTPUT"); 1288 1289 if( !(defined(@save_opts) && defined(@save_method) && defined(@save_desc)) ) 1290 { ERROR("Sorry: no global variables - run StartAddResTest beforehand!!!"); } 1291 1292 list @l = list(@save_method, @save_desc, option(get), S, @t, @m); 1293 1294 // RR, 1295 // print(S, "betti"); 1296 1297 if( !@treeout ) 1298 { 1299 "> -STOP RES TEST}}} ", @save_method, ", with:", @save_desc, ", Timer:", @t; option(); 1300 } else 1301 { 1302 " ] },"; 1303 } 1304 1305 1306 option(set, @save_opts); kill @save_opts; 1307 1308 kill @save_method; kill @save_desc; 1309 1310 @save_res_list[1 + size(@save_res_list)] = @l; 1311 } 1312 1313 1314 static proc SCheck(def S) 1315 { 1316 setring S; // for checking... 1317 1318 module M = MRES; 1319 if( ncols(M) < nrows(M) ) 1320 { 1321 M[nrows(M)] = 0; 1322 } else 1323 { 1324 M = transpose(M); 1325 if( ncols(M) < nrows(M) ) 1326 { 1327 M[nrows(M)] = 0; 1328 } 1329 M = transpose(M); 1330 } 1331 1332 if( nrows(M) != ncols(M) ) 1333 { 1334 "ERROR: non-square M!!!"; 1335 } 1336 1337 if( size(module( M*M )) > 0 ) 1338 { 1339 "ERROR: module( M*M ) != 0!!!"; 1340 module( M*M ); 1341 1342 "MRES': "; M; print(M); 1343 1344 } 1345 // "MRES': "; M; print(M); 1346 1347 if( size(RES[1]) != 0 ) 1348 { 1349 "ERROR: wrong starting zero module!!!"; 1350 } 1351 1352 // RES; 1353 /* 1354 MRES; 1355 RES; 1356 ""; 1357 LRES; 1358 ""; 1359 TRES; 1360 */ 1361 } 1362 1363 //// TODO: SSres(0) fails..!!!?? 1364 static proc TestSSres(def I) 1365 { 1366 def save = basering; 1367 int @t,@m,r,rr,i; 1368 string name = 1369 "LEAD2SYZ:" +string(attrib(SSinit,"LEAD2SYZ")) + 1370 ",TAILREDSYZ:"+string(attrib(SSinit,"TAILREDSYZ")) + 1371 ",HYBRIDNF:" +string(attrib(SSinit,"HYBRIDNF")); 1372 1373 int @PROFILE = attrib(SSinit, "PROFILE"); 1374 if(@PROFILE){ string @prof = "SSres_" + @save_res_desc + "_" + name + ".prof"; } 1375 1376 StartAddResTest( 1377 "SSres", 1378 "minres + betti(,1) + mods: {" + name + "}" 1379 ); 1380 1381 option(redSB); option(redTail); 1382 timer=0;rtimer=0;def R=SSres(I,0);@m=rtimer; 1383 setring R;module M;list @l=list();@l[size(RES)-1]=list();r=nrows(RES[1]);for(i=2;i<=size(RES);i++){M=RES[i];rr=nrows(M);if((r>0)&&(size(M)>0)&&(r<rr)){M=transpose(M);M=M[(r+1)..ncols(M)];M=transpose(M);RES[i]=M;};r=rr;@l[i-1] = M;};resolution RR=@l;RR=minres(RR);def S=betti(RR,1);@t=rtimer; 1384 SCheck(R); 1385 StopAddResTest(RR, S, @t,@m); 1386 kill S, RR; setring save; kill R; 1387 } 1388 1389 1390 // Further recognized switches are the following attributes of @code{Schreyer::SSinit} procedure: 1391 // LEAD2SYZ, TAILREDSYZ, HYBRIDNF, DEBUG, ... 1392 1393 proc s_res(def I, int l) 1394 "USAGE: s_res(ideal/module M, int len) 1395 RETURN: resolution object over basering 1396 PURPOSE: compute a non-minimal Schreyer free resolution of M of length at most len via the LiftTree algorithm described in [BMSS]. 1397 NOTE: If given len is zero then nvars(basering) + 1 is used instead. 1398 @* This functions is not related to the helpers from this library. This procedure works in only in commutative case. 1399 @* One can switch on computation protocol and statistic (depending on the build) by setting the @code{prot} option. 1400 SEE ALSO: sres, lres, Sres 1401 EXAMPLE: example s_res; shows an example 1402 " 1403 { 1404 def @save = basering; 1405 1406 int @RINGCHANGE = 0; 1407 1408 if( typeof( attrib(SSinit, "RINGCHANGE") ) == "int" ) 1409 { 1410 @RINGCHANGE = attrib(SSinit, "RINGCHANGE"); 1411 } 1412 1413 def R=SSinit(I); 1414 if( @RINGCHANGE ){ setring R; } 1415 1416 int @l = size(RES); 1417 def rsltn = Syzextra::ComputeResolution(RES[@l], LRES[@l], TRES[@l], l); 1418 1419 if( !@RINGCHANGE ) 1420 { 1421 return (rsltn); // ret 1422 } 1423 1424 SRES ret; ret.r = R; ret.rsltn = rsltn; 1425 return (ret); 1426 } 1427 example 1428 { "EXAMPLE:"; echo = 2; 1429 ring R; 1430 module M = maxideal(1); M; 1431 s_res(M, 0); // Koszul complex 1432 list rs = _; // get syzygies 1433 print(betti(rs, 0), "betti"); // non-minimal betties 1434 print(minres(rs)); 1435 print(betti(rs, 1), "betti"); //minimal betties 1436 } 1437 1438 /* static */ 1439 proc s_res_bm(def I) 1440 { 1441 def @save = basering; 1442 1443 int @RINGCHANGE = 0; 1444 1445 if( typeof( attrib(SSinit, "RINGCHANGE") ) == "int" ) 1446 { 1447 @RINGCHANGE = attrib(SSinit, "RINGCHANGE"); 1448 } 1449 int t,tt,sum; 1450 1451 t=rtimer;def R=SSinit(I);tt=rtimer; 1452 1453 "%% Setup(SSinit) TIME:", tt - t; // if(@prot){ } ? 1454 int sum = (tt-t); 1455 1456 if( @RINGCHANGE ){ setring R; } 1457 1458 int @l = size(RES); 1459 module N, L, T, LL, TT; 1460 L = LRES[@l]; 1461 T = TRES[@l]; 1462 1463 1464 int ss = attrib(basering, "SYZNUMBER"); 1465 1466 while ( 1 ) 1467 { 1468 // SSstep(): 1469 t=rtimer;(N,LL,TT)=SSComputeSyzygy(L,T);tt=rtimer; 1470 1471 @l = @l + 1; 1472 "%% SSstep[",@l-2, "] TIME:", tt - t; // if(@prot){ } ? 1473 sum = sum + (tt-t); 1474 1475 if( (size(LL) == 0) || (size(N) == 0) ) { break; } 1476 L = LL; T = TT; RES[@l] = N; // LRES[@l] = LL; TRES[@l] = TT; 1477 1478 ss = ss + 1; attrib(basering, "SYZNUMBER", ss ); 1479 } 1480 1481 "%% Whole Resolution (with "+string(@l)+"syzygies) TIME:", sum; // if(@prot){ } ? 1482 resolution rsltn = list(RES[2..size(RES)]); 1483 1484 if( !@RINGCHANGE ) 1485 { 1486 return (rsltn); // ret 1487 } 1488 1489 SRES ret; ret.r = R; ret.rsltn = rsltn; 1490 return (ret); 1491 } 1492 1493 1494 static proc s_syz(def I) 1495 { 1496 def R=SSinit(I); setring R; 1497 int @l = size(RES); // def M = RES[@l]; 1498 module N, LL, TT; (N, LL, TT) = SSComputeSyzygy(LRES[@l], TRES[@l]); 1499 SSYZ ret; ret.r = R; ret.szg = N; // Schreyer:: Syzextra::ComputeResolution(RES[2], LRES[2], TRES[2], 0); 1500 return (ret); 1501 } 1502 1503 static proc TestSSSres(def I) 1504 { 1505 def save = basering; 1506 int @t,@m,r,rr,i; 1507 string name = 1508 "LEAD2SYZ:" +string(attrib(SSinit,"LEAD2SYZ")) + 1509 ",TAILREDSYZ:"+string(attrib(SSinit,"TAILREDSYZ")) + 1510 ",HYBRIDNF:" +string(attrib(SSinit,"HYBRIDNF")); 1511 1512 int @PROFILE = attrib(SSinit, "PROFILE"); 1513 if(@PROFILE){ string @prof = "SSSres_" + @save_res_desc + "_" + name + ".prof"; } 1514 1515 StartAddResTest( 1516 "SSSres", 1517 "minres + betti(,1) + mods: {" + name + "}" 1518 ); 1519 1520 option(redSB); option(redTail); 1521 timer=0;rtimer=0;def R=SSinit(I);setring R;def RR= Syzextra::ComputeResolution(RES[2], LRES[2], TRES[2], 0); 1522 @m=rtimer; 1523 RR=minres(RR); def S=betti(RR,1);@t=rtimer; 1524 SCheck(R); 1525 StopAddResTest(RR, S, @t,@m); 1526 kill S, RR; setring save; kill R; 1527 } 1528 1529 1530 static proc TestSres(def I) 1531 { 1532 def save = basering; 1533 int @t,r,rr,i,@m; 1534 StartAddResTest( 1535 "Sres", 1536 "minres + betti(,1)" 1537 ); 1538 option(redSB); option(redTail); 1539 timer=0;rtimer=0;def R=Sres(I,0);@m=rtimer;setring R;module M;list @l=list();@l[size(RES)-1]=list();r=nrows(RES[1]);for(i=2;i<=size(RES);i++){M=RES[i];rr=nrows(M);if((r>0)&&(size(M)>0)&&(r<rr)){M=transpose(M);M=M[(r+1)..ncols(M)];M=transpose(M);RES[i]=M;};r=rr;@l[i-1] = M;};resolution RR=@l;RR=minres(RR);def S=betti(RR,1);@t=rtimer; 1540 SCheck(R); 1541 StopAddResTest(RR, S, @t,@m); 1542 kill S, RR; setring save; kill R; 1543 } 1544 1545 1546 static proc Testsres(def M) 1547 { 1548 int @t,@m; 1549 StartAddResTest("sres", "no minres + betti(,1)"); 1550 option(redSB);option(redTail); 1551 timer=0;rtimer=0;def RR=sres(groebner(M),0);@m=rtimer;def S=betti(RR,1);@t=rtimer; 1552 StopAddResTest(RR, S, @t,@m); kill S, RR; 1553 } 1554 1555 static proc Testlres(def M) 1556 { 1557 int @t,@m; 1558 StartAddResTest("lres", "no minres + betti(,1)"); 1559 option(redSB);option(redTail); 1560 timer=0;rtimer=0;def RR=lres(M,0);@m=rtimer;def S=betti(RR,1);@t=rtimer; 1561 StopAddResTest(RR, S, @t,@m); kill S, RR; 1562 1563 StartAddResTest("lres", "minres + betti()"); 1564 option(redSB);option(redTail); 1565 timer=0;rtimer=0;def RR=lres(M,0);@m=rtimer;def S=betti(minres(RR));@t=rtimer; 1566 StopAddResTest(RR, S, @t,@m); 1567 kill S, RR; 1568 } 1569 1570 1571 static proc Testnres(def M) 1572 { 1573 int @t,@m; 1574 StartAddResTest("nres", "no minres + betti(,1)"); 1575 1576 option(redSB); option(redTail); 1577 timer=0;rtimer=0;def RR=nres(M,0);@m=rtimer;def S=betti(RR,1);@t=rtimer; 1578 1579 StopAddResTest(RR, S, @t,@m); kill S, RR; 1580 } 1581 1582 static proc TestSSresAttribs(def M, list #) 1583 { 1584 M = groebner(M); 1585 1586 StartResTesting(#); 1587 1588 attrib(SSinit, "LEAD2SYZ", 0); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 0); TestSSSres(M); 1589 attrib(SSinit, "LEAD2SYZ", 0); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 1); TestSSSres(M); 1590 1591 // WRONG???! LEAD2SYZ? 1592 // attrib(SSinit, "LEAD2SYZ", 1); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 0); TestSSSres(M); 1593 // attrib(SSinit, "LEAD2SYZ", 1); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 1); TestSSSres(M); 1594 1595 int @treeout = attrib(SSinit, "TREEOUTPUT"); 1596 if( !@treeout ) 1597 { 1598 Testlres(M); Testnres(M); 1599 // Testsres(M); // TestSres(M); // too long for the last medium test :( 1600 } 1601 1602 StopResTesting(); 1603 } 1604 1605 static proc TestSSresAttribs2tr(def M, list #) 1606 { 1607 M = groebner(M); 1608 1609 StartResTesting(#); 1610 1611 attrib(SSinit, "LEAD2SYZ", 0); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 0); TestSSSres(M); 1612 Testlres(M); 1613 1614 StopResTesting(); 1615 } 1616 1617 static proc testSimple(list #) 1618 { 1619 def DEBUG = 0; 1620 if(size(#) > 0) { DEBUG = #[1]; } 1621 1622 def TREE = 0; 1623 if(size(#) > 1) { TREE = #[2]; } 1624 1625 system("--min-time", "0.01"); 1626 system("--ticks-per-sec", 100); 1627 1628 // option(prot); 1629 1630 // TODO: only for now!! 1631 attrib(SSinit, "DEBUG", (DEBUG > 0) ); 1632 attrib(SSinit, "SYZCHECK", (DEBUG > 0) ); 1633 attrib(SSinit, "KERCHECK", (DEBUG > 0) ); 1634 1635 attrib(SSinit, "TREEOUTPUT", TREE); 1636 attrib(SSinit, "PROFILE", 0); 1637 attrib(SSinit, "IGNORETAILS", 0); // not only frame 1638 1639 attrib(SSinit, "NOCACHING", 0); 1640 1641 int @treeout = attrib(SSinit, "TREEOUTPUT"); 1642 1643 if( @treeout) 1644 { 1645 monitor("SimpleTests.json", "o"); 1646 "{ \"SimpleTests\": ["; 1647 } else { option(prot); } 1648 1649 1650 ring r; ideal M = maxideal(1); 1651 TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); 1652 kill r; 1653 1654 ring r = 0, (a, b, c, d), lp; ideal M = maxideal(1); 1655 TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); 1656 kill r; 1657 1658 ring R = 0, (w, x, y, z), dp; 1659 ideal M = w^2 - x*z, w*x - y*z, x^2 - w*y, x*y - z^2, y^2 - w*z; 1660 TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); 1661 kill R; 1662 1663 1664 ring r = 0, (a, b, c, d, e, f), dp; ideal M = maxideal(1); 1665 TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); 1666 kill r; 1667 1668 1669 ring r = 0, (x, y), lp; ideal M = x2, xy, y2; // Schreyer conterexample??? 1670 TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); 1671 kill r; 1672 1673 ring r = 0, (x, y, z, t), dp; ideal M = homog(xy + y2 +x + 2y -1, t), homog(xz - x -y -z -2, t), homog(yz +1, t); // TODO: seg. fault? 1674 TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); 1675 kill r; 1676 1677 1678 ring AGR = (101), (a, b, c, d), dp; 1679 // simple: AGR@101n3d002s004%1: 1680 ideal M = c*d, b*d, a*d, c^2-d^2, b*c, a*c, b^2-d^2, a*b, a^2-d^2; 1681 TestSSresAttribs(M, "simple: AGR@101n3d002s004%1"); 1682 1683 // medium: AGR@101n3d004s009%1; 1684 M = a*b+7*a*c-16*b*c-27*a*d+37*b*d-2*c*d, d^3, c*d^2, b*d^2, a*d^2, c^2*d, b*c*d, a*c*d, b^2*d, a^2*d, c^3, b*c^2, a*c^2, b^2*c, a^2*c, b^3, a^3; 1685 TestSSresAttribs(M, "medium: AGR@101n3d004s009%1"); 1686 1687 kill AGR; 1688 1689 1690 string Name = "bordiga"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp; 1691 ideal I = -x2y+26/17xy2+70/17y3+96/121x2z+63/82xyz+115/11y2z-8114xz2-40/79yz2+16/125z3+3023x2u-123/70xyu+3395y2u-81/119xzu-23/66yzu+3626z2u+18/53xu2+111/58yu2-34/39zu2+53/40u3-94/17x2v-10/19xyv+81/88y2v-91/33xzv-9967yzv-103/4z2v-26/109xuv+69/97yuv+92/17zuv-19/96u2v+10/21xv2+6147yv2+32/113zv2-79/82uv2-77/51v3,4347x2y-9017xy2+11327y3+18/79x2z-93/43xyz-35/47y2z+14704xz2+10727yz2-1764z3-612x2u+20/107xyu-103/89y2u-39/2xzu+2345yzu+10251z2u-9984xu2-10299yu2+113/118zu2+37/91u3+2/31x2v+9552xyv-47/100y2v-3242xzv+113/27yzv-11271z2v-13/79xuv+15917yuv+5/114zuv+103/119u2v-21/55xv2-59/19yv2+101/68zv2-7817uv2-112/29v3,7228x2y-111/113xy2+5913y3+6/43x2z-11251xyz+27/121y2z+97/96xz2-7398yz2-97/114z3+38/15x2u+5005xyu-41/126y2u-61/116xzu+89/9yzu-4087z2u+26/15xu2-92/103yu2+21/68zu2-4027u3+97/91x2v+5150xyv-4/47y2v-2310xzv+7307yzv-77/86z2v+30/83xuv+413yuv-50zuv-103/106u2v+105/73xv2-109/98yv2+59/63zv2+715uv2+963v3,x3+3487x2y-9744xy2-13276y3-15213x2z-118/51xyz+101/104y2z+2754xz2+9111yz2-17/94z3+11136x2u-43/82xyu-9/41y2u-7306xzu-6839yzu+5692z2u-14682xu2+37/80yu2-85/97zu2-6186u3+34/15x2v+84/109xyv+5086y2v+27/112xzv-3/40yzv+19/120z2v+11222xuv+38/55yuv-24/83zuv+15814u2v-111/61xv2+49/44yv2+125/81zv2+1933uv2-19/71v3; 1692 TestSSresAttribs(I, Name); 1693 kill @p, Name, R; 1694 1695 string Name = "rat.d8.g6"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp; 1696 ideal I = -19/125x2y2-87/119xy3-97/21y4+36/53x2yz+2069xy2z-59/50y3z-65/33x2z2-14322xyz2+79/60y2z2-9035xz3-14890yz3+87/47z4-23/48x2yu+45/44xy2u+1972y3u+79/118x2zu-5173xyzu+115/121y2zu+1239xz2u-115/17yz2u-15900z3u-78/95x2u2+67/101xyu2-12757y2u2+12752xzu2+68/21yzu2+103/90z2u2-12917xu3+97/92yu3-24/49zu3-13/79u4-51/61x2yv-3103xy2v+77/117y3v+73/115x2zv-79/33xyzv+123/110y2zv+11969xz2v-31/95yz2v-123/95z3v-105/124x2uv+12624xyuv+2/63y2uv+6579xzuv+13/62yzuv+4388z2uv-12747xu2v-26/105yu2v-78/61zu2v-125/53u3v-5/71xyv2+62/77y2v2+21/44xzv2-9806yzv2+3/91z2v2+361xuv2+568yuv2+2926zuv2+53/38u2v2-14523yv3+2082zv3+113/115uv3,108/73x2y2+4028xy3+38/43y4-1944x2yz+39/80xy2z+8/109y3z+52/27x2z2+103/45xyz2+5834y2z2+63/101xz3+107/80yz3+1178z4-1/6x2yu+78/25xy2u-21/43y3u+50/71x2zu-14693xyzu+15074y2zu+9/103xz2u-7396yz2u-14493z3u+93/25x2u2+61/4xyu2-11306y2u2-79/81xzu2+59/82yzu2-5/106z2u2+89/71xu3-34/11yu3+15/103zu3-115/52u4-54/65x2yv+67/16xy2v-7/68y3v-10/13x2zv+32/85xyzv+1/91y2zv+107/118xz2v+7594yz2v-98/103z3v+9919x2uv-965xyuv+53/34y2uv+119/11xzuv-3400yzuv-8329z2uv+75/98xu2v-24yu2v+55/87zu2v-82/71u3v-73/115x2v2+85/19xyv2-213y2v2-7704xzv2-15347yzv2+14960z2v2+15065xuv2-125/17yuv2+32/83zuv2-14/73u2v2-21/44xv3+79/2yv3-61/32zv3+46/119uv3-2082v4,9/20x2y2+113/71xy3-88/65y4+9983x2yz-6722xy2z+87/68y3z+1893x2z2+65/32xyz2+51/55y2z2-102/53xz3+58/5yz3-7187z4-96/7x2yu-14/87xy2u-3532y3u+95/54x2zu+19/65xyzu-6728y2zu+31/121xz2u+73/106yz2u-91/5z3u-12928x2u2+707xyu2-55/48y2u2-96/25xzu2+15869yzu2-20/107z2u2-10030xu3-13786yu3-122/9zu3+19/59u4-7/52x2yv+101/74xy2v+83/6y3v-91/55x2zv-5266xyzv+85/61y2zv+126/95xz2v+56/51yz2v+13073z3v-50/21x2uv-13553xyuv-116/53y2uv+68/71xzuv-111/98yzuv-11037z2uv+68/121xu2v-124/53yu2v+54/55zu2v+5862u3v+12318x2v2-119/29xyv2+101/17y2v2-51/40xzv2-82/33yzv2-30/41z2v2-29/52xuv2+7817yuv2+8121zuv2-28/99u2v2+1125xv3-73/55yv3-14141zv3+8742uv3-1203v4,x2y2+11357xy3+295y4+144x2yz-31/54xy2z+89/119y3z+1/46x2z2+29/26xyz2+1384y2z2+1461xz3+113/91yz3+9494z4-7/32x2yu+12850xy2u-3626y3u-33/106x2zu-7/60xyzu-5935y2zu-8597xz2u+5527yz2u+1708z3u+6182x2u2-15780xyu2+4669y2u2-38/69xzu2+8412yzu2+9265z2u2-5679xu3-67/18yu3-34/67zu3-7178u4+113/56x2yv-3669xy2v+17/113y3v-87/35x2zv-4871xyzv-111/11y2zv-1131xz2v-72/13yz2v+838z3v-115/4x2uv+3395xyuv-43/68y2uv-82/13xzuv+7042yzuv-88/119z2uv+100/19xu2v+24/11yu2v+89/3zu2v+7395u3v-119/109x2v2+1/104xyv2+18/25y2v2+700xzv2-59/9yzv2-92/87z2v2+2486xuv2-67/103yuv2+1469zuv2-101/91u2v2-79/33xv3+10838yv3+81/4zv3-11843uv3+7204v4,19/125x3-15698x2y-22/117xy2-95/107y3+2027x2z-7750xyz+85/104y2z-15326xz2+31/101yz2+67/81z3-7879x2u-112/115xyu+124/81y2u+99/61xzu-7458yzu+40/33z2u-1502xu2+6591yu2-7/73zu2-42/95u3+93/83x2v-15/112xyv-84/95y2v+35/36xzv+5/24yzv-12768z2v+13232xuv-76/103yuv-79/52zuv-7217u2v+75/92xv2-49/64yv2+17/14zv2-6109uv2+1695v3; 1697 TestSSresAttribs(I, Name); 1698 kill R, Name, @p; 1699 1700 1701 if( @treeout) 1702 { 1703 "] }"; 1704 monitor(""); 1705 } 1706 1707 } 1708 1709 static proc testAGR(list #) 1710 { 1711 def DEBUG = 0; 1712 if(size(#) > 0) { DEBUG = #[1]; } 1713 1714 system("--min-time", "0.01"); 1715 system("--ticks-per-sec", 100); 1716 1717 attrib(SSinit, "DEBUG", 0); 1718 attrib(SSinit, "SYZCHECK", (DEBUG > 0)); 1719 attrib(SSinit, "KERCHECK", 0); 1720 attrib(SSinit, "TREEOUTPUT", 0); 1721 attrib(SSinit, "PROFILE", 0); 1722 attrib(SSinit, "IGNORETAILS", 0); // not only frame 1723 1724 option(prot); 1725 1726 ring AGR = (101), (a, b, c, d), dp; AGR; 1727 // lengthy: AGR@101n3d008s058%3, kernel only! 1728 ideal M = c^4*d^2+4*a^3*d^3+29*a^2*b*d^3-2*a*b^2*d^3+2*b^3*d^3-21*a^2*c*d^3+46*a*b*c*d^3+2*b^2*c*d^3-13*a*c^2*d^3+32*b*c^2*d^3+46*c^3*d^3-28*a^2*d^4+4*a*b*d^4+29*b^2*d^4-8*a*c*d^4+33*b*c*d^4-16*c^2*d^4+17*a*d^5-3*b*d^5-42*c*d^5+47*d^6,b*c^3*d^2+35*a^3*d^3+24*a^2*b*d^3+46*a*b^2*d^3-22*b^3*d^3-48*a^2*c*d^3+20*a*b*c*d^3-28*b^2*c*d^3-40*a*c^2*d^3-4*b*c^2*d^3+35*c^3*d^3-21*a^2*d^4+3*a*b*d^4+8*b^2*d^4-2*a*c*d^4-22*b*c*d^4+24*c^2*d^4+44*a*d^5+33*b*d^5+31*c*d^5+26*d^6,a*c^3*d^2-42*a^3*d^3+34*a^2*b*d^3-10*a*b^2*d^3+30*b^3*d^3-6*a^2*c*d^3-30*a*b*c*d^3-34*b^2*c*d^3+29*a*c^2*d^3+35*b*c^2*d^3+13*c^3*d^3+8*a^2*d^4+23*a*b*d^4-29*b^2*d^4+12*a*c*d^4-22*b*c*d^4-50*c^2*d^4-4*b*d^5+9*c*d^5+13*d^6,b^2*c^2*d^2+a^3*d^3-49*a^2*b*d^3+26*a*b^2*d^3+20*b^3*d^3+24*a^2*c*d^3-2*a*b*c*d^3+31*b^2*c*d^3-30*a*c^2*d^3+21*b*c^2*d^3-24*c^3*d^3-38*a^2*d^4-14*a*b*d^4-14*b^2*d^4+6*a*c*d^4+3*b*c*d^4+13*c^2*d^4-11*a*d^5-38*b*d^5+22*c*d^5+48*d^6,a*b*c^2*d^2+18*a^3*d^3-29*a^2*b*d^3-21*a*b^2*d^3-2*b^3*d^3-25*a^2*c*d^3+37*a*b*c*d^3-14*b^2*c*d^3-47*a*c^2*d^3-6*b*c^2*d^3-34*c^3*d^3+43*a^2*d^4+22*a*b*d^4-39*b^2*d^4-41*a*c*d^4-17*b*c*d^4-13*c^2*d^4-43*a*d^5+28*b*d^5-42*c*d^5-49*d^6,a^2*c^2*d^2-33*a^3*d^3+30*a^2*b*d^3-13*a*b^2*d^3+18*b^3*d^3-8*a^2*c*d^3-18*a*b*c*d^3-15*b^2*c*d^3-21*a*c^2*d^3+45*b*c^2*d^3-35*c^3*d^3-4*a^2*d^4-4*a*b*d^4+10*b^2*d^4-19*a*c*d^4-18*b*c*d^4-22*c^2*d^4-27*a*d^5+20*b*d^5-14*c*d^5+24*d^6,b^3*c*d^2-10*a^3*d^3+37*a*b^2*d^3-43*b^3*d^3-10*a^2*c*d^3-9*a*b*c*d^3+47*a*c^2*d^3-24*b*c^2*d^3+12*c^3*d^3+7*a^2*d^4+19*a*b*d^4-27*b^2*d^4-2*a*c*d^4-35*b*c*d^4+45*c^2*d^4-44*a*d^5-43*b*d^5+24*c*d^5+16*d^6,a*b^2*c*d^2+2*a^3*d^3-14*a^2*b*d^3+2*a*b^2*d^3+18*b^3*d^3-48*a^2*c*d^3+43*a*b*c*d^3-25*b^2*c*d^3+15*a*c^2*d^3-7*b*c^2*d^3+42*c^3*d^3-16*a^2*d^4+7*b^2*d^4-23*a*c*d^4+24*b*c*d^4+25*c^2*d^4-17*a*d^5-16*b*d^5-32*c*d^5-50*d^6,a^2*b*c*d^2-16*a^3*d^3+7*a^2*b*d^3-20*a*b^2*d^3+11*b^3*d^3+16*a^2*c*d^3+6*a*b*c*d^3-25*b^2*c*d^3+42*a*c^2*d^3-39*b*c^2*d^3-15*c^3*d^3-25*a^2*d^4+46*a*b*d^4-3*b^2*d^4+5*a*c*d^4+28*b*c*d^4+6*c^2*d^4-20*a*d^5-15*b*d^5-30*c*d^5+17*d^6,a^3*c*d^2+39*a^3*d^3+22*a^2*b*d^3-21*a*b^2*d^3+10*b^3*d^3+40*a^2*c*d^3-37*a*b*c*d^3+11*b^2*c*d^3+43*a*c^2*d^3+28*b*c^2*d^3-10*c^3*d^3+30*a^2*d^4+36*a*b*d^4-45*b^2*d^4-40*a*c*d^4-31*b*c*d^4+28*c^2*d^4+35*a*d^5+6*b*d^5+14*c*d^5+25*d^6,b^4*d^2+50*a^3*d^3+12*a^2*b*d^3+29*a*b^2*d^3-38*b^3*d^3-44*a^2*c*d^3+28*a*b*c*d^3+18*b^2*c*d^3-31*a*c^2*d^3+16*b*c^2*d^3-18*c^3*d^3+5*a^2*d^4-43*a*b*d^4+16*b^2*d^4+9*a*c*d^4-30*b*c*d^4+50*c^2*d^4+3*a*d^5+33*b*d^5+3*c*d^5-48*d^6,a*b^3*d^2+13*a^3*d^3-28*a^2*b*d^3-33*a*b^2*d^3-25*b^3*d^3-41*a^2*c*d^3+a*b*c*d^3+19*b^2*c*d^3+41*a*c^2*d^3-17*b*c^2*d^3+34*c^3*d^3-10*a^2*d^4+30*a*b*d^4+34*b^2*d^4+13*a*c*d^4+b*c*d^4-35*c^2*d^4-34*a*d^5+23*b*d^5-7*c*d^5+6*d^6,a^2*b^2*d^2+22*a^3*d^3-32*a^2*b*d^3+29*a*b^2*d^3+21*b^3*d^3-30*a^2*c*d^3-47*a*b*c*d^3-11*b^2*c*d^3-16*a*c^2*d^3-14*b*c^2*d^3+49*c^3*d^3+47*a^2*d^4-11*a*b*d^4+4*b^2*d^4+13*a*c*d^4+7*b*c*d^4-30*c^2*d^4+31*a*d^5+10*b*d^5-8*c*d^5-27*d^6,a^3*b*d^2-43*a^3*d^3-2*a^2*b*d^3+15*a*b^2*d^3+42*b^3*d^3+25*a^2*c*d^3+22*a*b*c*d^3-4*b^2*c*d^3-29*a*c^2*d^3-31*b*c^2*d^3-3*c^3*d^3+33*a^2*d^4+20*a*b*d^4-34*b^2*d^4+8*a*c*d^4+48*b*c*d^4-29*c^2*d^4-46*a*d^5+27*b*d^5+29*c*d^5+33*d^6,a^4*d^2+30*a^3*d^3-42*a*b^2*d^3-16*b^3*d^3-33*a^2*c*d^3+13*a*b*c*d^3+7*b^2*c*d^3-23*a*c^2*d^3+28*b*c^2*d^3-37*c^3*d^3+3*a^2*d^4-34*a*b*d^4+16*b^2*d^4-21*a*c*d^4-39*b*c*d^4+5*c^2*d^4+35*a*d^5+39*b*d^5-26*c*d^5-47*d^6,c^5*d+48*a^3*d^3-37*a^2*b*d^3+31*a*b^2*d^3-19*b^3*d^3+49*a^2*c*d^3-5*a*b*c*d^3+45*b^2*c*d^3+24*a*c^2*d^3-26*b*c^2*d^3-10*c^3*d^3-a^2*d^4+43*a*b*d^4-26*b^2*d^4+45*a*c*d^4-3*b*c*d^4+38*c^2*d^4+10*a*d^5-5*b*d^5-34*c*d^5+22*d^6,b*c^4*d+30*a^3*d^3-40*a^2*b*d^3-39*a*b^2*d^3+33*b^3*d^3+31*a^2*c*d^3-17*a*b*c*d^3-44*b^2*c*d^3+24*a*c^2*d^3+22*b*c^2*d^3-44*c^3*d^3-29*a^2*d^4+4*a*b*d^4-4*b^2*d^4+8*a*c*d^4-42*b*c*d^4+15*c^2*d^4-42*a*d^5+15*b*d^5-41*c*d^5-46*d^6,a*c^4*d-11*a^3*d^3-5*a^2*b*d^3+33*a*b^2*d^3+7*b^3*d^3-31*a^2*c*d^3-47*a*b*c*d^3-50*b^2*c*d^3-50*a*c^2*d^3-39*b*c^2*d^3+25*c^3*d^3+5*a^2*d^4+35*a*b*d^4-34*b^2*d^4+42*a*c*d^4-44*b*c*d^4-17*c^2*d^4+11*a*d^5+b*d^5+31*c*d^5+45*d^6,b^2*c^3*d+12*a^3*d^3-41*a^2*b*d^3+29*a*b^2*d^3-42*b^3*d^3-32*a^2*c*d^3+47*a*b*c*d^3-13*b^2*c*d^3-20*a*c^2*d^3+45*b*c^2*d^3-49*c^3*d^3-34*a^2*d^4+16*a*b*d^4+11*b^2*d^4-49*a*c*d^4-27*b*c*d^4-31*c^2*d^4+29*a*d^5-23*b*d^5+13*c*d^5+42*d^6,a*b*c^3*d-16*a^3*d^3-35*a^2*b*d^3+12*a*b^2*d^3-39*b^3*d^3-32*a*b*c*d^3-4*b^2*c*d^3+31*a*c^2*d^3+43*b*c^2*d^3-42*c^3*d^3+36*a^2*d^4-5*a*b*d^4-4*b^2*d^4+5*a*c*d^4+20*b*c*d^4+31*c^2*d^4+15*a*d^5+25*b*d^5-16*c*d^5-28*d^6,a^2*c^3*d-16*a^3*d^3+8*a^2*b*d^3+30*a*b^2*d^3-16*b^3*d^3+20*a^2*c*d^3-11*b^2*c*d^3-48*a*c^2*d^3+11*b*c^2*d^3-20*c^3*d^3-24*a^2*d^4-23*a*b*d^4+9*b^2*d^4+13*a*c*d^4-42*b*c*d^4+22*c^2*d^4-29*a*d^5-28*b*d^5-7*c*d^5-2*d^6,b^3*c^2*d+42*a^3*d^3-11*a^2*b*d^3+18*a*b^2*d^3-13*b^3*d^3+22*a^2*c*d^3-10*a*b*c*d^3-25*b^2*c*d^3-17*a*c^2*d^3-23*b*c^2*d^3-37*c^3*d^3-3*a^2*d^4-33*a*b*d^4+44*b^2*d^4-41*a*c*d^4+6*b*c*d^4-36*c^2*d^4-43*a*d^5+b*d^5+25*c*d^5+48*d^6,a*b^2*c^2*d+21*a^3*d^3+5*a^2*b*d^3+38*a*b^2*d^3+25*b^3*d^3-12*a^2*c*d^3+7*a*b*c*d^3+28*b^2*c*d^3+a*c^2*d^3+33*b*c^2*d^3+22*c^3*d^3+10*a^2*d^4-7*a*b*d^4-5*b^2*d^4+50*a*c*d^4-23*b*c*d^4+22*c^2*d^4-4*a*d^5+45*b*d^5-42*c*d^5+d^6,a^2*b*c^2*d-45*a^3*d^3+2*a^2*b*d^3+44*a*b^2*d^3-5*b^3*d^3-19*a^2*c*d^3-3*a*b*c*d^3+18*b^2*c*d^3-22*a*c^2*d^3+46*b*c^2*d^3+41*c^3*d^3-26*a^2*d^4-a*b*d^4-42*b^2*d^4-40*a*c*d^4+39*b*c*d^4+24*c^2*d^4-6*a*d^5-6*b*d^5+13*c*d^5-28*d^6,a^3*c^2*d+4*a^3*d^3+31*a^2*b*d^3+21*a*b^2*d^3+39*b^3*d^3-8*a^2*c*d^3+49*a*b*c*d^3-48*b^2*c*d^3-16*a*c^2*d^3-33*b*c^2*d^3+35*c^3*d^3+41*a^2*d^4+18*a*b*d^4+47*b^2*d^4-3*a*c*d^4+12*b*c*d^4+13*c^2*d^4+32*a*d^5-40*b*d^5+50*c*d^5-2*d^6,b^4*c*d+23*a^3*d^3+47*a^2*b*d^3-10*a*b^2*d^3-43*b^3*d^3+49*a^2*c*d^3+7*a*b*c*d^3+34*b^2*c*d^3-40*a*c^2*d^3-37*b*c^2*d^3-6*c^3*d^3+30*a^2*d^4-34*a*b*d^4-6*b^2*d^4+21*a*c*d^4+41*b*c*d^4-33*c^2*d^4-9*a*d^5+2*b*d^5+8*c*d^5+7*d^6,a*b^3*c*d-5*a^3*d^3-42*a^2*b*d^3+22*a*b^2*d^3-35*b^3*d^3+a^2*c*d^3+20*a*b*c*d^3-10*b^2*c*d^3+23*a*c^2*d^3-17*b*c^2*d^3+30*c^3*d^3+24*a^2*d^4+32*a*b*d^4-7*b^2*d^4-48*a*c*d^4-25*b*c*d^4-6*c^2*d^4-33*a*d^5+29*b*d^5+12*c*d^5+26*d^6,a^2*b^2*c*d+6*a^3*d^3-46*a^2*b*d^3-30*a*b^2*d^3+b^3*d^3-35*a^2*c*d^3+41*a*b*c*d^3-4*b^2*c*d^3-42*a*c^2*d^3+16*b*c^2*d^3+19*c^3*d^3-13*a^2*d^4-16*a*b*d^4+45*b^2*d^4-25*a*c*d^4-48*b*c*d^4+35*c^2*d^4+50*a*d^5+31*b*d^5-25*c*d^5+6*d^6,a^3*b*c*d+3*a^3*d^3-39*a^2*b*d^3+14*a*b^2*d^3-4*b^3*d^3-36*a^2*c*d^3+47*a*b*c*d^3+27*b^2*c*d^3+50*a*c^2*d^3-45*b*c^2*d^3+49*c^3*d^3-18*a^2*d^4+20*a*b*d^4+17*b^2*d^4+a*c*d^4+33*b*c*d^4+42*c^2*d^4+19*a*d^5+18*b*d^5+33*c*d^5+15*d^6,a^4*c*d-14*a^3*d^3-8*a^2*b*d^3-a*b^2*d^3-34*b^3*d^3-27*a^2*c*d^3-15*a*b*c*d^3-14*b^2*c*d^3+33*a*c^2*d^3-34*b*c^2*d^3-4*c^3*d^3+47*a^2*d^4+50*a*b*d^4-6*b^2*d^4+16*a*c*d^4+26*c^2*d^4-27*a*d^5+2*b*d^5-31*c*d^5+47*d^6,b^5*d+3*a^3*d^3-9*a^2*b*d^3+46*a*b^2*d^3+b^3*d^3-2*a^2*c*d^3-39*a*b*c*d^3-31*b^2*c*d^3-30*a*c^2*d^3+23*b*c^2*d^3+25*c^3*d^3+9*a^2*d^4-15*a*b*d^4-2*b^2*d^4-12*a*c*d^4+11*b*c*d^4+9*c^2*d^4+3*a*d^5+9*b*d^5+41*c*d^5-38*d^6,a*b^4*d-48*a^3*d^3+42*a^2*b*d^3+27*a*b^2*d^3+32*b^3*d^3+21*a^2*c*d^3-5*a*b*c*d^3-39*b^2*c*d^3+6*a*c^2*d^3-20*b*c^2*d^3+45*c^3*d^3-48*a^2*d^4+44*a*b*d^4+25*b^2*d^4-29*a*c*d^4+4*b*c*d^4+50*c^2*d^4-6*a*d^5-40*b*d^5-11*c*d^5-28*d^6,a^2*b^3*d-41*a^3*d^3+21*a^2*b*d^3+39*a*b^2*d^3-2*b^3*d^3+24*a*b*c*d^3-10*b^2*c*d^3+31*a*c^2*d^3-34*b*c^2*d^3-31*c^3*d^3+20*a^2*d^4+41*a*b*d^4-10*b^2*d^4-40*a*c*d^4+5*b*c*d^4+31*c^2*d^4+6*a*d^5+26*b*d^5+29*c*d^5-5*d^6,a^3*b^2*d-11*a^3*d^3-39*a^2*b*d^3+2*a*b^2*d^3-44*b^3*d^3-23*a^2*c*d^3+21*a*b*c*d^3-44*b^2*c*d^3-7*a*c^2*d^3+49*b*c^2*d^3+46*c^3*d^3+17*a^2*d^4+49*a*b*d^4-14*b^2*d^4+29*a*c*d^4-20*b*c*d^4-49*c^2*d^4-13*a*d^5-41*b*d^5-18*c*d^5+50*d^6,a^4*b*d+9*a^3*d^3+50*a^2*b*d^3+46*a*b^2*d^3-48*b^3*d^3+43*a^2*c*d^3-45*a*b*c*d^3+24*b^2*c*d^3-4*a*c^2*d^3-b*c^2*d^3-34*c^3*d^3+33*a^2*d^4+14*a*b*d^4-37*b^2*d^4-13*a*c*d^4+48*b*c*d^4-31*c^2*d^4-22*a*d^5+42*b*d^5+49*c*d^5-43*d^6,a^5*d+33*a^3*d^3-23*a^2*b*d^3+30*a*b^2*d^3+5*b^3*d^3-26*a^2*c*d^3-35*a*b*c*d^3-50*b^2*c*d^3-21*a*c^2*d^3+4*b*c^2*d^3+10*c^3*d^3+39*a^2*d^4-2*a*b*d^4+23*b^2*d^4+17*a*c*d^4-50*b*c*d^4-8*c^2*d^4-39*a*d^5+36*b*d^5-43*c*d^5-39*d^6,c^6+20*a^3*d^3-41*a*b^2*d^3+39*b^3*d^3+26*a^2*c*d^3-8*a*b*c*d^3-49*b^2*c*d^3+25*a*c^2*d^3+32*b*c^2*d^3-32*c^3*d^3-2*a^2*d^4-38*a*b*d^4-38*b^2*d^4+17*a*c*d^4+22*b*c*d^4-36*c^2*d^4-41*a*d^5+37*b*d^5-49*c*d^5-19*d^6,b*c^5-36*a^3*d^3+32*a^2*b*d^3-14*a*b^2*d^3-31*b^3*d^3-2*a^2*c*d^3-8*a*b*c*d^3-39*b^2*c*d^3-46*a*c^2*d^3+10*b*c^2*d^3+27*c^3*d^3+25*a^2*d^4-30*a*b*d^4+3*b^2*d^4-36*a*c*d^4+44*b*c*d^4+17*c^2*d^4-46*a*d^5-37*b*d^5-2*c*d^5-47*d^6,a*c^5-49*a^3*d^3+11*a^2*b*d^3-21*a*b^2*d^3-14*b^3*d^3+26*a^2*c*d^3-a*b*c*d^3+24*b^2*c*d^3-46*a*c^2*d^3+23*b*c^2*d^3+33*c^3*d^3-11*a^2*d^4-a*b*d^4+49*b^2*d^4-17*a*c*d^4+49*b*c*d^4+36*c^2*d^4+10*a*d^5-19*b*d^5+26*c*d^5-32*d^6,b^2*c^4-14*a^3*d^3+9*a^2*b*d^3-5*a*b^2*d^3+17*b^3*d^3+2*a^2*c*d^3+12*a*b*c*d^3-37*b^2*c*d^3-43*a*c^2*d^3+5*b*c^2*d^3-9*c^3*d^3-27*a^2*d^4+14*a*b*d^4-19*b^2*d^4+29*a*c*d^4+32*b*c*d^4-15*c^2*d^4-26*a*d^5-31*b*d^5+46*c*d^5-22*d^6,a*b*c^4+33*a^3*d^3-22*a^2*b*d^3-14*a*b^2*d^3-30*b^3*d^3-48*a^2*c*d^3+34*a*b*c*d^3-8*b^2*c*d^3-44*a*c^2*d^3-4*b*c^2*d^3+3*c^3*d^3+26*a^2*d^4+4*a*b*d^4+7*b^2*d^4-28*a*c*d^4-22*b*c*d^4-35*c^2*d^4-50*a*d^5-43*b*d^5+46*c*d^5-49*d^6,a^2*c^4-9*a^3*d^3+3*a^2*b*d^3+34*a*b^2*d^3+4*b^3*d^3+5*a^2*c*d^3-17*a*b*c*d^3-48*b^2*c*d^3+10*a*c^2*d^3+2*b*c^2*d^3-12*c^3*d^3-7*a^2*d^4-6*a*b*d^4+37*b^2*d^4-16*a*c*d^4+47*b*c*d^4+6*c^2*d^4-35*a*d^5-45*b*d^5-12*c*d^5-30*d^6,b^3*c^3-21*a^3*d^3-6*a^2*b*d^3-26*a*b^2*d^3-22*b^3*d^3-29*a*b*c*d^3-26*b^2*c*d^3+50*a*c^2*d^3-41*b*c^2*d^3+22*c^3*d^3-41*a^2*d^4+25*a*b*d^4+16*b^2*d^4+11*a*c*d^4+34*b*c*d^4+19*c^2*d^4-38*a*d^5-8*b*d^5-42*c*d^5-6*d^6,a*b^2*c^3+3*a^3*d^3-45*a^2*b*d^3+39*a*b^2*d^3+22*b^3*d^3+48*a^2*c*d^3-7*a*b*c*d^3-46*b^2*c*d^3-22*a*c^2*d^3-17*b*c^2*d^3-27*c^3*d^3-35*a^2*d^4+47*a*b*d^4+6*b^2*d^4-5*a*c*d^4-30*b*c*d^4+25*c^2*d^4-10*a*d^5+46*b*d^5+5*c*d^5-18*d^6,a^2*b*c^3-36*a^3*d^3+33*a^2*b*d^3+47*a*b^2*d^3-16*b^3*d^3-41*a^2*c*d^3+42*a*b*c*d^3-29*b^2*c*d^3+39*a*c^2*d^3-12*b*c^2*d^3-25*c^3*d^3-11*a^2*d^4-37*a*b*d^4+29*b^2*d^4-18*a*c*d^4+43*b*c*d^4+12*c^2*d^4-37*a*d^5+7*b*d^5+7*c*d^5-5*d^6,a^3*c^3+25*a^3*d^3+34*a^2*b*d^3+29*a*b^2*d^3-34*b^3*d^3-46*a^2*c*d^3-17*a*b*c*d^3+49*b^2*c*d^3-35*a*c^2*d^3-21*b*c^2*d^3-45*c^3*d^3+43*a^2*d^4+29*a*b*d^4+36*b^2*d^4+37*a*c*d^4+12*b*c*d^4-17*c^2*d^4+12*a*d^5+47*c*d^5-23*d^6,b^4*c^2-10*a^3*d^3+38*a^2*b*d^3+33*a*b^2*d^3+9*b^3*d^3-25*a^2*c*d^3+38*a*b*c*d^3-19*b^2*c*d^3-33*a*c^2*d^3-49*b*c^2*d^3-16*c^3*d^3-14*a^2*d^4-3*a*b*d^4-30*b^2*d^4-32*a*c*d^4+28*b*c*d^4-3*c^2*d^4-16*a*d^5+31*b*d^5-49*c*d^5-3*d^6,a*b^3*c^2+25*a^3*d^3-47*a^2*b*d^3+47*b^3*d^3+13*a^2*c*d^3-17*a*b*c*d^3+26*b^2*c*d^3-43*a*c^2*d^3+39*b*c^2*d^3-4*c^3*d^3+20*a^2*d^4+6*a*b*d^4+49*b^2*d^4+14*a*c*d^4-17*b*c*d^4+38*c^2*d^4+21*a*d^5-9*b*d^5-26*c*d^5+47*d^6,a^2*b^2*c^2+12*a^3*d^3+10*a^2*b*d^3-40*a*b^2*d^3+14*b^3*d^3+36*a^2*c*d^3-9*a*b*c*d^3+9*b^2*c*d^3+7*a*c^2*d^3+12*b*c^2*d^3-37*c^3*d^3-44*a^2*d^4-48*a*b*d^4+11*b^2*d^4-13*a*c*d^4+31*b*c*d^4+47*c^2*d^4+28*a*d^5+39*b*d^5+27*c*d^5-d^6,a^3*b*c^2-28*a^3*d^3-22*a^2*b*d^3-8*a*b^2*d^3+40*b^3*d^3-13*a^2*c*d^3+35*a*b*c*d^3-4*b^2*c*d^3+28*a*c^2*d^3+30*b*c^2*d^3-13*c^3*d^3+16*a^2*d^4+48*a*b*d^4-42*b^2*d^4+10*a*c*d^4-b*c*d^4+37*c^2*d^4-17*a*d^5-15*b*d^5+40*c*d^5+27*d^6,a^4*c^2+17*a^3*d^3+45*a^2*b*d^3+42*a*b^2*d^3-20*b^3*d^3-39*a^2*c*d^3-20*a*b*c*d^3-44*b^2*c*d^3+33*a*c^2*d^3+39*b*c^2*d^3-37*c^3*d^3+39*a^2*d^4+39*a*b*d^4-44*b^2*d^4+8*a*c*d^4-34*b*c*d^4+36*c^2*d^4-47*a*d^5+38*b*d^5-46*c*d^5+23*d^6,b^5*c+24*a^3*d^3+17*a^2*b*d^3-22*a*b^2*d^3-27*b^3*d^3+27*a^2*c*d^3+48*a*b*c*d^3+4*b^2*c*d^3+a*c^2*d^3-21*b*c^2*d^3-14*c^3*d^3+3*a^2*d^4+15*a*b*d^4+41*b^2*d^4-27*a*c*d^4+4*b*c*d^4+3*c^2*d^4-46*a*d^5+28*b*d^5+6*c*d^5+36*d^6,a*b^4*c-29*a^3*d^3+30*a^2*b*d^3+31*a*b^2*d^3+44*b^3*d^3-12*a^2*c*d^3-27*a*b*c*d^3+48*b^2*c*d^3+4*a*c^2*d^3+2*b*c^2*d^3-17*c^3*d^3-7*a^2*d^4+25*a*b*d^4-45*b^2*d^4-17*a*c*d^4-14*b*c*d^4-11*c^2*d^4-45*a*d^5-36*b*d^5-12*c*d^5-44*d^6,a^2*b^3*c-10*a^3*d^3-30*a^2*b*d^3-22*a*b^2*d^3-35*b^3*d^3+37*a^2*c*d^3-35*a*b*c*d^3-12*b^2*c*d^3-16*b*c^2*d^3+49*c^3*d^3+38*a^2*d^4-21*a*b*d^4-20*b^2*d^4-6*a*c*d^4+41*b*c*d^4+49*c^2*d^4+13*a*d^5-38*b*d^5-32*c*d^5-12*d^6,a^3*b^2*c+5*a^2*b*d^3-40*a*b^2*d^3+14*b^3*d^3-4*a^2*c*d^3-13*a*b*c*d^3+47*b^2*c*d^3+28*a*c^2*d^3+15*b*c^2*d^3+47*c^3*d^3-8*a^2*d^4-20*a*b*d^4+3*b^2*d^4+42*a*c*d^4+18*b*c*d^4-23*c^2*d^4-48*a*d^5+12*b*d^5-25*c*d^5-39*d^6,a^4*b*c+29*a^3*d^3+21*a^2*b*d^3-32*a*b^2*d^3+48*b^3*d^3-44*a^2*c*d^3-3*a*b*c*d^3-27*b^2*c*d^3+27*a*c^2*d^3+43*b*c^2*d^3-30*c^3*d^3+4*a^2*d^4+16*a*b*d^4+33*b^2*d^4+37*a*c*d^4-32*b*c*d^4+14*c^2*d^4+50*a*d^5-49*c*d^5-33*d^6,a^5*c-26*a^3*d^3-50*a^2*b*d^3+2*a*b^2*d^3+3*b^3*d^3-15*a^2*c*d^3-32*a*b*c*d^3-4*b^2*c*d^3-13*a*c^2*d^3-13*b*c^2*d^3+3*c^3*d^3+32*a^2*d^4-32*a*b*d^4-47*b^2*d^4-39*a*c*d^4-34*b*c*d^4-9*c^2*d^4-7*a*d^5-22*b*d^5+16*c*d^5+44*d^6,b^6+45*a^3*d^3-42*a^2*b*d^3-35*a*b^2*d^3+13*b^3*d^3+28*a^2*c*d^3-2*a*b*c*d^3-37*b^2*c*d^3-9*a*c^2*d^3+44*b*c^2*d^3-24*c^3*d^3+36*a^2*d^4+42*a*b*d^4-38*b^2*d^4-34*a*c*d^4-46*b*c*d^4+23*c^2*d^4-9*a*d^5-28*b*d^5+37*c*d^5+26*d^6,a*b^5-14*a^3*d^3+38*a^2*b*d^3-37*a*b^2*d^3-33*b^3*d^3-24*a^2*c*d^3+15*a*b*c*d^3+44*b^2*c*d^3-45*a*c^2*d^3+3*b*c^2*d^3-41*c^3*d^3-48*a^2*d^4-36*a*b*d^4+39*b^2*d^4+46*a*c*d^4-3*b*c*d^4+21*c^2*d^4-36*a*d^5-20*b*d^5+24*c*d^5-33*d^6,a^2*b^4-27*a^3*d^3-10*a^2*b*d^3-5*a*b^2*d^3+8*b^3*d^3+21*a^2*c*d^3+31*a*b*c*d^3-44*b^2*c*d^3+41*a*c^2*d^3+17*b*c^2*d^3-8*c^3*d^3+19*a^2*d^4+25*a*b*d^4+b^2*d^4+3*a*c*d^4+2*b*c*d^4-40*c^2*d^4+31*a*d^5-19*b*d^5+35*c*d^5-28*d^6,a^3*b^3-12*a^3*d^3-25*a^2*b*d^3+37*a*b^2*d^3-37*b^3*d^3+46*a^2*c*d^3+43*a*b*c*d^3+b^2*c*d^3-41*a*c^2*d^3-38*b*c^2*d^3-36*c^3*d^3-11*a*b*d^4+20*b^2*d^4-a*c*d^4-26*b*c*d^4+14*c^2*d^4-48*a*d^5+17*b*d^5+9*c*d^5+30*d^6,a^4*b^2+36*a^3*d^3+9*a^2*b*d^3-31*b^3*d^3+50*a^2*c*d^3+41*a*b*c*d^3+40*b^2*c*d^3+48*a*c^2*d^3-41*b*c^2*d^3-17*c^3*d^3+33*a^2*d^4+47*a*b*d^4+22*b^2*d^4+2*a*c*d^4+23*b*c*d^4-47*c^2*d^4+34*a*d^5-15*b*d^5-33*c*d^5-38*d^6,a^5*b-12*a^3*d^3-38*a^2*b*d^3+46*a*b^2*d^3-32*b^3*d^3-41*a^2*c*d^3+14*a*b*c*d^3-34*b^2*c*d^3+7*a*c^2*d^3-6*b*c^2*d^3+31*c^3*d^3+30*a^2*d^4+12*a*b*d^4-17*b^2*d^4-7*a*c*d^4-45*b*c*d^4+10*c^2*d^4+29*a*d^5-28*b*d^5+34*c*d^5-15*d^6,a^6-33*a^3*d^3-45*a^2*b*d^3+19*a*b^2*d^3+39*b^3*d^3-5*a^2*c*d^3-46*a*b*c*d^3+9*b^2*c*d^3+15*a*c^2*d^3-21*b*c^2*d^3+46*c^3*d^3-39*a^2*d^4-9*a*b*d^4+50*b^2*d^4-45*a*c*d^4-39*b*c*d^4-18*c^2*d^4-4*a*d^5-19*b*d^5+12*c*d^5+39*d^6,d^7,c*d^6,b*d^6,a*d^6,c^2*d^5,b*c*d^5,a*c*d^5,b^2*d^5,a*b*d^5,a^2*d^5,c^3*d^4,b*c^2*d^4,a*c^2*d^4,b^2*c*d^4,a*b*c*d^4,a^2*c*d^4,b^3*d^4,a*b^2*d^4,a^2*b*d^4,a^3*d^4; 1729 TestSSresAttribs2tr(M, "AGR@101n3d008s058%3"); 1730 1731 // AGR@101n3d010s010%3, a bit slower... 1732 M = a^2*b^5-50*a*b^6-26*a^6*c+15*a^5*b*c-42*a^4*b^2*c-2*a^3*b^3*c+40*a^2*b^4*c-20*a*b^5*c+11*b^6*c-17*a^5*c^2-4*a^4*b*c^2+13*a^3*b^2*c^2-7*a^2*b^3*c^2+13*a*b^4*c^2-46*b^5*c^2+38*a^4*c^3+32*a^3*b*c^3-49*a^2*b^2*c^3-41*a*b^3*c^3+9*b^4*c^3+17*a^3*c^4-23*a^2*b*c^4+46*a*b^2*c^4+9*b^3*c^4-20*a^2*c^5-34*a*b*c^5-46*b^2*c^5-3*a*c^6+11*b*c^6-22*a^6*d-5*a^5*b*d-21*a^4*b^2*d-43*a^3*b^3*d-29*a^2*b^4*d+43*a*b^5*d-2*b^6*d+24*a^5*c*d-9*a^4*b*c*d+3*a^3*b^2*c*d+20*a^2*b^3*c*d+47*a*b^4*c*d-41*b^5*c*d+11*a^4*c^2*d-14*a^3*b*c^2*d+13*a^2*b^2*c^2*d-19*a*b^3*c^2*d-12*b^4*c^2*d+41*a^3*c^3*d-49*a^2*b*c^3*d-10*a*b^2*c^3*d+19*b^3*c^3*d-13*a^2*c^4*d+10*a*b*c^4*d-49*b^2*c^4*d-3*a*c^5*d-10*b*c^5*d+31*c^6*d-16*a^5*d^2+24*a^4*b*d^2-43*a^3*b^2*d^2+36*a^2*b^3*d^2-36*a^4*c*d^2-36*a^3*b*c*d^2-16*a^2*b^2*c*d^2+35*a*b^3*c*d^2+29*b^4*c*d^2+40*a^3*c^2*d^2-24*a^2*b*c^2*d^2-24*a*b^2*c^2*d^2+7*b^3*c^2*d^2+28*a^2*c^3*d^2+49*a*b*c^3*d^2+49*b^2*c^3*d^2+7*a*c^4*d^2-9*b*c^4*d^2+21*c^5*d^2-28*a^4*d^3+24*a^3*b*d^3-24*a^2*b^2*d^3+23*a*b^3*d^3+24*b^4*d^3+24*a^3*c*d^3-25*a^2*b*c*d^3-9*a*b^2*c*d^3-43*b^3*c*d^3+15*a^2*c^2*d^3+49*a*b*c^2*d^3+24*b^2*c^2*d^3-20*a*c^3*d^3-30*b*c^3*d^3-20*c^4*d^3+13*a^3*d^4+34*a^2*b*d^4-45*a*b^2*d^4+9*b^3*d^4+9*a^2*c*d^4-31*a*b*c*d^4-6*b^2*c*d^4-16*a*c^2*d^4+9*b*c^2*d^4+24*c^3*d^4+38*a^2*d^5-23*a*b*d^5-35*b^2*d^5+22*a*c*d^5-22*b*c*d^5+46*c^2*d^5+12*a*d^6+21*b*d^6-23*c*d^6-2*d^7,a^3*b^4+34*a^6*c+14*a^5*b*c+34*a^4*b^2*c+43*a^3*b^3*c-26*a^2*b^4*c+13*a*b^5*c+10*b^6*c-43*a^5*c^2+50*a^4*b*c^2-23*a^3*b^2*c^2-a^2*b^3*c^2+39*a*b^4*c^2+50*b^5*c^2+16*a^4*c^3+31*a^3*b*c^3-49*a^2*b^2*c^3+26*a*b^3*c^3-b^4*c^3-5*a^3*c^4+3*a^2*b*c^4-26*a*b^2*c^4-b^3*c^4-24*a^2*c^5-39*a*b*c^5+50*b^2*c^5-13*a*c^6+10*b*c^6-39*a^6*d+35*a^5*b*d+44*a^4*b^2*d-39*a^3*b^3*d-26*a^2*b^4*d-47*a*b^5*d-42*b^6*d+34*a^5*c*d-43*a^4*b*c*d-39*a^3*b^2*c*d+41*a^2*b^3*c*d+32*a*b^4*c*d-10*b^5*c*d+43*a^4*c^2*d+12*a^3*b*c^2*d-43*a^2*b^2*c^2*d+23*a*b^3*c^2*d-46*b^4*c^2*d+12*a^3*c^3*d-10*a^2*b*c^3*d+13*a*b^2*c^3*d-15*b^3*c^3*d-a^2*c^4*d+17*a*b*c^4*d-47*b^2*c^4*d+49*a*c^5*d-31*b*c^5*d-22*c^6*d-28*a^5*d^2-39*a^4*b*d^2+33*a^3*b^2*d^2-40*a^2*b^3*d^2+31*a*b^4*d^2+5*b^5*d^2+42*a^4*c*d^2-a^3*b*c*d^2+37*a^2*b^2*c*d^2-13*a*b^3*c*d^2+b^4*c*d^2+35*a^3*c^2*d^2-9*a^2*b*c^2*d^2+46*a*b^2*c^2*d^2-2*b^3*c^2*d^2+15*a^2*c^3*d^2-48*a*b*c^3*d^2+38*b^2*c^3*d^2-37*a*c^4*d^2-40*b*c^4*d^2+25*c^5*d^2+5*a^4*d^3-4*a^3*b*d^3+30*a^2*b^2*d^3-42*a*b^3*d^3+11*b^4*d^3+10*a^3*c*d^3+34*a^2*b*c*d^3-48*a*b^2*c*d^3+17*b^3*c*d^3-33*a^2*c^2*d^3-12*a*b*c^2*d^3-44*b^2*c^2*d^3-6*a*c^3*d^3+6*b*c^3*d^3-45*c^4*d^3+6*a^3*d^4+8*a^2*b*d^4-22*a*b^2*d^4+23*b^3*d^4-22*a^2*c*d^4-38*a*b*c*d^4+44*b^2*c*d^4-13*a*c^2*d^4-50*b*c^2*d^4+30*c^3*d^4-6*a^2*d^5-46*a*b*d^5+17*b^2*d^5-23*a*c*d^5-10*b*c*d^5+32*c^2*d^5-47*a*d^6+2*b*d^6+20*c*d^6-46*d^7,a^4*b^3+30*a*b^6-49*a^6*c+18*a^5*b*c+37*a^4*b^2*c+44*a^3*b^3*c-27*a^2*b^4*c-a*b^5*c-35*b^6*c-20*a^5*c^2+32*a^4*b*c^2+28*a^3*b^2*c^2-13*a^2*b^3*c^2-32*a*b^4*c^2+27*b^5*c^2-4*a^4*c^3+25*a^3*b*c^3+22*a^2*b^2*c^3-23*a*b^3*c^3-47*b^4*c^3+41*a^3*c^4-25*a^2*b*c^4-34*a*b^2*c^4-47*b^3*c^4-33*a^2*c^5-43*a*b*c^5+27*b^2*c^5-31*a*c^6-35*b*c^6-49*a^6*d+30*a^5*b*d-4*a^4*b^2*d+11*a^3*b^3*d-12*a^2*b^4*d-38*a*b^5*d+45*b^6*d+5*a^5*c*d-45*a^4*b*c*d-42*a^3*b^2*c*d-11*a^2*b^3*c*d+21*a*b^4*c*d+18*b^5*c*d-50*a^4*c^2*d-25*a^3*b*c^2*d+35*a^2*b^2*c^2*d-a*b^3*c^2*d+30*b^4*c^2*d+28*a^3*c^3*d-46*a^2*b*c^3*d-4*a*b^2*c^3*d+32*b^3*c^3*d+21*a^2*c^4*d-34*a*b*c^4*d+27*b^2*c^4*d+11*a*c^5*d-45*b*c^5*d+4*c^6*d+2*a^5*d^2-43*a^4*b*d^2-36*a^3*b^2*d^2+14*a^2*b^3*d^2+35*a*b^4*d^2+8*b^5*d^2+34*a^4*c*d^2-12*a^3*b*c*d^2-a^2*b^2*c*d^2-5*a*b^3*c*d^2+43*b^4*c*d^2+45*a^3*c^2*d^2-34*a^2*b*c^2*d^2+26*a*b^2*c^2*d^2+10*b^3*c^2*d^2-19*a^2*c^3*d^2+5*a*b*c^3*d^2-47*b^2*c^3*d^2+40*a*c^4*d^2+8*b*c^4*d^2+30*c^5*d^2+42*a^4*d^3+27*a^3*b*d^3+31*a^2*b^2*d^3-6*a*b^3*d^3+36*b^4*d^3+37*a^2*b*c*d^3+34*a*b^2*c*d^3-13*b^3*c*d^3+a^2*c^2*d^3+29*a*b*c^2*d^3-b^2*c^2*d^3-11*a*c^3*d^3-21*b*c^3*d^3+32*c^4*d^3+9*a^3*d^4-21*a^2*b*d^4+26*a*b^2*d^4+43*b^3*d^4-42*a^2*c*d^4-2*a*b*c*d^4-34*b^2*c*d^4+10*a*c^2*d^4-26*b*c^2*d^4-50*c^3*d^4+23*a^2*d^5+49*a*b*d^5+28*b^2*d^5-48*a*c*d^5-18*b*c*d^5-2*c^2*d^5-2*a*d^6-30*b*d^6+36*c*d^6-21*d^7,a^5*b^2+9*a*b^6+6*a^6*c+34*a^5*b*c-14*a^4*b^2*c-43*a^3*b^3*c-27*a^2*b^4*c+14*a*b^5*c+9*b^6*c-28*a^5*c^2-10*a^4*b*c^2+39*a^3*b^2*c^2-49*a^2*b^3*c^2-38*a*b^4*c^2+45*b^5*c^2+4*a^4*c^3+5*a^3*b*c^3+15*a^2*b^2*c^3-11*a*b^3*c^3-11*b^4*c^3+24*a^3*c^4-32*a^2*b*c^4-2*a*b^2*c^4-11*b^3*c^4+32*a^2*c^5-38*a*b*c^5+45*b^2*c^5-4*a*c^6+9*b*c^6+23*a^6*d-13*a^5*b*d+8*a^4*b^2*d-46*a^3*b^3*d-9*a^2*b^4*d-8*a*b^5*d+17*b^6*d+a^5*c*d+5*a^4*b*c*d-50*a^3*b^2*c*d+22*a^2*b^3*c*d-34*a*b^4*c*d-49*b^5*c*d+44*a^4*c^2*d+41*a^3*b*c^2*d-44*a^2*b^2*c^2*d-49*a*b^3*c^2*d+37*b^4*c^2*d+45*a^3*c^3*d+12*a^2*b*c^3*d-23*a*b^2*c^3*d-32*b^3*c^3*d-14*a^2*c^4*d+5*a*b*c^4*d+48*b^2*c^4*d+5*a*c^5*d-20*b*c^5*d-c^6*d+5*a^5*d^2-45*a^4*b*d^2+42*a^3*b^2*d^2+50*a^2*b^3*d^2-8*a*b^4*d^2-49*b^5*d^2-35*a^4*c*d^2-25*a^3*b*c*d^2-4*a^2*b^2*c*d^2-26*a*b^3*c*d^2-28*b^4*c*d^2+46*a^3*c^2*d^2+22*a^2*b*c^2*d^2+43*a*b^2*c^2*d^2-4*b^3*c^2*d^2-25*a^2*c^3*d^2+31*a*b*c^3*d^2-31*b^2*c^3*d^2-30*a*c^4*d^2-18*b*c^4*d^2-12*c^5*d^2-33*a^4*d^3-48*a^3*b*d^3-36*a^2*b^2*d^3-6*a*b^3*d^3+8*b^4*d^3+3*a^3*c*d^3-43*a^2*b*c*d^3+34*a*b^2*c*d^3+19*b^3*c*d^3+19*a^2*c^2*d^3-49*a*b*c^2*d^3-2*b^2*c^2*d^3+12*a*c^3*d^3-29*b*c^3*d^3-16*c^4*d^3+27*a^3*d^4+22*a^2*b*d^4+22*a*b^2*d^4-12*b^3*d^4+34*a^2*c*d^4+8*a*b*c*d^4+50*b^2*c*d^4+40*a*c^2*d^4+27*b*c^2*d^4-35*c^3*d^4-30*a^2*d^5+24*a*b*d^5+7*b^2*d^5+16*a*c*d^5+17*b*c*d^5-40*c^2*d^5-47*a*d^6-12*b*d^6+16*c*d^6+6*d^7,a^6*b-45*a*b^6-30*a^6*c-5*a^5*b*c-39*a^4*b^2*c-37*a^3*b^3*c+a^2*b^4*c-14*a*b^5*c-37*b^6*c+49*a^5*c^2+28*a^4*b*c^2+7*a^3*b^2*c^2-10*a^2*b^3*c^2+10*a*b^4*c^2+17*b^5*c^2-34*a^4*c^3+24*a^3*b*c^3-36*a^2*b^2*c^3-13*a*b^3*c^3+34*b^4*c^3-20*a^3*c^4-38*a^2*b*c^4+32*a*b^2*c^4+34*b^3*c^4-13*a^2*c^5+44*a*b*c^5+17*b^2*c^5+20*a*c^6-37*b*c^6+10*a^6*d+26*a^5*b*d+15*a^4*b^2*d+23*a^3*b^3*d+16*a^2*b^4*d+48*a*b^5*d-30*b^6*d-9*a^5*c*d-20*a^4*b*c*d+49*a^3*b^2*c*d-48*a^2*b^3*c*d-36*a*b^4*c*d-21*b^5*c*d+9*a^4*c^2*d-24*a^3*b*c^2*d+42*a^2*b^2*c^2*d+26*a*b^3*c^2*d-46*b^4*c^2*d-50*a^3*c^3*d-11*a^2*b*c^3*d-34*a*b^2*c^3*d+32*b^3*c^3*d-16*a^2*c^4*d-25*a*b*c^4*d+6*b^2*c^4*d+18*a*c^5*d-40*b*c^5*d+41*c^6*d-8*a^5*d^2-27*a^4*b*d^2-48*a^3*b^2*d^2-a^2*b^3*d^2+50*a*b^4*d^2+21*b^5*d^2-48*a^4*c*d^2+4*a^3*b*c*d^2-28*a^2*b^2*c*d^2-4*a*b^3*c*d^2+16*b^4*c*d^2+50*a^3*c^2*d^2+40*a^2*b*c^2*d^2+35*a*b^2*c^2*d^2+29*b^3*c^2*d^2-34*a^2*c^3*d^2-21*a*b*c^3*d^2-b^2*c^3*d^2-9*a*c^4*d^2-29*b*c^4*d^2+6*c^5*d^2+16*a^4*d^3-34*a^3*b*d^3+3*a^2*b^2*d^3+21*a*b^3*d^3+39*b^4*d^3+21*a^3*c*d^3-44*a^2*b*c*d^3-16*a*b^2*c*d^3+b^3*c*d^3-38*a^2*c^2*d^3+18*a*b*c^2*d^3+37*b^2*c^2*d^3-46*a*c^3*d^3+25*b*c^3*d^3-50*c^4*d^3-8*a^3*d^4-24*a^2*b*d^4-2*a*b^2*d^4+6*b^3*d^4+9*a^2*c*d^4+12*a*b*c*d^4+33*b^2*c*d^4-44*a*c^2*d^4+23*b*c^2*d^4-4*c^3*d^4-9*a^2*d^5-2*a*b*d^5-14*b^2*d^5+21*a*c*d^5-16*b*c*d^5-19*c^2*d^5+17*a*d^6-20*b*d^6+11*c*d^6-41*d^7,a^7-10*a*b^6-6*a^6*c-48*a^5*b*c-14*a^4*b^2*c-16*a^3*b^3*c-4*a^2*b^4*c+24*a*b^5*c-10*b^6*c-2*a^5*c^2+23*a^3*b^2*c^2+26*a^2*b^3*c^2+22*a*b^4*c^2-50*b^5*c^2+14*a^4*c^3-7*a^3*b*c^3+a^2*b^2*c^3-49*a*b^3*c^3+b^4*c^3-46*a^3*c^4+9*a^2*b*c^4+10*a*b^2*c^4+b^3*c^4+38*a^2*c^5-26*a*b*c^5-50*b^2*c^5+28*a*c^6-10*b*c^6-7*a^6*d+24*a^5*b*d-8*a^4*b^2*d+23*a^3*b^3*d+9*a^2*b^4*d+28*a*b^5*d-23*b^6*d-42*a^4*b*c*d+24*a^3*b^2*c*d-30*a^2*b^3*c*d-42*a*b^4*c*d-43*b^5*c*d-42*a^4*c^2*d+11*a^3*b*c^2*d+9*a^2*b^2*c^2*d-8*a*b^3*c^2*d+4*b^4*c^2*d+10*a^3*c^3*d+43*a^2*b*c^3*d+3*a*b^2*c^3*d-14*b^3*c^3*d-5*a^2*c^4*d+25*a*b*c^4*d-50*b^2*c^4*d-17*a*c^5*d+35*b*c^5*d+47*c^6*d-4*a^5*d^2-43*a^4*b*d^2+35*a^3*b^2*d^2+19*a^2*b^3*d^2+48*a*b^4*d^2+45*b^5*d^2+3*a^4*c*d^2-46*a^3*b*c*d^2+8*a^2*b^2*c*d^2-35*a*b^3*c*d^2-27*b^4*c*d^2-49*a^3*c^2*d^2+37*a^2*b*c^2*d^2-43*a*b^2*c^2*d^2+32*b^3*c^2*d^2+48*a^2*c^3*d^2+9*a*b*c^3*d^2+b^2*c^3*d^2-31*a*c^4*d^2-23*b*c^4*d^2-21*c^5*d^2+34*a^4*d^3+38*a^3*b*d^3+41*a^2*b^2*d^3-24*a*b^3*d^3+28*b^4*d^3+47*a^3*c*d^3-6*a^2*b*c*d^3+27*a*b^2*c*d^3-43*b^3*c*d^3-24*a^2*c^2*d^3-19*a*b*c^2*d^3-50*b^2*c^2*d^3+31*a*c^3*d^3+40*b*c^3*d^3+19*c^4*d^3+4*a^3*d^4-36*a^2*b*d^4+43*a*b^2*d^4+27*b^3*d^4+49*a^2*c*d^4-27*a*b*c*d^4-39*b^2*c*d^4+46*a*c^2*d^4+40*b*c^2*d^4+5*c^3*d^4-12*a^2*d^5-5*a*b*d^5+16*b^2*d^5-26*a*c*d^5-31*b*c*d^5-38*c^2*d^5+17*a*d^6-11*b*d^6-7*c*d^6-39*d^7,b*c*d^6-21*c^2*d^6+36*a*d^7-34*b*d^7-40*c*d^7-11*d^8,a*c*d^6-24*c^2*d^6+5*a*d^7-7*b*d^7+21*c*d^7-43*d^8,b^2*d^6+20*c^2*d^6+6*a*d^7-30*b*d^7+25*c*d^7+4*d^8,a*b*d^6+23*c^2*d^6-43*a*d^7+47*b*d^7+42*c*d^7+29*d^8,a^2*d^6+49*c^2*d^6+6*a*d^7-35*b*d^7+19*c*d^7-11*d^8,c^3*d^5-38*c^2*d^6+47*a*d^7+35*b*d^7+46*c*d^7+21*d^8,b*c^2*d^5+41*c^2*d^6-8*a*d^7+8*b*d^7+46*c*d^7+42*d^8,a*c^2*d^5+44*c^2*d^6+10*a*d^7-36*b*d^7-21*c*d^7+28*d^8,b^2*c*d^5+9*c^2*d^6+35*a*d^7+20*b*d^7+49*c*d^7-47*d^8,a*b*c*d^5+44*c^2*d^6+24*a*d^7-12*b*d^7+24*c*d^7-5*d^8,a^2*c*d^5-9*c^2*d^6-34*a*d^7+27*b*d^7-49*c*d^7+d^8,b^3*d^5+21*c^2*d^6-37*a*d^7-13*b*d^7-48*c*d^7+25*d^8,a*b^2*d^5+4*c^2*d^6-8*a*d^7-42*b*d^7-31*c*d^7+21*d^8,a^2*b*d^5+26*c^2*d^6-47*a*d^7-37*b*d^7+24*c*d^7+6*d^8,a^3*d^5-32*c^2*d^6-31*a*d^7+26*b*d^7-35*c*d^7-39*d^8,c^4*d^4+25*c^2*d^6+35*a*d^7+24*b*d^7+32*c*d^7-46*d^8,b*c^3*d^4+10*c^2*d^6-9*a*d^7-27*b*d^7-17*c*d^7+11*d^8,a*c^3*d^4-41*c^2*d^6+5*a*d^7-18*b*d^7-43*c*d^7-25*d^8,b^2*c^2*d^4-9*c^2*d^6+15*a*d^7-7*b*d^7-27*c*d^7-40*d^8,a*b*c^2*d^4-4*c^2*d^6+25*a*d^7-9*b*d^7-41*c*d^7-11*d^8,a^2*c^2*d^4+15*c^2*d^6-5*a*d^7-34*b*d^7-11*c*d^7-29*d^8,b^3*c*d^4+49*c^2*d^6-24*a*d^7-8*b*d^7+7*c*d^7-46*d^8,a*b^2*c*d^4-20*c^2*d^6-4*a*d^7+32*b*d^7-42*c*d^7-d^8,a^2*b*c*d^4+15*c^2*d^6+31*a*d^7+16*b*d^7-25*c*d^7+29*d^8,a^3*c*d^4-48*c^2*d^6-36*a*d^7-10*b*d^7+4*c*d^7+27*d^8,b^4*d^4+26*c^2*d^6-25*a*d^7-3*b*d^7-45*c*d^7-26*d^8,a*b^3*d^4+c^2*d^6-21*a*d^7-13*b*d^7-20*c*d^7+16*d^8,a^2*b^2*d^4+22*c^2*d^6-27*a*d^7-23*b*d^7-5*c*d^7-27*d^8,a^3*b*d^4+2*c^2*d^6-29*a*d^7-6*b*d^7+26*c*d^7-46*d^8,a^4*d^4-40*c^2*d^6-9*a*d^7-24*b*d^7+2*c*d^7-37*d^8,c^5*d^3+14*c^2*d^6+40*a*d^7+21*b*d^7+50*c*d^7+31*d^8,b*c^4*d^3-21*c^2*d^6-2*a*d^7-9*b*d^7-28*c*d^7+20*d^8,a*c^4*d^3-39*c^2*d^6+38*a*d^7-24*b*d^7-42*c*d^7-30*d^8,b^2*c^3*d^3+19*c^2*d^6-50*a*d^7-33*b*d^7+16*c*d^7-45*d^8,a*b*c^3*d^3-6*c^2*d^6-38*a*d^7+35*b*d^7+32*c*d^7-12*d^8,a^2*c^3*d^3+44*c^2*d^6+35*a*d^7+42*b*d^7-10*c*d^7-48*d^8,b^3*c^2*d^3+33*c^2*d^6-7*a*d^7-41*b*d^7-3*c*d^7-33*d^8,a*b^2*c^2*d^3-21*c^2*d^6-22*a*d^7-23*b*d^7+24*c*d^7+47*d^8,a^2*b*c^2*d^3+c^2*d^6-32*a*d^7-34*b*d^7-42*c*d^7+7*d^8,a^3*c^2*d^3+6*c^2*d^6-31*a*d^7-26*b*d^7+19*c*d^7-49*d^8,b^4*c*d^3+6*c^2*d^6-24*a*d^7+10*b*d^7-18*c*d^7-4*d^8,a*b^3*c*d^3+46*c^2*d^6+41*a*d^7+7*b*d^7+8*c*d^7-28*d^8,a^2*b^2*c*d^3+33*c^2*d^6-15*a*d^7-11*b*d^7+38*c*d^7+14*d^8,a^3*b*c*d^3-29*c^2*d^6-4*a*d^7-32*b*d^7+13*c*d^7-3*d^8,a^4*c*d^3-34*c^2*d^6+5*a*d^7+29*b*d^7-15*c*d^7-48*d^8,b^5*d^3-42*c^2*d^6+33*a*d^7-49*b*d^7+33*c*d^7-43*d^8,a*b^4*d^3+25*c^2*d^6-11*a*d^7-16*b*d^7+32*c*d^7-2*d^8,a^2*b^3*d^3-36*c^2*d^6-47*a*d^7-16*b*d^7+19*c*d^7+9*d^8,a^3*b^2*d^3-30*c^2*d^6-21*a*d^7-6*b*d^7+16*c*d^7-14*d^8,a^4*b*d^3+47*c^2*d^6-16*a*d^7-13*b*d^7+21*c*d^7+30*d^8,a^5*d^3-2*c^2*d^6+40*a*d^7+34*b*d^7+14*c*d^7-50*d^8,c^6*d^2-4*c^2*d^6-41*a*d^7+46*b*d^7+17*c*d^7+19*d^8,b*c^5*d^2-49*c^2*d^6+5*a*d^7-31*b*d^7+30*c*d^7+28*d^8,a*c^5*d^2-12*c^2*d^6-23*a*d^7-39*b*d^7+6*c*d^7-27*d^8,b^2*c^4*d^2-12*c^2*d^6-30*a*d^7+13*b*d^7-42*c*d^7+38*d^8,a*b*c^4*d^2-31*c^2*d^6+5*a*d^7-41*b*d^7-24*c*d^7,a^2*c^4*d^2-c^2*d^6+4*a*d^7+21*b*d^7+19*c*d^7-34*d^8,b^3*c^3*d^2-50*c^2*d^6-11*a*d^7+24*b*d^7+24*c*d^7-44*d^8,a*b^2*c^3*d^2+2*c^2*d^6-42*a*d^7-17*b*d^7-33*c*d^7-10*d^8,a^2*b*c^3*d^2+20*c^2*d^6+29*a*d^7+35*b*d^7-31*c*d^7-35*d^8,a^3*c^3*d^2+35*c^2*d^6-13*a*d^7+20*b*d^7-15*c*d^7-45*d^8,b^4*c^2*d^2+c^2*d^6+36*a*d^7-42*b*d^7+32*c*d^7+16*d^8,a*b^3*c^2*d^2-9*c^2*d^6-43*a*d^7-5*b*d^7-17*c*d^7+50*d^8,a^2*b^2*c^2*d^2-36*c^2*d^6+31*a*d^7+4*b*d^7-26*c*d^7-11*d^8,a^3*b*c^2*d^2+15*c^2*d^6+40*a*d^7-18*b*d^7-31*c*d^7+43*d^8,a^4*c^2*d^2+41*c^2*d^6-49*a*d^7+37*b*d^7+47*c*d^7-48*d^8,b^5*c*d^2-49*c^2*d^6+15*a*d^7+48*b*d^7+22*c*d^7+38*d^8,a*b^4*c*d^2+12*c^2*d^6+16*a*d^7-22*b*d^7-c*d^7+29*d^8,a^2*b^3*c*d^2+31*c^2*d^6+19*a*d^7+45*b*d^7-6*c*d^7+42*d^8,a^3*b^2*c*d^2+29*c^2*d^6-39*a*d^7+25*b*d^7-48*c*d^7-d^8,a^4*b*c*d^2-31*c^2*d^6+24*a*d^7-2*b*d^7+36*c*d^7+37*d^8,a^5*c*d^2+33*c^2*d^6-46*a*d^7-41*b*d^7-29*c*d^7-12*d^8,b^6*d^2-39*c^2*d^6+35*a*d^7-8*b*d^7+35*c*d^7+47*d^8,a*b^5*d^2-38*c^2*d^6-11*a*d^7-37*b*d^7-7*c*d^7-5*d^8,a^2*b^4*d^2+29*c^2*d^6+36*a*d^7-29*b*d^7+20*c*d^7+39*d^8,a^3*b^3*d^2-44*c^2*d^6+43*a*d^7-50*b*d^7-24*c*d^7-16*d^8,a^4*b^2*d^2+20*c^2*d^6+33*a*d^7+6*b*d^7+47*c*d^7+40*d^8,a^5*b*d^2-10*c^2*d^6+25*a*d^7-8*b*d^7-14*c*d^7+16*d^8,a^6*d^2+48*c^2*d^6+14*a*d^7+32*b*d^7+17*c*d^7+13*d^8,c^7*d+38*c^2*d^6-39*a*d^7+22*b*d^7+15*c*d^7-d^8,b*c^6*d+9*c^2*d^6+37*a*d^7+12*b*d^7+27*c*d^7+3*d^8,a*c^6*d-5*c^2*d^6+34*a*d^7+15*b*d^7+2*c*d^7-21*d^8,b^2*c^5*d+35*c^2*d^6+27*a*d^7+13*b*d^7-39*c*d^7+8*d^8,a*b*c^5*d-34*c^2*d^6-18*a*d^7-21*b*d^7-31*c*d^7+46*d^8,a^2*c^5*d-16*c^2*d^6-6*a*d^7-18*b*d^7+3*c*d^7+47*d^8,b^3*c^4*d-46*c^2*d^6+4*a*d^7-38*b*d^7-29*c*d^7-4*d^8,a*b^2*c^4*d-35*c^2*d^6-14*a*d^7-32*b*d^7-40*c*d^7-35*d^8,a^2*b*c^4*d+23*c^2*d^6-44*a*d^7-3*b*d^7+4*c*d^7-4*d^8,a^3*c^4*d+24*c^2*d^6-7*a*d^7-44*b*d^7-16*c*d^7+10*d^8,b^4*c^3*d+43*c^2*d^6+12*a*d^7+43*b*d^7-49*c*d^7-23*d^8,a*b^3*c^3*d+22*c^2*d^6+6*a*d^7+2*b*d^7-9*c*d^7,a^2*b^2*c^3*d+4*c^2*d^6+21*a*d^7-24*b*d^7-26*c*d^7+33*d^8,a^3*b*c^3*d+13*c^2*d^6-18*a*d^7+31*b*d^7-28*c*d^7+2*d^8,a^4*c^3*d+10*c^2*d^6-14*a*d^7+30*b*d^7-40*c*d^7+33*d^8,b^5*c^2*d-35*c^2*d^6-33*a*d^7+7*b*d^7+13*c*d^7+26*d^8,a*b^4*c^2*d-49*c^2*d^6+9*a*d^7+20*b*d^7+11*c*d^7-32*d^8,a^2*b^3*c^2*d+33*c^2*d^6-43*a*d^7-27*b*d^7-31*c*d^7-41*d^8,a^3*b^2*c^2*d-6*c^2*d^6+23*a*d^7+20*b*d^7-8*c*d^7-6*d^8,a^4*b*c^2*d+10*c^2*d^6-24*a*d^7+30*b*d^7+42*c*d^7-23*d^8,a^5*c^2*d+12*c^2*d^6+20*a*d^7+24*b*d^7-9*c*d^7-9*d^8,b^6*c*d-12*c^2*d^6+36*a*d^7+4*b*d^7-12*c*d^7+26*d^8,a*b^5*c*d-19*c^2*d^6-39*a*d^7-26*b*d^7-4*c*d^7+10*d^8,a^2*b^4*c*d+38*c^2*d^6-6*a*d^7+6*b*d^7+41*c*d^7+49*d^8,a^3*b^3*c*d-34*c^2*d^6-42*a*d^7+22*b*d^7-26*c*d^7-13*d^8,a^4*b^2*c*d+14*c^2*d^6+40*a*d^7+39*b*d^7-34*d^8,a^5*b*c*d-8*c^2*d^6+45*a*d^7-35*b*d^7+48*c*d^7+47*d^8,a^6*c*d-6*c^2*d^6-24*a*d^7-2*b*d^7-9*c*d^7+7*d^8,b^7*d+34*c^2*d^6-14*a*d^7+46*b*d^7-50*c*d^7+26*d^8,a*b^6*d+6*c^2*d^6+23*a*d^7-27*b*d^7-25*c*d^7-2*d^8,c^8+43*c^2*d^6+11*b*d^7-39*c*d^7-30*d^8,b*c^7-44*c^2*d^6-4*a*d^7-10*b*d^7+31*c*d^7+42*d^8,a*c^7-6*a*d^7+31*b*d^7+37*c*d^7-41*d^8,b^2*c^6-11*c^2*d^6-35*a*d^7+32*b*d^7-25*c*d^7-21*d^8,a*b*c^6+2*c^2*d^6+43*a*d^7-48*b*d^7-49*c*d^7-19*d^8,a^2*c^6-20*c^2*d^6-11*a*d^7-35*b*d^7-33*c*d^7+28*d^8,b^3*c^5+4*c^2*d^6-7*a*d^7-21*b*d^7-14*c*d^7+48*d^8,a*b^2*c^5+17*c^2*d^6+45*a*d^7-32*b*d^7+29*c*d^7+38*d^8,a^2*b*c^5-13*c^2*d^6+46*a*d^7+4*b*d^7-18*c*d^7+19*d^8,a^3*c^5-23*c^2*d^6-a*d^7-3*b*d^7-15*c*d^7+19*d^8,b^4*c^4-50*c^2*d^6+39*a*d^7+49*b*d^7+47*c*d^7+7*d^8,a*b^3*c^4-33*c^2*d^6+10*a*d^7+32*b*d^7+21*c*d^7-39*d^8,a^2*b^2*c^4+23*c^2*d^6+27*a*d^7-17*b*d^7+29*c*d^7+9*d^8,a^3*b*c^4-47*c^2*d^6-43*a*d^7-47*b*d^7-34*c*d^7-23*d^8,a^4*c^4-6*c^2*d^6+7*a*d^7+38*b*d^7-27*c*d^7-9*d^8,b^5*c^3-47*c^2*d^6+18*a*d^7-44*b*d^7-4*c*d^7-18*d^8,a*b^4*c^3+30*c^2*d^6+36*a*d^7+25*b*d^7+42*c*d^7+d^8,a^2*b^3*c^3+10*c^2*d^6+31*a*d^7+45*b*d^7-44*c*d^7+37*d^8,a^3*b^2*c^3-41*c^2*d^6-15*a*d^7-34*b*d^7-22*c*d^7+28*d^8,a^4*b*c^3+19*c^2*d^6-23*a*d^7+18*b*d^7-13*c*d^7-48*d^8,a^5*c^3+16*c^2*d^6+22*a*d^7-31*b*d^7+33*c*d^7+15*d^8,b^6*c^2-42*c^2*d^6-10*a*d^7-16*b*d^7-46*c*d^7+42*d^8,a*b^5*c^2-23*c^2*d^6+34*a*d^7-37*b*d^7+2*c*d^7+10*d^8,a^2*b^4*c^2-45*c^2*d^6-5*a*d^7+43*b*d^7-18*c*d^7+7*d^8,a^3*b^3*c^2+36*c^2*d^6+19*a*d^7+21*b*d^7+46*c*d^7-24*d^8,a^4*b^2*c^2-17*c^2*d^6+30*a*d^7-39*b*d^7-39*c*d^7-24*d^8,a^5*b*c^2+10*c^2*d^6-24*a*d^7-36*b*d^7-14*c*d^7+26*d^8,a^6*c^2+47*c^2*d^6-41*a*d^7+32*b*d^7+6*c*d^7+42*d^8,b^7*c+44*c^2*d^6-6*a*d^7+5*b*d^7+20*c*d^7+50*d^8,a*b^6*c+29*c^2*d^6-16*a*d^7+45*b*d^7-3*c*d^7+14*d^8,b^8+48*c^2*d^6-40*a*d^7-44*b*d^7-10*c*d^7-23*d^8,a*b^7-32*c^2*d^6-41*a*d^7-11*b*d^7+50*c*d^7+13*d^8,d^9,c*d^8,b*d^8,a*d^8,c^2*d^7; 1733 TestSSresAttribs2tr(M, "AGR@101n3d010s010%3"); 1734 kill AGR; 1735 1736 ring AGR = (101), (a,b,c,d,e,f,g,h), dp; AGR; 1737 // AGR@101n7d005s010%2, medium: <= 2 1738 ideal M = 1739 f*h-g*h,e*h-g*h,d*h-g*h,c*h-g*h,b*h-g*h,a*h-g*h,e*g+48*f*g-49*g*h,d*g+5*f*g-6*g*h,c*g+49*f*g-50*g*h,b*g-7*f*g+6*g*h,a*g-50*f*g+49*g*h,e*f-20*f*g+19*g*h,d*f+40*f*g-41*g*h,c*f-12*f*g+11*g*h,b*f+45*f*g-46*g*h,a*f+4*f*g-5*g*h,d*e-f*g,c*e-30*f*g+29*g*h,b*e-39*f*g+38*g*h,a*e+10*f*g-11*g*h,c*d-41*f*g+40*g*h,b*d-23*f*g+22*g*h,a*d-20*f*g+19*g*h,b*c+17*f*g-18*g*h,a*c+6*f*g-7*g*h,a*b+28*f*g-29*g*h,g^2*h-g*h^2,f^2*g-8*f*g^2+7*g*h^2,g*h^4+50*h^5,g^5+41*h^5,f*g^4-18*h^5,f^5+29*h^5,e^5+6*h^5,d^5-23*h^5,c^5-32*h^5, 1740 b^5+17*h^5,a^5+17*h^5,h^6; 1741 TestSSresAttribs2tr(M, "AGR@101n7d005s010%2"); 1742 kill AGR; 1743 1744 // from Andreas...tooo long!? 1745 1746 ring AGR = (101), (a,b,c,d,e), dp; AGR; 1747 1748 // AGR101n4d007s021%4 1749 ideal M = b^3*c*d-44*a*b*c^2*d-23*b^2*c^2*d-17*a*c^3*d+25*b*c^3*d-28*c^4*d+21*a^3*d^2+28*a^2*b*d^2+45*a*b^2*d^2-45*b^3*d^2+39*a^2*c*d^2+50*a*b*c*d^2-31*b^2*c*d^2+25*a*c^2*d^2-42*b*c^2*d^2-6*c^3*d^2+10*a^2*d^3-18*a*b*d^3-21*b^2*d^3-9*a*c*d^3+37*b*c*d^3-18*c^2*d^3+5*a*d^4+b*d^4-18*c*d^4+23*d^5-5*a^4*e+6*a^3*b*e-21*a^2*b^2*e-28*a*b^3*e+11*b^4*e+19*a^3*c*e+29*a^2*b*c*e-25*a*b^2*c*e-8*b^3*c*e+17*a^2*c^2*e+45*a*b*c^2*e-28*b^2*c^2*e+22*a*c^3*e+33*b*c^3*e+27*c^4*e-50*a^3*d*e+11*a^2*b*d*e-45*a*b^2*d*e-5*b^3*d*e-2*a^2*c*d*e-30*a*b*c*d*e-17*b^2*c*d*e-45*a*c^2*d*e+12*b*c^2*d*e-8*c^3*d*e+12*a^2*d^2*e+a*b*d^2*e-13*b^2*d^2*e-20*a*c*d^2*e+47*b*c*d^2*e-10*c^2*d^2*e+8*a*d^3*e+32*b*d^3*e-8*c*d^3*e+47*d^4*e+43*a^3*e^2+23*a^2*b*e^2+12*a*b^2*e^2+25*b^3*e^2-23*a^2*c*e^2-12*a*b*c*e^2+5*b^2*c*e^2-25*a*c^2*e^2-8*b*c^2*e^2-48*c^3*e^2+22*a^2*d*e^2+27*a*b*d*e^2-21*b^2*d*e^2+35*a*c*d*e^2-5*b*c*d*e^2+14*c^2*d*e^2+3*a*d^2*e^2-35*b*d^2*e^2+24*c*d^2*e^2-12*d^3*e^2-30*a^2*e^3+5*a*b*e^3-29*b^2*e^3-17*a*c*e^3-41*b*c*e^3-41*c^2*e^3-a*d*e^3-41*b*d*e^3+6*c*d*e^3+24*d^2*e^3+38*a*e^4+46*b*e^4+5*c*e^4-48*d*e^4-33*e^5, 1750 a*b^2*c*d-8*a^2*c^2*d+35*a*b*c^2*d-9*b^2*c^2*d+41*a*c^3*d+11*b*c^3*d+36*c^4*d-36*a^3*d^2-11*a^2*b*d^2-45*a*b^2*d^2+20*b^3*d^2-38*a^2*c*d^2-21*a*b*c*d^2-26*b^2*c*d^2+26*a*c^2*d^2+45*b*c^2*d^2+2*c^3*d^2+35*a^2*d^3-15*a*b*d^3-30*b^2*d^3-37*a*c*d^3+3*b*c*d^3+29*c^2*d^3-39*a*d^4-13*b*d^4+42*c*d^4+50*d^5-47*a^4*e+a^3*b*e-10*a^2*b^2*e+10*a*b^3*e-19*b^4*e+47*a^3*c*e+29*a^2*b*c*e+33*a*b^2*c*e-7*b^3*c*e+29*a^2*c^2*e-2*b^2*c^2*e-19*a*c^3*e+16*b*c^3*e+44*c^4*e+47*a^3*d*e-14*a^2*b*d*e+48*a*b^2*d*e-21*b^3*d*e+13*a^2*c*d*e+4*a*b*c*d*e+20*b^2*c*d*e-3*a*c^2*d*e-34*b*c^2*d*e-2*c^3*d*e+10*a^2*d^2*e+38*a*b*d^2*e+18*b^2*d^2*e-a*c*d^2*e+24*b*c*d^2*e-11*c^2*d^2*e+24*a*d^3*e-10*b*d^3*e+15*c*d^3*e-44*d^4*e+6*a^3*e^2-7*a^2*b*e^2+30*a*b^2*e^2+25*b^3*e^2+40*a^2*c*e^2+33*a*b*c*e^2+26*b^2*c*e^2-2*a*c^2*e^2-2*b*c^2*e^2+32*c^3*e^2+31*a^2*d*e^2+50*a*b*d*e^2-5*b^2*d*e^2-43*a*c*d*e^2+37*b*c*d*e^2-16*c^2*d*e^2+39*a*d^2*e^2+15*b*d^2*e^2+35*c*d^2*e^2-47*d^3*e^2+38*a^2*e^3+7*a*b*e^3+16*b^2*e^3+43*a*c*e^3+23*b*c*e^3+9*c^2*e^3+37*a*d*e^3-18*b*d*e^3+32*c*d*e^3-2*d^2*e^3-31*a*e^4+18*b*e^4-35*c*e^4+9*d*e^4-49*e^5, 1751 a^2*b*c*d+7*a^2*c^2*d-15*a*b*c^2*d+20*b^2*c^2*d+8*a*c^3*d-14*b*c^3*d+34*c^4*d+15*a^3*d^2+37*a^2*b*d^2-11*a*b^2*d^2-8*b^3*d^2-15*a^2*c*d^2-22*a*b*c*d^2-30*b^2*c*d^2+23*a*c^2*d^2+34*b*c^2*d^2+41*c^3*d^2-27*a^2*d^3+24*b^2*d^3-15*a*c*d^3+20*b*c*d^3-16*c^2*d^3-31*a*d^4+18*b*d^4-21*c*d^4+19*d^5+20*a^4*e+38*a^3*b*e-7*a^2*b^2*e+8*a*b^3*e-35*b^4*e+30*a^3*c*e-13*a^2*b*c*e+39*a*b^2*c*e-50*b^3*c*e+50*a^2*c^2*e-21*a*b*c^2*e+17*b^2*c^2*e-23*a*c^3*e+32*b*c^3*e-43*c^4*e-39*a^3*d*e+16*a^2*b*d*e+25*a*b^2*d*e-12*b^3*d*e+50*a^2*c*d*e+4*a*b*c*d*e-17*b^2*c*d*e-28*a*c^2*d*e-5*b*c^2*d*e+13*c^3*d*e+23*a^2*d^2*e+17*a*b*d^2*e+14*b^2*d^2*e-2*a*c*d^2*e+3*b*c*d^2*e+20*c^2*d^2*e-14*a*d^3*e+5*b*d^3*e-c*d^3*e+29*d^4*e-42*a^3*e^2-38*a^2*b*e^2-44*a*b^2*e^2-4*b^3*e^2+29*a^2*c*e^2-19*a*b*c*e^2+38*b^2*c*e^2+3*a*c^2*e^2-46*b*c^2*e^2-46*c^3*e^2-44*a^2*d*e^2+16*a*b*d*e^2-38*b^2*d*e^2+12*a*c*d*e^2+45*b*c*d*e^2-48*c^2*d*e^2+34*a*d^2*e^2+32*b*d^2*e^2+37*c*d^2*e^2+34*d^3*e^2+30*a^2*e^3+45*a*b*e^3+8*b^2*e^3+40*a*c*e^3-37*b*c*e^3-16*c^2*e^3-50*a*d*e^3-18*b*d*e^3-9*c*d*e^3-37*a*e^4-22*b*e^4+5*c*e^4+d*e^4+9*e^5, 1752 a^3*c*d-44*a^2*c^2*d-38*a*b*c^2*d-26*b^2*c^2*d-12*a*c^3*d-21*b*c^3*d+43*c^4*d-22*a^3*d^2-23*a^2*b*d^2+32*a*b^2*d^2+45*b^3*d^2-48*a^2*c*d^2-40*a*b*c*d^2+3*b^2*c*d^2+2*a*c^2*d^2-27*b*c^2*d^2-35*c^3*d^2+33*a^2*d^3-11*a*b*d^3-5*b^2*d^3+8*a*c*d^3-42*b*c*d^3+41*c^2*d^3-41*b*d^4+29*c*d^4+5*d^5+32*a^4*e-46*a^3*b*e-46*a^2*b^2*e+19*a*b^3*e-14*b^4*e-24*a^3*c*e+3*a^2*b*c*e-22*a*b^2*c*e+49*b^3*c*e-47*a^2*c^2*e+27*a*b*c^2*e+48*b^2*c^2*e+20*a*c^3*e-3*b*c^3*e-11*c^4*e-21*a^3*d*e+a^2*b*d*e-13*a*b^2*d*e-33*b^3*d*e+13*a^2*c*d*e-3*a*b*c*d*e+15*b^2*c*d*e+35*a*c^2*d*e-20*b*c^2*d*e+45*c^3*d*e-14*a^2*d^2*e+11*a*b*d^2*e-38*b^2*d^2*e+40*a*c*d^2*e-30*b*c*d^2*e+14*c^2*d^2*e-26*a*d^3*e-43*b*d^3*e+38*c*d^3*e-24*d^4*e-10*a^3*e^2-31*a^2*b*e^2+a*b^2*e^2-34*b^3*e^2+5*a^2*c*e^2-12*a*b*c*e^2-6*b^2*c*e^2-30*a*c^2*e^2-b*c^2*e^2+31*c^3*e^2+22*a^2*d*e^2-26*a*b*d*e^2+9*b^2*d*e^2+32*a*c*d*e^2+24*b*c*d*e^2-36*c^2*d*e^2-a*d^2*e^2-14*b*d^2*e^2-24*c*d^2*e^2+7*d^3*e^2+38*a^2*e^3+35*a*b*e^3+16*b^2*e^3+25*a*c*e^3-30*b*c*e^3+30*c^2*e^3-25*a*d*e^3+3*b*d*e^3+40*c*d*e^3+16*d^2*e^3+45*a*e^4+15*b*e^4-12*c*e^4+42*d*e^4+7*e^5, 1753 b^4*d+14*a^2*c^2*d+2*a*b*c^2*d+34*b^2*c^2*d-12*a*c^3*d+20*b*c^3*d-20*c^4*d+4*a^3*d^2-47*a^2*b*d^2-34*a*b^2*d^2-22*b^3*d^2+23*a^2*c*d^2-22*a*b*c*d^2-31*b^2*c*d^2-24*a*c^2*d^2+39*b*c^2*d^2-37*c^3*d^2-39*a^2*d^3-49*a*b*d^3-41*b^2*d^3-44*a*c*d^3+33*b*c*d^3-14*c^2*d^3-49*a*d^4+20*b*d^4+37*c*d^4+34*d^5+50*a^4*e-31*a^3*b*e-18*a^2*b^2*e-16*a*b^3*e+45*b^4*e+32*a^3*c*e+43*a^2*b*c*e-27*a*b^2*c*e+5*b^3*c*e+39*a^2*c^2*e+33*a*b*c^2*e-16*b^2*c^2*e-6*a*c^3*e-35*b*c^3*e-4*c^4*e-19*a^3*d*e+25*a^2*b*d*e-20*a*b^2*d*e+6*b^3*d*e-46*a^2*c*d*e-8*a*b*c*d*e+5*b^2*c*d*e+2*a*c^2*d*e-39*b*c^2*d*e-30*c^3*d*e+50*a^2*d^2*e-3*a*b*d^2*e-22*b^2*d^2*e+42*a*c*d^2*e-9*b*c*d^2*e+17*c^2*d^2*e+33*a*d^3*e+29*b*d^3*e-10*c*d^3*e+5*d^4*e+15*a^3*e^2+12*a^2*b*e^2-12*a*b^2*e^2+17*b^3*e^2+26*a^2*c*e^2+23*a*b*c*e^2+4*b^2*c*e^2-8*a*c^2*e^2+49*b*c^2*e^2-25*c^3*e^2-24*a^2*d*e^2-19*a*b*d*e^2+26*b^2*d*e^2+38*a*c*d*e^2+48*b*c*d*e^2-28*c^2*d*e^2-15*a*d^2*e^2+31*b*d^2*e^2-47*c*d^2*e^2-5*d^3*e^2-28*a^2*e^3+46*a*b*e^3-25*b^2*e^3-25*a*c*e^3-42*b*c*e^3-39*c^2*e^3-22*a*d*e^3+7*b*d*e^3+4*c*d*e^3-9*d^2*e^3+50*a*e^4-39*b*e^4+44*c*e^4+28*d*e^4+36*e^5, 1754 a*b^3*d-32*a^2*c^2*d-43*a*b*c^2*d-38*b^2*c^2*d-33*a*c^3*d-34*b*c^3*d+15*c^4*d-10*a^3*d^2+20*a^2*b*d^2+23*a*b^2*d^2-6*b^3*d^2-46*a^2*c*d^2-29*a*b*c*d^2-20*b^2*c*d^2+17*a*c^2*d^2-42*b*c^2*d^2+27*c^3*d^2-15*a^2*d^3-27*a*b*d^3+43*b^2*d^3-a*c*d^3+45*b*c*d^3+7*c^2*d^3+4*a*d^4-5*b*d^4-13*c*d^4-26*d^5-24*a^4*e-5*a^2*b^2*e-27*a*b^3*e-23*b^4*e+9*a^3*c*e+33*a^2*b*c*e+25*a*b^2*c*e+39*b^3*c*e-30*a^2*c^2*e-33*a*b*c^2*e-37*b^2*c^2*e-13*a*c^3*e+49*b*c^3*e-30*c^4*e+8*a^3*d*e+20*a^2*b*d*e+18*a*b^2*d*e-34*b^3*d*e-19*a^2*c*d*e+39*a*b*c*d*e+21*b^2*c*d*e+12*a*c^2*d*e-15*b*c^2*d*e+39*c^3*d*e+34*a^2*d^2*e+49*a*b*d^2*e-10*b^2*d^2*e-46*a*c*d^2*e+18*b*c*d^2*e-6*c^2*d^2*e+9*a*d^3*e+30*b*d^3*e+20*c*d^3*e+3*d^4*e-15*a^3*e^2-18*a^2*b*e^2+5*a*b^2*e^2+14*b^3*e^2+19*a^2*c*e^2+30*a*b*c*e^2-b^2*c*e^2+33*a*c^2*e^2+41*b*c^2*e^2-7*c^3*e^2+12*a^2*d*e^2-13*a*b*d*e^2-3*b^2*d*e^2-49*a*c*d*e^2-17*b*c*d*e^2+29*c^2*d*e^2-19*a*d^2*e^2-38*b*d^2*e^2-10*c*d^2*e^2+50*d^3*e^2-17*a^2*e^3+47*a*b*e^3-7*b^2*e^3-25*a*c*e^3+29*b*c*e^3-41*c^2*e^3-35*a*d*e^3+b*d*e^3+32*c*d*e^3-15*d^2*e^3+9*a*e^4+22*c*e^4+12*d*e^4+36*e^5, 1755 a^2*b^2*d-a^2*c^2*d-5*a*b*c^2*d+40*b^2*c^2*d+4*a*c^3*d+35*b*c^3*d+42*c^4*d-23*a^3*d^2-34*a^2*b*d^2+4*a*b^2*d^2+27*b^3*d^2+38*a^2*c*d^2-47*a*b*c*d^2+50*b^2*c*d^2+17*a*c^2*d^2+8*c^3*d^2+26*a^2*d^3-32*a*b*d^3+3*b^2*d^3+16*a*c*d^3-47*b*c*d^3-41*c^2*d^3-22*a*d^4-47*b*d^4-17*c*d^4-43*d^5-49*a^4*e+6*a^3*b*e-46*a^2*b^2*e+30*a*b^3*e-21*b^4*e+30*a^3*c*e+17*a^2*b*c*e+39*a*b^2*c*e+37*b^3*c*e+36*a^2*c^2*e+21*a*b*c^2*e-36*b^2*c^2*e-2*a*c^3*e+18*b*c^3*e-49*c^4*e-47*a^3*d*e+35*a^2*b*d*e+10*a*b^2*d*e+22*b^3*d*e-10*a^2*c*d*e-24*a*b*c*d*e-43*b^2*c*d*e-11*a*c^2*d*e+39*b*c^2*d*e+14*c^3*d*e-15*a^2*d^2*e+36*a*b*d^2*e+42*b^2*d^2*e+32*a*c*d^2*e+7*b*c*d^2*e-4*c^2*d^2*e-13*a*d^3*e+39*b*d^3*e+20*c*d^3*e+7*d^4*e+49*a^3*e^2+39*a^2*b*e^2-12*a*b^2*e^2+36*b^3*e^2+12*a^2*c*e^2-45*a*b*c*e^2+47*b^2*c*e^2+16*a*c^2*e^2+21*b*c^2*e^2+2*c^3*e^2+43*a^2*d*e^2+16*a*b*d*e^2+15*b^2*d*e^2+44*a*c*d*e^2+47*b*c*d*e^2+6*c^2*d*e^2+29*a*d^2*e^2-10*b*d^2*e^2-14*c*d^2*e^2+40*d^3*e^2+10*a^2*e^3-2*a*b*e^3-12*b^2*e^3-11*a*c*e^3+4*b*c*e^3+c^2*e^3-41*a*d*e^3-33*b*d*e^3+13*c*d*e^3+32*d^2*e^3-43*a*e^4+42*b*e^4-4*c*e^4-36*d*e^4, 1756 a^3*b*d-15*a^2*c^2*d-32*a*b*c^2*d+24*b^2*c^2*d+48*a*c^3*d+6*b*c^3*d-40*a^3*d^2+34*a^2*b*d^2+29*a*b^2*d^2+18*b^3*d^2-17*a^2*c*d^2+34*a*b*c*d^2+5*b^2*c*d^2-31*a*c^2*d^2-29*b*c^2*d^2-12*c^3*d^2+11*a^2*d^3+8*a*b*d^3+3*b^2*d^3-33*a*c*d^3-34*b*c*d^3-12*c^2*d^3-48*a*d^4+18*b*d^4+41*c*d^4-45*d^5-22*a^4*e+a^3*b*e-25*a^2*b^2*e+3*a*b^3*e+49*b^4*e-27*a^3*c*e-42*a^2*b*c*e+2*a*b^2*c*e+3*b^3*c*e-40*a^2*c^2*e-30*a*b*c^2*e+2*b^2*c^2*e-14*a*c^3*e-6*b*c^3*e+22*c^4*e-16*a^3*d*e+32*a^2*b*d*e-2*a*b^2*d*e-27*b^3*d*e+16*a^2*c*d*e+42*a*b*c*d*e-6*b^2*c*d*e-46*a*c^2*d*e-9*b*c^2*d*e+31*c^3*d*e-23*a^2*d^2*e-a*b*d^2*e+22*b^2*d^2*e+29*a*c*d^2*e+22*b*c*d^2*e-28*c^2*d^2*e-32*a*d^3*e-10*b*d^3*e-10*c*d^3*e+19*d^4*e-41*a^3*e^2+27*a^2*b*e^2+44*a*b^2*e^2-32*b^3*e^2-24*a^2*c*e^2-6*a*b*c*e^2-25*b^2*c*e^2+29*a*c^2*e^2+19*b*c^2*e^2-47*c^3*e^2+20*a^2*d*e^2-3*a*b*d*e^2+43*b^2*d*e^2-14*a*c*d*e^2+2*b*c*d*e^2-37*c^2*d*e^2-24*a*d^2*e^2-19*b*d^2*e^2+30*c*d^2*e^2+29*d^3*e^2-a^2*e^3-6*a*b*e^3-18*b^2*e^3-48*a*c*e^3+13*b*c*e^3+40*c^2*e^3-48*a*d*e^3-45*b*d*e^3-23*c*d*e^3-6*d^2*e^3+4*a*e^4+12*b*e^4+36*c*e^4+32*d*e^4-20*e^5, 1757 a^4*d+17*a^2*c^2*d-6*a*b*c^2*d-16*b^2*c^2*d-8*a*c^3*d+12*b*c^3*d+31*c^4*d-2*a^3*d^2+45*a^2*b*d^2+29*a*b^2*d^2-47*b^3*d^2+17*a^2*c*d^2-28*a*b*c*d^2-12*b^2*c*d^2-49*a*c^2*d^2-34*b*c^2*d^2-49*c^3*d^2-13*a^2*d^3+12*a*b*d^3-50*b^2*d^3-27*a*c*d^3+17*b*c*d^3+26*c^2*d^3-40*a*d^4+37*b*d^4+31*c*d^4+42*d^5-3*a^4*e+40*a^3*b*e+39*a^2*b^2*e-35*a*b^3*e+2*b^4*e-47*a^3*c*e-45*a^2*b*c*e-24*a*b^2*c*e-20*b^3*c*e+a^2*c^2*e-3*a*b*c^2*e+8*b^2*c^2*e-42*a*c^3*e-49*b*c^3*e-49*c^4*e+42*a^3*d*e+25*a^2*b*d*e+45*a*b^2*d*e+35*b^3*d*e+43*a^2*c*d*e-18*a*b*c*d*e+24*b^2*c*d*e-2*a*c^2*d*e-43*b*c^2*d*e+16*c^3*d*e-44*a^2*d^2*e+31*a*b*d^2*e+17*b^2*d^2*e-36*a*c*d^2*e+25*b*c*d^2*e-20*c^2*d^2*e+17*a*d^3*e-39*b*d^3*e-37*c*d^3*e+10*d^4*e-30*a^3*e^2+34*a^2*b*e^2-43*a*b^2*e^2-2*b^3*e^2-48*a^2*c*e^2+32*a*b*c*e^2+47*b^2*c*e^2+34*a*c^2*e^2-32*b*c^2*e^2+4*c^3*e^2-26*a^2*d*e^2+22*a*b*d*e^2+23*b^2*d*e^2-37*a*c*d*e^2+26*b*c*d*e^2-33*c^2*d*e^2-5*a*d^2*e^2+15*b*d^2*e^2+19*c*d^2*e^2-31*d^3*e^2+42*a^2*e^3+27*a*b*e^3+30*b^2*e^3+22*a*c*e^3-49*b*c*e^3-19*c^2*e^3+42*a*d*e^3+5*b*d*e^3+32*c*d*e^3+9*d^2*e^3-17*a*e^4-46*b*e^4+23*c*e^4-32*d*e^4-2*e^5, 1758 c^5+40*a^2*c^2*d+34*a*b*c^2*d-16*b^2*c^2*d+9*a*c^3*d-13*b*c^3*d+30*c^4*d+18*a^3*d^2+27*a^2*b*d^2+37*a*b^2*d^2-30*b^3*d^2-38*a^2*c*d^2-40*a*b*c*d^2-10*b^2*c*d^2-28*a*c^2*d^2-26*b*c^2*d^2+15*c^3*d^2-7*a^2*d^3+2*a*b*d^3+28*b^2*d^3+27*a*c*d^3+11*b*c*d^3-9*c^2*d^3-18*a*d^4+39*b*d^4+8*c*d^4+20*d^5+34*a^4*e+27*a^3*b*e+10*a^2*b^2*e-10*a*b^3*e+15*b^4*e+a^3*c*e+16*a^2*b*c*e+47*a*b^2*c*e-50*b^3*c*e-45*a^2*c^2*e-47*a*b*c^2*e-38*b^2*c^2*e+49*a*c^3*e+11*b*c^3*e-8*c^4*e-24*a^3*d*e+41*a^2*b*d*e+31*a*b^2*d*e-31*b^3*d*e-44*a^2*c*d*e-a*b*c*d*e-15*b^2*c*d*e-27*a*c^2*d*e-50*b*c^2*d*e+29*c^3*d*e+30*a^2*d^2*e+41*a*b*d^2*e-31*b^2*d^2*e-40*a*c*d^2*e+14*b*c*d^2*e-18*c^2*d^2*e+4*a*d^3*e-27*b*d^3*e-36*c*d^3*e-26*d^4*e-2*a^3*e^2+39*a^2*b*e^2-17*a*b^2*e^2-b^3*e^2+24*a^2*c*e^2-6*a*b*c*e^2-12*b^2*c*e^2+38*a*c^2*e^2+6*b*c^2*e^2+38*c^3*e^2+15*a^2*d*e^2-2*a*b*d*e^2-22*b^2*d*e^2+30*a*c*d*e^2+50*b*c*d*e^2-37*c^2*d*e^2+2*a*d^2*e^2+27*b*d^2*e^2+2*c*d^2*e^2+19*d^3*e^2+48*a^2*e^3+24*a*b*e^3+49*b^2*e^3-35*a*c*e^3+49*b*c*e^3+2*c^2*e^3+20*a*d*e^3+34*b*d*e^3-50*c*d*e^3-41*d^2*e^3+48*a*e^4-24*b*e^4-14*c*e^4+32*d*e^4-11*e^5, 1759 b*c^4+9*a^2*c^2*d-47*a*b*c^2*d-29*b^2*c^2*d+24*a*c^3*d-19*b*c^3*d-25*c^4*d+50*a^3*d^2-6*a^2*b*d^2-32*a*b^2*d^2-43*b^3*d^2+42*a^2*c*d^2-16*a*b*c*d^2-40*b^2*c*d^2+3*a*c^2*d^2+9*b*c^2*d^2+34*c^3*d^2-48*a^2*d^3-8*a*b*d^3-22*b^2*d^3+42*a*c*d^3+25*b*c*d^3-31*c^2*d^3-12*a*d^4+25*b*d^4+c*d^4+13*d^5-26*a^4*e+2*a^3*b*e-37*a^2*b^2*e+23*a*b^3*e+25*b^4*e+43*a^3*c*e-10*a^2*b*c*e+16*a*b^2*c*e-24*b^3*c*e+43*a^2*c^2*e-25*a*b*c^2*e+39*b^2*c^2*e+31*a*c^3*e-21*b*c^3*e+16*c^4*e+17*a^3*d*e-33*a^2*b*d*e+34*a*b^2*d*e-16*b^3*d*e+49*a^2*c*d*e+10*a*b*c*d*e-14*b^2*c*d*e+6*a*c^2*d*e+32*b*c^2*d*e-25*c^3*d*e-16*a^2*d^2*e-26*a*b*d^2*e+36*b^2*d^2*e+41*a*c*d^2*e-43*b*c*d^2*e-44*c^2*d^2*e+24*a*d^3*e+12*b*d^3*e-40*c*d^3*e+46*d^4*e-18*a^3*e^2+36*a^2*b*e^2-49*a*b^2*e^2+47*b^3*e^2-30*a^2*c*e^2+11*a*b*c*e^2-17*b^2*c*e^2-19*a*c^2*e^2-33*b*c^2*e^2+4*c^3*e^2-14*a^2*d*e^2-13*a*b*d*e^2-4*b^2*d*e^2-a*c*d*e^2+22*b*c*d*e^2-41*c^2*d*e^2+50*a*d^2*e^2+24*b*d^2*e^2-29*c*d^2*e^2-9*d^3*e^2+10*a^2*e^3+44*a*b*e^3+11*b^2*e^3+25*a*c*e^3+31*b*c*e^3+22*c^2*e^3+a*d*e^3-6*c*d*e^3+26*d^2*e^3-40*a*e^4+31*b*e^4-50*c*e^4+9*d*e^4+39*e^5, 1760 a*c^4-47*a^2*c^2*d+40*a*b*c^2*d-8*b^2*c^2*d+3*a*c^3*d-3*b*c^3*d+38*c^4*d-13*a^3*d^2+3*a^2*b*d^2+19*a*b^2*d^2+24*b^3*d^2-27*a^2*c*d^2-12*a*b*c*d^2-45*b^2*c*d^2+28*a*c^2*d^2+35*b*c^2*d^2-28*c^3*d^2+7*a^2*d^3+3*a*b*d^3-34*b^2*d^3+15*a*c*d^3+36*b*c*d^3-18*c^2*d^3-49*a*d^4+44*b*d^4+c*d^4-10*d^5+31*a^4*e-18*a^3*b*e+7*a^2*b^2*e+38*a*b^3*e+37*b^4*e+18*a^3*c*e-50*a^2*b*c*e+12*a*b^2*c*e+43*b^3*c*e+33*a^2*c^2*e+13*a*b*c^2*e+13*b^2*c^2*e-4*a*c^3*e+13*b*c^3*e+20*c^4*e-32*a^3*d*e-36*a^2*b*d*e+47*a*b^2*d*e+43*b^3*d*e-13*a^2*c*d*e-27*a*b*c*d*e+7*b^2*c*d*e-40*a*c^2*d*e-30*b*c^2*d*e+21*c^3*d*e-18*a^2*d^2*e-32*a*b*d^2*e-20*b^2*d^2*e-47*a*c*d^2*e+34*b*c*d^2*e-3*c^2*d^2*e-22*a*d^3*e-29*b*d^3*e-47*c*d^3*e-33*d^4*e-3*a^3*e^2+46*a^2*b*e^2-42*a*b^2*e^2+6*b^3*e^2+16*a^2*c*e^2-9*a*b*c*e^2-35*b^2*c*e^2-24*b*c^2*e^2-5*c^3*e^2+18*a^2*d*e^2+43*a*b*d*e^2-43*b^2*d*e^2+6*a*c*d*e^2+8*b*c*d*e^2-33*c^2*d*e^2-26*a*d^2*e^2+31*b*d^2*e^2-29*c*d^2*e^2+d^3*e^2+45*a^2*e^3+45*a*b*e^3-31*b^2*e^3-26*a*c*e^3+35*b*c*e^3+30*c^2*e^3-33*a*d*e^3-4*b*d*e^3+34*c*d*e^3+21*d^2*e^3+41*a*e^4-14*b*e^4-32*c*e^4-19*d*e^4+29*e^5, 1761 b^2*c^3+10*a^2*c^2*d+20*a*b*c^2*d+36*b^2*c^2*d-7*a*c^3*d+13*b*c^3*d+42*c^4*d-6*a^3*d^2+13*a^2*b*d^2+31*a*b^2*d^2-29*b^3*d^2+44*a^2*c*d^2-20*a*b*c*d^2+27*b^2*c*d^2+17*a*c^2*d^2-7*b*c^2*d^2-18*c^3*d^2-44*a^2*d^3-35*a*b*d^3-11*b^2*d^3-28*a*c*d^3+b*c*d^3+22*c^2*d^3-13*a*d^4-32*b*d^4-33*c*d^4-48*d^5-16*a^4*e+7*a^3*b*e-40*a^2*b^2*e-47*a*b^3*e+20*b^4*e-41*a^3*c*e+50*a^2*b*c*e-35*a*b^2*c*e+44*b^3*c*e-43*a^2*c^2*e+15*a*b*c^2*e-33*b^2*c^2*e-38*a*c^3*e-16*b*c^3*e+11*c^4*e+46*a^3*d*e+32*a^2*b*d*e+3*a*b^2*d*e+39*b^3*d*e-32*a^2*c*d*e-19*a*b*c*d*e+23*b^2*c*d*e-2*a*c^2*d*e-44*b*c^2*d*e-44*c^3*d*e+18*a^2*d^2*e+31*a*b*d^2*e+16*b^2*d^2*e+a*c*d^2*e+45*b*c*d^2*e-18*c^2*d^2*e+22*a*d^3*e+16*b*d^3*e+2*c*d^3*e+48*d^4*e-32*a^3*e^2+49*a^2*b*e^2-3*a*b^2*e^2+30*b^3*e^2+31*a^2*c*e^2+28*a*b*c*e^2-4*b^2*c*e^2+7*a*c^2*e^2+48*b*c^2*e^2+40*c^3*e^2-a^2*d*e^2+19*a*b*d*e^2+40*b^2*d*e^2-3*a*c*d*e^2+9*b*c*d*e^2+21*c^2*d*e^2+28*a*d^2*e^2+49*b*d^2*e^2+19*c*d^2*e^2+41*d^3*e^2-30*a^2*e^3-30*a*b*e^3+5*b^2*e^3-2*a*c*e^3+17*b*c*e^3-16*c^2*e^3+42*b*d*e^3-22*c*d*e^3+34*d^2*e^3+20*a*e^4+42*b*e^4+8*c*e^4+36*d*e^4-25*e^5, 1762 a*b*c^3-48*a^2*c^2*d-19*a*b*c^2*d+46*b^2*c^2*d-49*a*c^3*d-43*b*c^3*d+c^4*d-12*a^3*d^2+28*a^2*b*d^2+11*a*b^2*d^2+13*b^3*d^2+36*a^2*c*d^2+20*a*b*c*d^2+8*b^2*c*d^2-5*a*c^2*d^2+44*b*c^2*d^2-50*c^3*d^2+34*a^2*d^3+a*b*d^3-25*b^2*d^3+5*a*c*d^3-47*b*c*d^3-4*c^2*d^3-33*a*d^4-29*b*d^4+34*c*d^4+d^5-15*a^4*e+50*a^3*b*e+14*a^2*b^2*e+15*a*b^3*e+34*b^4*e+9*a^3*c*e+38*a^2*b*c*e+12*a*b^2*c*e+21*b^3*c*e+18*a^2*c^2*e+37*a*b*c^2*e-16*b^2*c^2*e+13*a*c^3*e+47*b*c^3*e-41*c^4*e-29*a^3*d*e-45*a^2*b*d*e+3*a*b^2*d*e+44*b^3*d*e-31*a^2*c*d*e-8*a*b*c*d*e-5*b^2*c*d*e-22*a*c^2*d*e-6*b*c^2*d*e+3*c^3*d*e-43*a^2*d^2*e-45*a*b*d^2*e-24*b^2*d^2*e+15*a*c*d^2*e+15*b*c*d^2*e+7*c^2*d^2*e-17*a*d^3*e-8*b*d^3*e-31*c*d^3*e+19*d^4*e-41*a^3*e^2-25*a^2*b*e^2-11*a*b^2*e^2-4*b^3*e^2-25*a^2*c*e^2-32*a*b*c*e^2-42*b^2*c*e^2-46*a*c^2*e^2-41*b*c^2*e^2-36*c^3*e^2+40*a^2*d*e^2-43*a*b*d*e^2+35*b^2*d*e^2+2*a*c*d*e^2-28*b*c*d*e^2-43*c^2*d*e^2+21*a*d^2*e^2+8*b*d^2*e^2-42*c*d^2*e^2+50*d^3*e^2+48*a^2*e^3-25*a*b*e^3+22*b^2*e^3-3*a*c*e^3-42*b*c*e^3+22*c^2*e^3-5*a*d*e^3-35*b*d*e^3+36*c*d*e^3-34*d^2*e^3+14*a*e^4+34*b*e^4+23*c*e^4-35*d*e^4+46*e^5, 1763 a^2*c^3-17*a^2*c^2*d-7*a*b*c^2*d+15*b^2*c^2*d+35*a*c^3*d-36*b*c^3*d-19*c^4*d+20*a^3*d^2-39*a^2*b*d^2-3*a*b^2*d^2-2*b^3*d^2+8*a^2*c*d^2+13*a*b*c*d^2-20*b^2*c*d^2+6*a*c^2*d^2-48*b*c^2*d^2-21*c^3*d^2+46*a^2*d^3+39*a*b*d^3+32*b^2*d^3-2*a*c*d^3+47*b*c*d^3+16*c^2*d^3+20*a*d^4-36*b*d^4-12*c*d^4+28*d^5+24*a^4*e+17*a^3*b*e-21*a^2*b^2*e+31*a*b^3*e+24*b^4*e-45*a^3*c*e+34*a^2*b*c*e+3*a*b^2*c*e+34*b^3*c*e+39*a^2*c^2*e+12*a*b*c^2*e+18*b^2*c^2*e+19*a*c^3*e-13*b*c^3*e+7*c^4*e+16*a^3*d*e-4*a^2*b*d*e+35*a*b^2*d*e+20*b^3*d*e+38*a^2*c*d*e-41*a*b*c*d*e+49*b^2*c*d*e+7*a*c^2*d*e+39*b*c^2*d*e+15*c^3*d*e+32*a^2*d^2*e+35*a*b*d^2*e-36*b^2*d^2*e+11*a*c*d^2*e+11*b*c*d^2*e-26*c^2*d^2*e+2*a*d^3*e-30*b*d^3*e-2*c*d^3*e+5*d^4*e-2*a^3*e^2-45*a^2*b*e^2-10*a*b^2*e^2-42*b^3*e^2+13*a^2*c*e^2+38*a*b*c*e^2+22*b^2*c*e^2+42*a*c^2*e^2+16*b*c^2*e^2+40*c^3*e^2-19*a^2*d*e^2-35*a*b*d*e^2-24*b^2*d*e^2+33*a*c*d*e^2-48*b*c*d*e^2-6*a*d^2*e^2+2*b*d^2*e^2-31*c*d^2*e^2-5*d^3*e^2+45*a^2*e^3+17*a*b*e^3+50*b^2*e^3-18*a*c*e^3+3*b*c*e^3+32*c^2*e^3+34*a*d*e^3-39*b*d*e^3-35*c*d*e^3+22*d^2*e^3-40*a*e^4+43*b*e^4+48*c*e^4-42*d*e^4+8*e^5, 1764 b^3*c^2+2*a^2*c^2*d-42*a*b*c^2*d-42*b^2*c^2*d+22*a*c^3*d-28*b*c^3*d-24*c^4*d-24*a^3*d^2+40*a^2*b*d^2-7*a*b^2*d^2+31*b^3*d^2+13*a^2*c*d^2+33*a*b*c*d^2+6*b^2*c*d^2+40*a*c^2*d^2+37*b*c^2*d^2+40*c^3*d^2-12*a^2*d^3+26*a*b*d^3+23*b^2*d^3+44*a*c*d^3+13*b*c*d^3-24*c^2*d^3+31*a*d^4+44*b*d^4+32*c*d^4+48*d^5+42*a^4*e+2*a^3*b*e-25*a^2*b^2*e-27*a*b^3*e-21*b^4*e+44*a^3*c*e+50*a^2*b*c*e+42*a*b^2*c*e+28*b^3*c*e+28*a^2*c^2*e+20*a*b*c^2*e+11*b^2*c^2*e-25*a*c^3*e+35*b*c^3*e+11*c^4*e+13*a^3*d*e+13*a^2*b*d*e-33*a*b^2*d*e+26*b^3*d*e+10*a^2*c*d*e-47*a*b*c*d*e+44*b^2*c*d*e-50*a*c^2*d*e+6*b*c^2*d*e+38*c^3*d*e-43*a^2*d^2*e-43*a*b*d^2*e+50*b^2*d^2*e-36*a*c*d^2*e+39*b*c*d^2*e+4*c^2*d^2*e+26*a*d^3*e+6*b*d^3*e-30*c*d^3*e-21*d^4*e+16*a^3*e^2-19*a^2*b*e^2+43*a*b^2*e^2-b^3*e^2-9*a^2*c*e^2-3*a*b*c*e^2-44*b^2*c*e^2-34*a*c^2*e^2-24*b*c^2*e^2+15*c^3*e^2+47*a^2*d*e^2-45*a*b*d*e^2-22*b^2*d*e^2-21*a*c*d*e^2+36*b*c*d*e^2+c^2*d*e^2-13*a*d^2*e^2+47*b*d^2*e^2-12*c*d^2*e^2+16*d^3*e^2-30*a^2*e^3-49*a*b*e^3+40*b^2*e^3+46*a*c*e^3-25*b*c*e^3-38*c^2*e^3-30*a*d*e^3-27*b*d*e^3+47*c*d*e^3+37*d^2*e^3+49*a*e^4+6*b*e^4-6*c*e^4+43*d*e^4+5*e^5, 1765 a*b^2*c^2-9*a^2*c^2*d+49*a*b*c^2*d+17*b^2*c^2*d-45*a*c^3*d+27*b*c^3*d-8*c^4*d-25*a^3*d^2-23*a^2*b*d^2+47*a*b^2*d^2+8*b^3*d^2+20*a^2*c*d^2+37*a*b*c*d^2+28*b^2*c*d^2+8*a*c^2*d^2+36*b*c^2*d^2+34*c^3*d^2+37*a^2*d^3+23*a*b*d^3+11*b^2*d^3-46*a*c*d^3+45*b*c*d^3-16*c^2*d^3-27*a*d^4-39*b*d^4+31*c*d^4-24*d^5+42*a^4*e-30*a^3*b*e+12*a^2*b^2*e-18*a*b^3*e+8*b^4*e-33*a^3*c*e+21*a^2*b*c*e-9*a*b^2*c*e+10*b^3*c*e+11*a^2*c^2*e-33*a*b*c^2*e-27*b^2*c^2*e+47*a*c^3*e-35*b*c^3*e+15*c^4*e-19*a^3*d*e+20*a^2*b*d*e+41*a*b^2*d*e+39*b^3*d*e+24*a^2*c*d*e-12*a*b*c*d*e-16*b^2*c*d*e+38*a*c^2*d*e-43*b*c^2*d*e+39*c^3*d*e-14*a^2*d^2*e+39*a*b*d^2*e+24*b^2*d^2*e-35*a*c*d^2*e-8*b*c*d^2*e-26*c^2*d^2*e-5*a*d^3*e+34*b*d^3*e+16*c*d^3*e+35*d^4*e-a^3*e^2+44*a^2*b*e^2+33*a*b^2*e^2+41*b^3*e^2+26*a^2*c*e^2-6*a*b*c*e^2-15*b^2*c*e^2-46*a*c^2*e^2-37*b*c^2*e^2-49*c^3*e^2-6*a^2*d*e^2+20*a*b*d*e^2-7*b^2*d*e^2+16*a*c*d*e^2+49*b*c*d*e^2-23*c^2*d*e^2+37*a*d^2*e^2+31*b*d^2*e^2+17*c*d^2*e^2-39*d^3*e^2-46*a^2*e^3-17*a*b*e^3+46*b^2*e^3-31*a*c*e^3+39*b*c*e^3-13*c^2*e^3+40*a*d*e^3+18*b*d*e^3+3*c*d*e^3-6*d^2*e^3-35*a*e^4+22*b*e^4-47*c*e^4-4*d*e^4+35*e^5, 1766 a^2*b*c^2+25*a^2*c^2*d-27*a*b*c^2*d+43*b^2*c^2*d+3*a*c^3*d+35*b*c^3*d+39*c^4*d+12*a^3*d^2-39*a^2*b*d^2-38*a*b^2*d^2+8*b^3*d^2+14*a^2*c*d^2+42*a*b*c*d^2-16*b^2*c*d^2+32*a*c^2*d^2-26*b*c^2*d^2+31*c^3*d^2-34*a^2*d^3-4*a*b*d^3+40*b^2*d^3+34*a*c*d^3-31*b*c*d^3+11*c^2*d^3+9*a*d^4+27*b*d^4+19*c*d^4-44*d^5-45*a^4*e+43*a^3*b*e-36*a^2*b^2*e+23*a*b^3*e-14*b^4*e-2*a^3*c*e+20*a^2*b*c*e-34*a*b^2*c*e+26*b^3*c*e+2*a^2*c^2*e-32*a*b*c^2*e+35*b^2*c^2*e-44*a*c^3*e-47*b*c^3*e-6*c^4*e+4*a^3*d*e+34*a^2*b*d*e-38*a*b^2*d*e-21*b^3*d*e+45*a^2*c*d*e-25*a*b*c*d*e+30*b^2*c*d*e+43*a*c^2*d*e-2*b*c^2*d*e+17*c^3*d*e+30*a^2*d^2*e+48*a*b*d^2*e+5*b^2*d^2*e+31*a*c*d^2*e+46*b*c*d^2*e+42*c^2*d^2*e-39*a*d^3*e-30*b*d^3*e+34*c*d^3*e+37*d^4*e+45*a^3*e^2-37*a^2*b*e^2+16*a*b^2*e^2-12*b^3*e^2+21*a^2*c*e^2-36*a*b*c*e^2+45*b^2*c*e^2-39*a*c^2*e^2+8*c^3*e^2-47*a^2*d*e^2+38*a*b*d*e^2+48*b^2*d*e^2-30*a*c*d*e^2-40*b*c*d*e^2+34*c^2*d*e^2+42*a*d^2*e^2-38*b*d^2*e^2+24*c*d^2*e^2+37*d^3*e^2-26*a^2*e^3-50*a*b*e^3+10*b^2*e^3-29*a*c*e^3-48*b*c*e^3+8*c^2*e^3+26*a*d*e^3-26*b*d*e^3-44*c*d*e^3+30*d^2*e^3-31*a*e^4-21*b*e^4-44*c*e^4-17*d*e^4+26*e^5, 1767 a^3*c^2+32*a^2*c^2*d+18*a*b*c^2*d+26*b^2*c^2*d-34*a*c^3*d+29*b*c^3*d+6*c^4*d-46*a^3*d^2-37*a^2*b*d^2-9*a*b^2*d^2+13*b^3*d^2-46*a^2*c*d^2-25*a*b*c*d^2-19*b^2*c*d^2-36*a*c^2*d^2-28*b*c^2*d^2+c^3*d^2-16*a^2*d^3-32*a*b*d^3-39*b^2*d^3-a*c*d^3-44*b*c*d^3-24*c^2*d^3+44*a*d^4-18*b*d^4-11*c*d^4+31*d^5-37*a^4*e+50*a^3*b*e-3*a^2*b^2*e+40*a*b^3*e-19*b^4*e+31*a^3*c*e+49*a^2*b*c*e+14*a*b^2*c*e+22*b^3*c*e-27*a^2*c^2*e-46*a*b*c^2*e+31*b^2*c^2*e+22*a*c^3*e+27*b*c^3*e+25*c^4*e+10*a^3*d*e-21*a^2*b*d*e-13*a*b^2*d*e-46*b^3*d*e-34*a^2*c*d*e+24*a*b*c*d*e-38*b^2*c*d*e-14*a*c^2*d*e+50*b*c^2*d*e+28*c^3*d*e+44*a^2*d^2*e+23*a*b*d^2*e-38*b^2*d^2*e-4*a*c*d^2*e-34*b*c*d^2*e-21*c^2*d^2*e+9*a*d^3*e-14*b*d^3*e-19*c*d^3*e+14*d^4*e+31*a^3*e^2-33*a^2*b*e^2-39*a*b^2*e^2+9*b^3*e^2+7*a^2*c*e^2+13*a*b*c*e^2-12*b^2*c*e^2+24*a*c^2*e^2+18*b*c^2*e^2+19*c^3*e^2+24*a^2*d*e^2-24*a*b*d*e^2-47*b^2*d*e^2-46*a*c*d*e^2+31*b*c*d*e^2+31*c^2*d*e^2-9*a*d^2*e^2+6*b*d^2*e^2+46*c*d^2*e^2+23*d^3*e^2-37*a^2*e^3+14*a*b*e^3-40*b^2*e^3+14*a*c*e^3-46*b*c*e^3-42*c^2*e^3+32*a*d*e^3+5*b*d*e^3-4*c*d*e^3-16*d^2*e^3-4*a*e^4+36*b*e^4+38*c*e^4+30*d*e^4-18*e^5, 1768 b^4*c+25*a^2*c^2*d+37*a*b*c^2*d+12*b^2*c^2*d-31*b*c^3*d+40*c^4*d-49*a^3*d^2+8*a^2*b*d^2+36*a*b^2*d^2+48*b^3*d^2-15*a^2*c*d^2+20*a*b*c*d^2-13*b^2*c*d^2-2*a*c^2*d^2+11*b*c^2*d^2+46*c^3*d^2+49*a^2*d^3-3*a*b*d^3-31*b^2*d^3-11*a*c*d^3+4*b*c*d^3+7*c^2*d^3-27*b*d^4+c*d^4+43*d^5+41*a^4*e-28*a^3*b*e+37*a^2*b^2*e-18*a*b^3*e+20*b^4*e-3*a^3*c*e+42*a^2*b*c*e-26*a*b^2*c*e-36*b^3*c*e-32*a^2*c^2*e+33*a*b*c^2*e-18*b^2*c^2*e-45*a*c^3*e+22*b*c^3*e+22*c^4*e+28*a^3*d*e-17*a^2*b*d*e-37*a*b^2*d*e-11*b^3*d*e+44*a^2*c*d*e-21*a*b*c*d*e+27*b^2*c*d*e-16*a*c^2*d*e+45*b*c^2*d*e+37*c^3*d*e+13*a^2*d^2*e-24*a*b*d^2*e+46*b^2*d^2*e-18*a*c*d^2*e-24*b*c*d^2*e+10*c^2*d^2*e-22*a*d^3*e-19*b*d^3*e+26*c*d^3*e+24*d^4*e+50*a^3*e^2-21*a^2*b*e^2-31*a*b^2*e^2+12*b^3*e^2+18*a^2*c*e^2-9*a*b*c*e^2-3*b^2*c*e^2+49*a*c^2*e^2-22*b*c^2*e^2-7*c^3*e^2+34*a^2*d*e^2+14*a*b*d*e^2-10*b^2*d*e^2-21*a*c*d*e^2-49*b*c*d*e^2-32*c^2*d*e^2-31*a*d^2*e^2-37*b*d^2*e^2+17*c*d^2*e^2-2*d^3*e^2+23*a^2*e^3+38*a*b*e^3+16*b^2*e^3+7*a*c*e^3-6*b*c*e^3+7*c^2*e^3-35*a*d*e^3+46*b*d*e^3-2*c*d*e^3-47*d^2*e^3+15*a*e^4-22*b*e^4+25*c*e^4+12*d*e^4+36*e^5, 1769 a*b^3*c+7*a^2*c^2*d-37*a*b*c^2*d-27*b^2*c^2*d-a*c^3*d-28*b*c^3*d+32*c^4*d-17*a^3*d^2+30*a^2*b*d^2+7*a*b^2*d^2-32*b^3*d^2-10*a^2*c*d^2+38*a*b*c*d^2-15*b^2*c*d^2+a*c^2*d^2-37*b*c^2*d^2-9*c^3*d^2-13*a^2*d^3+27*a*b*d^3-11*b^2*d^3+6*a*c*d^3+b*c*d^3-9*c^2*d^3+44*a*d^4+3*b*d^4-36*c*d^4+41*d^5-3*a^4*e+10*a^3*b*e-8*a*b^3*e-3*b^4*e-3*a^3*c*e+34*a^2*b*c*e+3*a*b^2*c*e+15*b^3*c*e-22*a^2*c^2*e-33*a*b*c^2*e-4*b^2*c^2*e+48*a*c^3*e+7*b*c^3*e-29*c^4*e+38*a^3*d*e+14*a^2*b*d*e-26*a*b^2*d*e+48*b^3*d*e-3*a^2*c*d*e-45*a*b*c*d*e+26*b^2*c*d*e+46*a*c^2*d*e+26*b*c^2*d*e+15*c^3*d*e+29*a^2*d^2*e+42*a*b*d^2*e+11*b^2*d^2*e+26*a*c*d^2*e+44*b*c*d^2*e-18*c^2*d^2*e-19*a*d^3*e+47*b*d^3*e+c*d^3*e+50*d^4*e+8*a^3*e^2-19*a^2*b*e^2+49*a*b^2*e^2+17*b^3*e^2-27*a^2*c*e^2+30*a*b*c*e^2+10*b^2*c*e^2+21*a*c^2*e^2+11*b*c^2*e^2+38*c^3*e^2+36*a^2*d*e^2-28*a*b*d*e^2+22*b^2*d*e^2-45*a*c*d*e^2-45*b*c*d*e^2+43*c^2*d*e^2-21*a*d^2*e^2+5*b*d^2*e^2-41*c*d^2*e^2+36*d^3*e^2-25*a^2*e^3-22*a*b*e^3-6*b^2*e^3+31*a*c*e^3+19*b*c*e^3-35*c^2*e^3+44*a*d*e^3+40*b*d*e^3-14*c*d*e^3+6*d^2*e^3+2*a*e^4-26*b*e^4+43*c*e^4+39*d*e^4+7*e^5, 1770 a^2*b^2*c-22*a^2*c^2*d+2*a*b*c^2*d-39*b^2*c^2*d-32*a*c^3*d-39*b*c^3*d+32*c^4*d+47*a^3*d^2-9*a^2*b*d^2+36*a*b^2*d^2-22*b^3*d^2+a^2*c*d^2+7*a*b*c*d^2+21*b^2*c*d^2+35*a*c^2*d^2+31*b*c^2*d^2+38*c^3*d^2+4*a^2*d^3+50*a*b*d^3-10*b^2*d^3-7*a*c*d^3-8*b*c*d^3-23*c^2*d^3+18*a*d^4+13*b*d^4+5*c*d^4-6*d^5-41*a^4*e+50*a^3*b*e+3*a^2*b^2*e+20*a*b^3*e-26*b^4*e-22*a^3*c*e+9*a^2*b*c*e+5*a*b^2*c*e+38*b^3*c*e-16*a^2*c^2*e-35*a*b*c^2*e-17*b^2*c^2*e-4*a*c^3*e-32*b*c^3*e-19*c^4*e-21*a^3*d*e+23*a^2*b*d*e+37*a*b^2*d*e+48*b^3*d*e-2*a^2*c*d*e-48*a*b*c*d*e-44*b^2*c*d*e+4*a*c^2*d*e+9*b*c^2*d*e-33*c^3*d*e+30*a^2*d^2*e+25*a*b*d^2*e+34*b^2*d^2*e-39*a*c*d^2*e+27*b*c*d^2*e+25*c^2*d^2*e+3*a*d^3*e-50*b*d^3*e-49*c*d^3*e-9*d^4*e-39*a^3*e^2+10*a^2*b*e^2-33*a*b^2*e^2+36*b^3*e^2+20*a^2*c*e^2+43*a*b*c*e^2+7*b^2*c*e^2+36*a*c^2*e^2-39*b*c^2*e^2-33*c^3*e^2+14*a^2*d*e^2-46*a*b*d*e^2+8*b^2*d*e^2+23*a*c*d*e^2+30*b*c*d*e^2-8*c^2*d*e^2+28*a*d^2*e^2-5*b*d^2*e^2+25*c*d^2*e^2+17*d^3*e^2+28*a^2*e^3-38*a*b*e^3-46*b^2*e^3-27*a*c*e^3-5*b*c*e^3-20*c^2*e^3+2*a*d*e^3-4*b*d*e^3+15*c*d*e^3-36*d^2*e^3+41*a*e^4+6*b*e^4+20*c*e^4+8*d*e^4-2*e^5, 1771 a^3*b*c+40*a^2*c^2*d-47*a*b*c^2*d-27*b^2*c^2*d+41*a*c^3*d-39*b*c^3*d-32*c^4*d+5*a^3*d^2-5*a^2*b*d^2-34*a*b^2*d^2-35*b^3*d^2+29*a^2*c*d^2+4*a*b*c*d^2-6*b^2*c*d^2+25*a*c^2*d^2+6*b*c^2*d^2-44*c^3*d^2-38*a^2*d^3-31*a*b*d^3+37*b^2*d^3-49*a*c*d^3-17*b*c*d^3+9*c^2*d^3+25*a*d^4+4*b*d^4-25*c*d^4-49*d^5-15*a^4*e-11*a^3*b*e+7*a^2*b^2*e+37*a*b^3*e-21*b^4*e+18*a^3*c*e+46*a^2*b*c*e+6*a*b^2*c*e+43*b^3*c*e-5*a^2*c^2*e+49*a*b*c^2*e+44*b^2*c^2*e-18*a*c^3*e+30*b*c^3*e+30*c^4*e+37*a^3*d*e-47*a^2*b*d*e+23*a*b^2*d*e-26*b^3*d*e-12*a^2*c*d*e+49*a*b*c*d*e+37*b^2*c*d*e+3*a*c^2*d*e-15*b*c^2*d*e+c^3*d*e-13*a^2*d^2*e+32*a*b*d^2*e-29*b^2*d^2*e-11*a*c*d^2*e-28*b*c*d^2*e+21*c^2*d^2*e-10*a*d^3*e-20*b*d^3*e-2*c*d^3*e-25*d^4*e-18*a^3*e^2-10*a^2*b*e^2-26*a*b^2*e^2+15*b^3*e^2-6*a^2*c*e^2+48*a*b*c*e^2-36*b^2*c*e^2-18*a*c^2*e^2+8*b*c^2*e^2+36*c^3*e^2+2*a^2*d*e^2+48*a*b*d*e^2-32*b^2*d*e^2+47*a*c*d*e^2+b*c*d*e^2-35*c^2*d*e^2+16*a*d^2*e^2-26*b*d^2*e^2+40*c*d^2*e^2+50*d^3*e^2+16*a^2*e^3+32*a*b*e^3-22*b^2*e^3-43*a*c*e^3+4*b*c*e^3-26*c^2*e^3-29*a*d*e^3+7*b*d*e^3+20*c*d*e^3+8*d^2*e^3-9*a*e^4-7*b*e^4+3*c*e^4+49*d*e^4-48*e^5, 1772 a^4*c-40*a^2*c^2*d+21*a*b*c^2*d+43*b^2*c^2*d+31*a*c^3*d-4*b*c^3*d+49*c^4*d+24*a^3*d^2-14*a^2*b*d^2+3*a*b^2*d^2-6*b^3*d^2+27*a^2*c*d^2+24*a*b*c*d^2-47*b^2*c*d^2-16*a*c^2*d^2+21*b*c^2*d^2-33*c^3*d^2+39*a^2*d^3-34*a*b*d^3-7*b^2*d^3+3*a*c*d^3+30*b*c*d^3-10*c^2*d^3+17*a*d^4+28*b*d^4+16*c*d^4-19*d^5+16*a^4*e-14*a^3*b*e+19*a^2*b^2*e-12*a*b^3*e-41*b^4*e-28*a^3*c*e+13*a^2*b*c*e+35*a*b^2*c*e-35*b^3*c*e+37*a^2*c^2*e-7*a*b*c^2*e+33*b^2*c^2*e-30*a*c^3*e+36*b*c^3*e-26*c^4*e-27*a^3*d*e+28*a^2*b*d*e+2*a*b^2*d*e+22*b^3*d*e-9*a^2*c*d*e+39*a*b*c*d*e-11*b^2*c*d*e+48*a*c^2*d*e+b*c^2*d*e-25*c^3*d*e-28*a^2*d^2*e-38*a*b*d^2*e-13*b^2*d^2*e-12*a*c*d^2*e-35*b*c*d^2*e-45*c^2*d^2*e-27*a*d^3*e-31*b*d^3*e+20*c*d^3*e+40*d^4*e+11*a^3*e^2-33*a^2*b*e^2-3*a*b^2*e^2+32*b^3*e^2+10*a^2*c*e^2+48*a*b*c*e^2-50*b^2*c*e^2+2*a*c^2*e^2-46*b*c^2*e^2+15*c^3*e^2-15*a^2*d*e^2+29*a*b*d*e^2+4*b^2*d*e^2-16*a*c*d*e^2+34*b*c*d*e^2-21*c^2*d*e^2+44*a*d^2*e^2-35*b*d^2*e^2+4*c*d^2*e^2-16*d^3*e^2-14*a^2*e^3+39*a*b*e^3+44*b^2*e^3-22*a*c*e^3-16*b*c*e^3+38*c^2*e^3-a*d*e^3+14*b*d*e^3-44*c*d*e^3-31*d^2*e^3+4*a*e^4+33*c*e^4-5*d*e^4+46*e^5, 1773 b^5-5*a^2*c^2*d-23*a*b*c^2*d+3*b^2*c^2*d-30*a*c^3*d-48*b*c^3*d-40*c^4*d-21*a^3*d^2-13*a^2*b*d^2+36*a*b^2*d^2-35*b^3*d^2-9*a^2*c*d^2+32*a*b*c*d^2-19*b^2*c*d^2+3*a*c^2*d^2-2*b*c^2*d^2+22*c^3*d^2-37*a^2*d^3+46*a*b*d^3-38*b^2*d^3-33*a*c*d^3-7*b*c*d^3+3*c^2*d^3-33*a*d^4+b*d^4+22*c*d^4+50*d^5-33*a^4*e+18*a^3*b*e+11*a^2*b^2*e-19*a*b^3*e+49*b^4*e+3*a^3*c*e-10*a^2*b*c*e-29*a*b^2*c*e-17*b^3*c*e-15*a^2*c^2*e+30*a*b*c^2*e+39*b^2*c^2*e+7*a*c^3*e-46*b*c^3*e+29*c^4*e-17*a^3*d*e+26*a^2*b*d*e+27*a*b^2*d*e-27*b^3*d*e-27*a^2*c*d*e-7*a*b*c*d*e-36*b^2*c*d*e+18*a*c^2*d*e-34*b*c^2*d*e+31*c^3*d*e+22*a^2*d^2*e-2*a*b*d^2*e+39*b^2*d^2*e+40*a*c*d^2*e+49*b*c*d^2*e-41*c^2*d^2*e-46*a*d^3*e-33*b*d^3*e-40*c*d^3*e+16*d^4*e-37*a^3*e^2-14*a^2*b*e^2-49*a*b^2*e^2+39*b^3*e^2-20*a^2*c*e^2-39*a*b*c*e^2+20*b^2*c*e^2+10*a*c^2*e^2+29*b*c^2*e^2+20*c^3*e^2-19*a^2*d*e^2+37*a*b*d*e^2+20*b^2*d*e^2+26*a*c*d*e^2-8*b*c*d*e^2+14*c^2*d*e^2+24*a*d^2*e^2-14*b*d^2*e^2-33*c*d^2*e^2-18*d^3*e^2-2*a^2*e^3-32*a*b*e^3-37*b^2*e^3+45*a*c*e^3-33*b*c*e^3+28*c^2*e^3-19*a*d*e^3-43*b*d*e^3-10*c*d*e^3+30*d^2*e^3+44*a*e^4+40*b*e^4-20*c*e^4-40*d*e^4-2*e^5, 1774 a*b^4-14*a^2*c^2*d+14*b^2*c^2*d+36*a*c^3*d+7*b*c^3*d-14*c^4*d-11*a^3*d^2+40*a^2*b*d^2-29*a*b^2*d^2-45*b^3*d^2+23*a^2*c*d^2+8*a*b*c*d^2+28*b^2*c*d^2+42*a*c^2*d^2+14*b*c^2*d^2+42*c^3*d^2-36*a^2*d^3-4*a*b*d^3+6*a*c*d^3-18*b*c*d^3+40*c^2*d^3-47*a*d^4-19*b*d^4-16*c*d^4+31*d^5-15*a^4*e+46*a^3*b*e+13*a^2*b^2*e-18*a*b^3*e+9*b^4*e+50*a^3*c*e-10*a^2*b*c*e-12*a*b^2*c*e+44*b^3*c*e+7*a^2*c^2*e+39*a*b*c^2*e-36*b^2*c^2*e+29*a*c^3*e-37*b*c^3*e-28*c^4*e-43*a^3*d*e+50*a^2*b*d*e-16*a*b^2*d*e+17*b^3*d*e+23*a^2*c*d*e-14*a*b*c*d*e+10*b^2*c*d*e+18*a*c^2*d*e+40*b*c^2*d*e-30*c^3*d*e+44*a^2*d^2*e+26*a*b*d^2*e+17*b^2*d^2*e+9*a*c*d^2*e+37*b*c*d^2*e-38*c^2*d^2*e+46*a*d^3*e+15*b*d^3*e+33*c*d^3*e+20*d^4*e+4*a^3*e^2-43*a^2*b*e^2-14*a*b^2*e^2-29*b^3*e^2+44*a^2*c*e^2-37*a*b*c*e^2-2*b^2*c*e^2+39*a*c^2*e^2-36*b*c^2*e^2+45*c^3*e^2-34*a^2*d*e^2-48*a*b*d*e^2-25*b^2*d*e^2+48*a*c*d*e^2+5*b*c*d*e^2-16*c^2*d*e^2+20*a*d^2*e^2+8*b*d^2*e^2-48*c*d^2*e^2+27*d^3*e^2-39*a^2*e^3-23*a*b*e^3-45*b^2*e^3-34*a*c*e^3-50*b*c*e^3-42*c^2*e^3+50*a*d*e^3+26*b*d*e^3+48*c*d*e^3-37*d^2*e^3-20*a*e^4-19*b*e^4+23*c*e^4+23*d*e^4+12*e^5, 1775 a^2*b^3-25*a^2*c^2*d+26*a*b*c^2*d+32*b^2*c^2*d-48*a*c^3*d-7*b*c^3*d-44*c^4*d+14*a^3*d^2+19*a^2*b*d^2-7*a*b^2*d^2-15*b^3*d^2+50*a^2*c*d^2-11*a*b*c*d^2-13*b^2*c*d^2-33*a*c^2*d^2-46*b*c^2*d^2+12*c^3*d^2-26*a^2*d^3-11*a*b*d^3+22*b^2*d^3+24*a*c*d^3-12*b*c*d^3-22*c^2*d^3+40*a*d^4-23*b*d^4-48*c*d^4-20*d^5+17*a^4*e-41*a^3*b*e-a^2*b^2*e-12*a*b^3*e-9*b^4*e-30*a^3*c*e+50*a^2*b*c*e+31*a*b^2*c*e+5*b^3*c*e+33*a^2*c^2*e+15*a*b*c^2*e-50*b^2*c^2*e+24*a*c^3*e-b*c^3*e-6*c^4*e-31*a^3*d*e-26*a^2*b*d*e+49*a*b^2*d*e-13*b^3*d*e+43*a^2*c*d*e-10*a*b*c*d*e+35*b^2*c*d*e+36*a*c^2*d*e-22*b*c^2*d*e+40*c^3*d*e-7*a^2*d^2*e+28*a*b*d^2*e-b^2*d^2*e+17*a*c*d^2*e+13*b*c*d^2*e+26*c^2*d^2*e+32*a*d^3*e+3*b*d^3*e+12*c*d^3*e+40*d^4*e-40*a^3*e^2+12*a^2*b*e^2+27*a*b^2*e^2-24*b^3*e^2+13*a^2*c*e^2-19*a*b*c*e^2-27*b^2*c*e^2-28*a*c^2*e^2+50*b*c^2*e^2-48*c^3*e^2-14*a^2*d*e^2+26*a*b*d*e^2+35*b^2*d*e^2-43*a*c*d*e^2+42*b*c*d*e^2+9*c^2*d*e^2-10*a*d^2*e^2+21*c*d^2*e^2-5*d^3*e^2-30*a^2*e^3+38*a*b*e^3-25*b^2*e^3-28*a*c*e^3+23*b*c*e^3+38*c^2*e^3-30*a*d*e^3-16*b*d*e^3-35*c*d*e^3+2*d^2*e^3+33*a*e^4+12*b*e^4-25*c*e^4+26*d*e^4-40*e^5, 1776 a^3*b^2-40*a^2*c^2*d+50*a*b*c^2*d+25*b^2*c^2*d+46*a*c^3*d-45*b*c^3*d-6*c^4*d-24*a^3*d^2-9*a^2*b*d^2-15*a*b^2*d^2+5*b^3*d^2+36*a^2*c*d^2-19*a*b*c*d^2+19*b^2*c*d^2+17*a*c^2*d^2+12*b*c^2*d^2-25*c^3*d^2-33*a^2*d^3-27*a*b*d^3+42*b^2*d^3-4*a*c*d^3+33*b*c*d^3+32*c^2*d^3+10*a*d^4+47*c*d^4-3*d^5-23*a^4*e-45*a^3*b*e+41*a^2*b^2*e+47*a*b^3*e+15*b^4*e-2*a^3*c*e+12*a^2*b*c*e+13*a*b^2*c*e-45*b^3*c*e-28*a^2*c^2*e-3*a*b*c^2*e-37*b^2*c^2*e+39*a*c^3*e+37*c^4*e-12*a^3*d*e-48*a^2*b*d*e-5*a*b^2*d*e+47*b^3*d*e-41*a^2*c*d*e-36*a*b*c*d*e-37*b^2*c*d*e-a*c^2*d*e-38*b*c^2*d*e+17*c^3*d*e-29*a^2*d^2*e-3*a*b*d^2*e-23*b^2*d^2*e-19*a*c*d^2*e+43*b*c*d^2*e-48*c^2*d^2*e-46*a*d^3*e+48*b*d^3*e+40*c*d^3*e-15*d^4*e-23*a^3*e^2-22*a^2*b*e^2-50*a*b^2*e^2-33*b^3*e^2+27*a^2*c*e^2-46*a*b*c*e^2+29*b^2*c*e^2-14*a*c^2*e^2+9*b*c^2*e^2-43*c^3*e^2-19*a^2*d*e^2-38*a*b*d*e^2+12*b^2*d*e^2+18*a*c*d*e^2+20*b*c*d*e^2+3*c^2*d*e^2-9*a*d^2*e^2-27*b*d^2*e^2-6*c*d^2*e^2+38*d^3*e^2+43*a^2*e^3+43*a*b*e^3+3*b^2*e^3+10*a*c*e^3+8*b*c*e^3+13*c^2*e^3+37*a*d*e^3+b*d*e^3-21*c*d*e^3+27*d^2*e^3+26*a*e^4-29*b*e^4-39*c*e^4+29*d*e^4+21*e^5, 1777 a^4*b-45*a^2*c^2*d-6*a*b*c^2*d-42*b^2*c^2*d-4*a*c^3*d-49*b*c^3*d+14*c^4*d+35*a^3*d^2-3*a^2*b*d^2+23*a*b^2*d^2+21*b^3*d^2-24*a^2*c*d^2-14*a*b*c*d^2+20*b^2*c*d^2-20*a*c^2*d^2+41*b*c^2*d^2-34*c^3*d^2-13*a^2*d^3-48*a*b*d^3-13*b^2*d^3+38*a*c*d^3+21*b*c*d^3+40*c^2*d^3-28*a*d^4-34*b*d^4+38*c*d^4-24*d^5-48*a^4*e-2*a^3*b*e-35*a^2*b^2*e+2*a*b^3*e-25*b^4*e+47*a^3*c*e-14*a^2*b*c*e+25*a*b^2*c*e-12*b^3*c*e-11*a^2*c^2*e+22*a*b*c^2*e+15*b^2*c^2*e+17*a*c^3*e+47*b*c^3*e-43*c^4*e+28*a^3*d*e+9*a^2*b*d*e+6*a*b^2*d*e+30*a^2*c*d*e+31*a*b*c*d*e-2*b^2*c*d*e-6*a*c^2*d*e-45*b*c^2*d*e-24*c^3*d*e-39*a^2*d^2*e-7*a*b*d^2*e-11*b^2*d^2*e+8*a*c*d^2*e-47*b*c*d^2*e+c^2*d^2*e+30*a*d^3*e-30*b*d^3*e-38*c*d^3*e-14*d^4*e-25*a^3*e^2-14*a^2*b*e^2+24*a*b^2*e^2-37*b^3*e^2-14*a^2*c*e^2+40*a*b*c*e^2+27*b^2*c*e^2+22*a*c^2*e^2-38*b*c^2*e^2+43*c^3*e^2-44*a^2*d*e^2+28*a*b*d*e^2-4*b^2*d*e^2-26*a*c*d*e^2+18*b*c*d*e^2+24*c^2*d*e^2-35*a*d^2*e^2+6*b*d^2*e^2+5*c*d^2*e^2-38*d^3*e^2-37*a^2*e^3+34*a*b*e^3-27*b^2*e^3-4*a*c*e^3-3*b*c*e^3-16*c^2*e^3+22*a*d*e^3-4*b*d*e^3-41*c*d*e^3+25*d^2*e^3-38*a*e^4+49*b*e^4+c*e^4+14*d*e^4+47*e^5, 1778 a^5-45*a^2*c^2*d-14*a*b*c^2*d-47*b^2*c^2*d-8*a*c^3*d+13*b*c^3*d+50*c^4*d-34*a^3*d^2-5*a^2*b*d^2+36*a*b^2*d^2+11*b^3*d^2+41*a^2*c*d^2-32*a*b*c*d^2+41*b^2*c*d^2-40*a*c^2*d^2+14*b*c^2*d^2+5*c^3*d^2+25*a^2*d^3+10*a*b*d^3-24*b^2*d^3-33*b*c*d^3-21*c^2*d^3+a*d^4+44*b*d^4-46*c*d^4-23*d^5-13*a^4*e+13*a^3*b*e-49*a*b^3*e+18*b^4*e+2*a^3*c*e+15*a^2*b*c*e-14*a*b^2*c*e-38*b^3*c*e+34*a^2*c^2*e+42*a*b*c^2*e-42*b^2*c^2*e-36*a*c^3*e+35*b*c^3*e-11*c^4*e+20*a^3*d*e+41*a*b^2*d*e+40*b^3*d*e-39*a^2*c*d*e-35*a*b*c*d*e-7*b^2*c*d*e-34*a*c^2*d*e-35*b*c^2*d*e+45*c^3*d*e+17*a^2*d^2*e+39*a*b*d^2*e+5*b^2*d^2*e-35*a*c*d^2*e-26*b*c*d^2*e-47*c^2*d^2*e+5*a*d^3*e-2*b*d^3*e+44*c*d^3*e+9*d^4*e-12*a^3*e^2+49*a^2*b*e^2-2*a*b^2*e^2-11*b^3*e^2-49*a^2*c*e^2-16*a*b*c*e^2-34*b^2*c*e^2+19*a*c^2*e^2-24*b*c^2*e^2-33*c^3*e^2-39*a^2*d*e^2+2*a*b*d*e^2+46*b^2*d*e^2-17*a*c*d*e^2+47*b*c*d*e^2+39*c^2*d*e^2+13*a*d^2*e^2+50*b*d^2*e^2-11*c*d^2*e^2+3*d^3*e^2+22*a^2*e^3-50*a*b*e^3+30*b^2*e^3-22*a*c*e^3-29*b*c*e^3-40*c^2*e^3+34*a*d*e^3+15*b*d*e^3-17*c*d*e^3+43*d^2*e^3+46*a*e^4-19*b*e^4-46*c*e^4-39*d*e^4-e^5, 1779 e^6, d*e^5, c*e^5, b*e^5, a*e^5, d^2*e^4, c*d*e^4, b*d*e^4, a*d*e^4, c^2*e^4, 1780 b*c*e^4, a*c*e^4, b^2*e^4, a*b*e^4, a^2*e^4, d^3*e^3, c*d^2*e^3, b*d^2*e^3, 1781 a*d^2*e^3, c^2*d*e^3, b*c*d*e^3, a*c*d*e^3, b^2*d*e^3, a*b*d*e^3, a^2*d*e^3, 1782 c^3*e^3, b*c^2*e^3, a*c^2*e^3, b^2*c*e^3, a*b*c*e^3, a^2*c*e^3, b^3*e^3, 1783 a*b^2*e^3, a^2*b*e^3, a^3*e^3, d^4*e^2, c*d^3*e^2, b*d^3*e^2, a*d^3*e^2, 1784 c^2*d^2*e^2, b*c*d^2*e^2, a*c*d^2*e^2, b^2*d^2*e^2, a*b*d^2*e^2, a^2*d^2*e^2, 1785 c^3*d*e^2, b*c^2*d*e^2, a*c^2*d*e^2, b^2*c*d*e^2, a*b*c*d*e^2, a^2*c*d*e^2, 1786 b^3*d*e^2, a*b^2*d*e^2, a^2*b*d*e^2, a^3*d*e^2, c^4*e^2, b*c^3*e^2, a*c^3*e^2, 1787 b^2*c^2*e^2, a*b*c^2*e^2; 1788 TestSSresAttribs2tr(M, "AGR101n4d007s021%4"); 1789 /* 1790 options: 1 1 0 : Time: 5/9/10 (35 without LCM) 1791 options: 1 1 1 : Time: 6/8/25 1792 lres Time: 5 1793 nres Time: 5 1794 sres Time: 693 1795 */ 1796 1797 kill M; 1798 1799 1800 1801 // AGR101n4d008s020%1, too big? 1802 ideal M = 1803 c^5*d-49*a^4*d^2-36*a^3*b*d^2-a^2*b^2*d^2-26*a*b^3*d^2+2*b^4*d^2+8*a^3*c*d^2-46*a^2*b*c*d^2-43*a*b^2*c*d^2-46*b^3*c*d^2-3*a^2*c^2*d^2-43*a*b*c^2*d^2+49*b^2*c^2*d^2-10*a*c^3*d^2+35*b*c^3*d^2+20*c^4*d^2-42*a^3*d^3+45*a^2*b*d^3+32*a*b^2*d^3-45*b^3*d^3-27*a^2*c*d^3+13*a*b*c*d^3+25*b^2*c*d^3+8*a*c^2*d^3+9*b*c^2*d^3+9*c^3*d^3+45*a^2*d^4+30*a*b*d^4+39*b^2*d^4-23*a*c*d^4+2*b*c*d^4-16*c^2*d^4+32*a*d^5-34*b*d^5+39*c*d^5+12*d^6-29*a^5*e-23*a^4*b*e-29*a^3*b^2*e-a^2*b^3*e-20*a*b^4*e+42*b^5*e+20*a^4*c*e-27*a^3*b*c*e-5*a^2*b^2*c*e-14*b^4*c*e-27*a^3*c^2*e-7*a^2*b*c^2*e-25*a*b^2*c^2*e+14*b^3*c^2*e+19*a^2*c^3*e+43*a*b*c^3*e-31*b^2*c^3*e+37*a*c^4*e-34*b*c^4*e+44*c^5*e+21*a^4*d*e+22*a^3*b*d*e+14*a^2*b^2*d*e-35*a*b^3*d*e-29*b^4*d*e-9*a^3*c*d*e-41*a^2*b*c*d*e+28*a*b^2*c*d*e+35*b^3*c*d*e+48*a^2*c^2*d*e+26*a*b*c^2*d*e-47*b^2*c^2*d*e+18*a*c^3*d*e+8*b*c^3*d*e-46*c^4*d*e+50*a^3*d^2*e-46*a^2*b*d^2*e-41*a*b^2*d^2*e-44*b^3*d^2*e+7*a^2*c*d^2*e-a*b*c*d^2*e+38*b^2*c*d^2*e+33*a*c^2*d^2*e-24*b*c^2*d^2*e-7*c^3*d^2*e+27*a^2*d^3*e+19*a*b*d^3*e-14*b^2*d^3*e+9*a*c*d^3*e+3*b*c*d^3*e+34*c^2*d^3*e-49*a*d^4*e-2*b*d^4*e+9*c*d^4*e+17*d^5*e+12*a^4*e^2-17*a^3*b*e^2+16*a^2*b^2*e^2+2*a*b^3*e^2+25*b^4*e^2+49*a^3*c*e^2+10*a^2*b*c*e^2-43*a*b^2*c*e^2+5*b^3*c*e^2+4*a^2*c^2*e^2-44*a*b*c^2*e^2-25*b^2*c^2*e^2+15*a*c^3*e^2-44*b*c^3*e^2-17*c^4*e^2+17*a^3*d*e^2+40*a^2*b*d*e^2+3*a*b^2*d*e^2-25*b^3*d*e^2-47*a^2*c*d*e^2-45*a*b*c*d*e^2+9*b^2*c*d*e^2-41*a*c^2*d*e^2-36*b*c^2*d*e^2-17*c^3*d*e^2-15*a^2*d^2*e^2+49*a*b*d^2*e^2+13*b^2*d^2*e^2-39*a*c*d^2*e^2+36*b*c*d^2*e^2-32*c^2*d^2*e^2+23*a*d^3*e^2+14*b*d^3*e^2+10*c*d^3*e^2-d^4*e^2+24*a^3*e^3+27*a^2*b*e^3+31*a*b^2*e^3-45*b^3*e^3-50*a^2*c*e^3-a*b*c*e^3+43*b^2*c*e^3+46*a*c^2*e^3-25*b*c^2*e^3+2*c^3*e^3+44*a^2*d*e^3+43*a*b*d*e^3-30*b^2*d*e^3-18*a*c*d*e^3+44*b*c*d*e^3-34*c^2*d*e^3-49*a*d^2*e^3-18*b*d^2*e^3-21*c*d^2*e^3-43*d^3*e^3-26*a^2*e^4-18*a*b*e^4+6*b^2*e^4-48*a*c*e^4+6*b*c*e^4-16*c^2*e^4-2*a*d*e^4-21*b*d*e^4+5*c*d*e^4-18*d^2*e^4+33*a*e^5-23*b*e^5-48*c*e^5+37*d*e^5-44*e^6, 1804 b*c^4*d-26*a^4*d^2-47*a^3*b*d^2+28*a^2*b^2*d^2+5*a*b^3*d^2+37*b^4*d^2-32*a^3*c*d^2+44*a^2*b*c*d^2+13*a*b^2*c*d^2-45*b^3*c*d^2+35*a^2*c^2*d^2-18*a*b*c^2*d^2-3*b^2*c^2*d^2-4*a*c^3*d^2-27*b*c^3*d^2-37*a^3*d^3-44*a^2*b*d^3-36*a*b^2*d^3+49*b^3*d^3-16*a^2*c*d^3+24*a*b*c*d^3+43*b^2*c*d^3-40*a*c^2*d^3-3*b*c^2*d^3-16*c^3*d^3+6*a^2*d^4+46*a*b*d^4+8*b^2*d^4-11*a*c*d^4-4*b*c*d^4-40*c^2*d^4-31*a*d^5-41*b*d^5-35*c*d^5-35*d^6+5*a^5*e-20*a^4*b*e+48*a^3*b^2*e-42*a^2*b^3*e+46*a*b^4*e-28*b^5*e+42*a^4*c*e+22*a^3*b*c*e+23*a^2*b^2*c*e-6*a*b^3*c*e-2*b^4*c*e+26*a^3*c^2*e+28*a^2*b*c^2*e+28*a*b^2*c^2*e-31*b^3*c^2*e-50*a^2*c^3*e+3*a*b*c^3*e+39*b^2*c^3*e-21*b*c^4*e+24*c^5*e-a^4*d*e+12*a^3*b*d*e+43*a^2*b^2*d*e+17*a*b^3*d*e-33*b^4*d*e-31*a^3*c*d*e+11*a^2*b*c*d*e-16*a*b^2*c*d*e-49*b^3*c*d*e+6*a^2*c^2*d*e+49*a*b*c^2*d*e-47*b^2*c^2*d*e-40*a*c^3*d*e-11*b*c^3*d*e-7*a^3*d^2*e+10*a^2*b*d^2*e-37*a*b^2*d^2*e+37*b^3*d^2*e+49*a^2*c*d^2*e+11*b^2*c*d^2*e-43*a*c^2*d^2*e+46*b*c^2*d^2*e-18*c^3*d^2*e+38*a^2*d^3*e+20*a*b*d^3*e-22*b^2*d^3*e-32*a*c*d^3*e+41*b*c*d^3*e+c^2*d^3*e+7*a*d^4*e+18*b*d^4*e-12*c*d^4*e-15*d^5*e+34*a^4*e^2-a^3*b*e^2+47*a^2*b^2*e^2+47*a*b^3*e^2-37*b^4*e^2-36*a^3*c*e^2-21*a^2*b*c*e^2-3*b^3*c*e^2-34*a^2*c^2*e^2-4*a*b*c^2*e^2+33*b^2*c^2*e^2+19*a*c^3*e^2+3*b*c^3*e^2-13*c^4*e^2-45*a^3*d*e^2+28*a^2*b*d*e^2-23*a*b^2*d*e^2+30*b^3*d*e^2+15*a^2*c*d*e^2+a*b*c*d*e^2-50*a*c^2*d*e^2-6*b*c^2*d*e^2+32*c^3*d*e^2+17*a^2*d^2*e^2-15*a*b*d^2*e^2+6*b^2*d^2*e^2+15*a*c*d^2*e^2-b*c*d^2*e^2+41*c^2*d^2*e^2-47*a*d^3*e^2+49*b*d^3*e^2-4*c*d^3*e^2-5*d^4*e^2+35*a^3*e^3+36*a^2*b*e^3+49*a*b^2*e^3+b^3*e^3-11*a^2*c*e^3+a*b*c*e^3+18*b^2*c*e^3+19*a*c^2*e^3+11*b*c^2*e^3-41*c^3*e^3-42*a^2*d*e^3+6*a*b*d*e^3-23*b^2*d*e^3+47*a*c*d*e^3+35*b*c*d*e^3+39*c^2*d*e^3-30*a*d^2*e^3-21*b*d^2*e^3-48*c*d^2*e^3-6*d^3*e^3+38*a^2*e^4-43*a*b*e^4-10*b^2*e^4-a*c*e^4+2*b*c*e^4-29*c^2*e^4+31*a*d*e^4+24*b*d*e^4+18*c*d*e^4+38*d^2*e^4+36*a*e^5-32*b*e^5-17*c*e^5+36*d*e^5+13*e^6, 1805 a*c^4*d+8*a^4*d^2+41*a^3*b*d^2-36*a^2*b^2*d^2+7*a*b^3*d^2+35*b^4*d^2+19*a^3*c*d^2-31*a^2*b*c*d^2+23*a*b^2*c*d^2-18*b^3*c*d^2+14*a*b*c^2*d^2-8*b^2*c^2*d^2+31*a*c^3*d^2-46*b*c^3*d^2-29*c^4*d^2-42*a^3*d^3+46*a^2*b*d^3-24*a*b^2*d^3+46*b^3*d^3-18*a^2*c*d^3-49*a*b*c*d^3-6*b^2*c*d^3+20*a*c^2*d^3+17*b*c^2*d^3+38*c^3*d^3-36*a^2*d^4+16*a*b*d^4+23*b^2*d^4-34*a*c*d^4-9*b*c*d^4-18*c^2*d^4-18*a*d^5+26*b*d^5-9*c*d^5-3*d^6-17*a^5*e+32*a^4*b*e-23*a^3*b^2*e-4*a^2*b^3*e+42*a*b^4*e-43*b^5*e+28*a^4*c*e+5*a^3*b*c*e-14*a^2*b^2*c*e-43*a*b^3*c*e+41*b^4*c*e+2*a^3*c^2*e-27*a^2*b*c^2*e-35*a*b^2*c^2*e+2*b^3*c^2*e-42*a^2*c^3*e+47*a*b*c^3*e+50*b^2*c^3*e-a*c^4*e+10*b*c^4*e+47*c^5*e-23*a^4*d*e+25*a^3*b*d*e-41*a^2*b^2*d*e+32*a*b^3*d*e-35*b^4*d*e+14*a^3*c*d*e-25*a^2*b*c*d*e+47*a*b^2*c*d*e-32*b^3*c*d*e+50*a^2*c^2*d*e-30*a*b*c^2*d*e+39*b^2*c^2*d*e+30*a*c^3*d*e-33*b*c^3*d*e+37*c^4*d*e-21*a^3*d^2*e+34*a^2*b*d^2*e+7*a*b^2*d^2*e-43*b^3*d^2*e+13*a^2*c*d^2*e+32*a*b*c*d^2*e-35*b^2*c*d^2*e+18*a*c^2*d^2*e-2*b*c^2*d^2*e+9*c^3*d^2*e+13*a^2*d^3*e-32*a*b*d^3*e-9*b^2*d^3*e-35*a*c*d^3*e-14*b*c*d^3*e+9*c^2*d^3*e+19*a*d^4*e-50*b*d^4*e+28*c*d^4*e-40*d^5*e+17*a^4*e^2-44*a^3*b*e^2+30*a^2*b^2*e^2+41*a*b^3*e^2+20*b^4*e^2+21*a^3*c*e^2+48*a^2*b*c*e^2+15*a*b^2*c*e^2-40*b^3*c*e^2-6*a^2*c^2*e^2-29*a*b*c^2*e^2-42*b^2*c^2*e^2-40*a*c^3*e^2-48*b*c^3*e^2+36*c^4*e^2+38*a^3*d*e^2+19*a^2*b*d*e^2+41*a*b^2*d*e^2+34*b^3*d*e^2+20*a^2*c*d*e^2-23*a*b*c*d*e^2-2*b^2*c*d*e^2+36*a*c^2*d*e^2-37*b*c^2*d*e^2+9*c^3*d*e^2-47*a^2*d^2*e^2-35*a*b*d^2*e^2+13*b^2*d^2*e^2-20*a*c*d^2*e^2-45*b*c*d^2*e^2+17*c^2*d^2*e^2-32*a*d^3*e^2+13*b*d^3*e^2-4*c*d^3*e^2-26*d^4*e^2+32*a^3*e^3-25*a^2*b*e^3+30*a*b^2*e^3-12*b^3*e^3+28*a^2*c*e^3+41*a*b*c*e^3-49*b^2*c*e^3+35*a*c^2*e^3+38*b*c^2*e^3+49*c^3*e^3-9*a^2*d*e^3-31*a*b*d*e^3-6*b^2*d*e^3+29*a*c*d*e^3+13*b*c*d*e^3-14*c^2*d*e^3+36*a*d^2*e^3+33*b*d^2*e^3-46*c*d^2*e^3+50*d^3*e^3-47*a^2*e^4+5*a*b*e^4+36*b^2*e^4-5*a*c*e^4+4*b*c*e^4-20*c^2*e^4+29*a*d*e^4+25*b*d*e^4-24*c*d*e^4-10*d^2*e^4-2*a*e^5-29*b*e^5-34*c*e^5-d*e^5+e^6, 1806 b^2*c^3*d-49*a^4*d^2+36*a^3*b*d^2-3*a^2*b^2*d^2+12*a*b^3*d^2+11*b^4*d^2+10*a^3*c*d^2+9*a^2*b*c*d^2-13*a*b^2*c*d^2+43*b^3*c*d^2-27*a^2*c^2*d^2-20*a*b*c^2*d^2+34*b^2*c^2*d^2-30*a*c^3*d^2-50*b*c^3*d^2+43*c^4*d^2+17*a^3*d^3+5*a^2*b*d^3+16*a*b^2*d^3+27*b^3*d^3-26*a^2*c*d^3+17*a*b*c*d^3-31*b^2*c*d^3-43*a*c^2*d^3-18*b*c^2*d^3-8*c^3*d^3-8*a^2*d^4+8*a*b*d^4+23*b^2*d^4+7*a*c*d^4-48*b*c*d^4+21*c^2*d^4+5*a*d^5+4*b*d^5+40*c*d^5-22*d^6+3*a^5*e-a^4*b*e+26*a^3*b^2*e+16*a^2*b^3*e-29*a*b^4*e-50*b^5*e-6*a^4*c*e+31*a^3*b*c*e+43*a^2*b^2*c*e+12*a*b^3*c*e+31*b^4*c*e-21*a^3*c^2*e+25*a^2*b*c^2*e+20*a*b^2*c^2*e+15*b^3*c^2*e-4*a^2*c^3*e-48*a*b*c^3*e-29*b^2*c^3*e+43*a*c^4*e-41*b*c^4*e-15*c^5*e-13*a^4*d*e-29*a^3*b*d*e+7*a^2*b^2*d*e+4*a*b^3*d*e-50*b^4*d*e+3*a^3*c*d*e+4*a^2*b*c*d*e+7*a*b^2*c*d*e+4*b^3*c*d*e+16*a^2*c^2*d*e-42*a*b*c^2*d*e+36*b^2*c^2*d*e-5*a*c^3*d*e+13*b*c^3*d*e+17*c^4*d*e+18*a^3*d^2*e-16*a^2*b*d^2*e-32*a*b^2*d^2*e-16*b^3*d^2*e-34*a^2*c*d^2*e-22*a*b*c*d^2*e-12*b^2*c*d^2*e+35*a*c^2*d^2*e+33*b*c^2*d^2*e-47*c^3*d^2*e+12*a^2*d^3*e-43*a*b*d^3*e+11*b^2*d^3*e+2*a*c*d^3*e+42*b*c*d^3*e-18*c^2*d^3*e+44*a*d^4*e+25*b*d^4*e+41*c*d^4*e+40*d^5*e+40*a^4*e^2-3*a^3*b*e^2-8*a^2*b^2*e^2+a*b^3*e^2-27*b^4*e^2+15*a^3*c*e^2+49*a^2*b*c*e^2-14*a*b^2*c*e^2+31*b^3*c*e^2+36*a^2*c^2*e^2-14*a*b*c^2*e^2-31*b^2*c^2*e^2+48*a*c^3*e^2-24*b*c^3*e^2-30*c^4*e^2-47*a^3*d*e^2+12*a^2*b*d*e^2+44*a*b^2*d*e^2+47*b^3*d*e^2-5*a^2*c*d*e^2+23*a*b*c*d*e^2+48*b^2*c*d*e^2-25*a*c^2*d*e^2-7*b*c^2*d*e^2+32*a^2*d^2*e^2+35*a*b*d^2*e^2-19*b^2*d^2*e^2+19*a*c*d^2*e^2+26*b*c*d^2*e^2+26*c^2*d^2*e^2+8*a*d^3*e^2-21*b*d^3*e^2-6*c*d^3*e^2-35*d^4*e^2-30*a^3*e^3+36*a^2*b*e^3-27*a*b^2*e^3-33*b^3*e^3-50*a^2*c*e^3+41*a*b*c*e^3+13*b^2*c*e^3+20*a*c^2*e^3+36*b*c^2*e^3+14*c^3*e^3+40*a^2*d*e^3-35*a*b*d*e^3+11*b^2*d*e^3+36*a*c*d*e^3+23*b*c*d*e^3-34*c^2*d*e^3+25*a*d^2*e^3-14*b*d^2*e^3-5*c*d^2*e^3+11*d^3*e^3+42*a^2*e^4-48*a*b*e^4-27*b^2*e^4-17*a*c*e^4+32*b*c*e^4-3*c^2*e^4-3*a*d*e^4-33*b*d*e^4-3*c*d*e^4-14*d^2*e^4+8*a*e^5+14*b*e^5+3*c*e^5-34*d*e^5-46*e^6, 1807 a*b*c^3*d-20*a^4*d^2+23*a^3*b*d^2-14*a^2*b^2*d^2+29*a*b^3*d^2-36*b^4*d^2-48*a^3*c*d^2+39*a^2*b*c*d^2-34*a*b^2*c*d^2+b^3*c*d^2-25*a^2*c^2*d^2+22*a*b*c^2*d^2-12*b^2*c^2*d^2+48*a*c^3*d^2-41*b*c^3*d^2+13*c^4*d^2-24*a^3*d^3-43*a^2*b*d^3-31*a*b^2*d^3-13*b^3*d^3+10*a^2*c*d^3-16*a*b*c*d^3+48*b^2*c*d^3-18*a*c^2*d^3+7*b*c^2*d^3+8*c^3*d^3-14*a^2*d^4-14*a*b*d^4+49*b^2*d^4+43*a*c*d^4+7*b*c*d^4-50*c^2*d^4-21*a*d^5-33*b*d^5-44*c*d^5-40*d^6-42*a^5*e+39*a^4*b*e-14*a^3*b^2*e+34*a^2*b^3*e+22*a*b^4*e+37*b^5*e+24*a^4*c*e+39*a^3*b*c*e-43*a^2*b^2*c*e-40*a*b^3*c*e-6*b^4*c*e-45*a^3*c^2*e+18*a^2*b*c^2*e-8*a*b^2*c^2*e+22*b^3*c^2*e-36*a^2*c^3*e+31*a*b*c^3*e+15*b^2*c^3*e+7*a*c^4*e-18*b*c^4*e-31*c^5*e-20*a^4*d*e+25*a^3*b*d*e-11*a^2*b^2*d*e-21*a*b^3*d*e-23*b^4*d*e+18*a^3*c*d*e-49*a^2*b*c*d*e+5*a*b^2*c*d*e+21*b^3*c*d*e-2*a^2*c^2*d*e+42*a*b*c^2*d*e-37*b^2*c^2*d*e+28*a*c^3*d*e-8*b*c^3*d*e+c^4*d*e+10*a^3*d^2*e-16*a^2*b*d^2*e-20*a*b^2*d^2*e+42*b^3*d^2*e+23*a^2*c*d^2*e-16*a*b*c*d^2*e+39*b^2*c*d^2*e+3*a*c^2*d^2*e+25*b*c^2*d^2*e-16*c^3*d^2*e-33*a^2*d^3*e-28*a*b*d^3*e+4*b^2*d^3*e-15*a*c*d^3*e-30*b*c*d^3*e-5*c^2*d^3*e-8*b*d^4*e-21*c*d^4*e+6*d^5*e-9*a^4*e^2-23*a^3*b*e^2-45*a^2*b^2*e^2+33*a*b^3*e^2+14*b^4*e^2+8*a^3*c*e^2+5*a^2*b*c*e^2-13*a*b^2*c*e^2-39*b^3*c*e^2-4*a^2*c^2*e^2+30*a*b*c^2*e^2-38*b^2*c^2*e^2+24*a*c^3*e^2-29*b*c^3*e^2-3*c^4*e^2+3*a^3*d*e^2+43*a^2*b*d*e^2-21*a*b^2*d*e^2-45*b^3*d*e^2-3*a^2*c*d*e^2-22*a*b*c*d*e^2+16*b^2*c*d*e^2-42*b*c^2*d*e^2-43*c^3*d*e^2-10*a*b*d^2*e^2+23*b^2*d^2*e^2-36*a*c*d^2*e^2+29*b*c*d^2*e^2-11*c^2*d^2*e^2+18*a*d^3*e^2-46*b*d^3*e^2-34*c*d^3*e^2+21*d^4*e^2+4*a^3*e^3+23*a^2*b*e^3-18*a*b^2*e^3-10*b^3*e^3+3*a^2*c*e^3+a*b*c*e^3-32*b^2*c*e^3-19*a*c^2*e^3-5*b*c^2*e^3+25*c^3*e^3-40*a^2*d*e^3-37*a*b*d*e^3-10*b^2*d*e^3-20*a*c*d*e^3+35*b*c*d*e^3+2*c^2*d*e^3+46*a*d^2*e^3+46*b*d^2*e^3+25*c*d^2*e^3+14*d^3*e^3-28*a^2*e^4+24*a*b*e^4-38*b^2*e^4+11*a*c*e^4+15*b*c*e^4-10*c^2*e^4-32*a*d*e^4+37*b*d*e^4+21*c*d*e^4-25*d^2*e^4-47*a*e^5-32*b*e^5+5*c*e^5+17*d*e^5+44*e^6, 1808 a^2*c^3*d+25*a^4*d^2-40*a^3*b*d^2-49*a^2*b^2*d^2+30*a*b^3*d^2-36*b^4*d^2+41*a^3*c*d^2+23*a^2*b*c*d^2-16*a*b^2*c*d^2-20*b^3*c*d^2-46*a^2*c^2*d^2-29*a*b*c^2*d^2-14*b^2*c^2*d^2-38*a*c^3*d^2+9*b*c^3*d^2+50*c^4*d^2-20*a^3*d^3-14*a^2*b*d^3+13*a*b^2*d^3+5*b^3*d^3+7*a^2*c*d^3+46*a*b*c*d^3+40*b^2*c*d^3-46*a*c^2*d^3+27*b*c^2*d^3-5*c^3*d^3+43*a^2*d^4+5*a*b*d^4+3*b^2*d^4+29*a*c*d^4-43*b*c*d^4-31*c^2*d^4-24*a*d^5-45*b*d^5-26*c*d^5-6*d^6+18*a^5*e+22*a^4*b*e-12*a^3*b^2*e+40*a^2*b^3*e-8*a*b^4*e+36*b^5*e+5*a^4*c*e+46*a^3*b*c*e+6*a^2*b^2*c*e-39*a*b^3*c*e-29*b^4*c*e+36*a^3*c^2*e+35*a^2*b*c^2*e+11*a*b^2*c^2*e-12*b^3*c^2*e+13*a^2*c^3*e+15*a*b*c^3*e+38*b^2*c^3*e-4*a*c^4*e-46*b*c^4*e+25*c^5*e-31*a^4*d*e+35*a^3*b*d*e+37*a^2*b^2*d*e+27*a*b^3*d*e-30*b^4*d*e-37*a^3*c*d*e-2*a^2*b*c*d*e+10*a*b^2*c*d*e+12*b^3*c*d*e+39*a^2*c^2*d*e+35*a*b*c^2*d*e-17*b^2*c^2*d*e-30*a*c^3*d*e+32*b*c^3*d*e+41*c^4*d*e+49*a^3*d^2*e-42*a^2*b*d^2*e-22*a*b^2*d^2*e-3*b^3*d^2*e+17*a^2*c*d^2*e+31*a*b*c*d^2*e+23*b^2*c*d^2*e+4*a*c^2*d^2*e+50*b*c^2*d^2*e+43*c^3*d^2*e+17*a^2*d^3*e-30*a*b*d^3*e+43*b^2*d^3*e+7*a*c*d^3*e+30*b*c*d^3*e+37*c^2*d^3*e-a*d^4*e+6*b*d^4*e+22*c*d^4*e-34*d^5*e-48*a^4*e^2+14*a^3*b*e^2+17*a^2*b^2*e^2-39*a*b^3*e^2+37*b^4*e^2-27*a^3*c*e^2+14*a^2*b*c*e^2-43*a*b^2*c*e^2+42*b^3*c*e^2-31*a^2*c^2*e^2+43*a*b*c^2*e^2-34*b^2*c^2*e^2-40*a*c^3*e^2-14*b*c^3*e^2+19*c^4*e^2+11*a^3*d*e^2+23*a^2*b*d*e^2+11*a*b^2*d*e^2+22*b^3*d*e^2+41*a^2*c*d*e^2-20*a*b*c*d*e^2+b^2*c*d*e^2-34*a*c^2*d*e^2-39*b*c^2*d*e^2-20*c^3*d*e^2+25*a^2*d^2*e^2+33*a*b*d^2*e^2-38*b^2*d^2*e^2-34*a*c*d^2*e^2-37*b*c*d^2*e^2-15*c^2*d^2*e^2-13*a*d^3*e^2-42*b*d^3*e^2+49*c*d^3*e^2+29*d^4*e^2-48*a^3*e^3+49*a^2*b*e^3-50*a*b^2*e^3-44*b^3*e^3-42*a^2*c*e^3+14*a*b*c*e^3-34*b^2*c*e^3+3*a*c^2*e^3-b*c^2*e^3+28*c^3*e^3+24*a^2*d*e^3+37*a*b*d*e^3+29*b^2*d*e^3-a*c*d*e^3+31*b*c*d*e^3-14*c^2*d*e^3-36*a*d^2*e^3-4*b*d^2*e^3+29*c*d^2*e^3-47*d^3*e^3-36*a^2*e^4-13*a*b*e^4-45*b^2*e^4-23*a*c*e^4-32*b*c*e^4+2*c^2*e^4+11*a*d*e^4-24*b*d*e^4-46*c*d*e^4-40*d^2*e^4-4*a*e^5-29*b*e^5+14*c*e^5-44*d*e^5+32*e^6, 1809 b^3*c^2*d+13*a^4*d^2+14*a^3*b*d^2-11*a^2*b^2*d^2-12*a*b^3*d^2-8*b^4*d^2-46*a^3*c*d^2-26*a^2*b*c*d^2+28*a*b^2*c*d^2+13*b^3*c*d^2-36*a^2*c^2*d^2+35*a*b*c^2*d^2+49*b^2*c^2*d^2+32*a*c^3*d^2+17*b*c^3*d^2+34*c^4*d^2-8*a^3*d^3-10*a^2*b*d^3+31*a*b^2*d^3-22*b^3*d^3+a^2*c*d^3+32*a*b*c*d^3+33*b^2*c*d^3+34*a*c^2*d^3-36*b*c^2*d^3-11*c^3*d^3-42*a^2*d^4-15*a*b*d^4-3*b^2*d^4-48*a*c*d^4+12*b*c*d^4+35*c^2*d^4-43*a*d^5+9*b*d^5+47*c*d^5+19*d^6-18*a^5*e+9*a^4*b*e+34*a^3*b^2*e+5*a^2*b^3*e+46*a*b^4*e-34*b^5*e-42*a^4*c*e-36*a^3*b*c*e+5*a^2*b^2*c*e+43*a*b^3*c*e-18*b^4*c*e+21*a^3*c^2*e-45*a^2*b*c^2*e-31*a*b^2*c^2*e+2*b^3*c^2*e+a*b*c^3*e-45*b^2*c^3*e+41*a*c^4*e+37*b*c^4*e-32*c^5*e+19*a^4*d*e-30*a^3*b*d*e+5*a^2*b^2*d*e+17*a*b^3*d*e+47*b^4*d*e-23*a^3*c*d*e+4*a^2*b*c*d*e+14*a*b^2*c*d*e-31*b^3*c*d*e+50*a^2*c^2*d*e-18*a*b*c^2*d*e-37*b^2*c^2*d*e-35*a*c^3*d*e+29*b*c^3*d*e-28*c^4*d*e+3*a^3*d^2*e+13*a^2*b*d^2*e-30*a*b^2*d^2*e-9*b^3*d^2*e+20*a^2*c*d^2*e+17*a*b*c*d^2*e-21*b^2*c*d^2*e-41*a*c^2*d^2*e-32*b*c^2*d^2*e+33*c^3*d^2*e-3*a^2*d^3*e-23*a*b*d^3*e-47*b^2*d^3*e-19*c^2*d^3*e+12*a*d^4*e-32*b*d^4*e-37*c*d^4*e+20*d^5*e+21*a^4*e^2+18*a^3*b*e^2-4*a^2*b^2*e^2+25*a*b^3*e^2-13*b^4*e^2+28*a^3*c*e^2-28*a^2*b*c*e^2-37*a*b^2*c*e^2-32*b^3*c*e^2+8*a^2*c^2*e^2+34*a*b*c^2*e^2-21*b^2*c^2*e^2+15*a*c^3*e^2-39*b*c^3*e^2-45*c^4*e^2-26*a^3*d*e^2+34*a^2*b*d*e^2-25*a*b^2*d*e^2+24*b^3*d*e^2+5*a^2*c*d*e^2+36*a*b*c*d*e^2-27*b^2*c*d*e^2+31*a*c^2*d*e^2+31*b*c^2*d*e^2+13*c^3*d*e^2-3*a^2*d^2*e^2-18*a*b*d^2*e^2+47*b^2*d^2*e^2+20*a*c*d^2*e^2+8*b*c*d^2*e^2-37*c^2*d^2*e^2+21*a*d^3*e^2+3*b*d^3*e^2-34*c*d^3*e^2+28*d^4*e^2-19*a^3*e^3+33*a^2*b*e^3-50*a*b^2*e^3-44*b^3*e^3+17*a^2*c*e^3-48*a*b*c*e^3-3*b^2*c*e^3+33*a*c^2*e^3+13*b*c^2*e^3-29*c^3*e^3+38*a^2*d*e^3-44*a*b*d*e^3-36*b^2*d*e^3-17*a*c*d*e^3+38*b*c*d*e^3+47*c^2*d*e^3+4*a*d^2*e^3-11*b*d^2*e^3-14*c*d^2*e^3-46*d^3*e^3-17*a^2*e^4-23*a*b*e^4+26*b^2*e^4+24*a*c*e^4-37*b*c*e^4+34*c^2*e^4+24*a*d*e^4-32*b*d*e^4-19*c*d*e^4+15*d^2*e^4-33*a*e^5+7*b*e^5-29*c*e^5+37*d*e^5-16*e^6, 1810 a*b^2*c^2*d-26*a^4*d^2-24*a^3*b*d^2-36*a^2*b^2*d^2+26*a*b^3*d^2+26*b^4*d^2+44*a^3*c*d^2-31*a^2*b*c*d^2-49*a*b^2*c*d^2-30*b^3*c*d^2-13*a^2*c^2*d^2+49*a*b*c^2*d^2-50*b^2*c^2*d^2+27*a*c^3*d^2+24*c^4*d^2-47*a^3*d^3+29*a^2*b*d^3+31*a*b^2*d^3-30*b^3*d^3+39*a^2*c*d^3+23*a*b*c*d^3+5*b^2*c*d^3-30*a*c^2*d^3-20*b*c^2*d^3-27*c^3*d^3-40*a^2*d^4+36*a*b*d^4+28*b^2*d^4+29*a*c*d^4+2*b*c*d^4+14*c^2*d^4-41*a*d^5+22*b*d^5+22*c*d^5+9*d^6-22*a^5*e-33*a^4*b*e-19*a^3*b^2*e+30*a^2*b^3*e+4*a*b^4*e+42*b^5*e-13*a^4*c*e+27*a^3*b*c*e-10*a^2*b^2*c*e+21*a*b^3*c*e-46*b^4*c*e-22*a^3*c^2*e-9*a^2*b*c^2*e+11*a*b^2*c^2*e+33*b^3*c^2*e-4*a^2*c^3*e-26*a*b*c^3*e+47*b^2*c^3*e+41*a*c^4*e-23*b*c^4*e-35*c^5*e-28*a^4*d*e+6*a^3*b*d*e+39*a^2*b^2*d*e+12*a*b^3*d*e-46*b^4*d*e+5*a^3*c*d*e-4*a^2*b*c*d*e+45*a*b^2*c*d*e-8*b^3*c*d*e-46*a^2*c^2*d*e-34*a*b*c^2*d*e-47*b^2*c^2*d*e+20*a*c^3*d*e+10*b*c^3*d*e+2*c^4*d*e+22*a^3*d^2*e-5*a^2*b*d^2*e+24*a*b^2*d^2*e+27*b^3*d^2*e+10*a^2*c*d^2*e-27*a*b*c*d^2*e+13*b^2*c*d^2*e+38*a*c^2*d^2*e+20*b*c^2*d^2*e-46*c^3*d^2*e-47*a^2*d^3*e+42*a*b*d^3*e-34*b^2*d^3*e-3*a*c*d^3*e+4*b*c*d^3*e+4*c^2*d^3*e+47*a*d^4*e+46*b*d^4*e+29*c*d^4*e+28*d^5*e+18*a^4*e^2+19*a^3*b*e^2+6*a^2*b^2*e^2-38*a*b^3*e^2-22*b^4*e^2-21*a^3*c*e^2+44*a^2*b*c*e^2-23*a*b^2*c*e^2-20*b^3*c*e^2-35*a^2*c^2*e^2-33*a*b*c^2*e^2+b^2*c^2*e^2+2*a*c^3*e^2+36*b*c^3*e^2+29*c^4*e^2-14*a^2*b*d*e^2-44*a*b^2*d*e^2+7*b^3*d*e^2+17*a^2*c*d*e^2-2*a*b*c*d*e^2+18*b^2*c*d*e^2-41*a*c^2*d*e^2+41*b*c^2*d*e^2+40*c^3*d*e^2+6*a^2*d^2*e^2-15*a*b*d^2*e^2-39*b^2*d^2*e^2-50*a*c*d^2*e^2-43*b*c*d^2*e^2-3*c^2*d^2*e^2+29*a*d^3*e^2-3*b*d^3*e^2+48*c*d^3*e^2+22*d^4*e^2+24*a^3*e^3+5*a^2*b*e^3-3*a*b^2*e^3-36*b^3*e^3-50*a^2*c*e^3+23*a*b*c*e^3+9*b^2*c*e^3+3*a*c^2*e^3+45*b*c^2*e^3-24*c^3*e^3-30*a^2*d*e^3+31*a*b*d*e^3+26*b^2*d*e^3-37*a*c*d*e^3-38*b*c*d*e^3-36*c^2*d*e^3-8*a*d^2*e^3-41*b*d^2*e^3-40*c*d^2*e^3+25*d^3*e^3-25*a^2*e^4+12*a*b*e^4-25*b^2*e^4-39*a*c*e^4-19*b*c*e^4-21*c^2*e^4+34*a*d*e^4-35*b*d*e^4+9*c*d*e^4-32*d^2*e^4+29*a*e^5+32*b*e^5-25*c*e^5-31*d*e^5-34*e^6, 1811 a^2*b*c^2*d+14*a^4*d^2+25*a^3*b*d^2-2*a^2*b^2*d^2-32*a*b^3*d^2-31*b^4*d^2-40*a^3*c*d^2-15*a^2*b*c*d^2+50*a*b^2*c*d^2+b^3*c*d^2-7*a^2*c^2*d^2-14*a*b*c^2*d^2+8*b^2*c^2*d^2+25*a*c^3*d^2+6*b*c^3*d^2+25*c^4*d^2-20*a^3*d^3+a^2*b*d^3-27*a*b^2*d^3+24*b^3*d^3+33*a^2*c*d^3-14*a*b*c*d^3-48*b^2*c*d^3+10*a*c^2*d^3+8*b*c^2*d^3+13*c^3*d^3-11*a^2*d^4+41*a*b*d^4+48*b^2*d^4+29*a*c*d^4-29*b*c*d^4+40*c^2*d^4+50*a*d^5+33*b*d^5-35*c*d^5-17*d^6-31*a^5*e+42*a^4*b*e+48*a^3*b^2*e-48*a^2*b^3*e-6*a*b^4*e+27*b^5*e+31*a^4*c*e+6*a^3*b*c*e-20*a^2*b^2*c*e-10*a*b^3*c*e-34*b^4*c*e-45*a^3*c^2*e+15*a^2*b*c^2*e+37*a*b^2*c^2*e+34*b^3*c^2*e-14*a^2*c^3*e-9*a*b*c^3*e-33*b^2*c^3*e-42*a*c^4*e+20*b*c^4*e+4*c^5*e+28*a^4*d*e+10*a^3*b*d*e-23*a^2*b^2*d*e-17*a*b^3*d*e-44*b^4*d*e-8*a^3*c*d*e-13*a^2*b*c*d*e+35*a*b^2*c*d*e-49*b^3*c*d*e-23*a^2*c^2*d*e-43*a*b*c^2*d*e+11*b^2*c^2*d*e+45*a*c^3*d*e-38*b*c^3*d*e-44*c^4*d*e+45*a^3*d^2*e+9*a^2*b*d^2*e+31*a*b^2*d^2*e-18*b^3*d^2*e-30*a^2*c*d^2*e+4*a*b*c*d^2*e+50*b^2*c*d^2*e+24*a*c^2*d^2*e+24*b*c^2*d^2*e-11*c^3*d^2*e-11*a^2*d^3*e-36*a*b*d^3*e+5*b^2*d^3*e+26*a*c*d^3*e-18*b*c*d^3*e-41*c^2*d^3*e-2*a*d^4*e+17*b*d^4*e+46*c*d^4*e+9*d^5*e-49*a^4*e^2-13*a^3*b*e^2+47*a^2*b^2*e^2+19*a*b^3*e^2+42*b^4*e^2+15*a^3*c*e^2-48*a^2*b*c*e^2+33*a*b^2*c*e^2-28*b^3*c*e^2-5*a^2*c^2*e^2-32*a*b*c^2*e^2+2*b^2*c^2*e^2-25*a*c^3*e^2-8*b*c^3*e^2+8*c^4*e^2-48*a^3*d*e^2-12*a^2*b*d*e^2-49*a*b^2*d*e^2+49*b^3*d*e^2-4*a^2*c*d*e^2-40*a*b*c*d*e^2+42*b^2*c*d*e^2-11*a*c^2*d*e^2+12*b*c^2*d*e^2+5*c^3*d*e^2+40*a^2*d^2*e^2+21*a*b*d^2*e^2-37*b^2*d^2*e^2+10*a*c*d^2*e^2-38*b*c*d^2*e^2-22*c^2*d^2*e^2-a*d^3*e^2+20*b*d^3*e^2-31*c*d^3*e^2-15*d^4*e^2+31*a^3*e^3-24*a^2*b*e^3-6*b^3*e^3-10*a^2*c*e^3-27*a*b*c*e^3+15*b^2*c*e^3-40*b*c^2*e^3+36*c^3*e^3+12*a^2*d*e^3+32*a*b*d*e^3-39*b^2*d*e^3-9*a*c*d*e^3+13*b*c*d*e^3+35*c^2*d*e^3+31*a*d^2*e^3-4*b*d^2*e^3+14*c*d^2*e^3+19*d^3*e^3-36*a^2*e^4-44*a*b*e^4-10*b^2*e^4+29*a*c*e^4-26*b*c*e^4+43*c^2*e^4+5*a*d*e^4+3*b*d*e^4-17*c*d*e^4+48*d^2*e^4-16*a*e^5+2*b*e^5-41*c*e^5-15*d*e^5-19*e^6, 1812 a^3*c^2*d+17*a^4*d^2+4*a^3*b*d^2+a^2*b^2*d^2+20*a*b^3*d^2-36*b^4*d^2-13*a^3*c*d^2+40*a^2*b*c*d^2-21*a*b^2*c*d^2-35*b^3*c*d^2-33*a^2*c^2*d^2-a*b*c^2*d^2+12*b^2*c^2*d^2+33*a*c^3*d^2-34*b*c^3*d^2-11*c^4*d^2+9*a^3*d^3-32*a^2*b*d^3+42*a*b^2*d^3-49*b^3*d^3-12*a^2*c*d^3-12*a*b*c*d^3+12*b^2*c*d^3+20*a*c^2*d^3+44*b*c^2*d^3+15*c^3*d^3+16*a^2*d^4+46*a*b*d^4+26*b^2*d^4+2*a*c*d^4-28*b*c*d^4-45*c^2*d^4+17*a*d^5-29*b*d^5+28*c*d^5-39*d^6+16*a^5*e+50*a^4*b*e+5*a^3*b^2*e+5*a^2*b^3*e-30*a*b^4*e-8*b^5*e+29*a^4*c*e-48*a^3*b*c*e-33*a^2*b^2*c*e-25*a*b^3*c*e+40*b^4*c*e-31*a^3*c^2*e-15*a^2*b*c^2*e+2*a*b^2*c^2*e+28*b^3*c^2*e-39*a^2*c^3*e+10*a*b*c^3*e-35*b^2*c^3*e+33*a*c^4*e-26*b*c^4*e-23*c^5*e+27*a^4*d*e-34*a^3*b*d*e+9*a^2*b^2*d*e+22*a*b^3*d*e-35*b^4*d*e+24*a^3*c*d*e+6*a^2*b*c*d*e+29*a*b^2*c*d*e-43*b^3*c*d*e+12*a^2*c^2*d*e+50*a*b*c^2*d*e-21*b^2*c^2*d*e-5*a*c^3*d*e-3*b*c^3*d*e-25*c^4*d*e+38*a^3*d^2*e-37*a^2*b*d^2*e+6*a*b^2*d^2*e+47*b^3*d^2*e+25*a^2*c*d^2*e+27*a*b*c*d^2*e+6*b^2*c*d^2*e-12*a*c^2*d^2*e-45*b*c^2*d^2*e-31*c^3*d^2*e-40*a^2*d^3*e+44*b^2*d^3*e-32*a*c*d^3*e-4*b*c*d^3*e-31*c^2*d^3*e+16*a*d^4*e-24*b*d^4*e+40*c*d^4*e-13*d^5*e-10*a^4*e^2+26*a^3*b*e^2+12*a^2*b^2*e^2+45*a*b^3*e^2+43*b^4*e^2+26*a^3*c*e^2+21*a^2*b*c*e^2-3*a*b^2*c*e^2-18*b^3*c*e^2+24*a^2*c^2*e^2+20*a*b*c^2*e^2-13*b^2*c^2*e^2+43*a*c^3*e^2+34*b*c^3*e^2-24*c^4*e^2+29*a^3*d*e^2+13*a^2*b*d*e^2-7*a*b^2*d*e^2-5*b^3*d*e^2+45*a^2*c*d*e^2+10*a*b*c*d*e^2+30*b^2*c*d*e^2-13*a*c^2*d*e^2+43*b*c^2*d*e^2+37*c^3*d*e^2+29*a^2*d^2*e^2+46*a*b*d^2*e^2+33*b^2*d^2*e^2+18*a*c*d^2*e^2-22*b*c*d^2*e^2+13*c^2*d^2*e^2+44*a*d^3*e^2+38*b*d^3*e^2+27*c*d^3*e^2+44*d^4*e^2-29*a^2*b*e^3-36*a*b^2*e^3+40*b^3*e^3+9*a^2*c*e^3-19*a*b*c*e^3+36*b^2*c*e^3+5*a*c^2*e^3+20*b*c^2*e^3+3*c^3*e^3+49*a^2*d*e^3-46*a*b*d*e^3+7*b^2*d*e^3-26*a*c*d*e^3+17*b*c*d*e^3-48*c^2*d*e^3-9*a*d^2*e^3-25*b*d^2*e^3-25*c*d^2*e^3-12*d^3*e^3+13*a^2*e^4+a*b*e^4+5*b^2*e^4+44*a*c*e^4+14*b*c*e^4+42*c^2*e^4+16*a*d*e^4+12*b*d*e^4+20*c*d*e^4+16*d^2*e^4-27*a*e^5+13*b*e^5+38*c*e^5-d*e^5-26*e^6, 1813 b^4*c*d-16*a^4*d^2-19*a^3*b*d^2+43*a^2*b^2*d^2+18*a*b^3*d^2-14*b^4*d^2-6*a^3*c*d^2-33*a^2*b*c*d^2-38*a*b^2*c*d^2-4*b^3*c*d^2+16*a^2*c^2*d^2-38*a*b*c^2*d^2+40*b^2*c^2*d^2+11*a*c^3*d^2+36*b*c^3*d^2+26*c^4*d^2+a^3*d^3-37*a^2*b*d^3-5*a*b^2*d^3-36*b^3*d^3+38*a^2*c*d^3+32*a*b*c*d^3+12*b^2*c*d^3+24*a*c^2*d^3-40*b*c^2*d^3-9*c^3*d^3+15*a^2*d^4+36*a*b*d^4-50*b^2*d^4-43*a*c*d^4+43*b*c*d^4+33*c^2*d^4-8*a*d^5-28*b*d^5-42*c*d^5-20*d^6+16*a^5*e+4*a^4*b*e+41*a^3*b^2*e+18*a^2*b^3*e+26*a*b^4*e+12*b^5*e+3*a^4*c*e-50*a^3*b*c*e+12*a^2*b^2*c*e-6*a*b^3*c*e-40*b^4*c*e+48*a^3*c^2*e+46*a^2*b*c^2*e-24*a*b^2*c^2*e+47*b^3*c^2*e-30*a^2*c^3*e+30*a*b*c^3*e+19*b^2*c^3*e-9*a*c^4*e-33*b*c^4*e-43*c^5*e-31*a^4*d*e-46*a^3*b*d*e-19*a^2*b^2*d*e-40*a*b^3*d*e+17*b^4*d*e-7*a^3*c*d*e+27*a^2*b*c*d*e-18*a*b^2*c*d*e+40*b^3*c*d*e+13*a^2*c^2*d*e-40*a*b*c^2*d*e-21*b^2*c^2*d*e+48*a*c^3*d*e-23*b*c^3*d*e-41*c^4*d*e-19*a^3*d^2*e+26*a^2*b*d^2*e-35*a*b^2*d^2*e-5*b^3*d^2*e+23*a^2*c*d^2*e+44*a*b*c*d^2*e-11*b^2*c*d^2*e+2*a*c^2*d^2*e-23*b*c^2*d^2*e-9*c^3*d^2*e+26*a^2*d^3*e+3*a*b*d^3*e+27*b^2*d^3*e+24*a*c*d^3*e+b*c*d^3*e-33*c^2*d^3*e+27*a*d^4*e-49*b*d^4*e-33*c*d^4*e+3*d^5*e-5*a^4*e^2-39*a^3*b*e^2-a^2*b^2*e^2+9*a*b^3*e^2+38*b^4*e^2+48*a^3*c*e^2-50*a^2*b*c*e^2+31*a*b^2*c*e^2-b^3*c*e^2+40*a^2*c^2*e^2+46*a*b*c^2*e^2-9*b^2*c^2*e^2-5*a*c^3*e^2+2*b*c^3*e^2-3*c^4*e^2-4*a^3*d*e^2+20*a^2*b*d*e^2-42*a*b^2*d*e^2+5*b^3*d*e^2-29*a^2*c*d*e^2+21*a*b*c*d*e^2-36*b^2*c*d*e^2+34*a*c^2*d*e^2+18*b*c^2*d*e^2-45*c^3*d*e^2+13*a^2*d^2*e^2-25*a*b*d^2*e^2+27*b^2*d^2*e^2+32*b*c*d^2*e^2+38*c^2*d^2*e^2+2*a*d^3*e^2+10*b*d^3*e^2+31*c*d^3*e^2-6*d^4*e^2+8*a^3*e^3-40*a^2*b*e^3+34*a*b^2*e^3+50*b^3*e^3-10*a^2*c*e^3-36*a*b*c*e^3-17*b^2*c*e^3-39*a*c^2*e^3+19*b*c^2*e^3-13*c^3*e^3+28*a^2*d*e^3+27*a*b*d*e^3+28*b^2*d*e^3+13*a*c*d*e^3+47*b*c*d*e^3-32*c^2*d*e^3+6*a*d^2*e^3+16*b*d^2*e^3-2*c*d^2*e^3+39*d^3*e^3+12*a^2*e^4-12*a*b*e^4+27*b^2*e^4-4*a*c*e^4+7*b*c*e^4-2*c^2*e^4+30*a*d*e^4-16*b*d*e^4-13*c*d*e^4+18*d^2*e^4-6*a*e^5+32*b*e^5-46*c*e^5+33*d*e^5+26*e^6, 1814 a*b^3*c*d-15*a^4*d^2-41*a^3*b*d^2-50*a^2*b^2*d^2-45*b^4*d^2+29*a^3*c*d^2+43*a^2*b*c*d^2-7*a*b^2*c*d^2-49*b^3*c*d^2+10*a^2*c^2*d^2+13*a*b*c^2*d^2-8*b^2*c^2*d^2+22*a*c^3*d^2+21*b*c^3*d^2-20*c^4*d^2-25*a^3*d^3+28*a^2*b*d^3+36*a*b^2*d^3+b^3*d^3-38*a^2*c*d^3+34*a*b*c*d^3-33*b^2*c*d^3+11*a*c^2*d^3+48*b*c^2*d^3+33*c^3*d^3+5*a^2*d^4+5*a*b*d^4+4*b^2*d^4+37*a*c*d^4+44*b*c*d^4-35*c^2*d^4+8*a*d^5+38*b*d^5+43*c*d^5-15*d^6+15*a^5*e+31*a^4*b*e-30*a^3*b^2*e+46*a^2*b^3*e-29*a*b^4*e+13*b^5*e-38*a^4*c*e+39*a^3*b*c*e+3*a^2*b^2*c*e-19*a*b^3*c*e-50*b^4*c*e-a^3*c^2*e+3*a^2*b*c^2*e-8*a*b^2*c^2*e-34*b^3*c^2*e-40*a^2*c^3*e+43*a*b*c^3*e+45*b^2*c^3*e-31*a*c^4*e+19*b*c^4*e+38*c^5*e+5*a^4*d*e-43*a^3*b*d*e+23*a^2*b^2*d*e+38*a*b^3*d*e-35*b^4*d*e-46*a^3*c*d*e+46*a^2*b*c*d*e-41*a*b^2*c*d*e+16*b^3*c*d*e-37*a^2*c^2*d*e+28*a*b*c^2*d*e-8*b^2*c^2*d*e+40*a*c^3*d*e-42*b*c^3*d*e-22*c^4*d*e+36*a^3*d^2*e+17*a^2*b*d^2*e+4*a*b^2*d^2*e+38*b^3*d^2*e-41*a^2*c*d^2*e-7*a*b*c*d^2*e-34*b^2*c*d^2*e+10*a*c^2*d^2*e-7*b*c^2*d^2*e-35*c^3*d^2*e-26*a^2*d^3*e-a*b*d^3*e-12*b^2*d^3*e+46*a*c*d^3*e-44*b*c*d^3*e+14*c^2*d^3*e-42*a*d^4*e-8*b*d^4*e+39*c*d^4*e+17*d^5*e+43*a^4*e^2+10*a^3*b*e^2-13*a^2*b^2*e^2-a*b^3*e^2+32*b^4*e^2+4*a^3*c*e^2+10*a^2*b*c*e^2-34*a*b^2*c*e^2+5*b^3*c*e^2-30*a^2*c^2*e^2-6*a*b*c^2*e^2+38*b^2*c^2*e^2-44*a*c^3*e^2+9*b*c^3*e^2+11*c^4*e^2+10*a^3*d*e^2+50*a^2*b*d*e^2-2*a*b^2*d*e^2-26*b^3*d*e^2+15*a^2*c*d*e^2-40*a*b*c*d*e^2+21*b^2*c*d*e^2-45*a*c^2*d*e^2-5*b*c^2*d*e^2-8*c^3*d*e^2+5*a^2*d^2*e^2+8*a*b*d^2*e^2-40*b^2*d^2*e^2+28*a*c*d^2*e^2-26*b*c*d^2*e^2+28*c^2*d^2*e^2+20*a*d^3*e^2-32*b*d^3*e^2-c*d^3*e^2-47*d^4*e^2-41*a^3*e^3-10*a^2*b*e^3-9*a*b^2*e^3+18*b^3*e^3-36*a^2*c*e^3+43*a*b*c*e^3+b^2*c*e^3+5*a*c^2*e^3+35*b*c^2*e^3-29*c^3*e^3+49*a^2*d*e^3+11*a*b*d*e^3-14*b^2*d*e^3-18*a*c*d*e^3+48*b*c*d*e^3-5*c^2*d*e^3-39*a*d^2*e^3+16*c*d^2*e^3+21*d^3*e^3+29*a^2*e^4+42*a*b*e^4+16*b^2*e^4+21*a*c*e^4-40*b*c*e^4-23*a*d*e^4-27*b*d*e^4+19*c*d*e^4-3*d^2*e^4+29*a*e^5+23*b*e^5-48*c*e^5-14*d*e^5-39*e^6, 1815 a^2*b^2*c*d+30*a^4*d^2-8*a^3*b*d^2-31*a^2*b^2*d^2-48*a*b^3*d^2-8*b^4*d^2-a^3*c*d^2-45*a^2*b*c*d^2+24*a*b^2*c*d^2-50*b^3*c*d^2+26*a^2*c^2*d^2-21*a*b*c^2*d^2+7*b^2*c^2*d^2-23*a*c^3*d^2-3*b*c^3*d^2-37*c^4*d^2+30*a^3*d^3-49*a^2*b*d^3-10*a*b^2*d^3+19*b^3*d^3-a^2*c*d^3-23*a*b*c*d^3+27*b^2*c*d^3+8*a*c^2*d^3+36*b*c^2*d^3+14*c^3*d^3-14*a^2*d^4+11*a*b*d^4+24*b^2*d^4-22*a*c*d^4+14*b*c*d^4-12*c^2*d^4+33*a*d^5-35*b*d^5-20*c*d^5-22*d^6-25*a^5*e-50*a^4*b*e-3*a^3*b^2*e-49*a^2*b^3*e-47*a*b^4*e-12*b^5*e+24*a^4*c*e+10*a^3*b*c*e-49*a^2*b^2*c*e-46*a*b^3*c*e-39*b^4*c*e+47*a^3*c^2*e-a^2*b*c^2*e+45*a*b^2*c^2*e-46*b^3*c^2*e+27*a^2*c^3*e-27*a*b*c^3*e+7*b^2*c^3*e+48*a*c^4*e-17*b*c^4*e+13*c^5*e+40*a^4*d*e+50*a^3*b*d*e-9*a^2*b^2*d*e-9*a*b^3*d*e+18*b^4*d*e+30*a^3*c*d*e-36*a^2*b*c*d*e-41*a*b^2*c*d*e+34*b^3*c*d*e+10*a^2*c^2*d*e-19*a*b*c^2*d*e+38*b^2*c^2*d*e-17*a*c^3*d*e-15*b*c^3*d*e-25*c^4*d*e+26*a^3*d^2*e-22*a^2*b*d^2*e+33*a*b^2*d^2*e+3*b^3*d^2*e+33*a^2*c*d^2*e+13*a*b*c*d^2*e-36*b^2*c*d^2*e+16*a*c^2*d^2*e+16*b*c^2*d^2*e+27*c^3*d^2*e-20*a^2*d^3*e+8*a*b*d^3*e+12*b^2*d^3*e-7*a*c*d^3*e-11*b*c*d^3*e-32*c^2*d^3*e+49*a*d^4*e-45*b*d^4*e+4*c*d^4*e+23*d^5*e-42*a^4*e^2-10*a^3*b*e^2+47*a^2*b^2*e^2+31*a*b^3*e^2-9*b^4*e^2-45*a^3*c*e^2-16*a^2*b*c*e^2-16*a*b^2*c*e^2+6*b^3*c*e^2+9*a^2*c^2*e^2-35*a*b*c^2*e^2-17*b^2*c^2*e^2-48*a*c^3*e^2-6*b*c^3*e^2+33*c^4*e^2+46*a^3*d*e^2-22*a^2*b*d*e^2+41*a*b^2*d*e^2+28*b^3*d*e^2+37*a^2*c*d*e^2-35*a*b*c*d*e^2+11*b^2*c*d*e^2-40*a*c^2*d*e^2-25*b*c^2*d*e^2-6*c^3*d*e^2+50*a^2*d^2*e^2-29*a*b*d^2*e^2-30*b^2*d^2*e^2+12*a*c*d^2*e^2+37*b*c*d^2*e^2-23*c^2*d^2*e^2-30*a*d^3*e^2-43*b*d^3*e^2+31*c*d^3*e^2-35*d^4*e^2+32*a^3*e^3-45*a^2*b*e^3-35*a*b^2*e^3+26*b^3*e^3-43*a^2*c*e^3-41*a*b*c*e^3-6*b^2*c*e^3-14*a*c^2*e^3-20*b*c^2*e^3-44*c^3*e^3+10*a^2*d*e^3-4*a*b*d*e^3-38*b^2*d*e^3-28*a*c*d*e^3+8*b*c*d*e^3+30*c^2*d*e^3-5*a*d^2*e^3+24*b*d^2*e^3+2*c*d^2*e^3-19*d^3*e^3-25*a^2*e^4+21*a*b*e^4-20*b^2*e^4-11*a*c*e^4+40*b*c*e^4+12*c^2*e^4-30*a*d*e^4+8*b*d*e^4-14*c*d*e^4-23*d^2*e^4+20*a*e^5-7*b*e^5-38*c*e^5-50*d*e^5-30*e^6, 1816 a^3*b*c*d+41*a^4*d^2+15*a^3*b*d^2-2*a^2*b^2*d^2-33*a*b^3*d^2+9*b^4*d^2+25*a^3*c*d^2-22*a^2*b*c*d^2-7*a*b^2*c*d^2-14*b^3*c*d^2-34*a^2*c^2*d^2-30*a*b*c^2*d^2+50*b^2*c^2*d^2+12*a*c^3*d^2-6*b*c^3*d^2+25*c^4*d^2-41*a^3*d^3-2*a^2*b*d^3+10*a*b^2*d^3+6*b^3*d^3-26*a^2*c*d^3+17*a*b*c*d^3+24*b^2*c*d^3+42*a*c^2*d^3-28*b*c^2*d^3+9*c^3*d^3+41*a^2*d^4-48*a*b*d^4+18*b^2*d^4-26*a*c*d^4+33*b*c*d^4-8*c^2*d^4+35*a*d^5+14*b*d^5-48*c*d^5-23*d^6+49*a^5*e+16*a^4*b*e+2*a^3*b^2*e+26*a^2*b^3*e+5*a*b^4*e+39*b^5*e-32*a^4*c*e+19*a^3*b*c*e-37*a^2*b^2*c*e+44*a*b^3*c*e+34*b^4*c*e+37*a^3*c^2*e-25*a^2*b*c^2*e-43*a*b^2*c^2*e+31*b^3*c^2*e-17*a^2*c^3*e-7*a*b*c^3*e-29*b^2*c^3*e+39*a*c^4*e-13*b*c^4*e+46*c^5*e-14*a^4*d*e-23*a^3*b*d*e-31*a^2*b^2*d*e+14*a*b^3*d*e+35*b^4*d*e-44*a^3*c*d*e+15*a^2*b*c*d*e-38*a*b^2*c*d*e-38*b^3*c*d*e-7*a^2*c^2*d*e-36*a*b*c^2*d*e-36*b^2*c^2*d*e+36*a*c^3*d*e+4*b*c^3*d*e+14*c^4*d*e+35*a^2*b*d^2*e+35*a*b^2*d^2*e-28*b^3*d^2*e+3*a^2*c*d^2*e+11*a*b*c*d^2*e-41*b^2*c*d^2*e-12*a*c^2*d^2*e-4*b*c^2*d^2*e+2*c^3*d^2*e+15*a^2*d^3*e-18*a*b*d^3*e+2*b^2*d^3*e+2*a*c*d^3*e-21*b*c*d^3*e+27*c^2*d^3*e+34*a*d^4*e+22*b*d^4*e-38*c*d^4*e+45*d^5*e+3*a^4*e^2+21*a^3*b*e^2-2*a^2*b^2*e^2+11*a*b^3*e^2-29*b^4*e^2-31*a^3*c*e^2+27*a^2*b*c*e^2-44*a*b^2*c*e^2-27*b^3*c*e^2-26*a^2*c^2*e^2+48*a*b*c^2*e^2-46*b^2*c^2*e^2-46*a*c^3*e^2-44*b*c^3*e^2-3*c^4*e^2+18*a^3*d*e^2-34*a^2*b*d*e^2+14*a*b^2*d*e^2+32*b^3*d*e^2+40*a^2*c*d*e^2+20*a*b*c*d*e^2+35*b^2*c*d*e^2-19*a*c^2*d*e^2+16*b*c^2*d*e^2-6*c^3*d*e^2-a^2*d^2*e^2+38*a*b*d^2*e^2+23*b^2*d^2*e^2-26*a*c*d^2*e^2-47*b*c*d^2*e^2+11*c^2*d^2*e^2+34*a*d^3*e^2-27*b*d^3*e^2-41*c*d^3*e^2-2*d^4*e^2+7*a^3*e^3-46*a^2*b*e^3-17*a*b^2*e^3+18*b^3*e^3+25*a^2*c*e^3+24*a*b*c*e^3+48*b^2*c*e^3-25*a*c^2*e^3-12*b*c^2*e^3+17*c^3*e^3+15*a^2*d*e^3+49*a*b*d*e^3-44*b^2*d*e^3+31*a*c*d*e^3-14*b*c*d*e^3-13*c^2*d*e^3-49*a*d^2*e^3-42*b*d^2*e^3-40*c*d^2*e^3+49*d^3*e^3-13*a^2*e^4-3*a*b*e^4-33*b^2*e^4+21*a*c*e^4-23*b*c*e^4+35*c^2*e^4+41*a*d*e^4-6*b*d*e^4+23*c*d*e^4-44*d^2*e^4-10*a*e^5-5*b*e^5+22*c*e^5-13*d*e^5-24*e^6, 1817 a^4*c*d-22*a^3*b*d^2+25*a^2*b^2*d^2+46*a*b^3*d^2+4*b^4*d^2-49*a^3*c*d^2+10*a^2*b*c*d^2-18*a*b^2*c*d^2-24*b^3*c*d^2+a^2*c^2*d^2-44*a*b*c^2*d^2+19*b^2*c^2*d^2+2*a*c^3*d^2-16*b*c^3*d^2+23*c^4*d^2-34*a^3*d^3+29*a^2*b*d^3+18*a*b^2*d^3-31*b^3*d^3-26*a^2*c*d^3+35*a*b*c*d^3-2*b^2*c*d^3-3*a*c^2*d^3-8*b*c^2*d^3+50*c^3*d^3-11*a^2*d^4+30*a*b*d^4-41*b^2*d^4+41*a*c*d^4+12*b*c*d^4+2*c^2*d^4+44*a*d^5+5*b*d^5-8*c*d^5-37*d^6+10*a^5*e+20*a^4*b*e-32*a^3*b^2*e-7*a^2*b^3*e-11*a*b^4*e-3*b^5*e+47*a^4*c*e-39*a^3*b*c*e+27*a^2*b^2*c*e+14*a*b^3*c*e+25*b^4*c*e+45*a^3*c^2*e-22*a^2*b*c^2*e-4*a*b^2*c^2*e+8*b^3*c^2*e+10*a^2*c^3*e-18*a*b*c^3*e-25*b^2*c^3*e-35*a*c^4*e+7*b*c^4*e+44*c^5*e+13*a^4*d*e-17*a^3*b*d*e+23*a^2*b^2*d*e-4*a*b^3*d*e+23*b^4*d*e-4*a^3*c*d*e+34*a^2*b*c*d*e+48*a*b^2*c*d*e-32*b^3*c*d*e-44*a^2*c^2*d*e+37*a*b*c^2*d*e-38*b^2*c^2*d*e-23*a*c^3*d*e-42*b*c^3*d*e-19*c^4*d*e-48*a^3*d^2*e+29*a^2*b*d^2*e-25*a*b^2*d^2*e+36*b^3*d^2*e-46*a^2*c*d^2*e+37*a*b*c*d^2*e+28*b^2*c*d^2*e+12*a*c^2*d^2*e+2*b*c^2*d^2*e-13*c^3*d^2*e-40*a^2*d^3*e+44*a*b*d^3*e+29*b^2*d^3*e+20*a*c*d^3*e+23*b*c*d^3*e-44*c^2*d^3*e+23*a*d^4*e+22*b*d^4*e+12*c*d^4*e-16*d^5*e+50*a^4*e^2+12*a^3*b*e^2-16*a^2*b^2*e^2+27*a*b^3*e^2+27*b^4*e^2-25*a^3*c*e^2+13*a^2*b*c*e^2-21*a*b^2*c*e^2+46*b^3*c*e^2-6*a^2*c^2*e^2+13*a*b*c^2*e^2-8*b^2*c^2*e^2+39*a*c^3*e^2+36*b*c^3*e^2+46*c^4*e^2-9*a^3*d*e^2-35*a^2*b*d*e^2-47*a*b^2*d*e^2-41*b^3*d*e^2+26*a^2*c*d*e^2-38*a*b*c*d*e^2+48*b^2*c*d*e^2-36*a*c^2*d*e^2+32*b*c^2*d*e^2-17*c^3*d*e^2+39*a^2*d^2*e^2-a*b*d^2*e^2+48*a*c*d^2*e^2-20*b*c*d^2*e^2-49*c^2*d^2*e^2-37*a*d^3*e^2-8*b*d^3*e^2-c*d^3*e^2-8*d^4*e^2-47*a^3*e^3+2*a^2*b*e^3-14*a*b^2*e^3-32*b^3*e^3+18*a^2*c*e^3+49*a*b*c*e^3-43*b^2*c*e^3-8*a*c^2*e^3-36*b*c^2*e^3+18*c^3*e^3+11*a^2*d*e^3+4*a*b*d*e^3+49*b^2*d*e^3+26*a*c*d*e^3+5*b*c*d*e^3-14*c^2*d*e^3+12*a*d^2*e^3+b*d^2*e^3-49*c*d^2*e^3+24*d^3*e^3+11*a^2*e^4-43*a*b*e^4-36*b^2*e^4+30*a*c*e^4-12*b*c*e^4+10*c^2*e^4-29*a*d*e^4-12*b*d*e^4+37*c*d*e^4+46*d^2*e^4+34*a*e^5+14*b*e^5-26*c*e^5+d*e^5+35*e^6, 1818 b^5*d-5*a^4*d^2-29*a^3*b*d^2-36*a^2*b^2*d^2-11*a*b^3*d^2+32*b^4*d^2-17*a^3*c*d^2+47*a^2*b*c*d^2+16*a*b^2*c*d^2-24*b^3*c*d^2+12*a^2*c^2*d^2+20*a*b*c^2*d^2-24*b^2*c^2*d^2-10*a*c^3*d^2-26*b*c^3*d^2+22*c^4*d^2-14*a^3*d^3-49*a^2*b*d^3-44*a*b^2*d^3-20*b^3*d^3+11*a^2*c*d^3-45*a*b*c*d^3-5*b^2*c*d^3-19*a*c^2*d^3-10*b*c^2*d^3-35*c^3*d^3-13*a^2*d^4+18*a*b*d^4+10*b^2*d^4+46*a*c*d^4+15*b*c*d^4-13*c^2*d^4-8*a*d^5+50*b*d^5+2*c*d^5-43*d^6-18*a^5*e-2*a^4*b*e-31*a^3*b^2*e-37*a^2*b^3*e+32*a*b^4*e-4*b^5*e+19*a^4*c*e-42*a^3*b*c*e+40*a^2*b^2*c*e+37*a*b^3*c*e+17*b^4*c*e+39*a^3*c^2*e+10*a^2*b*c^2*e-38*a*b^2*c^2*e+4*b^3*c^2*e+18*a^2*c^3*e+35*a*b*c^3*e-29*b^2*c^3*e-19*a*c^4*e-4*b*c^4*e+28*c^5*e+17*a^4*d*e-20*a^3*b*d*e+18*a^2*b^2*d*e+11*a*b^3*d*e+30*b^4*d*e-2*a^3*c*d*e+43*a^2*b*c*d*e+46*a*b^2*c*d*e+14*b^3*c*d*e+48*a^2*c^2*d*e-5*a*b*c^2*d*e-7*b^2*c^2*d*e+13*a*c^3*d*e+11*b*c^3*d*e+48*c^4*d*e+41*a^3*d^2*e+10*a^2*b*d^2*e-43*a*b^2*d^2*e-41*b^3*d^2*e+47*a^2*c*d^2*e-42*a*b*c*d^2*e+34*b^2*c*d^2*e+34*a*c^2*d^2*e-14*b*c^2*d^2*e-16*c^3*d^2*e-39*a^2*d^3*e+23*a*b*d^3*e-32*b^2*d^3*e-20*a*c*d^3*e+7*b*c*d^3*e-4*c^2*d^3*e+2*a*d^4*e+42*b*d^4*e-38*c*d^4*e-14*d^5*e-9*a^4*e^2+2*a^3*b*e^2-20*a^2*b^2*e^2-15*a*b^3*e^2+30*b^4*e^2-44*a^3*c*e^2-47*a^2*b*c*e^2+11*a*b^2*c*e^2+20*b^3*c*e^2-2*a^2*c^2*e^2+4*a*b*c^2*e^2+49*b^2*c^2*e^2-41*a*c^3*e^2-36*b*c^3*e^2+31*c^4*e^2+22*a^3*d*e^2+39*a^2*b*d*e^2-21*a*b^2*d*e^2+26*b^3*d*e^2+28*a^2*c*d*e^2+41*a*b*c*d*e^2-14*b^2*c*d*e^2+44*a*c^2*d*e^2+27*b*c^2*d*e^2-25*c^3*d*e^2-28*a^2*d^2*e^2-37*a*b*d^2*e^2+20*b^2*d^2*e^2+45*a*c*d^2*e^2+45*b*c*d^2*e^2-28*c^2*d^2*e^2-18*a*d^3*e^2+5*b*d^3*e^2-3*c*d^3*e^2+17*d^4*e^2+18*a^3*e^3+46*a^2*b*e^3+28*a*b^2*e^3-22*b^3*e^3-15*a^2*c*e^3+30*a*b*c*e^3-40*b^2*c*e^3-20*a*c^2*e^3+10*b*c^2*e^3-31*c^3*e^3+19*a^2*d*e^3+29*a*b*d*e^3+12*b^2*d*e^3-39*a*c*d*e^3-32*b*c*d*e^3+12*a*d^2*e^3-26*c*d^2*e^3+14*a^2*e^4+40*a*b*e^4-b^2*e^4+15*a*c*e^4+27*b*c*e^4+34*c^2*e^4-30*a*d*e^4+25*b*d*e^4-50*c*d*e^4+35*d^2*e^4+25*a*e^5+21*b*e^5-10*c*e^5-4*d*e^5-43*e^6, 1819 a*b^4*d+47*a^4*d^2+25*a^3*b*d^2-13*a^2*b^2*d^2+26*a*b^3*d^2-24*b^4*d^2-4*a^3*c*d^2-30*a^2*b*c*d^2+11*a*b^2*c*d^2+49*b^3*c*d^2-11*a^2*c^2*d^2-4*a*b*c^2*d^2+44*b^2*c^2*d^2+46*a*c^3*d^2-3*b*c^3*d^2-30*c^4*d^2+8*a^3*d^3+49*a^2*b*d^3+33*a*b^2*d^3+8*b^3*d^3-34*a^2*c*d^3-29*a*b*c*d^3-35*b^2*c*d^3-10*a*c^2*d^3+13*b*c^2*d^3-22*c^3*d^3+8*a^2*d^4+2*a*b*d^4+7*b^2*d^4-14*a*c*d^4+40*b*c*d^4+41*c^2*d^4-14*a*d^5+10*c*d^5-11*d^6-43*a^5*e-2*a^4*b*e-10*a^3*b^2*e-39*a^2*b^3*e+15*a*b^4*e-8*b^5*e+19*a^4*c*e+35*a^3*b*c*e+48*a^2*b^2*c*e-24*a*b^3*c*e-41*b^4*c*e-24*a^3*c^2*e+35*a^2*b*c^2*e-47*a*b^2*c^2*e+28*b^3*c^2*e-10*a^2*c^3*e+28*a*b*c^3*e-43*b^2*c^3*e+10*a*c^4*e-26*b*c^4*e-30*c^5*e+3*a^4*d*e-42*a^3*b*d*e-23*a^2*b^2*d*e+41*a*b^3*d*e+12*b^4*d*e-16*a^3*c*d*e+4*a^2*b*c*d*e+30*a*b^2*c*d*e+14*b^3*c*d*e+15*a^2*c^2*d*e-11*a*b*c^2*d*e+34*b^2*c^2*d*e-48*a*c^3*d*e+15*b*c^3*d*e+38*c^4*d*e+26*a^3*d^2*e-41*a^2*b*d^2*e-8*a*b^2*d^2*e+44*b^3*d^2*e-7*a^2*c*d^2*e+11*a*b*c*d^2*e-3*b^2*c*d^2*e+42*a*c^2*d^2*e+31*b*c^2*d^2*e-35*c^3*d^2*e-23*a^2*d^3*e+47*a*b*d^3*e+26*b^2*d^3*e+40*a*c*d^3*e-24*b*c*d^3*e-34*c^2*d^3*e+4*a*d^4*e-48*b*d^4*e-49*c*d^4*e-23*d^5*e-5*a^4*e^2-15*a^3*b*e^2+5*a^2*b^2*e^2+41*a*b^3*e^2-7*b^4*e^2-35*a^3*c*e^2+5*a^2*b*c*e^2+25*a*b^2*c*e^2-50*b^3*c*e^2+23*a^2*c^2*e^2+43*a*b*c^2*e^2+41*b^2*c^2*e^2+9*a*c^3*e^2-36*b*c^3*e^2-49*c^4*e^2-36*a^3*d*e^2-43*a^2*b*d*e^2-24*a*b^2*d*e^2+34*b^3*d*e^2-29*a^2*c*d*e^2-48*a*b*c*d*e^2+42*b^2*c*d*e^2+34*a*c^2*d*e^2+20*b*c^2*d*e^2-31*c^3*d*e^2+18*a^2*d^2*e^2-3*a*b*d^2*e^2+24*b^2*d^2*e^2-39*a*c*d^2*e^2+39*b*c*d^2*e^2-48*c^2*d^2*e^2-30*a*d^3*e^2-28*b*d^3*e^2+4*c*d^3*e^2+13*d^4*e^2-30*a^3*e^3+47*a^2*b*e^3+2*a*b^2*e^3+31*b^3*e^3+35*a^2*c*e^3+36*a*b*c*e^3-47*b^2*c*e^3+48*a*c^2*e^3-8*b*c^2*e^3-23*c^3*e^3+35*a^2*d*e^3+21*a*b*d*e^3+17*b^2*d*e^3-15*a*c*d*e^3-41*b*c*d*e^3+13*c^2*d*e^3+17*a*d^2*e^3-19*b*d^2*e^3+26*c*d^2*e^3-26*d^3*e^3-38*a^2*e^4+17*a*b*e^4+22*b^2*e^4-6*a*c*e^4-18*b*c*e^4+42*c^2*e^4+26*a*d*e^4-19*b*d*e^4-36*c*d*e^4-22*d^2*e^4+44*a*e^5+32*b*e^5-15*c*e^5-16*d*e^5+2*e^6, 1820 a^2*b^3*d-26*a^4*d^2+24*a^3*b*d^2-21*a^2*b^2*d^2-7*a*b^3*d^2-39*b^4*d^2-47*a^3*c*d^2+37*a^2*b*c*d^2+24*a*b^2*c*d^2-6*b^3*c*d^2+20*a^2*c^2*d^2-4*b^2*c^2*d^2+21*a*c^3*d^2-15*b*c^3*d^2-22*c^4*d^2-23*a^3*d^3+21*a^2*b*d^3-16*a*b^2*d^3-38*b^3*d^3-16*a^2*c*d^3+7*a*b*c*d^3-37*b^2*c*d^3-12*a*c^2*d^3+42*b*c^2*d^3+40*c^3*d^3-35*a^2*d^4+29*a*b*d^4-b^2*d^4+21*a*c*d^4+47*b*c*d^4-22*c^2*d^4-11*a*d^5-44*b*d^5+49*c*d^5+33*d^6-35*a^5*e-41*a^4*b*e+17*a^3*b^2*e-6*a^2*b^3*e-12*a*b^4*e+36*b^5*e-6*a^4*c*e-28*a^3*b*c*e+22*a^2*b^2*c*e+10*a*b^3*c*e-34*b^4*c*e+28*a^3*c^2*e-2*a^2*b*c^2*e-48*a*b^2*c^2*e-28*b^3*c^2*e+42*a^2*c^3*e+30*a*b*c^3*e-43*b^2*c^3*e-34*a*c^4*e+33*b*c^4*e-38*c^5*e+39*a^4*d*e-27*a^3*b*d*e+44*a^2*b^2*d*e+12*a*b^3*d*e+18*b^4*d*e-19*a^3*c*d*e-42*a^2*b*c*d*e+24*a*b^2*c*d*e-49*b^3*c*d*e+17*a^2*c^2*d*e+3*a*b*c^2*d*e+39*b^2*c^2*d*e-31*a*c^3*d*e-8*b*c^3*d*e+42*c^4*d*e-42*a^3*d^2*e+49*a^2*b*d^2*e-17*a*b^2*d^2*e-49*b^3*d^2*e-20*a^2*c*d^2*e-11*a*b*c*d^2*e-17*b^2*c*d^2*e+16*a*c^2*d^2*e+41*b*c^2*d^2*e+50*c^3*d^2*e-28*a^2*d^3*e+44*a*b*d^3*e-25*b^2*d^3*e-24*a*c*d^3*e-b*c*d^3*e-45*c^2*d^3*e-3*a*d^4*e-26*b*d^4*e-12*c*d^4*e+4*d^5*e+5*a^4*e^2+28*a^3*b*e^2-42*a^2*b^2*e^2+33*a*b^3*e^2-15*b^4*e^2-40*a^3*c*e^2+47*a^2*b*c*e^2-4*a*b^2*c*e^2-22*b^3*c*e^2-35*a^2*c^2*e^2-8*a*b*c^2*e^2-11*b^2*c^2*e^2-37*a*c^3*e^2-23*b*c^3*e^2+33*c^4*e^2-34*a^3*d*e^2+16*a^2*b*d*e^2-38*a*b^2*d*e^2+32*b^3*d*e^2+10*a^2*c*d*e^2-30*a*b*c*d*e^2+32*b^2*c*d*e^2-6*a*c^2*d*e^2-45*b*c^2*d*e^2-5*c^3*d*e^2-16*a^2*d^2*e^2-14*a*b*d^2*e^2+22*b^2*d^2*e^2+4*a*c*d^2*e^2-37*b*c*d^2*e^2-28*c^2*d^2*e^2-16*a*d^3*e^2+6*b*d^3*e^2+9*c*d^3*e^2-46*d^4*e^2-10*a^3*e^3-50*a^2*b*e^3+18*a*b^2*e^3+20*b^3*e^3-34*a^2*c*e^3+33*a*b*c*e^3-17*b^2*c*e^3-19*a*c^2*e^3-5*b*c^2*e^3+19*c^3*e^3-23*a^2*d*e^3+4*a*b*d*e^3+28*b^2*d*e^3+17*a*c*d*e^3+7*b*c*d*e^3+39*c^2*d*e^3+4*a*d^2*e^3-39*b*d^2*e^3-16*c*d^2*e^3-23*d^3*e^3-23*a^2*e^4-16*a*b*e^4-2*b^2*e^4-24*a*c*e^4-5*b*c*e^4+45*c^2*e^4-10*a*d*e^4-b*d*e^4+50*c*d*e^4+31*d^2*e^4+31*a*e^5-37*b*e^5-44*c*e^5+37*d*e^5-43*e^6, 1821 a^3*b^2*d-42*a^4*d^2-17*a^3*b*d^2-23*a^2*b^2*d^2-17*a*b^3*d^2-27*b^4*d^2-50*a^3*c*d^2+27*a^2*b*c*d^2-30*a*b^2*c*d^2-7*b^3*c*d^2+21*a^2*c^2*d^2+13*a*b*c^2*d^2+29*b^2*c^2*d^2-46*a*c^3*d^2+43*b*c^3*d^2-2*c^4*d^2-2*a^3*d^3+45*a^2*b*d^3-15*a*b^2*d^3-47*b^3*d^3-17*a^2*c*d^3-25*a*b*c*d^3+9*b^2*c*d^3-24*a*c^2*d^3+32*b*c^2*d^3+37*c^3*d^3+14*a^2*d^4+23*a*b*d^4+49*b^2*d^4+10*a*c*d^4+19*b*c*d^4-13*c^2*d^4-9*a*d^5+44*b*d^5+39*c*d^5-28*d^6-2*a^5*e+5*a^4*b*e-36*a^3*b^2*e-12*a^2*b^3*e+2*a*b^4*e+15*b^5*e-31*a^4*c*e-3*a^3*b*c*e+46*a^2*b^2*c*e+33*a*b^3*c*e+16*b^4*c*e+24*a^3*c^2*e-36*a^2*b*c^2*e+10*a*b^2*c^2*e+4*b^3*c^2*e+44*a^2*c^3*e+18*a*b*c^3*e-37*b^2*c^3*e-47*a*c^4*e+32*b*c^4*e-29*c^5*e+14*a^4*d*e+6*a^3*b*d*e+44*a^2*b^2*d*e+23*a*b^3*d*e+33*b^4*d*e-7*a^3*c*d*e+10*a^2*b*c*d*e+30*a*b^2*c*d*e+41*b^3*c*d*e-50*a^2*c^2*d*e+a*b*c^2*d*e+33*b^2*c^2*d*e-26*a*c^3*d*e-32*b*c^3*d*e+47*c^4*d*e+39*a^3*d^2*e+40*a^2*b*d^2*e+6*a*b^2*d^2*e+30*b^3*d^2*e-30*a^2*c*d^2*e-21*a*b*c*d^2*e-41*b^2*c*d^2*e-21*a*c^2*d^2*e-17*b*c^2*d^2*e-21*c^3*d^2*e+26*a^2*d^3*e+50*a*b*d^3*e+39*b^2*d^3*e-34*a*c*d^3*e-25*b*c*d^3*e-34*c^2*d^3*e+9*a*d^4*e-40*b*d^4*e-45*c*d^4*e-3*d^5*e-34*a^4*e^2-22*a^3*b*e^2-5*a^2*b^2*e^2+45*a*b^3*e^2-16*b^4*e^2-12*a^3*c*e^2+33*a^2*b*c*e^2+31*a*b^2*c*e^2+19*b^3*c*e^2+49*a^2*c^2*e^2-19*a*b*c^2*e^2+8*b^2*c^2*e^2+32*a*c^3*e^2+31*b*c^3*e^2+21*c^4*e^2+13*a^3*d*e^2-35*a^2*b*d*e^2-29*a*b^2*d*e^2-41*b^3*d*e^2+11*a^2*c*d*e^2+46*a*b*c*d*e^2+b^2*c*d*e^2+5*a*c^2*d*e^2+18*c^3*d*e^2-17*a^2*d^2*e^2+45*a*b*d^2*e^2-40*b^2*d^2*e^2-6*a*c*d^2*e^2-32*b*c*d^2*e^2-19*c^2*d^2*e^2+48*a*d^3*e^2+41*b*d^3*e^2-30*c*d^3*e^2-38*d^4*e^2+4*a^3*e^3+8*a^2*b*e^3-49*a*b^2*e^3+36*b^3*e^3-5*a^2*c*e^3-21*a*b*c*e^3-27*b^2*c*e^3+5*a*c^2*e^3+31*b*c^2*e^3+15*c^3*e^3+41*a^2*d*e^3+19*a*b*d*e^3+10*b^2*d*e^3+41*a*c*d*e^3+45*b*c*d*e^3+12*c^2*d*e^3-28*a*d^2*e^3+14*b*d^2*e^3+4*c*d^2*e^3-25*d^3*e^3+38*a^2*e^4+37*a*b*e^4-15*b^2*e^4-11*a*c*e^4-24*b*c*e^4+33*c^2*e^4-31*a*d*e^4+14*b*d*e^4+49*c*d*e^4+34*d^2*e^4-34*a*e^5-23*b*e^5+50*c*e^5+19*d*e^5+26*e^6, 1822 a^4*b*d+4*a^4*d^2-24*a^3*b*d^2+8*a^2*b^2*d^2-24*a*b^3*d^2-b^4*d^2+31*a^3*c*d^2-45*a^2*b*c*d^2-12*a*b^2*c*d^2+45*b^3*c*d^2+29*a^2*c^2*d^2+41*a*b*c^2*d^2-2*b^2*c^2*d^2-44*a*c^3*d^2-9*b*c^3*d^2+32*c^4*d^2+50*a^3*d^3-6*a^2*b*d^3+11*a*b^2*d^3-6*b^3*d^3-36*a^2*c*d^3-13*a*b*c*d^3-44*b^2*c*d^3+35*a*c^2*d^3+29*b*c^2*d^3-32*c^3*d^3+45*a^2*d^4-24*a*b*d^4-b^2*d^4+48*a*c*d^4+29*b*c*d^4+43*c^2*d^4+34*a*d^5-b*d^5+14*c*d^5+12*d^6-50*a^5*e-26*a^4*b*e-38*a^3*b^2*e-5*a^2*b^3*e+41*a*b^4*e+38*b^5*e-14*a^4*c*e+46*a^3*b*c*e-14*a^2*b^2*c*e-24*a*b^3*c*e+31*b^4*c*e-24*a^3*c^2*e-50*a^2*b*c^2*e+47*a*b^2*c^2*e+42*b^3*c^2*e-15*a^2*c^3*e-26*a*b*c^3*e+26*b^2*c^3*e-38*a*c^4*e-34*b*c^4*e+44*c^5*e-29*a^4*d*e+26*a^3*b*d*e-25*a^2*b^2*d*e+41*a*b^3*d*e+46*b^4*d*e+46*a^3*c*d*e-28*a^2*b*c*d*e-10*a*b^2*c*d*e+18*b^3*c*d*e+28*a^2*c^2*d*e+25*a*b*c^2*d*e-8*b^2*c^2*d*e-36*a*c^3*d*e+50*b*c^3*d*e-25*c^4*d*e+7*a^3*d^2*e+29*a^2*b*d^2*e-50*a*b^2*d^2*e-34*b^3*d^2*e-6*a^2*c*d^2*e-13*a*b*c*d^2*e+21*b^2*c*d^2*e+32*a*c^2*d^2*e-10*b*c^2*d^2*e-19*c^3*d^2*e-27*a^2*d^3*e+46*a*b*d^3*e-4*b^2*d^3*e+17*a*c*d^3*e+11*b*c*d^3*e+7*c^2*d^3*e+18*a*d^4*e-23*b*d^4*e-45*c*d^4*e+40*d^5*e+36*a^4*e^2-2*a^3*b*e^2-17*a^2*b^2*e^2+11*a*b^3*e^2+49*b^4*e^2-31*a^3*c*e^2+8*a^2*b*c*e^2-12*a*b^2*c*e^2-15*b^3*c*e^2+14*a^2*c^2*e^2-a*b*c^2*e^2+38*b^2*c^2*e^2-40*a*c^3*e^2-25*b*c^3*e^2+34*c^4*e^2-2*a^3*d*e^2-19*a^2*b*d*e^2+35*a*b^2*d*e^2-49*b^3*d*e^2-20*a^2*c*d*e^2+47*a*b*c*d*e^2-42*b^2*c*d*e^2+41*a*c^2*d*e^2+23*b*c^2*d*e^2+22*c^3*d*e^2-16*a^2*d^2*e^2+14*a*b*d^2*e^2-10*b^2*d^2*e^2+47*a*c*d^2*e^2+43*b*c*d^2*e^2+50*c^2*d^2*e^2-35*b*d^3*e^2+45*c*d^3*e^2+5*d^4*e^2+18*a^3*e^3+42*a^2*b*e^3+a*b^2*e^3+26*b^3*e^3+16*a^2*c*e^3+40*b^2*c*e^3-27*a*c^2*e^3-9*b*c^2*e^3-26*c^3*e^3-24*a^2*d*e^3-6*a*b*d*e^3-26*b^2*d*e^3+47*a*c*d*e^3-40*b*c*d*e^3+30*c^2*d*e^3-46*a*d^2*e^3-27*b*d^2*e^3-42*c*d^2*e^3-10*d^3*e^3+25*a^2*e^4+a*b*e^4-15*b^2*e^4-13*a*c*e^4-33*b*c*e^4+20*c^2*e^4+5*a*d*e^4-42*b*d*e^4-5*c*d*e^4-24*d^2*e^4-34*a*e^5+35*b*e^5-27*c*e^5-43*d*e^5-43*e^6, 1823 a^5*d+14*a^4*d^2-3*a^3*b*d^2+7*a^2*b^2*d^2-31*a*b^3*d^2-42*b^4*d^2-16*a^3*c*d^2+36*a^2*b*c*d^2-17*a*b^2*c*d^2-15*b^3*c*d^2+17*a^2*c^2*d^2+36*a*b*c^2*d^2+12*b^2*c^2*d^2-47*a*c^3*d^2-16*b*c^3*d^2-9*c^4*d^2-38*a^3*d^3-43*a^2*b*d^3+2*a*b^2*d^3-44*b^3*d^3-12*a^2*c*d^3+32*a*b*c*d^3+21*b^2*c*d^3-10*a*c^2*d^3-28*b*c^2*d^3-c^3*d^3+18*a^2*d^4-13*a*b*d^4+13*b^2*d^4+31*a*c*d^4+27*b*c*d^4+34*c^2*d^4-19*a*d^5-36*b*d^5-46*c*d^5+11*d^6-26*a^5*e-24*a^4*b*e-5*a^3*b^2*e+27*a^2*b^3*e-6*a*b^4*e-30*b^5*e+35*a^4*c*e-42*a^3*b*c*e+a^2*b^2*c*e-22*a*b^3*c*e+12*b^4*c*e+7*a^3*c^2*e-26*a^2*b*c^2*e-43*a*b^2*c^2*e-18*b^3*c^2*e+10*a^2*c^3*e-10*a*b*c^3*e+48*b^2*c^3*e-19*a*c^4*e-29*b*c^4*e-3*c^5*e+20*a^4*d*e+10*a^3*b*d*e+28*a^2*b^2*d*e+14*a*b^3*d*e-15*b^4*d*e-7*a^3*c*d*e-24*a^2*b*c*d*e-26*a*b^2*c*d*e+32*b^3*c*d*e+2*a^2*c^2*d*e+16*a*b*c^2*d*e+44*b^2*c^2*d*e-48*a*c^3*d*e+7*b*c^3*d*e+3*c^4*d*e-8*a^3*d^2*e+23*a^2*b*d^2*e-39*a*b^2*d^2*e+35*b^3*d^2*e-2*a^2*c*d^2*e-17*a*b*c*d^2*e+46*b^2*c*d^2*e-26*a*c^2*d^2*e+7*b*c^2*d^2*e+47*c^3*d^2*e-38*a^2*d^3*e+12*a*b*d^3*e-14*b^2*d^3*e-a*c*d^3*e+12*b*c*d^3*e+30*c^2*d^3*e-50*a*d^4*e-34*b*d^4*e-6*c*d^4*e-24*d^5*e-37*a^4*e^2-15*a^3*b*e^2+17*a^2*b^2*e^2+26*a*b^3*e^2-31*b^4*e^2+14*a^3*c*e^2+30*a^2*b*c*e^2-9*a*b^2*c*e^2-42*b^3*c*e^2-39*a^2*c^2*e^2-43*a*b*c^2*e^2+41*b^2*c^2*e^2-38*a*c^3*e^2-47*b*c^3*e^2+33*c^4*e^2+15*a^3*d*e^2-36*a^2*b*d*e^2+6*a*b^2*d*e^2-15*b^3*d*e^2+24*a^2*c*d*e^2-50*a*b*c*d*e^2-6*b^2*c*d*e^2-41*a*c^2*d*e^2+42*b*c^2*d*e^2+28*c^3*d*e^2-19*a^2*d^2*e^2-47*a*b*d^2*e^2+49*b^2*d^2*e^2-41*a*c*d^2*e^2-3*b*c*d^2*e^2-38*c^2*d^2*e^2+4*a*d^3*e^2-30*b*d^3*e^2+47*c*d^3*e^2+11*d^4*e^2-44*a^3*e^3-25*a^2*b*e^3+18*a*b^2*e^3-14*b^3*e^3+18*a^2*c*e^3-15*a*b*c*e^3+32*b^2*c*e^3+38*a*c^2*e^3-30*b*c^2*e^3-3*c^3*e^3-33*a^2*d*e^3-42*a*b*d*e^3-8*b^2*d*e^3-14*a*c*d*e^3+49*b*c*d*e^3-40*c^2*d*e^3-40*a*d^2*e^3+32*b*d^2*e^3-40*c*d^2*e^3+11*d^3*e^3-43*a^2*e^4-29*a*b*e^4+9*b^2*e^4-20*a*c*e^4+14*b*c*e^4+38*c^2*e^4-32*a*d*e^4+22*b*d*e^4-9*c*d*e^4-34*d^2*e^4+6*a*e^5-15*b*e^5+13*c*e^5-40*d*e^5-40*e^6, 1824 c^6+36*a^4*d^2-8*a^3*b*d^2-40*a^2*b^2*d^2-45*a*b^3*d^2+36*b^4*d^2-21*a^3*c*d^2-27*a^2*b*c*d^2+46*a*b^2*c*d^2+30*b^3*c*d^2+4*a*b*c^2*d^2-20*b^2*c^2*d^2+3*a*c^3*d^2-48*b*c^3*d^2-29*c^4*d^2+13*a^3*d^3-3*a^2*b*d^3-13*a*b^2*d^3-38*b^3*d^3+35*a^2*c*d^3-5*a*b*c*d^3-46*b^2*c*d^3-26*a*c^2*d^3-20*b*c^2*d^3-4*c^3*d^3+6*a^2*d^4-14*a*b*d^4+16*b^2*d^4+44*a*c*d^4-10*b*c*d^4+15*c^2*d^4+31*a*d^5-22*b*d^5-36*c*d^5-34*d^6-28*a^5*e+46*a^4*b*e+5*a^3*b^2*e+36*a^2*b^3*e-2*a*b^4*e+13*b^5*e-40*a^4*c*e+31*a^3*b*c*e+49*a^2*b^2*c*e+50*a*b^3*c*e+8*b^4*c*e-23*a^2*b*c^2*e+7*a*b^2*c^2*e+36*b^3*c^2*e-12*a^2*c^3*e-a*b*c^3*e-32*b^2*c^3*e+33*a*c^4*e-45*b*c^4*e+7*c^5*e-13*a^4*d*e-38*a^3*b*d*e+17*a^2*b^2*d*e-33*a*b^3*d*e-33*b^4*d*e-47*a^3*c*d*e+42*a^2*b*c*d*e-5*a*b^2*c*d*e-35*b^3*c*d*e-34*a^2*c^2*d*e-36*a*b*c^2*d*e+17*b^2*c^2*d*e+19*a*c^3*d*e+41*b*c^3*d*e-8*c^4*d*e-15*a^3*d^2*e-10*a^2*b*d^2*e-37*a*b^2*d^2*e-40*b^3*d^2*e-2*a^2*c*d^2*e-28*a*b*c*d^2*e+30*b^2*c*d^2*e+45*a*c^2*d^2*e+26*b*c^2*d^2*e-20*c^3*d^2*e-48*a^2*d^3*e+16*a*b*d^3*e+12*b^2*d^3*e+47*a*c*d^3*e-11*b*c*d^3*e+27*c^2*d^3*e-29*a*d^4*e+33*b*d^4*e+6*c*d^4*e-10*d^5*e-2*a^4*e^2-27*a^3*b*e^2-18*a^2*b^2*e^2-46*a*b^3*e^2-19*b^4*e^2+9*a^3*c*e^2+45*a^2*b*c*e^2+30*a*b^2*c*e^2+35*b^3*c*e^2-31*a^2*c^2*e^2+33*a*b*c^2*e^2+36*b^2*c^2*e^2-18*a*c^3*e^2+5*b*c^3*e^2-8*c^4*e^2-37*a^3*d*e^2+46*a^2*b*d*e^2-37*a*b^2*d*e^2+28*b^3*d*e^2+6*a^2*c*d*e^2-24*a*b*c*d*e^2+9*b^2*c*d*e^2+36*a*c^2*d*e^2-44*b*c^2*d*e^2+32*c^3*d*e^2+49*a^2*d^2*e^2-44*a*b*d^2*e^2-12*b^2*d^2*e^2-6*a*c*d^2*e^2+7*b*c*d^2*e^2-2*c^2*d^2*e^2+17*a*d^3*e^2-15*b*d^3*e^2+18*c*d^3*e^2-24*d^4*e^2-26*a^3*e^3+44*a^2*b*e^3-28*a*b^2*e^3+28*b^3*e^3-8*a^2*c*e^3+6*a*b*c*e^3-12*b^2*c*e^3-25*a*c^2*e^3-37*b*c^2*e^3+36*c^3*e^3-18*a^2*d*e^3-38*a*b*d*e^3+b^2*d*e^3+3*a*c*d*e^3+47*b*c*d*e^3+3*c^2*d*e^3-5*a*d^2*e^3-34*c*d^2*e^3-11*d^3*e^3-19*a^2*e^4+16*a*b*e^4+17*b^2*e^4+23*a*c*e^4-26*b*c*e^4+10*c^2*e^4+23*a*d*e^4-30*b*d*e^4-46*c*d*e^4-13*d^2*e^4-23*a*e^5+41*b*e^5+6*c*e^5-50*d*e^5+28*e^6, 1825 b*c^5+8*a^4*d^2-16*a^3*b*d^2+26*a^2*b^2*d^2+a*b^3*d^2+40*b^4*d^2-34*a^3*c*d^2+5*a^2*b*c*d^2+18*a*b^2*c*d^2-30*b^3*c*d^2+9*a^2*c^2*d^2+30*a*b*c^2*d^2-17*b^2*c^2*d^2+26*a*c^3*d^2+49*b*c^3*d^2+42*c^4*d^2+2*a^3*d^3+28*a^2*b*d^3-7*a*b^2*d^3-37*b^3*d^3+38*a^2*c*d^3-5*a*b*c*d^3-13*b^2*c*d^3-11*a*c^2*d^3-37*b*c^2*d^3+4*c^3*d^3-8*a^2*d^4-9*a*b*d^4+28*b^2*d^4+4*a*c*d^4+27*b*c*d^4+39*c^2*d^4+9*a*d^5-24*b*d^5+27*c*d^5+13*d^6-23*a^5*e-41*a^4*b*e-23*a^3*b^2*e+28*a^2*b^3*e+29*a*b^4*e-49*b^5*e-4*a^4*c*e-16*a^3*b*c*e-16*a^2*b^2*c*e+29*a*b^3*c*e-15*b^4*c*e-27*a^3*c^2*e+44*a^2*b*c^2*e-23*a*b^2*c^2*e-18*b^3*c^2*e-24*a^2*c^3*e-12*b^2*c^3*e-48*a*c^4*e+12*b*c^4*e+28*c^5*e-49*a^4*d*e+18*a^3*b*d*e+40*a^2*b^2*d*e-5*a*b^3*d*e-23*b^4*d*e-9*a^3*c*d*e-12*a^2*b*c*d*e-39*a*b^2*c*d*e-43*b^3*c*d*e+36*a^2*c^2*d*e+19*a*b*c^2*d*e+11*b^2*c^2*d*e+24*a*c^3*d*e+22*b*c^3*d*e+14*c^4*d*e-23*a^3*d^2*e-14*a^2*b*d^2*e+47*a*b^2*d^2*e+32*b^3*d^2*e+47*a^2*c*d^2*e+26*a*b*c*d^2*e-39*b^2*c*d^2*e+11*a*c^2*d^2*e-44*b*c^2*d^2*e-20*c^3*d^2*e-23*a^2*d^3*e-3*a*b*d^3*e-11*b^2*d^3*e-34*a*c*d^3*e+5*b*c*d^3*e-3*c^2*d^3*e-6*a*d^4*e-15*b*d^4*e+41*c*d^4*e+18*d^5*e+44*a^4*e^2-49*a^3*b*e^2+38*a^2*b^2*e^2+7*a*b^3*e^2-11*b^4*e^2+2*a^3*c*e^2-6*a^2*b*c*e^2-34*a*b^2*c*e^2-21*b^3*c*e^2+12*a^2*c^2*e^2+7*a*b*c^2*e^2-20*b^2*c^2*e^2-3*a*c^3*e^2-38*b*c^3*e^2-5*c^4*e^2-46*a^3*d*e^2-20*a^2*b*d*e^2+21*a*b^2*d*e^2-36*b^3*d*e^2-14*a^2*c*d*e^2+6*a*b*c*d*e^2+29*b^2*c*d*e^2+12*a*c^2*d*e^2-2*b*c^2*d*e^2+41*c^3*d*e^2+41*a^2*d^2*e^2+34*a*b*d^2*e^2-2*b^2*d^2*e^2+9*a*c*d^2*e^2+10*b*c*d^2*e^2-11*c^2*d^2*e^2+45*a*d^3*e^2+38*b*d^3*e^2-20*c*d^3*e^2-12*d^4*e^2-35*a^3*e^3+23*a*b^2*e^3+37*b^3*e^3+10*a^2*c*e^3+6*a*b*c*e^3+21*b^2*c*e^3-24*a*c^2*e^3+28*b*c^2*e^3+26*c^3*e^3+22*a^2*d*e^3+26*a*b*d*e^3+50*b^2*d*e^3+43*a*c*d*e^3+39*b*c*d*e^3-42*c^2*d*e^3-27*a*d^2*e^3+38*b*d^2*e^3+19*c*d^2*e^3-15*d^3*e^3+37*a^2*e^4+7*a*b*e^4-12*b^2*e^4-34*a*c*e^4+25*b*c*e^4+26*c^2*e^4+a*d*e^4-25*b*d*e^4-15*c*d*e^4-50*d^2*e^4-50*a*e^5-45*b*e^5+30*c*e^5+6*d*e^5+49*e^6, 1826 a*c^5+28*a^4*d^2-23*a^3*b*d^2+10*a^2*b^2*d^2-36*a*b^3*d^2+6*b^4*d^2+25*a^3*c*d^2-47*a^2*b*c*d^2+28*a*b^2*c*d^2-36*b^3*c*d^2-31*a^2*c^2*d^2-35*a*b*c^2*d^2-42*b^2*c^2*d^2+20*a*c^3*d^2-45*b*c^3*d^2+49*c^4*d^2-24*a^3*d^3+25*a^2*b*d^3+27*a*b^2*d^3+49*b^3*d^3-9*a^2*c*d^3-46*a*b*c*d^3-39*b^2*c*d^3-9*a*c^2*d^3-46*b*c^2*d^3+43*c^3*d^3-35*a^2*d^4+11*a*b*d^4+15*b^2*d^4-4*a*c*d^4+42*b*c*d^4+19*c^2*d^4-35*a*d^5-23*b*d^5-45*c*d^5+6*d^6-36*a^5*e-35*a^4*b*e+47*a^3*b^2*e-20*a^2*b^3*e+28*a*b^4*e+37*b^5*e-50*a^4*c*e-35*a^3*b*c*e+a^2*b^2*c*e+15*a*b^3*c*e-2*b^4*c*e-10*a^3*c^2*e-50*a^2*b*c^2*e-34*a*b^2*c^2*e+28*b^3*c^2*e+18*a^2*c^3*e-13*a*b*c^3*e-17*b^2*c^3*e-19*a*c^4*e+9*b*c^4*e-43*c^5*e-29*a^4*d*e-17*a^3*b*d*e+47*a^2*b^2*d*e+26*a*b^3*d*e-13*b^4*d*e+11*a^3*c*d*e+5*a^2*b*c*d*e-25*a*b^2*c*d*e+26*b^3*c*d*e-17*a^2*c^2*d*e-37*a*b*c^2*d*e-7*b^2*c^2*d*e+28*a*c^3*d*e+28*b*c^3*d*e-16*c^4*d*e+30*a^3*d^2*e-25*a^2*b*d^2*e+9*a*b^2*d^2*e+34*b^3*d^2*e+2*a^2*c*d^2*e+30*a*b*c*d^2*e-37*b^2*c*d^2*e+33*a*c^2*d^2*e-5*b*c^2*d^2*e-4*c^3*d^2*e+50*a^2*d^3*e-50*a*b*d^3*e+9*b^2*d^3*e+11*a*c*d^3*e-31*b*c*d^3*e+29*c^2*d^3*e-37*a*d^4*e-22*b*d^4*e-20*c*d^4*e-30*d^5*e+19*a^4*e^2+42*a^3*b*e^2+43*a^2*b^2*e^2-22*a*b^3*e^2+40*b^4*e^2-12*a^3*c*e^2-37*a^2*b*c*e^2-38*a*b^2*c*e^2+47*b^3*c*e^2+33*a^2*c^2*e^2-26*a*b*c^2*e^2+8*b^2*c^2*e^2+43*a*c^3*e^2+43*b*c^3*e^2-26*c^4*e^2+13*a^3*d*e^2+7*a^2*b*d*e^2-38*a*b^2*d*e^2+28*b^3*d*e^2-35*a^2*c*d*e^2+41*a*b*c*d*e^2+2*b^2*c*d*e^2-44*a*c^2*d*e^2-5*b*c^2*d*e^2+35*c^3*d*e^2+46*a^2*d^2*e^2-32*a*b*d^2*e^2-37*b^2*d^2*e^2+4*a*c*d^2*e^2+15*b*c*d^2*e^2+13*c^2*d^2*e^2+14*a*d^3*e^2+3*b*d^3*e^2-7*c*d^3*e^2+9*d^4*e^2-43*a^3*e^3+46*a^2*b*e^3-17*a*b^2*e^3+12*b^3*e^3-9*a^2*c*e^3+40*a*b*c*e^3+7*b^2*c*e^3-31*a*c^2*e^3+32*b*c^2*e^3-49*a^2*d*e^3+22*a*b*d*e^3+27*b^2*d*e^3+34*a*c*d*e^3-39*b*c*d*e^3-17*c^2*d*e^3-39*a*d^2*e^3+20*b*d^2*e^3-10*c*d^2*e^3+2*d^3*e^3+4*a^2*e^4+21*a*b*e^4+20*b^2*e^4+36*a*c*e^4+49*b*c*e^4+24*c^2*e^4-31*a*d*e^4+23*b*d*e^4+48*c*d*e^4-12*d^2*e^4+8*a*e^5-8*b*e^5-15*c*e^5-d*e^5+24*e^6, 1827 b^2*c^4-39*a^4*d^2+a^3*b*d^2+26*a^2*b^2*d^2+29*a*b^3*d^2-5*b^4*d^2+13*a^3*c*d^2-47*a^2*b*c*d^2+17*a*b^2*c*d^2+22*b^3*c*d^2+25*a^2*c^2*d^2-2*a*b*c^2*d^2+18*b^2*c^2*d^2+43*a*c^3*d^2+48*b*c^3*d^2-24*c^4*d^2-17*a^3*d^3-16*a^2*b*d^3-3*a*b^2*d^3+35*b^3*d^3+8*a^2*c*d^3+30*a*b*c*d^3-6*b^2*c*d^3+17*a*c^2*d^3-25*b*c^2*d^3+34*c^3*d^3+13*a^2*d^4-49*a*b*d^4-48*b^2*d^4-6*a*c*d^4+43*b*c*d^4+31*c^2*d^4+30*a*d^5-12*b*d^5+4*c*d^5+39*d^6+48*a^5*e+15*a^4*b*e-41*a^3*b^2*e+41*a^2*b^3*e-16*a*b^4*e+28*b^5*e-48*a^4*c*e+11*a^3*b*c*e+42*a^2*b^2*c*e+34*a*b^3*c*e+48*b^4*c*e-24*a^3*c^2*e+29*a^2*b*c^2*e+6*a*b^2*c^2*e+18*b^3*c^2*e-31*a^2*c^3*e+15*a*b*c^3*e+22*b^2*c^3*e-a*c^4*e+15*b*c^4*e-46*c^5*e-36*a^4*d*e+a^3*b*d*e+46*a^2*b^2*d*e-29*a*b^3*d*e+41*b^4*d*e-13*a^3*c*d*e-4*a^2*b*c*d*e-39*a*b^2*c*d*e-39*b^3*c*d*e+35*a^2*c^2*d*e-29*a*b*c^2*d*e-26*b^2*c^2*d*e-37*a*c^3*d*e-8*b*c^3*d*e-13*c^4*d*e+44*a^3*d^2*e-9*a^2*b*d^2*e-38*a*b^2*d^2*e-30*b^3*d^2*e+49*a^2*c*d^2*e+8*a*b*c*d^2*e-35*b^2*c*d^2*e+40*a*c^2*d^2*e-19*b*c^2*d^2*e-25*c^3*d^2*e+47*a^2*d^3*e+17*a*b*d^3*e-41*b^2*d^3*e-18*a*c*d^3*e+38*b*c*d^3*e+22*c^2*d^3*e-30*a*d^4*e+25*b*d^4*e-11*c*d^4*e-8*d^5*e+47*a^4*e^2+2*a^3*b*e^2+5*a^2*b^2*e^2-31*a*b^3*e^2+21*b^4*e^2-46*a^3*c*e^2-28*a^2*b*c*e^2+49*a*b^2*c*e^2+31*b^3*c*e^2-45*a^2*c^2*e^2+26*a*b*c^2*e^2+18*b^2*c^2*e^2+6*a*c^3*e^2-17*b*c^3*e^2-4*c^4*e^2-8*a^3*d*e^2-37*a^2*b*d*e^2-43*a*b^2*d*e^2+10*b^3*d*e^2+32*a^2*c*d*e^2+21*a*b*c*d*e^2+9*b^2*c*d*e^2-34*a*c^2*d*e^2-50*b*c^2*d*e^2-7*c^3*d*e^2+31*a^2*d^2*e^2+22*b^2*d^2*e^2-35*a*c*d^2*e^2-3*b*c*d^2*e^2+13*c^2*d^2*e^2-35*a*d^3*e^2-45*b*d^3*e^2-44*c*d^3*e^2+44*d^4*e^2+7*a^3*e^3+17*a^2*b*e^3+8*a*b^2*e^3+30*b^3*e^3-28*a^2*c*e^3-25*a*b*c*e^3+6*b^2*c*e^3-29*a*c^2*e^3-29*b*c^2*e^3-23*c^3*e^3-43*a^2*d*e^3+44*a*b*d*e^3+41*b^2*d*e^3-8*a*c*d*e^3-13*b*c*d*e^3+27*c^2*d*e^3+5*a*d^2*e^3+8*b*d^2*e^3+11*c*d^2*e^3-50*d^3*e^3+4*a^2*e^4-31*a*b*e^4-2*b^2*e^4-2*a*c*e^4-27*b*c*e^4-c^2*e^4-17*a*d*e^4-30*b*d*e^4-15*c*d*e^4+5*d^2*e^4-34*a*e^5-49*b*e^5+26*c*e^5-44*d*e^5+46*e^6, 1828 a*b*c^4+44*a^4*d^2-12*a^3*b*d^2-6*a^2*b^2*d^2-20*a*b^3*d^2+48*b^4*d^2+19*a^3*c*d^2+4*a^2*b*c*d^2+50*a*b^2*c*d^2+34*b^3*c*d^2-a^2*c^2*d^2-24*a*b*c^2*d^2+43*b^2*c^2*d^2-21*a*c^3*d^2-29*b*c^3*d^2+36*c^4*d^2+48*a^3*d^3-26*a^2*b*d^3-16*a*b^2*d^3+29*b^3*d^3-48*a^2*c*d^3-19*a*b*c*d^3-17*b^2*c*d^3-44*a*c^2*d^3+5*b*c^2*d^3-6*c^3*d^3-a^2*d^4-30*a*b*d^4-16*b^2*d^4+20*a*c*d^4+17*b*c*d^4-50*c^2*d^4+36*a*d^5-36*b*d^5-2*c*d^5+46*d^6-10*a^5*e-39*a^4*b*e+20*a^3*b^2*e+45*a^2*b^3*e-35*a*b^4*e+2*b^5*e+23*a^4*c*e-12*a^3*b*c*e-5*a^2*b^2*c*e+5*a*b^3*c*e-8*b^4*c*e+49*a^3*c^2*e+11*a^2*b*c^2*e-11*a*b^2*c^2*e+28*b^3*c^2*e+34*a^2*c^3*e+50*a*b*c^3*e+33*b^2*c^3*e-48*a*c^4*e-12*b*c^4*e+30*c^5*e+3*a^4*d*e-34*a^3*b*d*e+14*a^2*b^2*d*e-47*a*b^3*d*e+34*b^4*d*e-50*a^3*c*d*e-18*a^2*b*c*d*e-39*a*b^2*c*d*e-27*b^3*c*d*e-42*a^2*c^2*d*e-43*a*b*c^2*d*e+28*b^2*c^2*d*e+45*a*c^3*d*e+37*b*c^3*d*e-36*c^4*d*e+21*a^3*d^2*e+36*a^2*b*d^2*e+8*a*b^2*d^2*e-16*b^3*d^2*e+43*a^2*c*d^2*e+24*b^2*c*d^2*e-21*a*c^2*d^2*e+29*b*c^2*d^2*e-14*c^3*d^2*e+11*a^2*d^3*e+16*a*b*d^3*e-24*b^2*d^3*e+8*a*c*d^3*e-44*b*c*d^3*e+13*c^2*d^3*e-32*a*d^4*e+b*d^4*e-31*c*d^4*e-32*d^5*e+32*a^4*e^2-27*a^3*b*e^2+29*a^2*b^2*e^2-30*a*b^3*e^2+35*b^4*e^2-19*a^3*c*e^2+45*a^2*b*c*e^2-9*a*b^2*c*e^2+9*b^3*c*e^2-33*a^2*c^2*e^2+24*a*b*c^2*e^2-5*b^2*c^2*e^2-42*a*c^3*e^2+32*b*c^3*e^2+37*c^4*e^2+36*a^3*d*e^2-44*a^2*b*d*e^2+46*a*b^2*d*e^2+37*b^3*d*e^2+31*a^2*c*d*e^2+32*a*b*c*d*e^2-37*b^2*c*d*e^2-45*a*c^2*d*e^2-37*b*c^2*d*e^2+38*c^3*d*e^2+40*a^2*d^2*e^2-44*a*b*d^2*e^2+39*b^2*d^2*e^2-20*a*c*d^2*e^2+46*b*c*d^2*e^2+c^2*d^2*e^2-13*a*d^3*e^2+16*b*d^3*e^2-17*c*d^3*e^2+41*d^4*e^2-18*a^3*e^3+12*a^2*b*e^3-20*a*b^2*e^3+34*b^3*e^3+21*a^2*c*e^3+19*a*b*c*e^3+22*b^2*c*e^3+41*a*c^2*e^3+42*b*c^2*e^3-32*c^3*e^3-24*a^2*d*e^3-26*a*b*d*e^3-43*b^2*d*e^3-17*a*c*d*e^3-24*b*c*d*e^3+36*c^2*d*e^3+48*a*d^2*e^3+38*b*d^2*e^3-43*c*d^2*e^3-31*d^3*e^3-21*a^2*e^4+45*a*b*e^4-12*b^2*e^4-42*a*c*e^4-38*b*c*e^4-27*c^2*e^4-3*a*d*e^4-45*b*d*e^4-17*c*d*e^4+15*d^2*e^4+48*a*e^5+21*b*e^5-7*c*e^5-36*d*e^5+12*e^6, 1829 a^2*c^4+45*a^4*d^2-49*a^3*b*d^2-20*a^2*b^2*d^2-12*a*b^3*d^2-21*b^4*d^2-29*a^3*c*d^2+23*a^2*b*c*d^2+6*a*b^2*c*d^2-30*b^3*c*d^2-33*a^2*c^2*d^2+31*a*b*c^2*d^2+12*b^2*c^2*d^2+20*a*c^3*d^2-48*b*c^3*d^2-21*c^4*d^2-23*a^3*d^3-38*a^2*b*d^3-41*a*b^2*d^3-3*b^3*d^3+13*a^2*c*d^3-10*a*b*c*d^3-14*b^2*c*d^3+47*a*c^2*d^3+46*b*c^2*d^3-49*c^3*d^3-a^2*d^4-13*a*b*d^4+34*b^2*d^4+8*a*c*d^4-44*b*c*d^4+c^2*d^4-10*a*d^5-b*d^5-34*c*d^5-8*d^6-28*a^5*e+21*a^4*b*e-44*a^3*b^2*e-3*a^2*b^3*e-7*a*b^4*e+49*b^5*e-25*a^4*c*e+22*a^3*b*c*e+18*a^2*b^2*c*e-15*a*b^3*c*e+31*b^4*c*e-27*a^3*c^2*e+9*a^2*b*c^2*e-9*a*b^2*c^2*e+50*b^3*c^2*e-a^2*c^3*e-20*a*b*c^3*e+21*b^2*c^3*e+25*a*c^4*e-29*b*c^4*e-41*c^5*e+28*a^4*d*e-7*a^3*b*d*e-18*a^2*b^2*d*e-33*a*b^3*d*e-32*b^4*d*e-9*a^3*c*d*e-18*a^2*b*c*d*e-7*a*b^2*c*d*e-49*b^3*c*d*e+23*a^2*c^2*d*e+32*a*b*c^2*d*e+17*b^2*c^2*d*e-26*a*c^3*d*e+30*b*c^3*d*e-4*c^4*d*e+17*a^3*d^2*e-31*a^2*b*d^2*e+7*a*b^2*d^2*e-10*a^2*c*d^2*e+9*a*b*c*d^2*e+49*b^2*c*d^2*e-26*a*c^2*d^2*e-21*b*c^2*d^2*e+13*c^3*d^2*e+32*a^2*d^3*e+8*a*b*d^3*e+44*b^2*d^3*e+49*a*c*d^3*e-b*c*d^3*e+39*c^2*d^3*e-a*d^4*e-19*b*d^4*e-40*c*d^4*e-30*d^5*e-2*a^4*e^2-5*a^3*b*e^2-10*a^2*b^2*e^2-31*a*b^3*e^2+37*b^4*e^2+45*a^3*c*e^2+17*a^2*b*c*e^2-34*a*b^2*c*e^2-32*b^3*c*e^2-7*a^2*c^2*e^2-21*a*b*c^2*e^2+50*b^2*c^2*e^2+35*a*c^3*e^2-38*b*c^3*e^2+14*c^4*e^2-21*a^3*d*e^2-4*a^2*b*d*e^2-14*a*b^2*d*e^2+13*b^3*d*e^2-38*a^2*c*d*e^2+44*a*b*c*d*e^2+7*b^2*c*d*e^2-16*a*c^2*d*e^2+38*b*c^2*d*e^2+38*c^3*d*e^2+25*a^2*d^2*e^2-34*a*b*d^2*e^2-32*b^2*d^2*e^2+22*a*c*d^2*e^2+40*b*c*d^2*e^2+4*c^2*d^2*e^2-16*a*d^3*e^2+36*b*d^3*e^2-39*c*d^3*e^2-45*d^4*e^2+39*a^3*e^3+31*a^2*b*e^3-43*a*b^2*e^3-18*b^3*e^3+44*a^2*c*e^3-8*a*b*c*e^3+38*b^2*c*e^3-4*a*c^2*e^3+3*b*c^2*e^3-43*c^3*e^3-6*a^2*d*e^3+34*a*b*d*e^3+6*b^2*d*e^3-13*a*c*d*e^3+32*b*c*d*e^3+30*c^2*d*e^3+28*a*d^2*e^3+17*b*d^2*e^3-19*c*d^2*e^3-46*d^3*e^3+12*a^2*e^4+44*a*b*e^4-42*b^2*e^4-41*a*c*e^4-35*b*c*e^4-37*c^2*e^4+42*a*d*e^4+43*b*d*e^4+5*c*d*e^4+11*d^2*e^4+25*a*e^5-9*b*e^5-27*c*e^5+50*d*e^5+23*e^6, 1830 b^3*c^3-13*a^4*d^2-41*a^3*b*d^2+27*a^2*b^2*d^2+a*b^3*d^2+33*b^4*d^2+47*a^3*c*d^2-19*a^2*b*c*d^2-27*a*b^2*c*d^2-6*b^3*c*d^2+37*a^2*c^2*d^2+40*a*b*c^2*d^2+12*b^2*c^2*d^2+36*a*c^3*d^2-25*b*c^3*d^2-45*c^4*d^2-12*a^3*d^3-5*a^2*b*d^3+31*a*b^2*d^3-b^3*d^3-37*a^2*c*d^3+26*a*b*c*d^3-48*b^2*c*d^3+36*a*c^2*d^3+16*b*c^2*d^3+44*c^3*d^3+47*a^2*d^4-20*a*b*d^4-13*b^2*d^4+39*a*c*d^4+17*b*c*d^4-32*c^2*d^4-24*a*d^5-41*b*d^5-31*c*d^5+29*a^5*e+26*a^4*b*e+12*a^3*b^2*e-45*a^2*b^3*e+40*a*b^4*e+20*b^5*e-21*a^4*c*e-28*a^3*b*c*e+38*a^2*b^2*c*e+40*a*b^3*c*e-13*b^4*c*e-9*a^3*c^2*e-9*a^2*b*c^2*e-a*b^2*c^2*e-b^3*c^2*e+32*a^2*c^3*e+43*a*b*c^3*e-44*b^2*c^3*e+39*a*c^4*e+8*b*c^4*e-8*c^5*e+27*a^4*d*e+15*a^3*b*d*e-12*a^2*b^2*d*e-33*a*b^3*d*e+16*b^4*d*e+19*a^3*c*d*e-34*a^2*b*c*d*e+5*a*b^2*c*d*e-31*b^3*c*d*e+5*a^2*c^2*d*e-20*a*b*c^2*d*e-4*b^2*c^2*d*e-50*a*c^3*d*e+44*b*c^3*d*e-31*a^3*d^2*e+31*a^2*b*d^2*e+28*a*b^2*d^2*e-10*b^3*d^2*e+2*a^2*c*d^2*e-19*a*b*c*d^2*e-9*a*c^2*d^2*e+2*b*c^2*d^2*e+40*c^3*d^2*e+45*a^2*d^3*e+9*a*b*d^3*e+26*b^2*d^3*e-14*a*c*d^3*e+2*b*c*d^3*e+7*c^2*d^3*e+36*a*d^4*e-43*b*d^4*e-27*c*d^4*e-4*d^5*e+23*a^4*e^2+45*a^3*b*e^2+41*a^2*b^2*e^2+22*a*b^3*e^2+14*b^4*e^2-30*a^3*c*e^2+19*a^2*b*c*e^2-34*a*b^2*c*e^2+17*b^3*c*e^2-42*a^2*c^2*e^2-12*a*b*c^2*e^2-9*b^2*c^2*e^2-3*a*c^3*e^2+47*b*c^3*e^2+47*c^4*e^2+7*a^3*d*e^2+6*a^2*b*d*e^2+26*a*b^2*d*e^2+10*b^3*d*e^2-11*a^2*c*d*e^2-17*a*b*c*d*e^2+34*b^2*c*d*e^2+21*a*c^2*d*e^2+11*b*c^2*d*e^2+5*c^3*d*e^2-40*a^2*d^2*e^2+11*a*b*d^2*e^2+17*b^2*d^2*e^2+38*a*c*d^2*e^2-18*b*c*d^2*e^2+23*c^2*d^2*e^2+35*a*d^3*e^2+4*b*d^3*e^2-2*c*d^3*e^2+46*d^4*e^2+44*a^3*e^3-14*a^2*b*e^3+25*a*b^2*e^3-41*b^3*e^3-34*a^2*c*e^3-44*a*b*c*e^3+17*a*c^2*e^3+9*b*c^2*e^3+45*c^3*e^3+23*a^2*d*e^3-15*a*b*d*e^3+9*b^2*d*e^3-14*a*c*d*e^3-23*b*c*d*e^3+17*c^2*d*e^3+46*a*d^2*e^3+30*b*d^2*e^3+35*c*d^2*e^3-27*d^3*e^3-40*a^2*e^4-50*a*b*e^4-23*b^2*e^4-46*a*c*e^4+44*b*c*e^4+7*c^2*e^4+14*a*d*e^4-4*b*d*e^4-9*c*d*e^4+44*d^2*e^4-9*a*e^5+28*b*e^5+25*c*e^5+36*d*e^5+28*e^6, 1831 a*b^2*c^3+41*a^4*d^2-33*a^3*b*d^2+21*a^2*b^2*d^2-47*a*b^3*d^2-23*b^4*d^2+9*a^3*c*d^2+49*a^2*b*c*d^2+44*a*b^2*c*d^2-25*b^3*c*d^2-28*a^2*c^2*d^2+37*a*b*c^2*d^2+9*b^2*c^2*d^2-21*a*c^3*d^2+36*b*c^3*d^2+48*c^4*d^2+2*a^3*d^3+15*a^2*b*d^3-3*a*b^2*d^3-40*b^3*d^3-19*a^2*c*d^3+4*a*b*c*d^3-29*b^2*c*d^3-48*a*c^2*d^3+41*b*c^2*d^3+34*c^3*d^3+33*a^2*d^4-13*a*b*d^4-34*b^2*d^4-47*a*c*d^4+36*b*c*d^4+34*c^2*d^4+41*a*d^5+25*b*d^5-28*c*d^5-31*d^6+22*a^5*e+a^4*b*e+27*a^3*b^2*e+5*a^2*b^3*e-33*a*b^4*e+2*b^5*e+20*a^4*c*e-30*a^3*b*c*e+11*a^2*b^2*c*e+44*a*b^3*c*e-37*b^4*c*e+a^3*c^2*e+7*a^2*b*c^2*e-20*a*b^2*c^2*e+34*b^3*c^2*e-35*a^2*c^3*e+28*a*b*c^3*e-50*b^2*c^3*e-11*a*c^4*e-26*b*c^4*e+c^5*e-37*a^4*d*e+23*a^3*b*d*e+50*a^2*b^2*d*e+35*a*b^3*d*e-4*b^4*d*e-15*a^3*c*d*e-39*a^2*b*c*d*e-50*a*b^2*c*d*e+47*b^3*c*d*e-38*a^2*c^2*d*e-42*a*b*c^2*d*e+43*b^2*c^2*d*e+24*a*c^3*d*e+31*b*c^3*d*e+41*c^4*d*e-15*a^3*d^2*e+20*a^2*b*d^2*e-24*a*b^2*d^2*e-47*b^3*d^2*e+4*a^2*c*d^2*e+42*a*b*c*d^2*e+20*b^2*c*d^2*e-37*a*c^2*d^2*e+42*b*c^2*d^2*e+6*c^3*d^2*e-45*a^2*d^3*e-7*a*b*d^3*e-37*b^2*d^3*e-34*a*c*d^3*e-44*b*c*d^3*e-c^2*d^3*e-29*a*d^4*e+22*b*d^4*e-27*c*d^4*e-34*d^5*e-13*a^4*e^2+48*a^3*b*e^2+22*a^2*b^2*e^2+30*a*b^3*e^2-10*b^4*e^2-2*a^3*c*e^2+10*a^2*b*c*e^2+23*a*b^2*c*e^2+27*b^3*c*e^2+15*a^2*c^2*e^2-a*b*c^2*e^2+33*b^2*c^2*e^2-13*a*c^3*e^2-13*b*c^3*e^2+44*c^4*e^2-34*a^3*d*e^2+7*a^2*b*d*e^2+a*b^2*d*e^2-50*b^3*d*e^2+23*a^2*c*d*e^2+12*a*b*c*d*e^2+50*b^2*c*d*e^2+29*a*c^2*d*e^2+41*b*c^2*d*e^2+22*c^3*d*e^2-20*a^2*d^2*e^2+4*a*b*d^2*e^2-33*b^2*d^2*e^2-38*a*c*d^2*e^2+47*b*c*d^2*e^2+21*c^2*d^2*e^2+18*b*d^3*e^2+44*c*d^3*e^2+31*d^4*e^2-3*a^3*e^3-32*a^2*b*e^3-45*a*b^2*e^3-20*b^3*e^3+29*a^2*c*e^3-35*a*b*c*e^3-11*b^2*c*e^3-13*a*c^2*e^3-38*b*c^2*e^3+17*c^3*e^3-41*a^2*d*e^3-36*a*b*d*e^3-6*b^2*d*e^3-14*a*c*d*e^3-16*b*c*d*e^3-6*c^2*d*e^3+20*a*d^2*e^3-29*b*d^2*e^3+50*c*d^2*e^3-37*d^3*e^3-27*a^2*e^4+15*a*b*e^4+46*b^2*e^4+39*a*c*e^4-26*b*c*e^4-10*c^2*e^4-40*a*d*e^4-5*b*d*e^4-23*c*d*e^4+36*d^2*e^4-21*a*e^5+4*b*e^5-48*c*e^5+38*d*e^5-36*e^6, 1832 a^2*b*c^3+6*a^4*d^2-4*a^3*b*d^2+37*a^2*b^2*d^2+18*a*b^3*d^2-34*b^4*d^2+23*a^3*c*d^2-9*a^2*b*c*d^2-46*a*b^2*c*d^2+19*b^3*c*d^2+42*a^2*c^2*d^2-34*a*b*c^2*d^2-14*b^2*c^2*d^2-10*a*c^3*d^2+13*b*c^3*d^2+14*c^4*d^2-38*a^3*d^3-13*a^2*b*d^3+47*a*b^2*d^3-9*b^3*d^3-a^2*c*d^3+33*a*b*c*d^3+9*b^2*c*d^3+33*a*c^2*d^3+37*b*c^2*d^3+41*c^3*d^3+12*a^2*d^4-50*a*b*d^4+11*b^2*d^4-48*a*c*d^4+27*b*c*d^4-48*c^2*d^4-48*a*d^5-19*b*d^5+46*c*d^5+5*d^6+43*a^5*e-13*a^4*b*e-16*a^3*b^2*e+34*a^2*b^3*e+25*a*b^4*e+29*b^5*e-8*a^4*c*e-2*a^3*b*c*e+4*a^2*b^2*c*e+23*a*b^3*c*e+7*b^4*c*e-6*a^3*c^2*e-39*a^2*b*c^2*e-10*a*b^2*c^2*e+18*b^3*c^2*e-18*a^2*c^3*e+35*a*b*c^3*e+18*b^2*c^3*e-2*a*c^4*e+16*b*c^4*e-21*c^5*e-44*a^4*d*e-a^3*b*d*e+19*a^2*b^2*d*e+32*a*b^3*d*e+20*b^4*d*e+36*a^3*c*d*e+16*a^2*b*c*d*e+7*a*b^2*c*d*e+21*b^3*c*d*e+21*a^2*c^2*d*e-31*a*b*c^2*d*e+10*b^2*c^2*d*e-16*a*c^3*d*e+40*b*c^3*d*e-16*c^4*d*e-43*a^3*d^2*e+50*a^2*b*d^2*e-14*a*b^2*d^2*e-24*b^3*d^2*e-23*a^2*c*d^2*e-21*a*b*c*d^2*e-2*b^2*c*d^2*e+38*a*c^2*d^2*e+40*b*c^2*d^2*e+38*c^3*d^2*e-5*a^2*d^3*e+31*a*b*d^3*e-50*b^2*d^3*e+46*a*c*d^3*e-14*b*c*d^3*e+45*c^2*d^3*e-25*a*d^4*e-8*b*d^4*e+3*c*d^4*e+7*d^5*e-a^4*e^2-29*a^3*b*e^2-23*a^2*b^2*e^2+19*a*b^3*e^2-41*b^4*e^2+46*a^3*c*e^2-27*a^2*b*c*e^2-24*a*b^2*c*e^2+26*b^3*c*e^2+8*a^2*c^2*e^2-11*a*b*c^2*e^2-9*b^2*c^2*e^2+29*a*c^3*e^2+15*b*c^3*e^2-10*c^4*e^2-37*a^3*d*e^2+25*a^2*b*d*e^2-26*a*b^2*d*e^2+7*b^3*d*e^2-19*a^2*c*d*e^2-12*a*b*c*d*e^2+50*b^2*c*d*e^2-40*a*c^2*d*e^2-28*b*c^2*d*e^2+26*c^3*d*e^2+28*a^2*d^2*e^2+38*a*b*d^2*e^2+44*b^2*d^2*e^2-32*a*c*d^2*e^2-14*b*c*d^2*e^2+23*c^2*d^2*e^2+44*a*d^3*e^2+47*b*d^3*e^2+46*c*d^3*e^2+3*d^4*e^2-27*a^3*e^3+5*a^2*b*e^3-48*a*b^2*e^3+22*b^3*e^3+32*a^2*c*e^3+23*a*b*c*e^3+34*b^2*c*e^3+4*a*c^2*e^3-25*b*c^2*e^3+13*c^3*e^3+25*a^2*d*e^3-24*a*b*d*e^3+11*b^2*d*e^3+32*a*c*d*e^3-14*b*c*d*e^3+4*c^2*d*e^3+10*a*d^2*e^3-7*b*d^2*e^3+22*c*d^2*e^3-4*d^3*e^3+6*a^2*e^4+19*a*b*e^4+15*b^2*e^4+9*a*c*e^4-49*b*c*e^4+37*c^2*e^4-46*a*d*e^4+33*b*d*e^4+41*c*d*e^4-41*d^2*e^4+11*a*e^5-44*b*e^5+46*c*e^5+12*d*e^5-50*e^6, 1833 a^3*c^3-8*a^4*d^2+24*a^3*b*d^2-28*a^2*b^2*d^2+27*a*b^3*d^2-17*b^4*d^2-40*a^3*c*d^2+28*a^2*b*c*d^2+2*a*b^2*c*d^2-18*b^3*c*d^2+45*a^2*c^2*d^2-13*a*b*c^2*d^2-14*b^2*c^2*d^2+35*a*c^3*d^2-32*b*c^3*d^2+2*c^4*d^2-27*a^3*d^3-41*a^2*b*d^3-36*a*b^2*d^3-50*b^3*d^3+23*a^2*c*d^3+25*a*b*c*d^3+22*b^2*c*d^3+15*a*c^2*d^3-36*b*c^2*d^3-43*c^3*d^3-26*a^2*d^4-43*a*b*d^4-25*b^2*d^4-14*a*c*d^4+32*b*c*d^4+25*c^2*d^4+23*a*d^5-32*b*d^5+28*c*d^5-24*d^6+4*a^5*e-15*a^4*b*e-45*a^3*b^2*e-47*a^2*b^3*e+50*a*b^4*e+3*b^5*e+41*a^4*c*e+45*a^2*b^2*c*e+7*a*b^3*c*e-41*b^4*c*e+13*a^3*c^2*e+5*a^2*b*c^2*e+33*a*b^2*c^2*e+35*b^3*c^2*e+9*a^2*c^3*e-4*a*b*c^3*e-43*b^2*c^3*e-8*a*c^4*e+10*b*c^4*e-17*c^5*e+24*a^4*d*e-6*a^3*b*d*e+22*a^2*b^2*d*e+3*a*b^3*d*e+31*b^4*d*e-24*a^3*c*d*e+10*a^2*b*c*d*e+28*a*b^2*c*d*e-28*b^3*c*d*e+49*a^2*c^2*d*e+17*a*b*c^2*d*e+21*b^2*c^2*d*e-29*a*c^3*d*e-18*b*c^3*d*e+18*c^4*d*e+46*a^3*d^2*e+27*a^2*b*d^2*e+5*a*b^2*d^2*e+17*b^3*d^2*e+42*a^2*c*d^2*e+37*a*b*c*d^2*e+48*b^2*c*d^2*e+34*a*c^2*d^2*e+35*b*c^2*d^2*e+8*c^3*d^2*e+a^2*d^3*e-27*a*b*d^3*e+31*b^2*d^3*e+16*a*c*d^3*e+49*b*c*d^3*e-c^2*d^3*e+3*a*d^4*e-22*b*d^4*e+50*c*d^4*e-18*d^5*e+26*a^4*e^2+23*a^3*b*e^2+23*a^2*b^2*e^2-47*a*b^3*e^2+32*b^4*e^2-5*a^3*c*e^2-10*a^2*b*c*e^2-32*a*b^2*c*e^2+21*b^3*c*e^2+50*a^2*c^2*e^2+9*a*b*c^2*e^2+39*b^2*c^2*e^2+24*a*c^3*e^2-15*b*c^3*e^2-12*c^4*e^2+25*a^3*d*e^2+39*a^2*b*d*e^2+34*a*b^2*d*e^2+9*b^3*d*e^2+4*a^2*c*d*e^2+45*a*b*c*d*e^2+14*b^2*c*d*e^2+24*a*c^2*d*e^2+25*b*c^2*d*e^2-33*c^3*d*e^2+43*a^2*d^2*e^2-27*a*b*d^2*e^2+19*b^2*d^2*e^2-20*a*c*d^2*e^2-35*b*c*d^2*e^2+45*c^2*d^2*e^2-17*a*d^3*e^2-48*b*d^3*e^2-25*c*d^3*e^2-19*d^4*e^2+44*a^3*e^3+10*a^2*b*e^3+21*a*b^2*e^3-42*b^3*e^3+40*a^2*c*e^3-50*a*b*c*e^3-9*a*c^2*e^3+39*b*c^2*e^3+25*c^3*e^3+23*a^2*d*e^3-14*a*b*d*e^3+16*b^2*d*e^3+16*a*c*d*e^3+43*b*c*d*e^3-13*c^2*d*e^3-9*a*d^2*e^3-7*b*d^2*e^3+26*c*d^2*e^3-44*d^3*e^3-24*a^2*e^4+34*a*b*e^4+41*b^2*e^4-9*a*c*e^4+13*b*c*e^4-37*c^2*e^4-20*a*d*e^4-37*b*d*e^4+29*c*d*e^4+34*d^2*e^4+45*a*e^5+8*b*e^5+7*d*e^5+e^6, 1834 b^4*c^2-14*a^4*d^2-37*a^3*b*d^2+19*a^2*b^2*d^2+4*a*b^3*d^2+20*b^4*d^2+34*a^3*c*d^2+17*a^2*b*c*d^2-35*a*b^2*c*d^2-21*b^3*c*d^2+32*a^2*c^2*d^2-31*a*b*c^2*d^2+18*b^2*c^2*d^2+6*a*c^3*d^2+21*b*c^3*d^2+24*c^4*d^2-4*a^3*d^3+41*a^2*b*d^3-14*a*b^2*d^3+38*b^3*d^3-26*a^2*c*d^3-48*a*b*c*d^3-39*b^2*c*d^3+a*c^2*d^3+50*b*c^2*d^3-13*c^3*d^3+21*a^2*d^4-17*a*b*d^4+47*b^2*d^4+16*a*c*d^4+12*b*c*d^4+30*c^2*d^4+11*a*d^5-5*b*d^5-42*c*d^5-15*d^6+15*a^5*e-15*a^4*b*e+36*a^3*b^2*e-21*a^2*b^3*e-9*a*b^4*e-34*b^5*e-40*a^4*c*e+7*a^3*b*c*e-22*a^2*b^2*c*e+48*a*b^3*c*e-24*b^4*c*e-40*a^3*c^2*e+17*a^2*b*c^2*e-15*a*b^2*c^2*e+19*b^3*c^2*e-19*a^2*c^3*e-36*a*b*c^3*e+26*b^2*c^3*e-32*a*c^4*e-46*b*c^4*e+26*c^5*e-33*a^4*d*e+33*a^3*b*d*e+28*a^2*b^2*d*e+48*a*b^3*d*e-22*b^4*d*e+46*a^3*c*d*e+35*a^2*b*c*d*e-21*a*b^2*c*d*e+b^3*c*d*e+8*a^2*c^2*d*e+14*a*b*c^2*d*e+12*b^2*c^2*d*e-4*a*c^3*d*e+32*b*c^3*d*e-17*c^4*d*e-42*a^3*d^2*e-43*a^2*b*d^2*e+17*a*b^2*d^2*e+21*b^3*d^2*e-31*a^2*c*d^2*e-46*a*b*c*d^2*e-26*b^2*c*d^2*e+35*a*c^2*d^2*e+14*b*c^2*d^2*e-35*c^3*d^2*e-3*a^2*d^3*e+50*a*b*d^3*e+41*b^2*d^3*e+36*a*c*d^3*e+7*b*c*d^3*e+7*c^2*d^3*e+15*a*d^4*e-38*b*d^4*e-37*c*d^4*e-34*d^5*e+15*a^4*e^2+44*a^3*b*e^2+42*a^2*b^2*e^2+10*a*b^3*e^2-23*b^4*e^2+37*a^3*c*e^2+50*a^2*b*c*e^2+20*a*b^2*c*e^2-50*b^3*c*e^2-4*a^2*c^2*e^2-3*a*b*c^2*e^2-14*b^2*c^2*e^2-28*a*c^3*e^2-10*b*c^3*e^2-33*c^4*e^2-11*a^3*d*e^2-8*a^2*b*d*e^2-23*a*b^2*d*e^2-14*a^2*c*d*e^2+42*a*b*c*d*e^2-42*b^2*c*d*e^2-36*a*c^2*d*e^2+41*b*c^2*d*e^2-27*c^3*d*e^2+30*a^2*d^2*e^2+3*a*b*d^2*e^2+33*b^2*d^2*e^2-28*a*c*d^2*e^2-26*b*c*d^2*e^2+c^2*d^2*e^2+46*a*d^3*e^2+21*b*d^3*e^2-32*c*d^3*e^2-16*d^4*e^2-23*a^3*e^3+6*a^2*b*e^3+40*a*b^2*e^3-38*b^3*e^3+28*a^2*c*e^3-14*a*b*c*e^3+6*b^2*c*e^3+45*a*c^2*e^3+2*b*c^2*e^3-11*c^3*e^3+18*a^2*d*e^3+36*a*b*d*e^3-40*b^2*d*e^3-43*a*c*d*e^3+44*b*c*d*e^3-26*c^2*d*e^3+23*a*d^2*e^3+28*b*d^2*e^3+15*c*d^2*e^3-18*d^3*e^3-13*a^2*e^4-47*a*b*e^4-28*b^2*e^4-22*a*c*e^4+20*b*c*e^4+17*c^2*e^4+a*d*e^4+46*b*d*e^4-15*c*d*e^4+40*d^2*e^4+34*a*e^5-9*b*e^5-29*c*e^5+15*d*e^5+32*e^6, 1835 a*b^3*c^2-37*a^4*d^2-46*a^3*b*d^2+11*a^2*b^2*d^2+21*a*b^3*d^2+21*b^4*d^2-23*a^3*c*d^2-3*a^2*b*c*d^2+3*a*b^2*c*d^2-32*b^3*c*d^2-37*a^2*c^2*d^2-36*a*b*c^2*d^2+37*b^2*c^2*d^2-6*a*c^3*d^2-34*b*c^3*d^2+48*c^4*d^2+28*a^3*d^3+43*a^2*b*d^3+43*a*b^2*d^3+17*b^3*d^3+26*a^2*c*d^3+33*a*b*c*d^3-2*b^2*c*d^3-21*a*c^2*d^3-14*b*c^2*d^3-39*c^3*d^3-a^2*d^4-22*a*b*d^4-39*b^2*d^4-35*a*c*d^4+13*b*c*d^4-24*c^2*d^4-11*a*d^5+16*b*d^5+30*c*d^5-22*d^6-22*a^5*e+19*a^4*b*e-15*a^3*b^2*e-8*a^2*b^3*e+14*a*b^4*e-5*b^5*e+6*a^4*c*e+6*a^3*b*c*e+46*a^2*b^2*c*e+39*a*b^3*c*e+21*b^4*c*e-22*a^3*c^2*e+26*a^2*b*c^2*e+24*a*b^2*c^2*e+10*b^3*c^2*e-23*a^2*c^3*e+26*a*b*c^3*e+b^2*c^3*e+39*a*c^4*e+35*b*c^4*e-19*c^5*e+17*a^4*d*e+38*a^3*b*d*e+9*a^2*b^2*d*e-19*a*b^3*d*e+42*b^4*d*e-11*a^3*c*d*e-6*a^2*b*c*d*e+10*a*b^2*c*d*e-10*b^3*c*d*e+41*a^2*c^2*d*e+10*a*b*c^2*d*e+46*b^2*c^2*d*e-33*a*c^3*d*e-6*b*c^3*d*e+11*c^4*d*e-33*a^3*d^2*e-22*a^2*b*d^2*e-6*a*b^2*d^2*e-11*b^3*d^2*e+34*a^2*c*d^2*e-39*a*b*c*d^2*e-45*b^2*c*d^2*e-17*a*c^2*d^2*e-8*b*c^2*d^2*e-41*c^3*d^2*e+13*a^2*d^3*e-11*a*b*d^3*e-13*b^2*d^3*e+3*a*c*d^3*e-28*b*c*d^3*e+33*c^2*d^3*e-8*a*d^4*e+24*b*d^4*e-34*c*d^4*e-7*d^5*e+26*a^4*e^2+12*a^3*b*e^2-20*a^2*b^2*e^2+5*a*b^3*e^2+30*b^4*e^2+6*a^3*c*e^2-45*a^2*b*c*e^2-49*a*b^2*c*e^2+43*b^3*c*e^2-29*a^2*c^2*e^2+4*a*b*c^2*e^2+17*b^2*c^2*e^2+13*a*c^3*e^2+21*b*c^3*e^2+16*c^4*e^2-25*a^3*d*e^2-7*a^2*b*d*e^2+42*a*b^2*d*e^2-44*b^3*d*e^2+19*a^2*c*d*e^2+5*a*b*c*d*e^2-38*b^2*c*d*e^2-17*a*c^2*d*e^2-15*b*c^2*d*e^2-26*c^3*d*e^2+47*a^2*d^2*e^2-42*a*b*d^2*e^2-26*b^2*d^2*e^2-50*a*c*d^2*e^2+25*b*c*d^2*e^2-3*c^2*d^2*e^2-47*a*d^3*e^2-40*b*d^3*e^2+24*c*d^3*e^2+35*d^4*e^2-22*a^3*e^3-5*a^2*b*e^3-10*a*b^2*e^3-7*b^3*e^3+6*a^2*c*e^3-16*a*b*c*e^3-28*b^2*c*e^3-43*a*c^2*e^3+24*b*c^2*e^3-9*c^3*e^3+42*a^2*d*e^3-12*a*b*d*e^3-29*b^2*d*e^3+35*a*c*d*e^3+27*b*c*d*e^3+40*c^2*d*e^3-17*a*d^2*e^3+29*b*d^2*e^3+38*c*d^2*e^3+13*d^3*e^3-23*a^2*e^4+32*a*b*e^4+5*b^2*e^4+11*a*c*e^4-b*c*e^4-37*c^2*e^4+3*a*d*e^4-3*b*d*e^4+37*c*d*e^4-28*d^2*e^4-33*a*e^5+18*b*e^5+45*c*e^5-11*d*e^5+42*e^6, 1836 a^2*b^2*c^2+34*a^4*d^2+5*a^3*b*d^2-6*a^2*b^2*d^2-24*a*b^3*d^2+14*b^4*d^2+24*a^3*c*d^2-13*a^2*b*c*d^2+27*a*b^2*c*d^2+10*b^3*c*d^2-38*a^2*c^2*d^2+14*a*b*c^2*d^2+49*b^2*c^2*d^2+42*a*c^3*d^2-4*b*c^3*d^2+32*c^4*d^2+47*a^3*d^3+38*a^2*b*d^3+12*a*b^2*d^3-7*b^3*d^3+30*a^2*c*d^3+2*a*b*c*d^3+23*b^2*c*d^3-42*a*c^2*d^3+19*b*c^2*d^3-19*c^3*d^3-12*a^2*d^4+37*a*b*d^4+47*b^2*d^4+31*a*c*d^4+4*b*c*d^4-36*c^2*d^4-10*a*d^5-7*b*d^5+6*c*d^5-12*d^6-46*a^5*e-47*a^4*b*e+49*a^3*b^2*e+45*a^2*b^3*e+44*a*b^4*e+35*b^5*e+24*a^4*c*e+8*a^3*b*c*e-31*a^2*b^2*c*e+21*a*b^3*c*e+40*b^4*c*e-35*a^3*c^2*e+38*a^2*b*c^2*e+12*a*b^2*c^2*e-27*b^3*c^2*e+39*a^2*c^3*e-48*a*b*c^3*e+21*b^2*c^3*e+29*a*c^4*e-36*b*c^4*e-46*c^5*e-46*a^4*d*e+a^3*b*d*e+11*a^2*b^2*d*e+10*a*b^3*d*e-29*b^4*d*e-16*a^3*c*d*e-18*a^2*b*c*d*e+15*a*b^2*c*d*e-30*b^3*c*d*e-34*a^2*c^2*d*e+36*a*b*c^2*d*e+6*a*c^3*d*e-6*b*c^3*d*e+40*c^4*d*e+49*a^3*d^2*e-14*a^2*b*d^2*e-33*a*b^2*d^2*e+34*b^3*d^2*e-26*a^2*c*d^2*e-31*a*b*c*d^2*e-10*b^2*c*d^2*e+40*a*c^2*d^2*e+34*b*c^2*d^2*e+17*c^3*d^2*e-32*a^2*d^3*e-5*a*b*d^3*e-47*b^2*d^3*e-4*a*c*d^3*e+b*c*d^3*e+47*c^2*d^3*e+8*a*d^4*e+48*b*d^4*e-38*c*d^4*e+34*d^5*e-12*a^4*e^2+6*a^2*b^2*e^2-9*a*b^3*e^2-17*b^4*e^2-16*a^3*c*e^2-32*a^2*b*c*e^2+49*a*b^2*c*e^2+3*b^3*c*e^2+27*a^2*c^2*e^2-42*a*b*c^2*e^2-b^2*c^2*e^2+42*a*c^3*e^2+21*b*c^3*e^2-18*c^4*e^2-a^3*d*e^2+8*a^2*b*d*e^2+45*a*b^2*d*e^2+36*b^3*d*e^2+42*a^2*c*d*e^2-29*a*b*c*d*e^2+45*b^2*c*d*e^2-9*a*c^2*d*e^2-32*b*c^2*d*e^2-50*c^3*d*e^2-25*a^2*d^2*e^2+14*a*b*d^2*e^2-44*b^2*d^2*e^2-16*a*c*d^2*e^2+29*b*c*d^2*e^2+17*c^2*d^2*e^2-12*a*d^3*e^2+28*b*d^3*e^2+36*c*d^3*e^2+24*d^4*e^2+24*a^3*e^3-39*a^2*b*e^3-2*a*b^2*e^3-28*b^3*e^3+31*a^2*c*e^3-47*a*b*c*e^3-b^2*c*e^3-17*a*c^2*e^3+50*b*c^2*e^3-c^3*e^3-a^2*d*e^3+41*a*b*d*e^3-13*b^2*d*e^3-13*a*c*d*e^3+4*b*c*d*e^3+32*c^2*d*e^3-16*a*d^2*e^3-11*b*d^2*e^3+49*c*d^2*e^3+d^3*e^3+32*a^2*e^4-11*a*b*e^4+5*b^2*e^4+3*a*c*e^4-49*b*c*e^4+32*c^2*e^4-11*a*d*e^4-43*b*d*e^4+35*c*d*e^4-5*d^2*e^4+40*a*e^5+18*b*e^5+3*c*e^5+25*d*e^5+28*e^6, 1837 a^3*b*c^2-30*a^4*d^2+28*a^3*b*d^2+41*a^2*b^2*d^2-11*a*b^3*d^2+27*b^4*d^2-36*a^3*c*d^2+27*a^2*b*c*d^2+50*a*b^2*c*d^2-34*b^3*c*d^2-21*a^2*c^2*d^2-6*a*b*c^2*d^2-8*b^2*c^2*d^2-14*a*c^3*d^2-35*b*c^3*d^2+21*c^4*d^2+37*a^3*d^3-14*a^2*b*d^3-41*a*b^2*d^3+30*b^3*d^3+35*a^2*c*d^3-28*a*b*c*d^3+26*b^2*c*d^3+19*a*c^2*d^3+b*c^2*d^3-5*c^3*d^3-29*a^2*d^4+25*a*b*d^4-38*b^2*d^4+50*a*c*d^4+10*b*c*d^4+30*c^2*d^4+31*a*d^5-49*b*d^5+39*c*d^5-40*d^6+16*a^5*e-47*a^4*b*e+39*a^3*b^2*e-41*a^2*b^3*e-27*a*b^4*e+10*b^5*e-20*a^4*c*e+23*a^3*b*c*e-39*a^2*b^2*c*e+28*a*b^3*c*e-16*b^4*c*e+20*a^3*c^2*e+22*a^2*b*c^2*e+45*a*b^2*c^2*e-b^3*c^2*e+37*a^2*c^3*e-3*a*b*c^3*e-49*b^2*c^3*e+8*a*c^4*e-3*b*c^4*e+41*c^5*e+33*a^4*d*e+35*a^3*b*d*e+10*a^2*b^2*d*e-42*a*b^3*d*e+14*b^4*d*e+a^3*c*d*e-28*a^2*b*c*d*e-26*a*b^2*c*d*e+35*b^3*c*d*e-24*a^2*c^2*d*e-3*a*b*c^2*d*e+20*b^2*c^2*d*e+a*c^3*d*e+8*b*c^3*d*e-41*c^4*d*e-12*a^3*d^2*e-43*a^2*b*d^2*e+32*a*b^2*d^2*e-26*b^3*d^2*e-37*a^2*c*d^2*e+50*a*b*c*d^2*e-21*b^2*c*d^2*e+46*a*c^2*d^2*e-26*b*c^2*d^2*e+41*c^3*d^2*e+39*a^2*d^3*e+6*a*b*d^3*e-34*b^2*d^3*e+13*a*c*d^3*e-12*b*c*d^3*e-7*c^2*d^3*e-31*a*d^4*e+19*b*d^4*e-22*c*d^4*e+44*d^5*e+15*a^4*e^2-24*a^3*b*e^2-23*a^2*b^2*e^2-25*a*b^3*e^2+21*b^4*e^2+28*a^3*c*e^2+32*a^2*b*c*e^2+6*a*b^2*c*e^2-6*b^3*c*e^2-32*a^2*c^2*e^2+37*a*b*c^2*e^2-15*b^2*c^2*e^2-3*a*c^3*e^2+5*b*c^3*e^2+33*c^4*e^2+50*a^3*d*e^2+46*a^2*b*d*e^2+3*a*b^2*d*e^2+11*b^3*d*e^2-6*a^2*c*d*e^2-26*a*b*c*d*e^2-26*b^2*c*d*e^2+49*a*c^2*d*e^2+48*b*c^2*d*e^2+14*c^3*d*e^2-11*a^2*d^2*e^2-49*a*b*d^2*e^2+37*b^2*d^2*e^2-20*a*c*d^2*e^2+10*b*c*d^2*e^2+22*c^2*d^2*e^2+46*a*d^3*e^2+3*b*d^3*e^2+24*c*d^3*e^2-49*d^4*e^2-31*a^3*e^3+35*a^2*b*e^3-38*a*b^2*e^3+4*b^3*e^3-10*a^2*c*e^3+a*b*c*e^3-15*b^2*c*e^3-8*a*c^2*e^3-18*b*c^2*e^3-26*c^3*e^3+26*a^2*d*e^3+23*a*b*d*e^3+4*b^2*d*e^3-37*a*c*d*e^3+49*b*c*d*e^3-9*c^2*d*e^3-39*a*d^2*e^3+44*b*d^2*e^3+44*c*d^2*e^3+6*d^3*e^3+49*a^2*e^4+23*a*b*e^4+15*a*c*e^4-10*b*c*e^4+24*c^2*e^4+23*a*d*e^4-34*b*d*e^4-9*c*d*e^4-11*d^2*e^4+49*a*e^5+32*b*e^5-12*c*e^5+32*d*e^5+13*e^6, 1838 a^4*c^2-10*a^4*d^2+38*a^3*b*d^2-a^2*b^2*d^2+6*a*b^3*d^2+39*b^4*d^2-11*a^3*c*d^2+9*a^2*b*c*d^2+21*a*b^2*c*d^2-13*b^3*c*d^2+22*a^2*c^2*d^2+33*a*b*c^2*d^2-19*b^2*c^2*d^2-18*a*c^3*d^2-38*b*c^3*d^2-50*c^4*d^2-11*a^3*d^3-41*a^2*b*d^3-9*a*b^2*d^3-40*b^3*d^3-8*a^2*c*d^3+49*a*b*c*d^3+34*b^2*c*d^3+36*a*c^2*d^3-37*b*c^2*d^3+14*c^3*d^3-2*a^2*d^4+34*a*b*d^4+47*b^2*d^4+47*a*c*d^4-20*b*c*d^4-13*c^2*d^4+6*a*d^5-31*b*d^5+28*c*d^5-31*d^6-3*a^5*e+39*a^4*b*e+16*a^3*b^2*e+16*a^2*b^3*e+9*a*b^4*e+37*b^5*e-39*a^4*c*e+5*a^3*b*c*e+36*a^2*b^2*c*e-7*a*b^3*c*e+16*b^4*c*e-43*a^3*c^2*e-5*a^2*b*c^2*e+30*a*b^2*c^2*e+12*b^3*c^2*e-26*a^2*c^3*e+45*a*b*c^3*e+9*b^2*c^3*e+17*a*c^4*e-19*b*c^4*e-6*c^5*e-47*a^4*d*e-33*a^3*b*d*e+12*a^2*b^2*d*e+4*a*b^3*d*e+33*b^4*d*e+3*a^3*c*d*e-33*a^2*b*c*d*e-13*a*b^2*c*d*e+28*b^3*c*d*e-46*a^2*c^2*d*e-32*a*b*c^2*d*e+26*b^2*c^2*d*e-14*a*c^3*d*e+8*b*c^3*d*e-40*c^4*d*e+38*a^3*d^2*e-29*a^2*b*d^2*e+45*a*b^2*d^2*e+6*b^3*d^2*e-34*a^2*c*d^2*e-15*a*b*c*d^2*e-20*b^2*c*d^2*e-24*a*c^2*d^2*e-5*b*c^2*d^2*e-36*c^3*d^2*e+17*a^2*d^3*e-17*a*b*d^3*e-18*b^2*d^3*e+44*a*c*d^3*e+11*b*c*d^3*e-14*c^2*d^3*e-31*a*d^4*e-39*b*d^4*e-48*c*d^4*e+20*d^5*e+a^4*e^2-8*a^3*b*e^2+13*a^2*b^2*e^2-18*a*b^3*e^2-28*b^4*e^2-26*a^3*c*e^2+21*a^2*b*c*e^2-12*a*b^2*c*e^2-46*b^3*c*e^2-45*a^2*c^2*e^2+32*a*b*c^2*e^2-9*b^2*c^2*e^2+36*a*c^3*e^2+38*b*c^3*e^2-15*c^4*e^2-21*a^3*d*e^2+25*a^2*b*d*e^2-6*a*b^2*d*e^2+2*b^3*d*e^2-21*a*b*c*d*e^2+38*b^2*c*d*e^2-3*a*c^2*d*e^2-29*b*c^2*d*e^2-9*c^3*d*e^2-20*a^2*d^2*e^2+32*a*b*d^2*e^2-12*b^2*d^2*e^2-21*a*c*d^2*e^2-b*c*d^2*e^2-31*c^2*d^2*e^2-24*a*d^3*e^2-16*b*d^3*e^2+47*c*d^3*e^2+41*d^4*e^2-12*a^3*e^3-38*a^2*b*e^3-23*a*b^2*e^3+44*b^3*e^3-7*a^2*c*e^3+28*a*b*c*e^3+42*b^2*c*e^3+10*a*c^2*e^3-12*b*c^2*e^3-7*c^3*e^3+33*a^2*d*e^3+37*a*b*d*e^3+39*b^2*d*e^3-43*a*c*d*e^3-21*b*c*d*e^3+20*c^2*d*e^3+48*a*d^2*e^3+25*b*d^2*e^3-20*c*d^2*e^3+35*d^3*e^3+a^2*e^4+40*a*b*e^4+23*b^2*e^4+45*a*c*e^4-4*b*c*e^4-15*c^2*e^4+42*a*d*e^4-49*b*d*e^4-28*c*d*e^4-8*d^2*e^4-38*a*e^5-12*b*e^5+42*c*e^5+11*d*e^5+45*e^6, 1839 b^5*c+40*a^4*d^2-47*a^3*b*d^2+16*a^2*b^2*d^2+18*a*b^3*d^2+33*b^4*d^2+9*a^3*c*d^2-38*a^2*b*c*d^2-22*a*b^2*c*d^2+8*b^3*c*d^2-21*a^2*c^2*d^2-2*a*b*c^2*d^2+33*b^2*c^2*d^2+5*a*c^3*d^2-50*b*c^3*d^2-35*c^4*d^2+29*a^3*d^3+25*a^2*b*d^3-38*a*b^2*d^3+17*b^3*d^3-32*a^2*c*d^3-44*a*b*c*d^3-20*b^2*c*d^3-26*a*c^2*d^3-37*b*c^2*d^3+47*c^3*d^3+19*a^2*d^4-34*a*b*d^4-20*b^2*d^4+31*a*c*d^4-14*b*c*d^4-37*c^2*d^4-37*a*d^5+7*b*d^5-42*c*d^5+16*d^6-23*a^5*e-48*a^3*b^2*e-41*a^2*b^3*e+6*a*b^4*e+49*a^4*c*e+34*a^3*b*c*e-8*a^2*b^2*c*e+17*a*b^3*c*e+39*b^4*c*e+2*a^3*c^2*e+42*a^2*b*c^2*e+21*a*b^2*c^2*e-8*b^3*c^2*e-11*a^2*c^3*e+50*a*b*c^3*e+25*b^2*c^3*e-46*a*c^4*e-4*b*c^4*e-10*c^5*e+12*a^4*d*e+9*a^3*b*d*e-46*a^2*b^2*d*e-12*a*b^3*d*e-44*b^4*d*e-35*a^3*c*d*e-46*a^2*b*c*d*e+17*a*b^2*c*d*e+48*b^3*c*d*e-28*a^2*c^2*d*e-50*a*b*c^2*d*e-46*b^2*c^2*d*e+4*a*c^3*d*e-41*b*c^3*d*e-8*c^4*d*e+42*a^3*d^2*e+39*a^2*b*d^2*e+27*a*b^2*d^2*e-40*b^3*d^2*e-8*a^2*c*d^2*e+40*a*b*c*d^2*e-20*b^2*c*d^2*e+35*a*c^2*d^2*e-26*b*c^2*d^2*e-2*c^3*d^2*e-14*a^2*d^3*e-34*a*b*d^3*e-24*b^2*d^3*e+22*a*c*d^3*e+45*b*c*d^3*e-9*c^2*d^3*e-38*a*d^4*e-14*b*d^4*e+50*c*d^4*e-49*d^5*e-23*a^4*e^2-10*a^3*b*e^2-4*a^2*b^2*e^2+49*a*b^3*e^2+28*b^4*e^2-50*a^3*c*e^2+38*a^2*b*c*e^2+26*a*b^2*c*e^2-44*b^3*c*e^2+3*a^2*c^2*e^2+46*a*b*c^2*e^2+42*b^2*c^2*e^2+9*a*c^3*e^2+18*b*c^3*e^2-9*c^4*e^2+16*a^3*d*e^2-42*a^2*b*d*e^2+37*a*b^2*d*e^2-10*b^3*d*e^2-41*a^2*c*d*e^2-5*a*b*c*d*e^2+19*b^2*c*d*e^2+17*a*c^2*d*e^2-19*b*c^2*d*e^2+16*c^3*d*e^2+21*a^2*d^2*e^2-17*a*b*d^2*e^2-15*b^2*d^2*e^2-49*a*c*d^2*e^2+36*b*c*d^2*e^2-41*c^2*d^2*e^2+37*a*d^3*e^2-13*b*d^3*e^2-27*c*d^3*e^2-37*d^4*e^2+37*a^3*e^3-50*a^2*b*e^3+21*a*b^2*e^3+14*b^3*e^3-16*a^2*c*e^3+24*a*b*c*e^3-44*b^2*c*e^3+18*b*c^2*e^3+3*c^3*e^3-38*a^2*d*e^3+41*a*b*d*e^3+29*b^2*d*e^3-9*a*c*d*e^3+9*b*c*d*e^3-39*c^2*d*e^3+42*a*d^2*e^3+22*b*d^2*e^3+18*c*d^2*e^3+35*d^3*e^3+43*a^2*e^4+5*a*b*e^4+5*b^2*e^4+16*a*c*e^4-37*b*c*e^4+20*c^2*e^4-10*a*d*e^4+45*b*d*e^4-46*c*d*e^4+42*d^2*e^4+14*a*e^5+15*b*e^5+38*c*e^5+49*d*e^5+3*e^6, 1840 a*b^4*c+32*a^4*d^2+43*a^3*b*d^2+49*a^2*b^2*d^2+38*a*b^3*d^2+47*b^4*d^2+19*a^3*c*d^2+43*a^2*b*c*d^2-25*a*b^2*c*d^2+25*b^3*c*d^2+26*a^2*c^2*d^2-5*a*b*c^2*d^2-19*b^2*c^2*d^2+33*a*c^3*d^2-3*b*c^3*d^2-37*c^4*d^2+18*a^3*d^3-27*a^2*b*d^3-33*a*b^2*d^3-49*b^3*d^3+48*a^2*c*d^3-12*a*b*c*d^3+17*b^2*c*d^3+6*a*c^2*d^3-36*b*c^2*d^3+36*c^3*d^3+a^2*d^4-12*b^2*d^4-3*a*c*d^4-43*b*c*d^4-24*c^2*d^4-14*a*d^5-43*b*d^5-20*c*d^5+24*d^6-42*a^5*e-48*a^4*b*e+29*a^3*b^2*e-29*a^2*b^3*e-37*a*b^4*e+b^5*e-31*a^4*c*e+35*a^3*b*c*e+9*a^2*b^2*c*e-17*a*b^3*c*e-34*b^4*c*e+42*a^3*c^2*e-47*a^2*b*c^2*e+31*a*b^2*c^2*e+9*b^3*c^2*e+48*a^2*c^3*e-15*a*b*c^3*e+34*b^2*c^3*e+15*a*c^4*e-23*b*c^4*e+45*c^5*e-12*a^4*d*e+42*a^3*b*d*e-15*a^2*b^2*d*e-14*a*b^3*d*e+33*b^4*d*e-41*a^3*c*d*e+9*a^2*b*c*d*e+15*a*b^2*c*d*e-44*b^3*c*d*e-32*a^2*c^2*d*e+9*a*b*c^2*d*e+22*b^2*c^2*d*e-23*a*c^3*d*e+43*b*c^3*d*e-37*c^4*d*e+19*a^3*d^2*e-47*a^2*b*d^2*e+39*a*b^2*d^2*e-24*b^3*d^2*e-44*a^2*c*d^2*e-27*a*b*c*d^2*e-30*b^2*c*d^2*e-19*a*c^2*d^2*e-28*b*c^2*d^2*e-30*c^3*d^2*e-41*a^2*d^3*e+17*a*b*d^3*e-30*b^2*d^3*e+3*a*c*d^3*e+50*b*c*d^3*e+47*c^2*d^3*e+47*a*d^4*e-40*b*d^4*e+3*c*d^4*e+28*d^5*e-35*a^4*e^2+23*a^3*b*e^2+2*a^2*b^2*e^2-17*a*b^3*e^2-22*b^4*e^2+35*a^3*c*e^2-38*a^2*b*c*e^2-7*a*b^2*c*e^2-12*b^3*c*e^2+38*a^2*c^2*e^2-12*a*b*c^2*e^2+13*b^2*c^2*e^2+19*b*c^3*e^2-25*c^4*e^2-45*a^3*d*e^2-35*a^2*b*d*e^2+41*a*b^2*d*e^2+10*b^3*d*e^2+17*a^2*c*d*e^2-10*a*b*c*d*e^2-42*b^2*c*d*e^2+13*a*c^2*d*e^2-3*b*c^2*d*e^2-42*c^3*d*e^2-2*a^2*d^2*e^2-7*a*b*d^2*e^2+46*b^2*d^2*e^2+43*a*c*d^2*e^2+29*b*c*d^2*e^2+19*c^2*d^2*e^2-26*a*d^3*e^2+28*b*d^3*e^2+27*c*d^3*e^2+32*d^4*e^2+49*a^3*e^3+48*a^2*b*e^3+34*a*b^2*e^3-48*b^3*e^3+12*a^2*c*e^3+30*a*b*c*e^3+18*b^2*c*e^3-50*a*c^2*e^3+13*b*c^2*e^3+48*c^3*e^3+17*a^2*d*e^3+22*a*b*d*e^3-6*b^2*d*e^3-40*a*c*d*e^3-33*b*c*d*e^3-2*c^2*d*e^3-48*a*d^2*e^3-7*b*d^2*e^3+32*c*d^2*e^3-31*d^3*e^3+46*a^2*e^4+17*a*b*e^4+14*b^2*e^4+8*a*c*e^4-43*b*c*e^4+24*a*d*e^4-41*b*d*e^4-35*c*d*e^4-44*d^2*e^4-29*a*e^5+11*b*e^5+50*c*e^5-32*d*e^5+23*e^6, 1841 a^2*b^3*c-22*a^4*d^2+38*a^3*b*d^2+10*a^2*b^2*d^2-31*a*b^3*d^2+42*b^4*d^2-7*a^3*c*d^2-47*a^2*b*c*d^2+37*a*b^2*c*d^2-23*b^3*c*d^2-43*a^2*c^2*d^2+38*a*b*c^2*d^2+18*b^2*c^2*d^2+18*a*c^3*d^2+25*b*c^3*d^2+4*c^4*d^2+36*a^3*d^3-21*a^2*b*d^3+35*a*b^2*d^3+28*b^3*d^3+13*a^2*c*d^3+36*a*b*c*d^3-33*b^2*c*d^3+9*a*c^2*d^3+18*b*c^2*d^3-49*c^3*d^3-5*a^2*d^4-8*a*b*d^4-34*b^2*d^4-43*a*c*d^4-47*b*c*d^4-12*c^2*d^4+34*a*d^5+50*b*d^5-13*c*d^5-20*d^6+29*a^5*e-10*a^4*b*e+17*a^3*b^2*e+7*a^2*b^3*e+45*a*b^4*e-23*b^5*e+41*a^4*c*e+31*a^3*b*c*e+9*a^2*b^2*c*e+3*a*b^3*c*e-11*b^4*c*e+6*a^3*c^2*e+11*a^2*b*c^2*e-42*a*b^2*c^2*e+17*b^3*c^2*e+5*a^2*c^3*e-44*a*b*c^3*e-44*b^2*c^3*e+42*a*c^4*e-29*b*c^4*e+6*c^5*e+7*a^4*d*e-50*a^3*b*d*e+29*a^2*b^2*d*e-42*a*b^3*d*e-25*b^4*d*e-5*a^3*c*d*e-33*a^2*b*c*d*e+36*a*b^2*c*d*e+47*b^3*c*d*e-41*a^2*c^2*d*e+4*a*b*c^2*d*e+44*b^2*c^2*d*e-10*a*c^3*d*e-2*b*c^3*d*e+20*c^4*d*e+21*a^3*d^2*e+6*a^2*b*d^2*e-50*a*b^2*d^2*e+35*b^3*d^2*e-8*a^2*c*d^2*e-17*a*b*c*d^2*e+7*b^2*c*d^2*e+35*a*c^2*d^2*e+28*b*c^2*d^2*e+25*c^3*d^2*e-6*a^2*d^3*e-16*a*b*d^3*e+35*b^2*d^3*e-12*a*c*d^3*e+46*b*c*d^3*e+7*c^2*d^3*e+16*a*d^4*e-24*b*d^4*e+32*c*d^4*e-26*d^5*e+6*a^4*e^2+48*a^3*b*e^2-27*a^2*b^2*e^2+15*a*b^3*e^2-15*b^4*e^2-25*a^3*c*e^2+39*a^2*b*c*e^2-21*a*b^2*c*e^2-8*b^3*c*e^2+15*a^2*c^2*e^2+31*a*b*c^2*e^2+33*b^2*c^2*e^2-31*a*c^3*e^2-27*b*c^3*e^2-16*c^4*e^2+41*a^3*d*e^2-17*a^2*b*d*e^2-25*a*b^2*d*e^2-3*b^3*d*e^2+6*a^2*c*d*e^2-24*a*b*c*d*e^2+b^2*c*d*e^2-a*c^2*d*e^2-15*b*c^2*d*e^2+16*c^3*d*e^2+42*a^2*d^2*e^2+6*a*b*d^2*e^2-25*b^2*d^2*e^2+21*a*c*d^2*e^2+48*b*c*d^2*e^2-10*c^2*d^2*e^2+31*b*d^3*e^2-32*c*d^3*e^2+2*d^4*e^2+35*a^3*e^3+42*a^2*b*e^3+10*a*b^2*e^3-38*b^3*e^3+32*a^2*c*e^3+34*a*b*c*e^3+14*b^2*c*e^3-7*a*c^2*e^3+22*b*c^2*e^3+37*c^3*e^3+2*a^2*d*e^3-42*a*b*d*e^3-6*b^2*d*e^3-9*a*c*d*e^3+22*b*c*d*e^3+19*c^2*d*e^3-21*a*d^2*e^3-37*b*d^2*e^3+43*c*d^2*e^3-36*d^3*e^3+16*a^2*e^4-21*a*b*e^4+44*b^2*e^4-48*a*c*e^4+35*b*c*e^4-25*c^2*e^4+15*a*d*e^4+42*b*d*e^4-27*c*d*e^4+27*d^2*e^4-25*a*e^5-12*b*e^5+20*c*e^5+7*d*e^5+3*e^6, 1842 a^3*b^2*c-24*a^4*d^2+20*a^3*b*d^2+24*a^2*b^2*d^2-29*a*b^3*d^2-24*b^4*d^2+13*a^3*c*d^2+31*a*b^2*c*d^2-26*b^3*c*d^2-29*a^2*c^2*d^2-27*a*b*c^2*d^2+4*b^2*c^2*d^2+23*a*c^3*d^2+42*b*c^3*d^2-47*c^4*d^2+50*a^3*d^3+48*a^2*b*d^3-22*a*b^2*d^3+16*b^3*d^3-46*a^2*c*d^3-43*a*b*c*d^3+50*b^2*c*d^3-35*a*c^2*d^3-29*b*c^2*d^3-12*c^3*d^3+23*a^2*d^4+31*a*b*d^4+22*b^2*d^4-27*a*c*d^4-25*b*c*d^4-41*c^2*d^4+42*a*d^5-50*b*d^5+33*c*d^5+11*d^6+19*a^5*e-22*a^4*b*e+33*a^3*b^2*e+43*a^2*b^3*e+43*a*b^4*e-5*b^5*e-14*a^4*c*e-46*a^3*b*c*e-21*a^2*b^2*c*e+29*a*b^3*c*e+15*b^4*c*e+12*a^3*c^2*e-a^2*b*c^2*e-43*a*b^2*c^2*e+48*b^3*c^2*e+26*a^2*c^3*e-46*a*b*c^3*e-35*b^2*c^3*e+a*c^4*e+16*b*c^4*e+6*c^5*e-47*a^4*d*e-a^3*b*d*e+a^2*b^2*d*e-32*a*b^3*d*e-19*b^4*d*e-44*a^3*c*d*e+22*a^2*b*c*d*e+40*a*b^2*c*d*e-19*b^3*c*d*e+12*a^2*c^2*d*e-a*b*c^2*d*e-23*b^2*c^2*d*e-11*a*c^3*d*e-26*b*c^3*d*e-4*c^4*d*e-32*a^3*d^2*e-13*a^2*b*d^2*e-b^3*d^2*e+8*a^2*c*d^2*e-28*a*b*c*d^2*e+46*b^2*c*d^2*e-24*a*c^2*d^2*e+26*b*c^2*d^2*e+27*c^3*d^2*e+12*a^2*d^3*e+10*a*b*d^3*e-32*b^2*d^3*e-12*a*c*d^3*e-30*b*c*d^3*e+50*c^2*d^3*e+6*a*d^4*e+32*b*d^4*e+6*c*d^4*e-48*d^5*e+14*a^4*e^2+48*a^3*b*e^2+16*a^2*b^2*e^2+34*a*b^3*e^2+39*b^4*e^2+2*a^3*c*e^2+5*a^2*b*c*e^2-11*a*b^2*c*e^2-4*b^3*c*e^2-39*a^2*c^2*e^2+46*a*b*c^2*e^2-16*b^2*c^2*e^2-46*a*c^3*e^2-b*c^3*e^2+47*c^4*e^2-3*a^3*d*e^2-48*a^2*b*d*e^2-34*a*b^2*d*e^2+19*b^3*d*e^2+46*a^2*c*d*e^2-49*a*b*c*d*e^2-45*b^2*c*d*e^2-4*a*c^2*d*e^2+33*b*c^2*d*e^2-8*c^3*d*e^2-39*a^2*d^2*e^2-34*a*b*d^2*e^2+9*b^2*d^2*e^2-15*a*c*d^2*e^2+b*c*d^2*e^2+44*c^2*d^2*e^2-39*a*d^3*e^2+10*b*d^3*e^2+9*c*d^3*e^2-6*d^4*e^2-7*a^3*e^3+2*a^2*b*e^3+39*a*b^2*e^3+4*b^3*e^3-49*a^2*c*e^3+48*a*b*c*e^3+b^2*c*e^3+28*a*c^2*e^3-29*b*c^2*e^3-7*c^3*e^3+23*a^2*d*e^3+16*a*b*d*e^3+24*b^2*d*e^3-47*a*c*d*e^3+20*b*c*d*e^3+26*c^2*d*e^3+9*a*d^2*e^3+49*b*d^2*e^3+32*c*d^2*e^3+33*d^3*e^3-3*a^2*e^4+48*a*b*e^4-18*b^2*e^4-43*a*c*e^4-14*b*c*e^4-29*c^2*e^4+49*a*d*e^4-49*b*d*e^4-18*c*d*e^4-18*d^2*e^4+45*a*e^5-40*b*e^5-13*c*e^5+3*d*e^5+5*e^6, 1843 a^4*b*c-38*a^4*d^2+23*a^3*b*d^2-28*a^2*b^2*d^2-49*a*b^3*d^2-37*b^4*d^2+46*a^3*c*d^2-39*a^2*b*c*d^2+31*a*b^2*c*d^2+43*b^3*c*d^2+40*a^2*c^2*d^2-30*a*b*c^2*d^2-7*b^2*c^2*d^2+32*a*c^3*d^2+50*b*c^3*d^2+13*c^4*d^2-9*a^3*d^3+23*a^2*b*d^3-12*a*b^2*d^3-42*b^3*d^3+4*a^2*c*d^3-3*a*b*c*d^3+50*b^2*c*d^3+16*a*c^2*d^3+40*b*c^2*d^3-23*c^3*d^3+39*a^2*d^4+35*a*b*d^4-45*b^2*d^4+45*a*c*d^4-15*b*c*d^4-26*c^2*d^4+29*a*d^5+37*b*d^5+3*c*d^5-22*d^6-8*a^5*e+15*a^4*b*e+19*a^3*b^2*e-12*a^2*b^3*e+22*a*b^4*e-48*b^5*e+32*a^4*c*e+48*a^3*b*c*e-14*a^2*b^2*c*e+43*a*b^3*c*e-23*b^4*c*e-36*a^3*c^2*e+36*a^2*b*c^2*e+15*a*b^2*c^2*e-34*b^3*c^2*e-16*a^2*c^3*e+20*a*b*c^3*e-23*b^2*c^3*e+39*a*c^4*e-37*b*c^4*e+43*c^5*e+30*a^4*d*e-38*a^3*b*d*e-25*a^2*b^2*d*e-5*a*b^3*d*e-24*b^4*d*e+5*a^3*c*d*e-47*a^2*b*c*d*e-17*a*b^2*c*d*e+30*b^3*c*d*e-a^2*c^2*d*e-43*a*b*c^2*d*e-6*b^2*c^2*d*e-46*a*c^3*d*e-37*b*c^3*d*e-43*c^4*d*e+48*a^3*d^2*e+20*a^2*b*d^2*e+21*a*b^2*d^2*e+35*b^3*d^2*e-47*a^2*c*d^2*e+27*a*b*c*d^2*e+b^2*c*d^2*e+7*a*c^2*d^2*e-11*b*c^2*d^2*e+46*c^3*d^2*e+40*a^2*d^3*e+43*a*b*d^3*e-31*b^2*d^3*e+22*a*c*d^3*e+2*b*c*d^3*e-18*c^2*d^3*e+35*a*d^4*e+31*b*d^4*e-48*c*d^4*e+43*d^5*e+16*a^4*e^2+27*a^3*b*e^2-28*a^2*b^2*e^2-13*a*b^3*e^2+17*b^4*e^2-34*a^3*c*e^2+12*a^2*b*c*e^2-25*a*b^2*c*e^2+7*b^3*c*e^2-19*a^2*c^2*e^2-31*a*b*c^2*e^2+22*b^2*c^2*e^2-45*a*c^3*e^2-25*b*c^3*e^2+7*c^4*e^2-9*a^3*d*e^2-3*a^2*b*d*e^2+20*a*b^2*d*e^2+28*b^3*d*e^2+41*a^2*c*d*e^2-2*a*b*c*d*e^2+8*b^2*c*d*e^2-20*a*c^2*d*e^2+35*b*c^2*d*e^2-11*c^3*d*e^2-27*a^2*d^2*e^2-29*a*b*d^2*e^2+28*b^2*d^2*e^2+10*a*c*d^2*e^2-8*b*c*d^2*e^2+13*c^2*d^2*e^2-32*a*d^3*e^2+23*b*d^3*e^2-50*c*d^3*e^2+20*d^4*e^2+49*a^3*e^3+9*a^2*b*e^3+27*a*b^2*e^3-15*b^3*e^3-38*a^2*c*e^3+26*a*b*c*e^3-47*b^2*c*e^3+10*a*c^2*e^3-21*b*c^2*e^3+2*c^3*e^3+7*a^2*d*e^3-8*a*b*d*e^3-25*b^2*d*e^3+15*a*c*d*e^3+17*b*c*d*e^3-39*c^2*d*e^3+7*a*d^2*e^3-47*b*d^2*e^3+6*c*d^2*e^3+5*d^3*e^3+21*a^2*e^4-49*a*b*e^4-35*b^2*e^4+32*a*c*e^4-16*b*c*e^4+7*c^2*e^4-25*a*d*e^4+30*b*d*e^4-31*c*d*e^4-21*d^2*e^4+42*a*e^5-b*e^5+14*c*e^5+18*d*e^5+28*e^6, 1844 a^5*c-2*a^4*d^2-22*a^3*b*d^2-38*a^2*b^2*d^2+10*a*b^3*d^2+32*b^4*d^2-28*a^3*c*d^2+11*a^2*b*c*d^2-12*a*b^2*c*d^2-39*b^3*c*d^2+43*a^2*c^2*d^2+39*a*b*c^2*d^2-24*b^2*c^2*d^2+27*a*c^3*d^2+47*b*c^3*d^2+9*c^4*d^2+12*a^3*d^3+34*a^2*b*d^3-37*a*b^2*d^3+18*b^3*d^3+45*a^2*c*d^3+21*a*b*c*d^3+29*b^2*c*d^3+31*a*c^2*d^3+23*b*c^2*d^3+44*c^3*d^3-19*a^2*d^4+32*a*b*d^4+46*b^2*d^4+27*a*c*d^4+8*b*c*d^4-20*c^2*d^4-35*a*d^5-21*b*d^5+15*c*d^5-45*d^6-38*a^5*e-35*a^4*b*e-28*a^3*b^2*e-30*a^2*b^3*e-19*a*b^4*e-49*b^5*e+34*a^4*c*e-2*a^3*b*c*e-16*a^2*b^2*c*e-8*a*b^3*c*e-10*b^4*c*e-22*a^3*c^2*e+50*a^2*b*c^2*e-29*a*b^2*c^2*e-19*b^3*c^2*e+39*a^2*c^3*e-4*a*b*c^3*e-36*b^2*c^3*e-24*a*c^4*e-2*b*c^4*e-12*c^5*e-22*a^4*d*e-22*a^3*b*d*e-a^2*b^2*d*e-42*a*b^3*d*e-10*b^4*d*e-7*a^3*c*d*e-6*a^2*b*c*d*e+5*a*b^2*c*d*e+36*b^3*c*d*e-5*a^2*c^2*d*e-21*a*b*c^2*d*e-14*b^2*c^2*d*e-21*a*c^3*d*e+18*b*c^3*d*e+49*c^4*d*e-32*a^3*d^2*e-5*a^2*b*d^2*e-45*a*b^2*d^2*e+6*b^3*d^2*e-40*a*b*c*d^2*e-17*b^2*c*d^2*e-47*a*c^2*d^2*e+12*b*c^2*d^2*e-18*c^3*d^2*e-a^2*d^3*e+6*a*b*d^3*e+2*b^2*d^3*e-29*a*c*d^3*e+15*b*c*d^3*e+21*c^2*d^3*e-36*a*d^4*e-7*b*d^4*e+c*d^4*e-23*d^5*e-24*a^4*e^2+47*a^3*b*e^2+19*a^2*b^2*e^2-44*a*b^3*e^2-13*b^4*e^2+49*a^3*c*e^2+39*a^2*b*c*e^2+44*a*b^2*c*e^2+41*b^3*c*e^2-29*a^2*c^2*e^2+24*a*b*c^2*e^2+34*a*c^3*e^2+14*b*c^3*e^2+7*c^4*e^2+44*a^3*d*e^2+22*a^2*b*d*e^2+41*a*b^2*d*e^2+21*a^2*c*d*e^2+12*a*b*c*d*e^2-33*b^2*c*d*e^2-40*a*c^2*d*e^2+16*b*c^2*d*e^2-36*c^3*d*e^2+13*a^2*d^2*e^2-22*a*b*d^2*e^2+28*b^2*d^2*e^2+29*a*c*d^2*e^2+50*b*c*d^2*e^2+48*c^2*d^2*e^2+40*a*d^3*e^2+2*c*d^3*e^2-5*d^4*e^2-37*a^3*e^3+49*a^2*b*e^3-10*a*b^2*e^3-41*b^3*e^3+11*a^2*c*e^3-37*a*b*c*e^3+26*b^2*c*e^3-39*a*c^2*e^3-46*b*c^2*e^3-3*c^3*e^3+47*a^2*d*e^3+5*a*b*d*e^3-45*b^2*d*e^3+28*a*c*d*e^3+22*b*c*d*e^3+29*c^2*d*e^3+11*a*d^2*e^3+21*b*d^2*e^3+14*c*d^2*e^3+14*d^3*e^3+32*a^2*e^4-27*a*b*e^4-47*b^2*e^4-6*b*c*e^4-38*c^2*e^4-38*a*d*e^4-17*b*d*e^4+20*c*d*e^4-d^2*e^4-4*a*e^5-11*b*e^5-41*c*e^5+25*d*e^5-e^6, 1845 b^6-11*a^4*d^2+23*a^3*b*d^2+41*a^2*b^2*d^2+7*a*b^3*d^2+10*b^4*d^2-31*a^3*c*d^2+10*a^2*b*c*d^2+7*a*b^2*c*d^2+36*b^3*c*d^2-10*a^2*c^2*d^2+9*a*b*c^2*d^2-41*b^2*c^2*d^2-26*a*c^3*d^2+26*b*c^3*d^2+12*c^4*d^2+36*a^3*d^3-35*a^2*b*d^3+12*a*b^2*d^3-8*b^3*d^3+23*a^2*c*d^3+16*a*b*c*d^3-24*b^2*c*d^3+17*a*c^2*d^3-29*b*c^2*d^3-48*c^3*d^3+33*a^2*d^4+30*a*b*d^4-41*b^2*d^4-23*a*c*d^4+8*b*c*d^4-10*c^2*d^4+22*a*d^5+5*b*d^5-32*c*d^5+19*d^6+19*a^5*e+21*a^4*b*e-29*a^3*b^2*e+10*a^2*b^3*e-6*a*b^4*e-10*b^5*e-35*a^4*c*e-47*a^3*b*c*e-16*a^2*b^2*c*e-35*a*b^3*c*e+34*b^4*c*e-28*a^3*c^2*e-6*a^2*b*c^2*e-44*a*b^2*c^2*e-47*b^3*c^2*e-18*a^2*c^3*e+48*a*b*c^3*e-b^2*c^3*e-17*a*c^4*e-48*b*c^4*e-25*c^5*e-29*a^4*d*e-18*a^3*b*d*e-28*a^2*b^2*d*e-43*a*b^3*d*e-48*b^4*d*e+45*a^3*c*d*e+18*a^2*b*c*d*e+19*a*b^2*c*d*e-27*b^3*c*d*e-13*a^2*c^2*d*e+50*a*b*c^2*d*e+33*b^2*c^2*d*e+14*a*c^3*d*e+40*b*c^3*d*e+41*c^4*d*e-34*a^3*d^2*e-41*a^2*b*d^2*e+2*a*b^2*d^2*e+37*b^3*d^2*e-a^2*c*d^2*e+8*a*b*c*d^2*e-22*b^2*c*d^2*e-25*a*c^2*d^2*e+41*b*c^2*d^2*e+35*c^3*d^2*e-14*a^2*d^3*e+32*a*b*d^3*e+20*b^2*d^3*e+3*a*c*d^3*e+12*b*c*d^3*e-6*c^2*d^3*e+44*a*d^4*e+36*b*d^4*e+32*c*d^4*e-6*d^5*e+17*a^4*e^2-39*a^3*b*e^2+22*a^2*b^2*e^2+9*a*b^3*e^2+7*b^4*e^2-9*a^3*c*e^2-49*a^2*b*c*e^2+36*a*b^2*c*e^2+16*b^3*c*e^2-10*a^2*c^2*e^2+20*a*b*c^2*e^2+b^2*c^2*e^2-29*a*c^3*e^2-4*b*c^3*e^2-34*c^4*e^2-47*a^3*d*e^2+38*a^2*b*d*e^2+10*a*b^2*d*e^2+21*b^3*d*e^2-42*a^2*c*d*e^2-28*a*b*c*d*e^2-6*b^2*c*d*e^2+22*a*c^2*d*e^2+7*b*c^2*d*e^2-12*c^3*d*e^2-6*a^2*d^2*e^2+2*a*b*d^2*e^2-4*b^2*d^2*e^2+7*a*c*d^2*e^2-39*b*c*d^2*e^2-c^2*d^2*e^2+45*a*d^3*e^2+40*b*d^3*e^2+46*c*d^3*e^2+44*d^4*e^2-30*a^3*e^3+3*a^2*b*e^3+27*a*b^2*e^3+42*b^3*e^3-18*a^2*c*e^3+11*a*b*c*e^3+18*b^2*c*e^3-31*a*c^2*e^3-37*b*c^2*e^3+5*c^3*e^3-46*a^2*d*e^3+32*a*b*d*e^3+34*b^2*d*e^3-50*a*c*d*e^3+8*b*c*d*e^3+47*c^2*d*e^3-35*a*d^2*e^3+38*b*d^2*e^3-38*c*d^2*e^3-47*d^3*e^3+35*a^2*e^4+25*a*b*e^4+31*b^2*e^4+8*a*c*e^4+9*b*c*e^4+40*c^2*e^4-3*a*d*e^4-29*b*d*e^4+20*c*d*e^4+16*d^2*e^4+25*a*e^5+b*e^5+21*c*e^5+13*d*e^5-e^6, 1846 a*b^5+6*a^4*d^2-30*a^3*b*d^2+48*a^2*b^2*d^2+22*a*b^3*d^2+49*b^4*d^2-4*a^3*c*d^2+45*a^2*b*c*d^2-28*a*b^2*c*d^2-12*b^3*c*d^2+12*a^2*c^2*d^2+47*a*b*c^2*d^2-14*b^2*c^2*d^2+35*a*c^3*d^2-b*c^3*d^2-39*c^4*d^2-40*a^3*d^3+7*a^2*b*d^3+16*a*b^2*d^3+45*b^3*d^3-a^2*c*d^3+20*a*b*c*d^3-9*b^2*c*d^3-31*a*c^2*d^3-44*b*c^2*d^3-13*c^3*d^3+36*a^2*d^4+8*a*b*d^4+25*b^2*d^4-4*a*c*d^4-10*b*c*d^4-40*c^2*d^4+39*a*d^5-4*b*d^5-24*c*d^5-11*d^6+33*a^5*e+40*a^4*b*e+21*a^3*b^2*e-7*a^2*b^3*e-22*a*b^4*e-48*b^5*e-2*a^4*c*e-32*a^3*b*c*e+4*a^2*b^2*c*e-4*a*b^3*c*e+38*b^4*c*e+50*a^3*c^2*e-15*a^2*b*c^2*e-14*a*b^2*c^2*e+43*b^3*c^2*e+44*a^2*c^3*e-11*a*b*c^3*e-20*b^2*c^3*e-14*a*c^4*e+30*b*c^4*e-44*c^5*e-27*a^4*d*e+2*a^3*b*d*e-31*a^2*b^2*d*e-8*a*b^3*d*e-47*a^3*c*d*e-39*a^2*b*c*d*e-46*a*b^2*c*d*e+6*b^3*c*d*e+32*a^2*c^2*d*e+43*a*b*c^2*d*e-30*b^2*c^2*d*e-31*a*c^3*d*e-48*b*c^3*d*e+31*c^4*d*e+49*a^3*d^2*e-2*a^2*b*d^2*e-7*a*b^2*d^2*e-38*b^3*d^2*e+6*a^2*c*d^2*e+7*a*b*c*d^2*e+5*b^2*c*d^2*e+29*a*c^2*d^2*e-39*b*c^2*d^2*e-15*c^3*d^2*e+9*a^2*d^3*e-28*a*b*d^3*e+19*b^2*d^3*e-11*a*c*d^3*e-5*b*c*d^3*e-46*c^2*d^3*e-34*a*d^4*e-27*b*d^4*e-27*c*d^4*e+11*d^5*e-36*a^4*e^2-28*a^3*b*e^2+7*a^2*b^2*e^2+20*a*b^3*e^2-34*b^4*e^2+43*a^3*c*e^2-44*a^2*b*c*e^2+30*a*b^2*c*e^2-b^3*c*e^2-15*a^2*c^2*e^2+47*a*b*c^2*e^2-5*b^2*c^2*e^2-34*a*c^3*e^2-42*b*c^3*e^2-44*c^4*e^2-7*a^3*d*e^2+32*a^2*b*d*e^2-18*a*b^2*d*e^2-45*b^3*d*e^2+50*a^2*c*d*e^2+27*a*b*c*d*e^2-43*b^2*c*d*e^2-49*a*c^2*d*e^2-12*b*c^2*d*e^2+30*c^3*d*e^2-38*a^2*d^2*e^2+16*a*b*d^2*e^2-32*b^2*d^2*e^2-45*a*c*d^2*e^2+41*b*c*d^2*e^2+8*c^2*d^2*e^2+42*a*d^3*e^2+43*b*d^3*e^2+18*c*d^3*e^2-37*d^4*e^2-13*a^3*e^3+33*a^2*b*e^3-12*a*b^2*e^3-31*b^3*e^3-24*a^2*c*e^3+5*a*b*c*e^3-29*b^2*c*e^3+5*a*c^2*e^3+10*b*c^2*e^3+38*c^3*e^3+31*a^2*d*e^3+49*a*b*d*e^3-39*b^2*d*e^3+49*a*c*d*e^3+11*b*c*d*e^3+17*c^2*d*e^3-a*d^2*e^3+45*b*d^2*e^3-16*c*d^2*e^3+28*d^3*e^3+8*a^2*e^4+19*a*b*e^4+5*b^2*e^4+36*a*c*e^4-19*b*c*e^4-18*c^2*e^4-29*a*d*e^4+33*b*d*e^4-15*c*d*e^4+46*d^2*e^4+43*a*e^5+50*b*e^5+35*c*e^5+38*d*e^5+39*e^6, 1847 a^2*b^4-27*a^4*d^2-11*a^3*b*d^2+23*a^2*b^2*d^2+42*a*b^3*d^2+33*b^4*d^2-45*a^2*b*c*d^2+42*a*b^2*c*d^2+30*b^3*c*d^2-a^2*c^2*d^2+41*a*b*c^2*d^2+32*b^2*c^2*d^2-4*a*c^3*d^2-4*b*c^3*d^2+50*c^4*d^2+14*a^3*d^3-17*a^2*b*d^3+20*a*b^2*d^3-31*b^3*d^3+44*a^2*c*d^3+14*a*b*c*d^3+43*b^2*c*d^3+48*a*c^2*d^3-10*b*c^2*d^3-3*c^3*d^3-33*a^2*d^4+9*a*b*d^4+28*b^2*d^4-3*a*c*d^4+15*b*c*d^4+46*c^2*d^4-35*a*d^5-42*b*d^5+44*c*d^5-4*d^6+28*a^5*e+46*a^4*b*e+16*a^3*b^2*e+31*a^2*b^3*e-20*a*b^4*e-15*b^5*e-50*a^4*c*e-8*a^3*b*c*e+4*a^2*b^2*c*e+38*a*b^3*c*e+27*b^4*c*e-29*a^3*c^2*e+27*a^2*b*c^2*e-33*a*b^2*c^2*e-22*b^3*c^2*e-3*a^2*c^3*e-40*a*b*c^3*e+10*b^2*c^3*e-20*a*c^4*e-38*b*c^4*e+36*c^5*e-26*a^4*d*e+41*a^3*b*d*e-15*a^2*b^2*d*e+50*a*b^3*d*e+41*b^4*d*e-18*a^3*c*d*e+18*a^2*b*c*d*e-32*a*b^2*c*d*e+41*b^3*c*d*e-5*a^2*c^2*d*e-a*b*c^2*d*e-10*b^2*c^2*d*e-12*a*c^3*d*e-46*b*c^3*d*e+34*c^4*d*e-42*a^3*d^2*e+2*a^2*b*d^2*e+37*a*b^2*d^2*e-b^3*d^2*e-29*a^2*c*d^2*e+46*a*b*c*d^2*e-49*b^2*c*d^2*e+24*a*c^2*d^2*e-47*b*c^2*d^2*e-34*c^3*d^2*e+46*a^2*d^3*e-5*a*b*d^3*e-27*b^2*d^3*e-29*a*c*d^3*e+25*b*c*d^3*e-30*c^2*d^3*e-2*a*d^4*e-50*b*d^4*e-46*c*d^4*e+2*d^5*e+11*a^4*e^2+48*a^3*b*e^2+24*a^2*b^2*e^2+41*a*b^3*e^2-17*b^4*e^2-10*a^3*c*e^2+8*a^2*b*c*e^2+28*b^3*c*e^2-21*a^2*c^2*e^2+23*a*b*c^2*e^2+8*b^2*c^2*e^2+41*a*c^3*e^2+12*b*c^3*e^2+25*c^4*e^2+25*a^3*d*e^2-49*a^2*b*d*e^2+24*a*b^2*d*e^2-7*b^3*d*e^2-20*a^2*c*d*e^2-48*a*b*c*d*e^2+46*b^2*c*d*e^2-18*a*c^2*d*e^2+13*b*c^2*d*e^2-31*c^3*d*e^2-40*a^2*d^2*e^2+2*a*b*d^2*e^2-48*b^2*d^2*e^2-38*a*c*d^2*e^2+20*b*c*d^2*e^2+47*c^2*d^2*e^2-3*a*d^3*e^2+27*b*d^3*e^2+44*c*d^3*e^2+19*d^4*e^2+38*a^3*e^3+22*a^2*b*e^3+37*a*b^2*e^3+20*b^3*e^3-6*a^2*c*e^3-33*a*b*c*e^3+45*b^2*c*e^3+24*a*c^2*e^3+33*b*c^2*e^3+c^3*e^3+50*a^2*d*e^3-44*a*b*d*e^3-50*b^2*d*e^3-11*a*c*d*e^3-11*b*c*d*e^3-30*c^2*d*e^3-a*d^2*e^3-14*b*d^2*e^3-11*c*d^2*e^3-42*d^3*e^3+3*a^2*e^4-6*a*b*e^4+31*b^2*e^4-47*a*c*e^4+23*b*c*e^4-44*c^2*e^4-28*a*d*e^4-50*b*d*e^4+41*c*d*e^4-19*d^2*e^4+10*a*e^5+13*b*e^5+47*c*e^5+31*d*e^5-49*e^6, 1848 a^3*b^3-15*a^4*d^2-17*a^3*b*d^2-a^2*b^2*d^2+18*a*b^3*d^2-30*b^4*d^2-37*a^3*c*d^2+21*a^2*b*c*d^2-a*b^2*c*d^2+16*b^3*c*d^2-41*a^2*c^2*d^2+39*a*b*c^2*d^2-16*b^2*c^2*d^2-22*a*c^3*d^2+19*b*c^3*d^2+46*c^4*d^2-14*a^3*d^3+2*a^2*b*d^3+45*a*b^2*d^3+12*b^3*d^3-28*a^2*c*d^3-19*a*b*c*d^3-20*b^2*c*d^3-6*a*c^2*d^3+17*b*c^2*d^3-20*c^3*d^3+34*a^2*d^4+15*a*b*d^4-8*b^2*d^4+31*a*c*d^4-5*b*c*d^4+41*c^2*d^4-32*a*d^5-38*b*d^5+35*c*d^5-4*d^6-26*a^5*e-20*a^4*b*e-12*a^3*b^2*e+22*a^2*b^3*e-48*a*b^4*e+39*b^5*e-46*a^4*c*e-50*a^3*b*c*e+11*a^2*b^2*c*e-2*a*b^3*c*e+23*b^4*c*e+44*a^3*c^2*e+4*a^2*b*c^2*e+17*a*b^2*c^2*e-39*b^3*c^2*e-a^2*c^3*e-20*a*b*c^3*e-16*b^2*c^3*e+7*a*c^4*e+31*b*c^4*e+18*c^5*e-44*a^4*d*e+7*a^3*b*d*e+26*a^2*b^2*d*e-19*a*b^3*d*e-35*b^4*d*e+47*a^3*c*d*e+17*a^2*b*c*d*e-27*a*b^2*c*d*e-6*b^3*c*d*e-16*a^2*c^2*d*e-10*a*b*c^2*d*e+21*b^2*c^2*d*e-27*a*c^3*d*e+4*b*c^3*d*e-32*c^4*d*e-22*a^3*d^2*e+50*a^2*b*d^2*e-a*b^2*d^2*e+41*b^3*d^2*e-46*a^2*c*d^2*e-18*a*b*c*d^2*e+8*b^2*c*d^2*e-16*a*c^2*d^2*e-38*b*c^2*d^2*e-c^3*d^2*e+18*a^2*d^3*e-25*a*b*d^3*e-47*b^2*d^3*e-23*a*c*d^3*e+8*b*c*d^3*e+20*c^2*d^3*e-41*a*d^4*e-18*b*d^4*e-18*c*d^4*e+33*d^5*e+17*a^4*e^2-10*a^3*b*e^2+28*a^2*b^2*e^2-12*a*b^3*e^2-19*b^4*e^2-20*a^3*c*e^2+45*a^2*b*c*e^2+39*a*b^2*c*e^2+37*b^3*c*e^2-6*a^2*c^2*e^2+19*a*b*c^2*e^2+23*b^2*c^2*e^2+34*a*c^3*e^2+24*b*c^3*e^2+20*c^4*e^2+14*a^3*d*e^2-8*a^2*b*d*e^2+15*a*b^2*d*e^2+19*b^3*d*e^2+14*a^2*c*d*e^2-42*a*b*c*d*e^2-27*b^2*c*d*e^2+11*a*c^2*d*e^2+24*b*c^2*d*e^2-10*c^3*d*e^2+12*a^2*d^2*e^2+18*a*b*d^2*e^2+21*b^2*d^2*e^2+35*a*c*d^2*e^2-15*b*c*d^2*e^2-32*c^2*d^2*e^2+8*a*d^3*e^2+40*b*d^3*e^2+50*c*d^3*e^2-41*d^4*e^2+42*a^3*e^3-38*a^2*b*e^3-27*a*b^2*e^3+32*b^3*e^3+41*a^2*c*e^3+3*a*b*c*e^3+28*b^2*c*e^3+21*a*c^2*e^3-8*b*c^2*e^3+22*c^3*e^3+8*a^2*d*e^3+49*a*b*d*e^3-24*b^2*d*e^3-8*a*c*d*e^3+30*b*c*d*e^3+35*c^2*d*e^3+49*a*d^2*e^3+39*b*d^2*e^3+23*c*d^2*e^3-47*d^3*e^3+43*a^2*e^4-15*a*b*e^4+20*b^2*e^4-35*b*c*e^4+28*c^2*e^4+35*b*d*e^4+12*c*d*e^4+40*d^2*e^4+32*a*e^5-32*b*e^5+25*c*e^5+9*d*e^5-26*e^6, 1849 a^4*b^2-31*a^4*d^2+30*a^3*b*d^2-42*a^2*b^2*d^2-32*a*b^3*d^2-38*b^4*d^2-49*a^3*c*d^2-4*a^2*b*c*d^2-45*a*b^2*c*d^2+8*b^3*c*d^2+44*a^2*c^2*d^2+21*a*b*c^2*d^2-13*b^2*c^2*d^2-16*a*c^3*d^2+31*b*c^3*d^2-42*c^4*d^2+49*a^3*d^3+44*a^2*b*d^3+a*b^2*d^3+47*b^3*d^3-31*a^2*c*d^3+42*a*b*c*d^3-34*b^2*c*d^3-44*a*c^2*d^3-3*b*c^2*d^3-14*c^3*d^3+24*a^2*d^4+12*a*b*d^4+14*b^2*d^4-32*a*c*d^4+16*b*c*d^4+40*c^2*d^4+8*a*d^5+5*b*d^5+35*c*d^5+2*d^6+7*a^5*e+a^4*b*e-24*a^3*b^2*e-25*a^2*b^3*e-8*a*b^4*e-46*b^5*e+12*a^4*c*e-49*a^3*b*c*e+47*a^2*b^2*c*e-22*a*b^3*c*e-22*b^4*c*e+31*a^3*c^2*e-48*a^2*b*c^2*e-46*a*b^2*c^2*e+28*b^3*c^2*e-5*a^2*c^3*e+42*a*b*c^3*e-9*b^2*c^3*e+13*a*c^4*e+23*b*c^4*e-29*c^5*e+9*a^4*d*e+9*a^3*b*d*e+3*a^2*b^2*d*e+47*a*b^3*d*e+31*b^4*d*e-25*a^3*c*d*e-37*a*b^2*c*d*e-23*b^3*c*d*e+18*a^2*c^2*d*e+8*a*b*c^2*d*e-15*b^2*c^2*d*e-40*a*c^3*d*e+26*b*c^3*d*e-29*c^4*d*e+20*a^3*d^2*e-25*a^2*b*d^2*e+41*a*b^2*d^2*e+10*b^3*d^2*e-12*a^2*c*d^2*e+38*a*b*c*d^2*e-30*b^2*c*d^2*e-49*b*c^2*d^2*e-34*c^3*d^2*e+14*a^2*d^3*e+45*a*b*d^3*e-29*b^2*d^3*e-23*a*c*d^3*e+33*b*c*d^3*e-23*c^2*d^3*e-36*a*d^4*e+29*b*d^4*e+22*c*d^4*e+45*d^5*e-46*a^4*e^2-37*a^3*b*e^2-36*a^2*b^2*e^2-23*a*b^3*e^2-4*b^4*e^2+31*a^3*c*e^2+45*a^2*b*c*e^2-34*a*b^2*c*e^2+6*b^3*c*e^2-38*a^2*c^2*e^2-26*a*b*c^2*e^2-5*b^2*c^2*e^2-24*a*c^3*e^2-28*b*c^3*e^2+20*c^4*e^2+25*a^3*d*e^2+14*a^2*b*d*e^2+a*b^2*d*e^2+18*b^3*d*e^2+12*a^2*c*d*e^2+32*a*b*c*d*e^2+17*b^2*c*d*e^2+50*a*c^2*d*e^2-12*b*c^2*d*e^2-46*c^3*d*e^2+4*a^2*d^2*e^2-29*a*b*d^2*e^2-16*b^2*d^2*e^2+38*a*c*d^2*e^2+3*b*c*d^2*e^2-19*c^2*d^2*e^2+50*a*d^3*e^2+23*b*d^3*e^2+5*c*d^3*e^2+47*d^4*e^2-38*a^3*e^3-31*a^2*b*e^3+14*a*b^2*e^3-43*b^3*e^3+22*a^2*c*e^3+26*a*b*c*e^3-28*b^2*c*e^3-49*a*c^2*e^3+15*c^3*e^3-40*a^2*d*e^3+5*a*b*d*e^3-20*b^2*d*e^3-40*a*c*d*e^3+35*b*c*d*e^3+17*c^2*d*e^3-8*a*d^2*e^3-6*b*d^2*e^3+3*c*d^2*e^3-7*d^3*e^3+45*a^2*e^4-49*a*b*e^4+45*b^2*e^4-25*a*c*e^4+b*c*e^4-33*c^2*e^4-44*a*d*e^4+30*b*d*e^4-26*c*d*e^4+42*d^2*e^4+14*b*e^5-3*c*e^5-47*d*e^5+22*e^6, 1850 a^5*b-48*a^4*d^2-33*a^3*b*d^2-34*a^2*b^2*d^2-14*a*b^3*d^2-29*b^4*d^2-7*a^3*c*d^2-13*a^2*b*c*d^2+15*a*b^2*c*d^2+27*b^3*c*d^2+49*a^2*c^2*d^2-a*b*c^2*d^2+46*b^2*c^2*d^2+37*a*c^3*d^2+20*b*c^3*d^2-27*c^4*d^2+33*a^3*d^3+30*a^2*b*d^3+32*a*b^2*d^3+b^3*d^3-47*a^2*c*d^3-2*a*b*c*d^3-36*b^2*c*d^3-7*a*c^2*d^3-23*b*c^2*d^3-41*c^3*d^3-43*a^2*d^4-4*a*b*d^4+14*b^2*d^4+38*a*c*d^4+41*b*c*d^4+27*c^2*d^4-33*a*d^5-50*b*d^5+8*c*d^5+42*d^6-21*a^5*e+46*a^4*b*e+6*a^3*b^2*e+22*a^2*b^3*e+2*a*b^4*e-15*b^5*e+50*a^4*c*e-40*a^2*b^2*c*e+49*a*b^3*c*e+5*b^4*c*e+a^3*c^2*e+47*a^2*b*c^2*e-36*a*b^2*c^2*e+25*b^3*c^2*e-36*a^2*c^3*e+46*a*b*c^3*e+24*b^2*c^3*e-9*a*c^4*e+39*b*c^4*e-40*c^5*e+29*a^4*d*e-49*a^3*b*d*e+16*a^2*b^2*d*e+7*a*b^3*d*e-30*b^4*d*e+42*a^3*c*d*e+22*a^2*b*c*d*e-49*a*b^2*c*d*e+19*b^3*c*d*e-23*a^2*c^2*d*e+7*a*b*c^2*d*e+2*b^2*c^2*d*e-2*a*c^3*d*e-2*b*c^3*d*e+5*c^4*d*e+35*a^3*d^2*e-47*a^2*b*d^2*e-28*a*b^2*d^2*e+5*b^3*d^2*e+45*a^2*c*d^2*e+7*a*b*c*d^2*e+3*b^2*c*d^2*e+33*a*c^2*d^2*e-37*b*c^2*d^2*e+26*c^3*d^2*e-18*a*b*d^3*e-42*b^2*d^3*e-22*a*c*d^3*e-46*b*c*d^3*e-25*c^2*d^3*e+6*a*d^4*e-50*b*d^4*e+22*c*d^4*e-4*d^5*e-42*a^4*e^2+43*a^3*b*e^2+39*a^2*b^2*e^2+12*a*b^3*e^2-20*b^4*e^2+2*a^3*c*e^2+27*a^2*b*c*e^2-21*a*b^2*c*e^2+36*b^3*c*e^2+47*a^2*c^2*e^2-41*a*b*c^2*e^2-23*b^2*c^2*e^2+34*a*c^3*e^2-29*b*c^3*e^2-46*c^4*e^2+15*a^3*d*e^2+4*a^2*b*d*e^2-13*a*b^2*d*e^2+43*b^3*d*e^2-7*a^2*c*d*e^2+4*a*b*c*d*e^2-37*a*c^2*d*e^2-34*b*c^2*d*e^2+20*c^3*d*e^2-5*a^2*d^2*e^2-42*a*b*d^2*e^2+14*b^2*d^2*e^2+9*a*c*d^2*e^2-19*b*c*d^2*e^2+15*c^2*d^2*e^2-35*a*d^3*e^2+24*b*d^3*e^2-35*c*d^3*e^2-14*d^4*e^2-27*a^3*e^3-39*a^2*b*e^3-44*a*b^2*e^3-6*b^3*e^3-30*a^2*c*e^3+47*a*b*c*e^3-26*b^2*c*e^3+9*a*c^2*e^3+16*b*c^2*e^3+37*c^3*e^3-49*a^2*d*e^3+19*a*b*d*e^3+44*b^2*d*e^3-9*a*c*d*e^3-41*b*c*d*e^3+29*c^2*d*e^3-43*a*d^2*e^3+33*b*d^2*e^3-2*c*d^2*e^3-15*d^3*e^3-4*a^2*e^4-46*a*b*e^4+15*b^2*e^4+21*a*c*e^4+13*b*c*e^4+38*c^2*e^4-20*a*d*e^4+16*b*d*e^4-9*c*d*e^4-19*d^2*e^4+14*a*e^5-33*b*e^5+34*c*e^5+16*d*e^5-24*e^6, 1851 a^6-2*a^4*d^2+3*a^3*b*d^2+18*a^2*b^2*d^2-46*a*b^3*d^2-31*b^4*d^2+48*a^3*c*d^2+7*a^2*b*c*d^2+26*a*b^2*c*d^2+17*b^3*c*d^2-30*a^2*c^2*d^2-2*a*b*c^2*d^2+5*b^2*c^2*d^2-43*a*c^3*d^2-33*b*c^3*d^2-28*c^4*d^2-26*a^3*d^3-5*a^2*b*d^3+48*a*b^2*d^3+2*b^3*d^3-15*a^2*c*d^3-18*a*b*c*d^3-16*b^2*c*d^3-12*a*c^2*d^3+21*b*c^2*d^3-31*c^3*d^3+34*a^2*d^4-40*a*b*d^4+41*b^2*d^4+21*a*c*d^4+26*b*c*d^4+50*c^2*d^4-20*a*d^5+8*b*d^5+30*c*d^5+48*d^6-37*a^5*e+28*a^4*b*e+8*a^3*b^2*e+30*a^2*b^3*e-a*b^4*e-49*b^5*e-8*a^4*c*e+26*a^3*b*c*e+20*a^2*b^2*c*e+19*a*b^3*c*e-23*b^4*c*e+11*a^3*c^2*e+37*a^2*b*c^2*e+40*a*b^2*c^2*e-33*b^3*c^2*e-26*a^2*c^3*e+12*a*b*c^3*e+29*b^2*c^3*e-a*c^4*e-15*b*c^4*e-24*c^5*e-41*a^4*d*e-4*a^3*b*d*e+42*a^2*b^2*d*e+9*a*b^3*d*e-49*b^4*d*e-11*a^3*c*d*e+21*a^2*b*c*d*e+22*a*b^2*c*d*e+22*b^3*c*d*e-9*a^2*c^2*d*e+27*a*b*c^2*d*e-36*b^2*c^2*d*e-10*a*c^3*d*e-39*b*c^3*d*e-3*c^4*d*e+16*a^3*d^2*e+9*a^2*b*d^2*e+7*a*b^2*d^2*e+33*b^3*d^2*e+42*a^2*c*d^2*e-38*a*b*c*d^2*e+33*b^2*c*d^2*e+41*a*c^2*d^2*e-36*b*c^2*d^2*e-21*c^3*d^2*e+34*a^2*d^3*e-43*a*b*d^3*e+32*b^2*d^3*e-9*a*c*d^3*e-34*b*c*d^3*e-4*c^2*d^3*e-10*a*d^4*e-29*b*d^4*e+4*c*d^4*e+36*d^5*e+40*a^4*e^2-32*a^3*b*e^2+13*a^2*b^2*e^2+22*a*b^3*e^2-15*b^4*e^2+31*a^3*c*e^2+7*a^2*b*c*e^2-15*a*b^2*c*e^2+43*b^3*c*e^2-45*a^2*c^2*e^2-42*a*b*c^2*e^2+41*b^2*c^2*e^2-46*a*c^3*e^2-6*b*c^3*e^2+26*c^4*e^2+45*a^3*d*e^2+11*a^2*b*d*e^2+10*a*b^2*d*e^2+5*b^3*d*e^2+3*a^2*c*d*e^2-49*a*b*c*d*e^2-10*b^2*c*d*e^2-50*a*c^2*d*e^2+38*b*c^2*d*e^2+21*c^3*d*e^2+37*a^2*d^2*e^2+a*b*d^2*e^2+38*b^2*d^2*e^2+25*a*c*d^2*e^2-7*b*c*d^2*e^2-13*c^2*d^2*e^2+32*a*d^3*e^2+37*b*d^3*e^2-27*c*d^3*e^2-7*d^4*e^2+44*a^3*e^3+48*a^2*b*e^3+21*a*b^2*e^3+11*b^3*e^3+9*a^2*c*e^3+49*a*b*c*e^3-39*b^2*c*e^3+24*a*c^2*e^3+35*b*c^2*e^3-11*c^3*e^3+17*a^2*d*e^3+36*a*b*d*e^3-19*b^2*d*e^3-47*a*c*d*e^3-47*b*c*d*e^3-12*c^2*d*e^3+34*a*d^2*e^3+35*b*d^2*e^3+18*d^3*e^3-31*a^2*e^4+45*a*b*e^4+27*b^2*e^4+43*a*c*e^4-35*b*c*e^4-29*c^2*e^4-21*a*d*e^4+49*b*d*e^4-23*c*d*e^4+34*d^2*e^4-2*a*e^5+47*b*e^5+31*c*e^5-46*d*e^5-13*e^6, 1852 e^7, d*e^6, c*e^6, b*e^6, a*e^6, d^2*e^5, c*d*e^5, b*d*e^5, a*d*e^5, c^2*e^5, 1853 b*c*e^5, a*c*e^5, b^2*e^5, a*b*e^5, a^2*e^5, d^3*e^4, c*d^2*e^4, b*d^2*e^4, 1854 a*d^2*e^4, c^2*d*e^4, b*c*d*e^4, a*c*d*e^4, b^2*d*e^4, a*b*d*e^4, a^2*d*e^4, 1855 c^3*e^4, b*c^2*e^4, a*c^2*e^4, b^2*c*e^4, a*b*c*e^4, a^2*c*e^4, b^3*e^4, 1856 a*b^2*e^4, a^2*b*e^4, a^3*e^4, d^4*e^3, c*d^3*e^3, b*d^3*e^3, a*d^3*e^3, 1857 c^2*d^2*e^3, b*c*d^2*e^3, a*c*d^2*e^3, b^2*d^2*e^3, a*b*d^2*e^3, a^2*d^2*e^3, 1858 c^3*d*e^3, b*c^2*d*e^3, a*c^2*d*e^3, b^2*c*d*e^3, a*b*c*d*e^3, a^2*c*d*e^3, 1859 b^3*d*e^3, a*b^2*d*e^3, a^2*b*d*e^3, a^3*d*e^3, c^4*e^3, b*c^3*e^3, a*c^3*e^3, 1860 b^2*c^2*e^3, a*b*c^2*e^3, a^2*c^2*e^3, b^3*c*e^3, a*b^2*c*e^3, a^2*b*c*e^3, 1861 a^3*c*e^3, b^4*e^3, a*b^3*e^3, a^2*b^2*e^3, a^3*b*e^3, a^4*e^3, d^5*e^2, 1862 c*d^4*e^2, b*d^4*e^2, a*d^4*e^2, c^2*d^3*e^2, b*c*d^3*e^2, a*c*d^3*e^2, 1863 b^2*d^3*e^2, a*b*d^3*e^2, a^2*d^3*e^2, c^3*d^2*e^2, b*c^2*d^2*e^2, 1864 a*c^2*d^2*e^2, b^2*c*d^2*e^2, a*b*c*d^2*e^2; 1865 // M; 1866 TestSSresAttribs2tr(M, "AGR101n4d008s020%1_big"); 1867 /* 1868 options: 1 1 0 : Time: 29/32/73/92 (316 without LCM) 1869 options: 1 1 1 : Time: 32/34/43/202 1870 lres Time: 24 1871 nres Time: 19 1872 sres Time: 71 1873 */ 1874 kill M; 1875 1876 kill AGR; 1877 1878 ring AGR = (101), (a,b,c,d,e,f), dp; AGR; 1879 1880 // AGR@101n5d005s016%1, new, medium difficulty? 1881 ideal M = 1882 b*d-13*c*d+7*a*e-32*b*e+31*c*e+3*d*e+46*a*f-13*b*f+22*c*f-19*d*f-33*e*f, a*d+2*c*d-42*a*e+46*b*e+7*c*e-38*d*e+31*a*f+9*b*f+27*c*f-19*d*f-24*e*f, b*c-35*c*d-34*a*e+4*b*e+33*c*e+23*d*e+4*a*f-43*b*f+43*c*f+17*d*f-13*e*f, a*c+49*c*d-28*a*e+18*b*e-23*c*e+3*d*e-5*a*f-23*b*f+2*c*f+46*d*f-40*e*f, a*b-38*c*d+a*e-49*b*e-20*c*e+32*d*e+13*a*f+25*b*f+37*c*f-27*d*f+25*e*f, f^4, e*f^3, d*f^3, c*f^3, b*f^3, a*f^3, e^2*f^2, d*e*f^2, c*e*f^2, b*e*f^2, a*e*f^2, d^2*f^2, c*d*f^2, c^2*f^2, b^2*f^2, a^2*f^2, e^3*f, d*e^2*f, c*e^2*f, b*e^2*f, a*e^2*f, d^2*e*f, d^3*f, c^3*f, b^3*f, a^3*f, e^4, d^4, c^4, b^4, a^4; 1883 TestSSresAttribs(M, "AGR@101n5d005s016%1"); 1884 kill M; 1885 } 1886 1887 static proc testAGRhard(list #) 1888 { 1889 def DEBUG = 0; 1890 if(size(#) > 0) { DEBUG = #[1]; } 1891 1892 system("--min-time", "0.01"); 1893 system("--ticks-per-sec", 100); 1894 1895 attrib(SSinit, "DEBUG", 0); 1896 attrib(SSinit, "SYZCHECK", (DEBUG > 0)); 1897 attrib(SSinit, "KERCHECK", 0); 1898 attrib(SSinit, "TREEOUTPUT", 0); 1899 attrib(SSinit, "PROFILE", 0); 1900 1901 option(prot); 1902 // AGR@101n5d006s016%1, new, hard 1903 ring AGR = (101), (a,b,c,d,e,f), dp; AGR; 1904 ideal M = 1905 b*d+47*c*d-27*a*e+37*b*e+21*c*e+31*d*e-31*a*f+23*b*f+47*c*f+42*d*f+11*e*f, a*d+7*c*d+19*a*e+28*b*e-33*c*e-28*d*e+15*a*f+28*b*f+47*c*f+3*d*f+14*e*f, b*c+29*c*d-25*a*e+12*b*e+23*c*e-50*d*e-17*a*f+30*b*f-37*c*f+35*d*f-e*f, a*c+46*c*d+12*a*e+27*b*e+39*c*e+23*d*e-45*a*f+39*b*f-35*c*f+4*d*f-10*e*f, a*b+38*c*d-18*a*e-34*b*e-30*c*e+38*d*e+22*a*f+34*b*f+39*c*f+30*d*f-19*e*f, f^5, e*f^4, d*f^4, c*f^4, b*f^4, a*f^4, e^2*f^3, d*e*f^3, c*e*f^3, b*e*f^3, a*e*f^3, d^2*f^3, c*d*f^3, c^2*f^3, b^2*f^3, a^2*f^3, e^3*f^2, d*e^2*f^2, c*e^2*f^2, b*e^2*f^2, a*e^2*f^2, d^2*e*f^2, d^3*f^2, c^3*f^2, b^3*f^2, a^3*f^2, e^4*f, e^5, d^5, c^5, b^5, a^5; 1906 TestSSresAttribs2tr(M, "AGR@101n5d006s016%1_hard"); 1907 kill M; 1908 } 321 } -
Singular/LIB/sing4ti2.lib
r1af34f r9a03c2d 90 90 // using standard unix commands 91 91 //---------------------------------------------------------------------- 92 j=system("sh","markov sing4ti2 >/dev/null 2>&1"); 92 // find the name of markov/4ti2-markov 93 string s_name=system("executable","markov"); 94 if (size(s_name)==0) { s_name=system("executable","4ti2-markov"); /* debian*/ } 95 j=system("sh",s_name+" sing4ti2 >/dev/null 2>&1"); 93 96 j=system("sh","awk \'BEGIN{ORS=\",\";}{print $0;}\' sing4ti2.mar | sed s/[\\\ \\\t\\\v\\\f]/,/g | sed s/,+/,/g|sed s/,,/,/g|sed s/,,/,/g > sing4ti2.converted"); 94 97 if(!defined(keepfiles)) … … 212 215 // using standard unix commands 213 216 //---------------------------------------------------------------------- 214 j=system("sh","graver sing4ti2 >/dev/null 2>&1"); 217 // find the name of graver/4ti2-graver 218 string s_name=system("executable","graver"); 219 if (size(s_name)==0) { s_name=system("executable","4ti2-graver"); /* debian*/ } 220 j=system("sh",s_name+" sing4ti2 >/dev/null 2>&1"); 215 221 j=system("sh","awk \'BEGIN{ORS=\",\";}{print $0;}\' sing4ti2.gra | sed s/[\\\ \\\t\\\v\\\f]/,/g | sed s/,+/,/g |sed s/,,/,/g|sed s/,,/,/g > sing4ti2.converted"); 216 222 if(!defined(keepfiles)) 217 223 { 218 224 j=system("sh",("rm -f sing4ti2.gra sing4ti2."+fileending)); 219 225 } 220 226 //---------------------------------------------------------------------- … … 332 338 // using standard unix commands 333 339 //---------------------------------------------------------------------- 334 j=system("sh","hilbert sing4ti2 >/dev/null 2>&1"); 340 // find the name of hilbert/4ti2-hilbert 341 string s_name=system("executable","hilbert"); 342 if (size(s_name)==0) { s_name=system("executable","4ti2-hilbert"); /* debian*/ } 343 j=system("sh",s_name+" sing4ti2 >/dev/null 2>&1"); 335 344 j=system("sh","awk \'BEGIN{ORS=\",\";}{print $0;}\' sing4ti2.hil | sed s/[\\\ \\\t\\\v\\\f]/,/g | sed s/,+/,/g |sed s/,,/,/g|sed s/,,/,/g > sing4ti2.converted"); 336 345 if(!defined(keepfiles)) -
Singular/dyn_modules/gfanlib/bbcone.cc
r1af34f r9a03c2d 1571 1571 } 1572 1572 WerrorS("containsInSupport: unexpected parameters"); 1573 return TRUE;1574 }1575 1576 BOOLEAN containsInSupportOld(leftv res, leftv args)1577 {1578 gfan::initializeCddlibIfRequired();1579 leftv u=args;1580 if ((u != NULL) && (u->Typ() == coneID))1581 {1582 leftv v=u->next;1583 if ((v != NULL) && (v->Typ() == coneID))1584 {1585 gfan::ZCone* zc = (gfan::ZCone*)u->Data();1586 gfan::ZCone* zd = (gfan::ZCone*)v->Data();1587 int d1 = zc->ambientDimension();1588 int d2 = zd->ambientDimension();1589 if (d1 != d2)1590 {1591 Werror("expected cones with same ambient dimensions\n but got"1592 " dimensions %d and %d", d1, d2);1593 return TRUE;1594 }1595 bool b = (zc->contains(*zd) ? 1 : 0);1596 res->rtyp = INT_CMD;1597 res->data = (void*) (long) b;1598 return FALSE;1599 }1600 if ((v != NULL) && ((v->Typ() == BIGINTMAT_CMD) || (v->Typ() == INTVEC_CMD)))1601 {1602 gfan::ZCone* zc = (gfan::ZCone*)u->Data();1603 bigintmat* iv = NULL;1604 if (v->Typ() == INTVEC_CMD)1605 {1606 intvec* iv0 = (intvec*) v->Data();1607 iv = iv2bim(iv0,coeffs_BIGINT)->transpose();1608 }1609 else1610 iv = (bigintmat*)v->Data();1611 1612 gfan::ZVector* zv = bigintmatToZVector(iv);1613 int d1 = zc->ambientDimension();1614 int d2 = zv->size();1615 if (d1 != d2)1616 {1617 Werror("expected cones with same ambient dimensions\n but got"1618 " dimensions %d and %d", d1, d2);1619 return TRUE;1620 }1621 int b = zc->contains(*zv);1622 res->rtyp = INT_CMD;1623 res->data = (void*) (long) b;1624 1625 delete zv;1626 if (v->Typ() == INTMAT_CMD)1627 delete iv;1628 return FALSE;1629 }1630 }1631 WerrorS("containsInSupportOld: unexpected parameters");1632 1573 return TRUE; 1633 1574 } … … 2141 2082 p->iiAddCproc("gfan.lib","containsAsFace",FALSE,hasFace); 2142 2083 p->iiAddCproc("gfan.lib","containsInSupport",FALSE,containsInSupport); 2143 p->iiAddCproc("gfan.lib","containsInSupportOld",FALSE,containsInSupportOld);2144 2084 p->iiAddCproc("gfan.lib","containsPositiveVector",FALSE,containsPositiveVector); 2145 2085 p->iiAddCproc("gfan.lib","containsRelatively",FALSE,containsRelatively); -
Singular/dyn_modules/syzextra/test.sh
r1af34f r9a03c2d 4 4 #"$SINGULAR_EXECUTABLE" -teq "$srcdir/ederc.tst" || exit 1 5 5 #"$SINGULAR_EXECUTABLE" -teq "$srcdir/syzextra.tst" || exit 1 6 "$SINGULAR_EXECUTABLE" -tec 'LIB "schreyer.lib"; listvar(Top); proc T(){ Schreyer::testSimple(1, 0); /* Schreyer::testAGR(0); Schreyer::testAGRhard(0); */ } T(); $' || exit 16 "$SINGULAR_EXECUTABLE" -tec 'LIB "schreyer.lib"; listvar(Top); example Sres; $' || exit 1 -
Singular/extra.cc
r59b9fdb r9a03c2d 1153 1153 return TRUE; 1154 1154 } 1155 int L = p mLastVblock(p,lVblock);1156 if (L+sh -1> uptodeg)1155 int L = pLastVblock(p,lVblock); 1156 if (L+sh > uptodeg) 1157 1157 { 1158 1158 WerrorS("pLPshift: too big shift requested\n"); -
Singular/grammar.cc
r1af34f r9a03c2d 579 579 #define YYFINAL 2 580 580 /* YYLAST -- Last index in YYTABLE. */ 581 #define YYLAST 2 664581 #define YYLAST 2560 582 582 583 583 /* YYNTOKENS -- Number of terminals. */ 584 #define YYNTOKENS 10 3584 #define YYNTOKENS 102 585 585 /* YYNNTS -- Number of nonterminals. */ 586 586 #define YYNNTS 44 … … 603 603 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 604 604 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 605 2, 2, 2, 2, 2, 2, 2, 2, 9 6, 2,606 9 9, 100, 2, 88, 94, 89, 101, 90, 2, 2,607 2, 2, 2, 2, 2, 2, 2, 2, 9 7, 95,608 86, 85, 87, 2, 2, 2, 2, 2, 2, 2,605 2, 2, 2, 2, 2, 2, 2, 2, 95, 2, 606 98, 99, 2, 87, 93, 88, 100, 89, 2, 2, 607 2, 2, 2, 2, 2, 2, 2, 2, 96, 94, 608 86, 85, 2, 2, 2, 2, 2, 2, 2, 2, 609 609 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 610 610 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 611 2, 9 1, 2, 92, 93, 2, 102, 2, 2, 2,611 2, 90, 2, 91, 92, 2, 101, 2, 2, 2, 612 612 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 613 613 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, … … 634 634 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 635 635 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 636 9 8636 97 637 637 }; 638 638 … … 665 665 static const yytype_int16 yyrhs[] = 666 666 { 667 10 4, 0, -1, -1, 104, 105, -1, 106, -1, 108,668 9 5, -1, 120, 95, -1, 146, -1, 80, -1, 95,669 -1, 1, 9 5, -1, 141, -1, 142, -1, 107, -1,670 14 3, -1, 144, -1, 129, -1, 130, -1, 131, -1,671 57, 66, -1, 10 9, -1, 132, -1, 133, -1, 134,672 -1, 14 5, -1, 136, -1, 137, -1, 139, -1, 140,673 -1, 11 8, 111, -1, 69, -1, 119, -1, 110, 11,674 1 10, -1, 112, 101, 110, -1, 110, 99, 100, -1,675 1 10, 99, 111, 100, -1, 91, 111, 92, -1, 67,676 -1, 84, -1, 12 1, -1, 16, 99, 112, 100, -1,677 53, 9 9, 112, 100, -1, 54, 99, 111, 100, -1,678 54, 9 9, 100, -1, 55, 99, 112, 100, -1, 56,679 9 9, 111, 100, -1, 56, 99, 100, -1, 45, 99,680 11 2, 100, -1, 48, 99, 112, 100, -1, 49, 99,681 11 2, 100, -1, 51, 99, 112, 100, -1, 46, 99,682 11 2, 94, 112, 100, -1, 48, 99, 112, 94, 112,683 100, -1, 50, 99, 112, 94, 112, 100, -1, 51,684 9 9, 112, 94, 112, 100, -1, 47, 99, 112, 94,685 11 2, 94, 112, 100, -1, 49, 99, 112, 94, 112,686 9 4, 112, 100, -1, 50, 99, 112, 94, 112, 94,687 11 2, 100, -1, 51, 99, 112, 94, 112, 94, 112,688 100, -1, 52, 99, 100, -1, 52, 99, 111, 100,689 -1, 12 8, 99, 112, 94, 112, 94, 112, 100, -1,690 12 8, 99, 112, 100, -1, 17, 99, 122, 94, 122,691 9 4, 126, 100, -1, 17, 99, 112, 100, -1, 119,692 12, 66, -1, 9 9, 111, 100, -1, 111, 94, 112,693 -1, 11 2, -1, 117, -1, 110, -1, 112, 91, 112,694 9 4, 112, 92, -1, 112, 91, 112, 92, -1, 71,695 9 9, 112, 94, 45, 100, -1, 71, 99, 112, 94,696 48, 100, -1, 71, 99, 112, 94, 49, 100, -1,697 71, 9 9, 112, 94, 51, 100, -1, 71, 99, 112,698 9 4, 52, 100, -1, 71, 99, 112, 94, 112, 100,699 -1, 11 4, 112, 116, -1, 114, 112, 85, 112, 116,700 -1, 11 5, 112, 94, 112, 116, -1, -1, 76, 99,701 11 3, 112, 100, -1, 77, 99, -1, 72, 99, -1,702 100, -1, 112, 10, -1, 112, 7, -1, 112, 88,703 11 2, -1, 112, 89, 112, -1, 112, 90, 112, -1,704 11 2, 93, 112, -1, 112, 86, 112, -1, 112, 96,705 11 2, -1, 112, 9, 112, -1, 112, 4, 112, -1,706 11 2, 3, 112, -1, 112, 97, 112, -1, 8, 112,707 -1, 8 9, 112, -1, 120, 127, -1, 111, 85, -1,708 68, -1, 10 2, 112, 102, -1, 53, 110, -1, 54,709 1 10, -1, 55, 110, -1, 56, 110, -1, 128, 110,710 9 1, 112, 92, 91, 112, 92, -1, 128, 110, -1,711 1 20, 94, 110, -1, 16, 110, -1, 65, -1, 112,712 -1, 9 9, 112, 94, 111, 100, -1, 68, -1, 123,713 -1, 12 3, 99, 111, 100, -1, 124, -1, 124, 94,714 12 5, -1, 124, -1, 99, 125, 100, -1, 85, -1,715 21, -1, 15, -1, 14, -1, 86, 12 1, -1, 59,716 65, 9 5, -1, 59, 95, -1, 57, 65, 95, -1,717 58, 11 1, -1, 60, 110, -1, 133, 94, 110, -1,718 62, 9 9, 53, 100, -1, 62, 99, 54, 100, -1,719 62, 9 9, 55, 100, -1, 62, 99, 56, 100, -1,720 62, 9 9, 17, 100, -1, 62, 99, 128, 100, -1,721 62, 9 9, 16, 100, -1, 62, 99, 110, 100, -1,722 62, 9 9, 110, 94, 53, 100, -1, 62, 99, 110,723 9 4, 54, 100, -1, 62, 99, 110, 94, 55, 100,724 -1, 62, 9 9, 110, 94, 56, 100, -1, 62, 99,725 1 10, 94, 17, 100, -1, 62, 99, 110, 94, 128,726 100, -1, 62, 99, 110, 94, 16, 100, -1, 62,727 9 9, 100, -1, 17, -1, 135, 110, 127, 122, 94,728 12 2, 94, 126, -1, 135, 110, -1, 135, 110, 127,729 1 10, -1, 135, 110, 127, 110, 91, 111, 92, -1,730 84, 12 1, -1, 63, -1, 31, -1, 138, 112, -1,731 64, 11 2, -1, 111, -1, 79, 99, 112, 100, 66,732 -1, 75, 66, -1, 79, 9 9, 112, 100, 73, -1,667 103, 0, -1, -1, 103, 104, -1, 105, -1, 107, 668 94, -1, 119, 94, -1, 145, -1, 80, -1, 94, 669 -1, 1, 94, -1, 140, -1, 141, -1, 106, -1, 670 142, -1, 143, -1, 128, -1, 129, -1, 130, -1, 671 57, 66, -1, 108, -1, 131, -1, 132, -1, 133, 672 -1, 144, -1, 135, -1, 136, -1, 138, -1, 139, 673 -1, 117, 110, -1, 69, -1, 118, -1, 109, 11, 674 109, -1, 111, 100, 109, -1, 109, 98, 99, -1, 675 109, 98, 110, 99, -1, 90, 110, 91, -1, 67, 676 -1, 84, -1, 120, -1, 16, 98, 111, 99, -1, 677 53, 98, 111, 99, -1, 54, 98, 110, 99, -1, 678 54, 98, 99, -1, 55, 98, 111, 99, -1, 56, 679 98, 110, 99, -1, 56, 98, 99, -1, 45, 98, 680 111, 99, -1, 48, 98, 111, 99, -1, 49, 98, 681 111, 99, -1, 51, 98, 111, 99, -1, 46, 98, 682 111, 93, 111, 99, -1, 48, 98, 111, 93, 111, 683 99, -1, 50, 98, 111, 93, 111, 99, -1, 51, 684 98, 111, 93, 111, 99, -1, 47, 98, 111, 93, 685 111, 93, 111, 99, -1, 49, 98, 111, 93, 111, 686 93, 111, 99, -1, 50, 98, 111, 93, 111, 93, 687 111, 99, -1, 51, 98, 111, 93, 111, 93, 111, 688 99, -1, 52, 98, 99, -1, 52, 98, 110, 99, 689 -1, 127, 98, 111, 93, 111, 93, 111, 99, -1, 690 127, 98, 111, 99, -1, 17, 98, 121, 93, 121, 691 93, 125, 99, -1, 17, 98, 111, 99, -1, 118, 692 12, 66, -1, 98, 110, 99, -1, 110, 93, 111, 693 -1, 111, -1, 116, -1, 109, -1, 111, 90, 111, 694 93, 111, 91, -1, 111, 90, 111, 91, -1, 71, 695 98, 111, 93, 45, 99, -1, 71, 98, 111, 93, 696 48, 99, -1, 71, 98, 111, 93, 49, 99, -1, 697 71, 98, 111, 93, 51, 99, -1, 71, 98, 111, 698 93, 52, 99, -1, 71, 98, 111, 93, 111, 99, 699 -1, 113, 111, 115, -1, 113, 111, 85, 111, 115, 700 -1, 114, 111, 93, 111, 115, -1, -1, 76, 98, 701 112, 111, 99, -1, 77, 98, -1, 72, 98, -1, 702 99, -1, 111, 10, -1, 111, 7, -1, 111, 87, 703 111, -1, 111, 88, 111, -1, 111, 89, 111, -1, 704 111, 92, 111, -1, 111, 86, 111, -1, 111, 95, 705 111, -1, 111, 9, 111, -1, 111, 4, 111, -1, 706 111, 3, 111, -1, 111, 96, 111, -1, 8, 111, 707 -1, 88, 111, -1, 119, 126, -1, 110, 85, -1, 708 68, -1, 101, 111, 101, -1, 53, 109, -1, 54, 709 109, -1, 55, 109, -1, 56, 109, -1, 127, 109, 710 90, 111, 91, 90, 111, 91, -1, 127, 109, -1, 711 119, 93, 109, -1, 16, 109, -1, 65, -1, 111, 712 -1, 98, 111, 93, 110, 99, -1, 68, -1, 122, 713 -1, 122, 98, 110, 99, -1, 123, -1, 123, 93, 714 124, -1, 123, -1, 98, 124, 99, -1, 85, -1, 715 21, -1, 15, -1, 14, -1, 86, 120, -1, 59, 716 65, 94, -1, 59, 94, -1, 57, 65, 94, -1, 717 58, 110, -1, 60, 109, -1, 132, 93, 109, -1, 718 62, 98, 53, 99, -1, 62, 98, 54, 99, -1, 719 62, 98, 55, 99, -1, 62, 98, 56, 99, -1, 720 62, 98, 17, 99, -1, 62, 98, 127, 99, -1, 721 62, 98, 16, 99, -1, 62, 98, 109, 99, -1, 722 62, 98, 109, 93, 53, 99, -1, 62, 98, 109, 723 93, 54, 99, -1, 62, 98, 109, 93, 55, 99, 724 -1, 62, 98, 109, 93, 56, 99, -1, 62, 98, 725 109, 93, 17, 99, -1, 62, 98, 109, 93, 127, 726 99, -1, 62, 98, 109, 93, 16, 99, -1, 62, 727 98, 99, -1, 17, -1, 134, 109, 126, 121, 93, 728 121, 93, 125, -1, 134, 109, -1, 134, 109, 126, 729 109, -1, 134, 109, 126, 109, 90, 110, 91, -1, 730 84, 120, -1, 63, -1, 31, -1, 137, 111, -1, 731 64, 111, -1, 110, -1, 79, 98, 111, 99, 66, 732 -1, 75, 66, -1, 79, 98, 111, 99, 73, -1, 733 733 73, -1, 74, -1, 81, 65, 66, -1, 78, 65, 734 65, 65, 66, -1, 16, 11 9, 66, -1, 70, 65,735 66, -1, 70, 65, 65, 66, -1, 83, 1 20, -1,736 83, 11 2, -1, 82, 99, 111, 100, -1, 82, 99,737 100, -1734 65, 65, 66, -1, 16, 118, 66, -1, 70, 65, 735 66, -1, 70, 65, 65, 66, -1, 83, 119, -1, 736 83, 111, -1, 82, 98, 110, 99, -1, 82, 98, 737 99, -1 738 738 }; 739 739 … … 782 782 "ASSUME_CMD", "BREAK_CMD", "CONTINUE_CMD", "ELSE_CMD", "EVAL", "QUOTE", 783 783 "FOR_CMD", "IF_CMD", "SYS_BREAK", "WHILE_CMD", "RETURN", "PARAMETER", 784 "SYSVAR", "'='", "'<'", "' >'", "'+'", "'-'", "'/'", "'['", "']'", "'^'",785 "' ,'", "';'", "'&'", "':'", "UMINUS", "'('", "')'", "'.'", "'`'",786 " $accept", "lines", "pprompt", "flowctrl", "example_dummy", "command",787 " assign", "elemexpr", "exprlist", "expr", "$@1", "quote_start",788 " assume_start", "quote_end", "expr_arithmetic", "left_value",789 " extendedid", "declare_ip_variable", "stringexpr", "rlist", "ordername",790 " orderelem", "OrderingList", "ordering", "cmdeq", "mat_cmd", "filecmd",791 " helpcmd", "examplecmd", "exportcmd", "killcmd", "listcmd", "ringcmd1",792 " ringcmd", "scriptcmd", "setrings", "setringcmd", "typecmd", "ifcmd",793 " whilecmd", "forcmd", "proccmd", "parametercmd", "returncmd", 0784 "SYSVAR", "'='", "'<'", "'+'", "'-'", "'/'", "'['", "']'", "'^'", "','", 785 "';'", "'&'", "':'", "UMINUS", "'('", "')'", "'.'", "'`'", "$accept", 786 "lines", "pprompt", "flowctrl", "example_dummy", "command", "assign", 787 "elemexpr", "exprlist", "expr", "$@1", "quote_start", "assume_start", 788 "quote_end", "expr_arithmetic", "left_value", "extendedid", 789 "declare_ip_variable", "stringexpr", "rlist", "ordername", "orderelem", 790 "OrderingList", "ordering", "cmdeq", "mat_cmd", "filecmd", "helpcmd", 791 "examplecmd", "exportcmd", "killcmd", "listcmd", "ringcmd1", "ringcmd", 792 "scriptcmd", "setrings", "setringcmd", "typecmd", "ifcmd", "whilecmd", 793 "forcmd", "proccmd", "parametercmd", "returncmd", 0 794 794 }; 795 795 #endif … … 808 808 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 809 809 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 810 335, 336, 337, 338, 339, 61, 60, 62, 43, 45,811 47, 91, 93, 94, 44, 59, 38, 58, 340, 40,812 4 1, 46, 96810 335, 336, 337, 338, 339, 61, 60, 43, 45, 47, 811 91, 93, 94, 44, 59, 38, 58, 340, 40, 41, 812 46, 96 813 813 }; 814 814 # endif … … 817 817 static const yytype_uint8 yyr1[] = 818 818 { 819 0, 10 3, 104, 104, 105, 105, 105, 105, 105, 105,820 10 5, 106, 106, 106, 106, 106, 106, 106, 106, 107,821 10 8, 108, 108, 108, 108, 108, 108, 108, 108, 109,822 1 10, 110, 110, 110, 110, 110, 110, 110, 110, 110,823 1 10, 110, 110, 110, 110, 110, 110, 110, 110, 110,824 1 10, 110, 110, 110, 110, 110, 110, 110, 110, 110,825 1 10, 110, 110, 110, 110, 110, 110, 111, 111, 112,826 11 2, 112, 112, 112, 112, 112, 112, 112, 112, 112,827 11 2, 112, 113, 112, 114, 115, 116, 117, 117, 117,828 11 7, 117, 117, 117, 117, 117, 117, 117, 117, 117,829 11 7, 118, 118, 119, 119, 120, 120, 120, 120, 120,830 1 20, 120, 120, 121, 122, 122, 123, 124, 124, 125,831 12 5, 126, 126, 127, 128, 128, 128, 129, 130, 130,832 13 1, 132, 133, 133, 134, 134, 134, 134, 134, 134,833 13 4, 134, 134, 134, 134, 134, 134, 134, 134, 134,834 13 5, 136, 136, 136, 136, 137, 138, 138, 139, 140,835 1 40, 141, 141, 141, 141, 141, 142, 143, 144, 144,836 14 4, 145, 145, 146, 146819 0, 102, 103, 103, 104, 104, 104, 104, 104, 104, 820 104, 105, 105, 105, 105, 105, 105, 105, 105, 106, 821 107, 107, 107, 107, 107, 107, 107, 107, 107, 108, 822 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 823 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 824 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 825 109, 109, 109, 109, 109, 109, 109, 110, 110, 111, 826 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 827 111, 111, 112, 111, 113, 114, 115, 116, 116, 116, 828 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 829 116, 117, 117, 118, 118, 119, 119, 119, 119, 119, 830 119, 119, 119, 120, 121, 121, 122, 123, 123, 124, 831 124, 125, 125, 126, 127, 127, 127, 128, 129, 129, 832 130, 131, 132, 132, 133, 133, 133, 133, 133, 133, 833 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 834 134, 135, 135, 135, 135, 136, 137, 137, 138, 139, 835 139, 140, 140, 140, 140, 140, 141, 142, 143, 143, 836 143, 144, 144, 145, 145 837 837 }; 838 838 … … 919 919 /* YYPACT[STATE-NUM] -- Index in YYTABLE of the portion describing 920 920 STATE-NUM. */ 921 #define YYPACT_NINF -3 59921 #define YYPACT_NINF -361 922 922 static const yytype_int16 yypact[] = 923 923 { 924 -3 59, 383, -359, -81, 1977, -359, -359, 2042, -75, -359,925 -3 59, -72, -64, -39, -28, 4, 9, 16, 40, 2107,926 2 172, 2237, 2302, 14, 1977, -57, 1977, 44, -359, 1977,927 -3 59, -359, -359, -359, 111, 64, 95, -359, -359, 136,928 105, 119, 158, 127, -359, 166, 147, 2367, 185, 185,929 1 977, 1977, -359, 1977, 1977, -359, -359, -359, 160, -359,930 -2, -65, 1376, 1977, 1977, -359, 1977, 245, -53, -359,931 2 432, -359, -359, -359, -359, 165, -359, 1977, -359, -359,932 1 977, -359, -359, -359, -359, -359, -359, -359, -359, -359,933 1 64, -75, 169, 171, 176, 177, -359, 23, 178, 1977,934 90, 1376, -8, 2497, 1977, 1977, 1977, 1977, 1977, 1977,935 1 977, 1587, 1977, 96, 1652, 209, 1977, 247, 1717, 464,936 18 3, -359, 186, 184, -359, 43, 1782, 1376, 22, 1977,937 -3 59, -359, -359, -359, 216, 1977, 218, 1847, 2042, 1376,938 193, -359, -359, 23, -46, -55, 3, -359, 1977, 1912,939 -3 59, 1977, 1977, 1977, -359, 1977, -359, 1977, 1977, 1977,940 1 977, 1977, 1977, 1977, 1977, 1977, 238, 557, 186, 224,941 -3 59, 1977, -359, -359, 1977, -9, 1977, 50, 1376, 1977,942 1 977, 1652, 1977, 1717, 1977, 571, -359, 1977, 666, 197,943 6 82, 698, 712, 262, 279, 726, 398, -359, -51, 740,944 -3 59, -43, 835, -359, -41, -359, -359, -36, -16, 79,945 88, 93, 98, -359, 33, 115, 227, -359, 851, 1977,946 2 31, 865, -359, -359, -38, -359, -359, -359, -359, -359,947 - 22, 1376, 163, 1485, 1485, 1499, 30, 30, 23, 414,948 1 8, 1471, 30, -359, 1977, -359, -359, 1977, -359, 629,949 50 9, 1977, 139, 2497, 571, 740, -19, 835, 46, 509,950 -3 59, 881, -359, 2497, -359, 1977, 1977, 1977, -359, 1977,951 -3 59, 1977, 1977, -359, -359, -359, -359, -359, -359, -359,952 -3 59, -359, -359, -359, -359, 862, -359, -359, -359, 2562,953 89 5, 232, -47, -359, -359, -359, 1977, 990, 990, 1977,954 -3 59, 1006, 130, 1376, 203, -359, -359, 1977, 206, 1020,955 103 6, 1050, 1145, 525, 541, 202, 205, 207, 210, 212,956 2 21, 222, 117, 137, 140, 144, 162, 1159, -359, -359,957 -3 59, -359, 1175, -359, -359, 1189, 234, 1977, 2497, 65,958 -6 3, -359, 1977, -359, 1977, 1977, -359, 1977, -359, -359,959 -3 59, -359, -359, -359, -359, -359, -359, -359, -359, -359,960 -3 59, -359, -359, 1977, 1977, 77, 215, -359, -359, 248,961 2 19, -359, 230, 1203, 1219, 1314, 1330, 1346, 1362, -359,962 -6 3, 239, 240, 1977, -359, -359, -359, -359, -359, -359,963 -3 59, -359, 248, -359, 68, -359, -359924 -361, 383, -361, -84, 1874, -361, -361, 1939, -47, -361, 925 -361, -34, -27, -23, -19, -15, 5, 32, 37, 2004, 926 2069, 2134, 2199, -26, 1874, -61, 1874, 45, -361, 1874, 927 -361, -361, -361, -361, 22, 51, 65, -361, -361, 100, 928 73, 92, 130, 94, -361, 139, 118, 2264, 153, 153, 929 1874, 1874, -361, 1874, 1874, -361, -361, -361, 3, -361, 930 10, -73, 1368, 1874, 1874, -361, 1874, 211, -48, -361, 931 2329, -361, -361, -361, -361, 128, -361, 1874, -361, -361, 932 1874, -361, -361, -361, -361, -361, -361, -361, -361, -361, 933 131, -47, 133, 145, 150, 152, -361, 24, 159, 1874, 934 104, 1368, -7, 2394, 1874, 1874, 1874, 1874, 1874, 1874, 935 1874, 1484, 1874, 209, 1549, 248, 1874, 258, 1614, 264, 936 187, -361, 167, 196, -361, 170, 1679, 1368, 113, 1874, 937 -361, -361, -361, -361, 213, 1874, 227, 1744, 1939, 1368, 938 204, -361, -361, 24, -66, -69, 4, -361, 1874, 1809, 939 -361, 1874, 1874, 1874, -361, 1874, -361, 1874, 1874, 1874, 940 1874, 1874, 1874, 1874, 1874, 1874, 166, 553, 167, 239, 941 -361, 1874, -361, -361, 1874, -9, 1874, 47, 1368, 1874, 942 1874, 1549, 1874, 1614, 1874, 568, -361, 1874, 583, 217, 943 677, 692, 707, 184, 235, 722, 399, -361, -51, 737, 944 -361, -50, 752, -361, -37, -361, -361, 86, 116, 127, 945 135, 138, 142, -361, 8, 148, 246, -361, 846, 1874, 946 251, 861, -361, -361, -21, -361, -361, -361, -361, -361, 947 -13, 1368, 50, 279, 279, 1397, 31, 31, 24, 414, 948 19, 1383, 31, -361, 1874, -361, -361, 1874, -361, 287, 949 508, 1874, 280, 2394, 568, 737, -11, 752, 34, 508, 950 -361, 876, -361, 2394, -361, 1874, 1874, 1874, -361, 1874, 951 -361, 1874, 1874, -361, -361, -361, -361, -361, -361, -361, 952 -361, -361, -361, -361, -361, 1367, -361, -361, -361, 2459, 953 891, 252, -38, -361, -361, -361, 1874, 906, 906, 1874, 954 -361, 921, 206, 1368, 233, -361, -361, 1874, 236, 1015, 955 1030, 1045, 1060, 523, 538, 241, 249, 256, 262, 271, 956 288, 289, 189, 210, 240, 255, 261, 1075, -361, -361, 957 -361, -361, 1090, -361, -361, 1184, 242, 1874, 2394, 66, 958 -62, -361, 1874, -361, 1874, 1874, -361, 1874, -361, -361, 959 -361, -361, -361, -361, -361, -361, -361, -361, -361, -361, 960 -361, -361, -361, 1874, 1874, -30, 257, -361, -361, 277, 961 291, -361, 295, 1199, 1214, 1229, 1244, 1259, 1353, -361, 962 -62, 303, 302, 1874, -361, -361, -361, -361, -361, -361, 963 -361, -361, 277, -361, 69, -361, -361 964 964 }; 965 965 … … 967 967 static const yytype_int16 yypgoto[] = 968 968 { 969 -3 59, -359, -359, -359, -359, -359, -359, -4, -1, 48,970 -3 59, -359, -359, -168, -359, -359, 336, 298, 225, -232,971 -3 59, -358, -35, -31, 187, 0, -359, -359, -359, -359,972 -3 59, -359, -359, -359, -359, -359, -359, -359, -359, -359,973 -3 59, -359, -359, -359969 -361, -361, -361, -361, -361, -361, -361, -4, -1, 48, 970 -361, -361, -361, 79, -361, -361, 398, 360, 315, -209, 971 -361, -360, 18, 33, 238, 0, -361, -361, -361, -361, 972 -361, -361, -361, -361, -361, -361, -361, -361, -361, -361, 973 -361, -361, -361, -361 974 974 }; 975 975 … … 981 981 static const yytype_int16 yytable[] = 982 982 { 983 61, 70, 148, 100, 1 69, 368, 152, 153, 123, 148,984 154, 381, 155, 156, 89, 113, 115, 117, 119, 330,985 15 0, 304, 125, 122, 103, 154, 331, 104, 156, 151,986 154, 308, 170, 156, 381, 105, 369, 154, 124, 151,987 1 56, 171, 172, 151, 148, 226, 225, 70, 151, 274,988 144, 1 51, 97, 151, 148, 101, 151, 276, 186, 278,989 1 06, 148, 293, 179, 279, 168, 175, 101, 101, 101,990 101, 10 7, 151, 177, 101, 151, -110, 127, 294, 120,991 1 21, 305, 251, 103, 280, -110, -110, 216, 217, 157,992 1 49, 158, 159, 160, 161, 139, 162, 149, 143, 163,993 164, 148, 146, 108, 165, 227, 366, 148, 109, 161,994 198, 166, 167, 201, 161, 1 10, 162, 204, 101, 165,995 160, 161, 214, 162, 165, 101, 215, 285, 178, 333,996 334, 165, 149, 286, 100, 170, 224, -132, -132, 111,997 1 51, 148, 149, 126, 228, -152, 306, 185, 230, 149,998 1 48, 188, 190, 191, 192, 193, 194, 195, 196, 151,999 199, 243, 151, 1 29, 202, 367, -154, 249, 396, 379,1000 15 4, 151, 252, 156, 101, -112, 128, 218, 180, 281,1001 256, -105, 258, 221, -112, -112, 101, 181, 282, 149,1002 -105, -105, 182, 283, 130, 149, 101, 183, 284, 231,1003 232, 233, 1 31, 234, 132, 235, 236, 237, 238, 239,1004 240, 241, 242, 101, 1 84, 287, 104, 356, 133, 101,1005 148, 337, 250, 134, 101, -153, 135, 254, 255, 149,1006 257, 1 36, 259, -133, -133, 261, 107, 357, 149, 108,1007 358, 152, 153, 110, 359, 154, 137, 155, 156, 302,1008 30, 158, 159, 160, 161, 147, 162, 169, 148, 176,1009 1 64, 111, 360, 179, 165, 152, 153, 290, 180, 154,1010 1 81, 155, 156, 141, 142, 182, 183, 184, 205, 206,1011 1 51, 220, 152, 153, 222, 321, 154, 171, 155, 156,1012 2 48, 263, 297, 288, -106, 298, 291, 338, 329, 301,1013 340, 303, 349, -106, -106, 350, 339, 351, 149, 380,1014 352, 303, 353, 309, 310, 311, 368, 312, 383, 313,1015 314, 354, 355, 244, 157, 364, 158, 159, 160, 161,1016 384, 162, -107, 392, 163, 164, 365, 327, 245, 165,1017 3 93, -107, -107, 102, 332, 140, 149, 335, 157, 391,1018 158, 159, 160, 161, 0, 162, 267, 395, 163, 164,1019 0, 0, 268, 165, 253, 157, 0, 158, 159, 160,1020 161, 0, 162, 269, 0, 163, 164, 0, 0, 270,1021 165, 0, 394, 2, 3, 0, 303, 0, 0, 0,1022 373, 4, 374, 375, 0, 376, 0, 5, 6, 7,1023 8, 152, 153, 0, 9, 154, 0, 155, 156, 0,1024 0, 377, 378, 0, 10, 0, 0, 152, 153, 0,983 61, 70, 148, 100, 123, 169, 368, 152, 153, 381, 984 89, 154, 150, 155, 156, 113, 115, 117, 119, 148, 985 151, 148, 125, 122, 151, 225, 154, 151, 330, 156, 986 226, 154, 381, 124, 156, 331, 369, 170, 154, 120, 987 121, 156, 151, 151, 304, 171, 172, 70, 274, 276, 988 144, 103, 97, -154, 308, 101, 151, 154, 148, 186, 989 156, 379, 278, 151, 104, 168, 175, 101, 101, 101, 990 101, 105, 151, 177, 101, 106, -110, 127, 293, 107, 991 151, 251, 151, 108, -110, -110, 294, 128, 305, 149, 992 157, 158, 159, 160, 161, 139, 162, 147, 143, 163, 993 164, 285, 146, 109, 165, 227, 149, 286, 149, 161, 994 198, 166, 167, 201, 161, 148, 162, 204, 101, 165, 995 160, 161, 214, 162, 165, 101, 215, 151, 178, 366, 996 110, 165, 170, 306, 100, 111, 224, 158, 159, 160, 997 161, -152, 162, 126, 228, 149, 164, 185, 230, 129, 998 165, 188, 190, 191, 192, 193, 194, 195, 196, 151, 999 199, 243, 151, 130, 202, 367, 131, 249, 396, 152, 1000 153, 132, 252, 154, 101, 155, 156, 218, 216, 217, 1001 256, 148, 258, 221, 179, 279, 101, 152, 153, -112, 1002 133, 154, 135, 155, 156, 134, 101, -112, -112, 231, 1003 232, 233, 149, 234, 136, 235, 236, 237, 238, 239, 1004 240, 241, 242, 101, 103, 280, 137, 148, 30, 101, 1005 148, 176, 250, 169, 101, 180, 281, 254, 255, 179, 1006 257, 180, 259, 181, 282, 261, 182, 283, 152, 153, 1007 183, 284, 154, 181, 155, 156, 184, 287, 182, 302, 1008 183, 244, 157, 158, 159, 160, 161, 184, 162, 148, 1009 151, 163, 164, -132, -132, 245, 165, 290, 149, 148, 1010 157, 158, 159, 160, 161, 148, 162, 267, 220, 163, 1011 164, 205, 152, 268, 165, 321, 154, 104, 356, 156, 1012 206, 148, 297, 222, -105, 298, 337, 171, 148, 301, 1013 -153, 303, -105, -105, 149, 248, 339, 149, 107, 357, 1014 263, 303, 288, 309, 310, 311, 291, 312, 329, 313, 1015 314, 157, 158, 159, 160, 161, 338, 162, 269, 340, 1016 163, 164, 364, -106, 270, 165, 365, 327, 108, 358, 1017 349, -106, -106, -107, 332, 368, 149, 335, 350, -108, 1018 380, -107, -107, 110, 359, 351, 149, -108, -108, 111, 1019 360, 352, 149, 141, 142, 157, 158, 159, 160, 161, 1020 353, 162, -111, -133, -133, 164, 333, 334, 149, 165, 1021 -111, -111, 394, 2, 3, 149, 303, 354, 355, 383, 1022 373, 4, 374, 375, 384, 376, 392, 5, 6, 7, 1023 8, 393, 152, 153, 9, 102, 154, 140, 155, 156, 1024 395, 377, 378, 391, 10, 253, 0, 152, 153, 0, 1025 1025 0, 154, 0, 155, 156, 0, 0, 0, 11, 12, 1026 1026 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, … … 1028 1028 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 1029 1029 41, 42, 43, 44, 45, 46, 47, 48, 0, 49, 1030 0, 0, 50, 0, 51, 148, 0, 0, 52, 0,1031 0, 0, 53, 0, 157, 54, 158, 159, 160, 161,1030 0, 50, 0, 51, 0, 0, 0, 52, 0, 0, 1031 0, 53, 0, 0, 54, 157, 158, 159, 160, 161, 1032 1032 0, 162, 272, 0, 163, 164, 0, 0, 273, 165, 1033 157, 0, 158, 159, 160, 161, 295, 162, 296, 0, 1034 163, 164, 152, 153, 0, 165, 154, 0, 155, 156, 1035 0, 0, 0, 0, 0, 0, 0, 0, 152, 153, 1036 0, 0, 154, 0, 155, 156, 0, 0, 0, 0, 1037 0, 0, 0, 0, 152, 153, 0, 0, 154, -108, 1038 155, 156, 0, 0, 0, 0, 0, 0, -108, -108, 1039 152, 153, 0, 149, 154, 0, 155, 156, 0, 0, 1040 0, 0, 0, 0, 152, 153, 0, 0, 154, 0, 1041 155, 156, 0, 0, 0, 0, 0, 0, 0, 0, 1042 0, 0, 0, 0, 0, 157, 0, 158, 159, 160, 1043 161, 0, 162, 299, 0, 163, 164, 0, 0, 300, 1044 165, 157, 0, 158, 159, 160, 161, 0, 162, 345, 1045 0, 163, 164, 0, 0, 346, 165, 157, 0, 158, 1046 159, 160, 161, 0, 162, 347, 0, 163, 164, 0, 1047 148, 348, 165, 157, 0, 158, 159, 160, 161, 0, 1048 162, 247, 0, 163, 164, 0, 0, 157, 165, 158, 1049 159, 160, 161, 0, 162, 0, 0, 163, 164, 152, 1050 153, 260, 165, 154, 0, 155, 156, 0, 0, 0, 1033 157, 158, 159, 160, 161, 295, 162, 296, 0, 163, 1034 164, 152, 153, 0, 165, 154, 0, 155, 156, 0, 1035 0, 0, 0, 0, 0, 0, 152, 153, 0, 0, 1036 154, 0, 155, 156, 0, 0, 0, 0, 0, 0, 1037 0, 152, 153, 0, 0, 154, 0, 155, 156, 0, 1038 0, 0, 0, 0, 0, 0, 152, 153, 0, 0, 1039 154, 0, 155, 156, 0, 0, 0, 0, 0, 0, 1040 0, 152, 153, 0, 0, 154, 0, 155, 156, 0, 1041 0, 0, 0, 0, 0, 0, 152, 153, 0, 0, 1042 154, 0, 155, 156, 157, 158, 159, 160, 161, 0, 1043 162, 299, 0, 163, 164, 0, 0, 300, 165, 157, 1044 158, 159, 160, 161, 0, 162, 345, 0, 163, 164, 1045 0, 0, 346, 165, 157, 158, 159, 160, 161, 0, 1046 162, 347, 0, 163, 164, 0, 0, 348, 165, 157, 1047 158, 159, 160, 161, 0, 162, 247, 0, 163, 164, 1048 0, 0, 0, 165, 157, 158, 159, 160, 161, 0, 1049 162, 0, 0, 163, 164, 0, 0, 260, 165, 157, 1050 158, 159, 160, 161, 0, 162, 0, 0, 163, 164, 1051 152, 153, 262, 165, 154, 0, 155, 156, 0, 0, 1051 1052 0, 0, 0, 0, 0, 152, 153, 0, 0, 154, 1052 1053 0, 155, 156, 0, 0, 0, 0, 0, 0, 0, 1054 152, 153, 0, 0, 154, 0, 155, 156, 0, 0, 1055 0, 0, 0, 0, 0, 152, 153, 0, 0, 154, 1056 0, 155, 156, 0, 0, 0, 0, 0, 0, 0, 1057 152, 153, 0, 0, 154, 0, 155, 156, 0, 0, 1058 0, 0, 0, 0, 0, 152, 153, 0, 0, 154, 1059 0, 155, 156, 157, 158, 159, 160, 161, 0, 162, 1060 0, 0, 163, 164, 0, 0, 264, 165, 157, 158, 1061 159, 160, 161, 0, 162, 265, 0, 163, 164, 0, 1062 0, 0, 165, 157, 158, 159, 160, 161, 0, 162, 1063 266, 0, 163, 164, 0, 0, 0, 165, 157, 158, 1064 159, 160, 161, 0, 162, 271, 0, 163, 164, 0, 1065 0, 0, 165, 157, 158, 159, 160, 161, 0, 162, 1066 0, 0, 163, 164, 0, 0, 275, 165, 157, 158, 1067 159, 160, 161, 0, 162, 0, 0, 163, 164, 152, 1068 153, 277, 165, 154, 0, 155, 156, 0, 0, 0, 1069 0, 0, 0, 0, 152, 153, 0, 0, 154, 0, 1070 155, 156, 0, 0, 0, 0, 0, 0, 0, 152, 1071 153, 0, 0, 154, 0, 155, 156, 0, 0, 0, 1072 0, 0, 0, 0, 152, 153, 0, 0, 154, 0, 1073 155, 156, 0, 0, 0, 0, 0, 0, 0, 152, 1074 153, 0, 0, 154, 0, 155, 156, 0, 0, 0, 1075 0, 0, 0, 0, 152, 153, 0, 0, 154, 0, 1076 155, 156, 157, 158, 159, 160, 161, 0, 162, 289, 1077 0, 163, 164, 0, 0, 0, 165, 157, 158, 159, 1078 160, 161, 0, 162, 0, 0, 163, 164, 0, 0, 1079 292, 165, 157, 158, 159, 160, 161, 0, 162, 307, 1080 0, 163, 164, 0, 0, 0, 165, 157, 158, 159, 1081 160, 161, 0, 162, 0, 0, 163, 164, 0, 0, 1082 328, 165, 157, 158, 159, 160, 161, 0, 162, 0, 1083 0, 163, 164, 0, 0, 245, 165, 157, 158, 159, 1084 160, 161, 336, 162, 0, 0, 163, 164, 152, 153, 1085 0, 165, 154, 0, 155, 156, 0, 0, 0, 0, 1086 0, 0, 0, 152, 153, 0, 0, 154, 0, 155, 1087 156, 0, 0, 0, 0, 0, 0, 0, 152, 153, 1088 0, 0, 154, 0, 155, 156, 0, 0, 0, 0, 1089 0, 0, 0, 152, 153, 0, 0, 154, 0, 155, 1090 156, 0, 0, 0, 0, 0, 0, 0, 152, 153, 1091 0, 0, 154, 0, 155, 156, 0, 0, 0, 0, 1092 0, 0, 0, 152, 153, 0, 0, 154, 0, 155, 1093 156, 157, 158, 159, 160, 161, 0, 162, 0, 0, 1094 163, 164, 0, 0, 341, 165, 157, 158, 159, 160, 1095 161, 0, 162, 342, 0, 163, 164, 0, 0, 0, 1096 165, 157, 158, 159, 160, 161, 0, 162, 0, 0, 1097 163, 164, 0, 0, 343, 165, 157, 158, 159, 160, 1098 161, 0, 162, 344, 0, 163, 164, 0, 0, 0, 1099 165, 157, 158, 159, 160, 161, 0, 162, 0, 0, 1100 163, 164, 0, 0, 361, 165, 157, 158, 159, 160, 1101 161, 362, 162, 0, 0, 163, 164, 152, 153, 0, 1102 165, 154, 0, 155, 156, 0, 0, 0, 0, 0, 1103 0, 0, 152, 153, 0, 0, 154, 0, 155, 156, 1104 0, 0, 0, 0, 0, 0, 0, 152, 153, 0, 1105 0, 154, 0, 155, 156, 0, 0, 0, 0, 0, 1106 0, 0, 152, 153, 0, 0, 154, 0, 155, 156, 1107 0, 0, 0, 0, 0, 0, 0, 152, 153, 0, 1108 0, 154, 0, 155, 156, 0, 0, 0, 0, 0, 1109 0, 0, 152, 153, 0, 0, 154, 0, 155, 156, 1110 157, 158, 159, 160, 161, 0, 162, 363, 0, 163, 1111 164, 0, 0, 0, 165, 157, 158, 159, 160, 161, 1112 0, 162, 0, 0, 163, 164, 0, 0, 385, 165, 1113 157, 158, 159, 160, 161, 0, 162, 0, 0, 163, 1114 164, 0, 0, 386, 165, 157, 158, 159, 160, 161, 1115 0, 162, 0, 0, 163, 164, 0, 0, 387, 165, 1116 157, 158, 159, 160, 161, 0, 162, 0, 0, 163, 1117 164, 0, 0, 388, 165, 157, 158, 159, 160, 161, 1118 0, 162, 0, 0, 163, 164, 152, 153, 389, 165, 1119 154, 0, 155, 156, 0, 0, 0, 0, 0, 0, 1053 1120 0, 152, 153, 0, 0, 154, 0, 155, 156, 0, 1054 0, 0, 0, 0, -111, 152, 153, 0, 0, 154, 1055 0, 155, 156, -111, -111, 0, 0, 0, 149, 152, 1056 153, 0, 0, 154, 0, 155, 156, 0, 0, 0, 1057 0, 0, 0, 152, 153, 0, 0, 154, 0, 155, 1058 156, 0, 157, 0, 158, 159, 160, 161, 0, 162, 1059 0, 0, 163, 164, 0, 0, 262, 165, 157, 0, 1060 158, 159, 160, 161, 0, 162, 0, 0, 163, 164, 1061 0, 0, 264, 165, 157, 0, 158, 159, 160, 161, 1062 0, 162, 265, 0, 163, 164, 0, 0, 157, 165, 1063 158, 159, 160, 161, 0, 162, 266, 0, 163, 164, 1064 0, 0, 157, 165, 158, 159, 160, 161, 0, 162, 1065 271, 0, 163, 164, 0, 0, 157, 165, 158, 159, 1066 160, 161, 0, 162, 0, 0, 163, 164, 152, 153, 1067 275, 165, 154, 0, 155, 156, 0, 0, 0, 0, 1068 0, 0, 0, 0, 152, 153, 0, 0, 154, 0, 1069 155, 156, 0, 0, 0, 0, 0, 0, 152, 153, 1070 0, 0, 154, 0, 155, 156, 5, 6, 315, 316, 1071 0, 0, 0, 9, 152, 153, 0, 0, 154, 0, 1072 155, 156, 0, 0, 0, 0, 0, 0, 152, 153, 1073 0, 0, 154, 0, 155, 156, 0, 0, 0, 0, 1074 0, 0, 0, 0, 0, 317, 318, 319, 320, 0, 1075 0, 157, 0, 158, 159, 160, 161, 0, 162, 0, 1076 0, 163, 164, 0, 0, 277, 165, 157, 0, 158, 1077 159, 160, 161, 0, 162, 289, 0, 163, 164, 0, 1078 0, 157, 165, 158, 159, 160, 161, 0, 162, 0, 1079 0, 163, 164, 0, 0, 292, 165, 157, 0, 158, 1080 159, 160, 161, 0, 162, 307, 0, 163, 164, 0, 1081 0, 157, 165, 158, 159, 160, 161, 0, 162, 0, 1082 0, 163, 164, 152, 153, 328, 165, 154, 0, 155, 1083 156, 0, 0, 0, 0, 0, 0, 0, 0, 152, 1084 153, 0, 0, 154, 0, 155, 156, 0, 0, 0, 1085 0, 0, 0, 152, 153, 0, 0, 154, 0, 155, 1086 156, 0, 0, 0, 0, 0, 0, 0, 0, 152, 1087 153, 0, 0, 154, 0, 155, 156, 0, 0, 0, 1088 0, 0, 0, 152, 153, 0, 0, 154, 0, 155, 1089 156, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1090 0, 0, 0, 0, 0, 0, 157, 0, 158, 159, 1091 160, 161, 0, 162, 0, 0, 163, 164, 0, 0, 1092 245, 165, 157, 0, 158, 159, 160, 161, 336, 162, 1093 0, 0, 163, 164, 0, 0, 157, 165, 158, 159, 1094 160, 161, 0, 162, 0, 0, 163, 164, 0, 0, 1095 341, 165, 157, 0, 158, 159, 160, 161, 0, 162, 1096 342, 0, 163, 164, 0, 0, 157, 165, 158, 159, 1097 160, 161, 0, 162, 0, 0, 163, 164, 152, 153, 1098 343, 165, 154, 0, 155, 156, 0, 0, 0, 0, 1099 0, 0, 152, 153, 0, 0, 154, 0, 155, 156, 1100 0, 0, 0, 0, 0, 0, 0, 0, 152, 153, 1101 0, 0, 154, 0, 155, 156, 0, 0, 0, 0, 1102 0, 0, 152, 153, 0, 0, 154, 0, 155, 156, 1103 0, 0, 0, 0, 0, 0, 152, 153, 0, 0, 1121 0, 5, 6, 315, 316, 0, 152, 153, 9, 0, 1104 1122 154, 0, 155, 156, 0, 0, 0, 0, 0, 0, 1105 0, 0, 152, 153, 0, 0, 154, 0, 155, 156, 1106 0, 157, 0, 158, 159, 160, 161, 0, 162, 344, 1107 0, 163, 164, 0, 0, 157, 165, 158, 159, 160, 1108 161, 0, 162, 0, 0, 163, 164, 0, 0, 361, 1109 165, 157, 0, 158, 159, 160, 161, 362, 162, 0, 1110 0, 163, 164, 0, 0, 157, 165, 158, 159, 160, 1111 161, 0, 162, 363, 0, 163, 164, 0, 0, 157, 1112 165, 158, 159, 160, 161, 0, 162, 0, 0, 163, 1113 164, 0, 0, 385, 165, 157, 0, 158, 159, 160, 1114 161, 0, 162, 0, 0, 163, 164, 152, 153, 386, 1115 165, 154, 0, 155, 156, 0, 0, 0, 0, 0, 1116 0, 0, 0, 152, 153, 0, 0, 154, 0, 155, 1117 156, 0, 0, 0, 0, 0, 0, 0, 0, 152, 1118 153, 0, 0, 154, 0, 155, 156, 0, 0, 0, 1119 0, 0, 0, 0, 0, 152, 153, 0, 0, 154, 1120 0, 155, 156, 0, 0, 0, 0, 0, 0, 152, 1121 153, 0, 0, 154, 0, 155, 156, 0, 0, 0, 1123 152, 0, 0, 0, 154, 0, 0, 156, 0, 0, 1122 1124 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1123 157, 0, 158, 159, 160, 161, 0, 162, 0, 0, 1124 163, 164, 0, 0, 387, 165, 157, 0, 158, 159, 1125 160, 161, 0, 162, 0, 0, 163, 164, 0, 0, 1126 388, 165, 157, 0, 158, 159, 160, 161, 0, 162, 1127 0, 0, 163, 164, 0, 0, 389, 165, 157, 0, 1125 317, 318, 319, 320, 0, 0, 0, 0, 0, 0, 1126 0, 0, 0, 0, 0, 0, 0, 0, 0, 157, 1128 1127 158, 159, 160, 161, 390, 162, 0, 0, 163, 164, 1129 0, 0, 157, 165, 158, 159, 160, 161, 0, 162, 1130 0, 0, 163, 164, 152, 153, 0, 165, 154, 0, 1131 155, 156, 0, 0, 0, 0, 0, 0, 152, 0, 1132 0, 0, 154, 0, 0, 156, 0, 0, 0, 0, 1133 0, 0, 152, 0, 0, 0, 154, 0, 0, 156, 1128 0, 0, 0, 165, 157, 158, 159, 160, 161, 0, 1129 162, 0, 0, 163, 164, 0, 0, 0, 165, 157, 1130 158, 159, 160, 161, 0, 162, 0, 0, 0, 164, 1131 0, 0, 0, 165, 158, 159, 160, 161, 0, 162, 1132 0, 0, 4, 164, 0, 0, 0, 165, 5, 6, 1133 90, 91, 0, 0, 0, 9, 0, 0, 0, 0, 1134 1134 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1135 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1136 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1137 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1138 0, 0, 0, 0, 0, 0, 0, 157, 0, 158, 1139 159, 160, 161, 0, 162, 0, 0, 0, 164, 0, 1140 0, 157, 165, 158, 159, 160, 161, 0, 162, 0, 1141 0, 0, 164, 0, 0, 0, 165, 158, 159, 160, 1142 161, 0, 162, 0, 0, 4, 164, 0, 0, 0, 1143 165, 5, 6, 90, 91, 0, 0, 0, 9, 0, 1144 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1145 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1146 0, 0, 11, 12, 13, 14, 15, 16, 17, 18, 1147 92, 93, 94, 95, 0, 0, 0, 0, 0, 0, 1148 0, 0, 30, 0, 31, 32, 33, 0, 35, 36, 1149 4, 0, 0, 40, 41, 0, 5, 6, 90, 91, 1150 0, 96, 0, 9, 0, 0, 50, 0, 51, 0, 1151 0, 0, 0, 0, 0, 0, 53, 197, 0, 54, 1152 0, 0, 0, 0, 0, 0, 0, 11, 12, 13, 1153 14, 15, 16, 17, 18, 92, 93, 94, 95, 0, 1154 0, 0, 0, 0, 0, 0, 0, 30, 0, 31, 1155 32, 33, 0, 35, 36, 4, 0, 0, 40, 41, 1156 0, 5, 6, 90, 91, 0, 96, 0, 9, 0, 1157 0, 50, 0, 51, 0, 0, 0, 0, 0, 0, 1158 0, 53, 200, 0, 54, 0, 0, 0, 0, 0, 1159 0, 0, 11, 12, 13, 14, 15, 16, 17, 18, 1160 92, 93, 94, 95, 0, 0, 0, 0, 0, 0, 1161 0, 0, 30, 0, 31, 32, 33, 0, 35, 36, 1162 4, 0, 0, 40, 41, 0, 5, 6, 207, 208, 1163 0, 96, 0, 9, 0, 0, 50, 0, 51, 0, 1164 0, 0, 0, 0, 0, 0, 53, 203, 0, 54, 1165 0, 0, 0, 0, 0, 0, 0, 11, 12, 13, 1166 14, 15, 16, 17, 18, 209, 210, 211, 212, 0, 1167 0, 0, 0, 0, 0, 0, 0, 30, 0, 31, 1168 32, 33, 0, 35, 36, 4, 0, 0, 40, 41, 1169 0, 5, 6, 90, 91, 0, 96, 0, 9, 0, 1170 0, 50, 0, 51, 0, 0, 0, 0, 0, 0, 1171 0, 53, 213, 0, 54, 0, 0, 0, 0, 0, 1172 0, 0, 11, 12, 13, 14, 15, 16, 17, 18, 1173 92, 93, 94, 95, 0, 0, 0, 0, 0, 0, 1174 0, 0, 30, 0, 31, 32, 33, 0, 35, 36, 1175 4, 0, 0, 40, 41, 0, 5, 6, 90, 91, 1176 0, 96, 0, 9, 0, 0, 50, 0, 51, 0, 1177 0, 0, 0, 0, 0, 0, 53, 223, 0, 54, 1178 0, 0, 0, 0, 0, 0, 0, 11, 12, 13, 1179 14, 15, 16, 17, 18, 92, 93, 94, 95, 0, 1180 0, 0, 0, 0, 0, 0, 0, 30, 0, 31, 1181 32, 33, 0, 35, 36, 4, 0, 0, 40, 41, 1182 0, 5, 6, 90, 91, 0, 96, 0, 9, 0, 1183 0, 50, 0, 51, 0, 0, 0, 0, 0, 0, 1184 0, 53, 229, 0, 54, 0, 0, 0, 0, 0, 1185 0, 0, 11, 12, 13, 14, 15, 16, 17, 18, 1186 92, 93, 94, 95, 0, 0, 0, 0, 0, 0, 1187 0, 0, 30, 0, 31, 32, 33, 0, 35, 36, 1188 4, 0, 0, 40, 41, 0, 5, 6, 90, 91, 1189 0, 96, 0, 9, 0, 0, 50, 0, 51, 0, 1190 0, 0, 0, 0, 0, 0, 53, 0, 0, 54, 1191 0, 0, 0, 0, 0, 0, 0, 11, 12, 13, 1192 14, 15, 16, 17, 18, 92, 93, 94, 95, 0, 1193 0, 0, 0, 0, 0, 0, 0, 30, 0, 31, 1194 32, 33, 0, 35, 36, 4, 0, 0, 40, 41, 1195 0, 5, 6, 90, 91, 0, 96, 0, 9, 0, 1196 0, 50, 0, 51, 0, 0, 0, 0, 0, 0, 1197 0, 99, 0, 0, 54, 0, 0, 0, 0, 0, 1198 0, 0, 11, 12, 13, 14, 15, 16, 17, 18, 1199 92, 93, 94, 95, 0, 0, 0, 0, 0, 0, 1200 0, 0, 30, 0, 31, 32, 33, 0, 35, 36, 1201 4, 0, 0, 40, 41, 0, 5, 6, 90, 91, 1202 0, 96, 0, 9, 0, 0, 50, 0, 51, 0, 1203 0, 0, 0, 0, 0, 0, 112, 0, 0, 54, 1204 0, 0, 0, 0, 0, 0, 0, 11, 12, 13, 1205 14, 15, 16, 17, 18, 92, 93, 94, 95, 0, 1206 0, 0, 0, 0, 0, 0, 0, 30, 0, 31, 1207 32, 33, 0, 35, 36, 4, 0, 0, 40, 41, 1208 0, 5, 6, 90, 91, 0, 96, 0, 9, 0, 1209 0, 50, 0, 51, 0, 0, 0, 0, 0, 0, 1210 0, 114, 0, 0, 54, 0, 0, 0, 0, 0, 1211 0, 0, 11, 12, 13, 14, 15, 16, 17, 18, 1212 92, 93, 94, 95, 0, 0, 0, 0, 0, 0, 1213 0, 0, 30, 0, 31, 32, 33, 0, 35, 36, 1214 4, 0, 0, 40, 41, 0, 5, 6, 90, 91, 1215 0, 96, 0, 9, 0, 0, 50, 0, 51, 0, 1216 0, 0, 0, 0, 0, 0, 116, 0, 0, 54, 1217 0, 0, 0, 0, 0, 0, 0, 11, 12, 13, 1218 14, 15, 16, 17, 18, 92, 93, 94, 95, 0, 1219 0, 0, 0, 0, 0, 0, 0, 30, 0, 31, 1220 32, 33, 0, 35, 36, 4, 0, 0, 40, 41, 1221 0, 5, 6, 138, 91, 0, 96, 0, 9, 0, 1222 0, 50, 0, 51, 0, 0, 0, 0, 0, 0, 1223 0, 118, 0, 0, 54, 0, 0, 0, 0, 0, 1224 0, 0, 11, 12, 13, 14, 15, 16, 17, 18, 1225 19, 20, 21, 22, 0, 0, 0, 0, 0, 0, 1226 0, 0, 30, 0, 31, 32, 33, 0, 35, 36, 1227 4, 0, 0, 40, 41, 0, 5, 6, 90, 91, 1228 0, 96, 0, 9, 0, 0, 50, 0, 51, 0, 1229 0, 0, 0, 0, 0, 0, 53, 0, 0, 54, 1230 0, 0, 0, 0, 0, 0, 0, 11, 12, 13, 1231 14, 15, 16, 17, 18, 92, 93, 94, 95, 0, 1232 0, 0, 0, 0, 0, 0, 0, 30, 0, 31, 1233 32, 33, 0, 35, 36, 4, 0, 0, 40, 41, 1234 0, 5, 6, 90, 91, 0, 96, 0, 9, 0, 1235 0, 50, 0, 51, 0, 0, 0, 0, 0, 0, 1236 0, 174, 0, 0, 54, 0, 0, 0, 0, 0, 1237 0, 0, 11, 12, 13, 14, 15, 16, 17, 18, 1238 92, 93, 94, 95, 0, 0, 0, 0, 0, 0, 1239 0, 0, 30, 0, 31, 32, 33, 0, 35, 36, 1240 4, 0, 0, 40, 41, 0, 5, 6, 90, 91, 1241 0, 96, 0, 9, 0, 0, 50, 0, 51, 0, 1242 0, 0, 0, 0, 0, 0, 187, 0, 0, 54, 1243 0, 0, 0, 0, 0, 0, 0, 322, 12, 13, 1244 323, 324, 16, 325, 326, 92, 93, 94, 95, 0, 1245 0, 0, 0, 0, 0, 0, 0, 30, 0, 31, 1246 32, 33, 0, 35, 36, 0, 0, 0, 40, 41, 1247 0, 0, 0, 0, 0, 0, 96, 0, 0, 0, 1248 0, 50, 0, 51, 0, 0, 0, 0, 0, 0, 1249 0, 53, 0, 0, 54 1135 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1136 12, 13, 14, 15, 16, 17, 18, 92, 93, 94, 1137 95, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1138 0, 31, 32, 33, 0, 35, 36, 4, 0, 0, 1139 40, 41, 0, 5, 6, 90, 91, 0, 96, 0, 1140 9, 0, 50, 0, 51, 0, 0, 0, 0, 0, 1141 0, 0, 53, 197, 0, 54, 0, 0, 0, 0, 1142 0, 0, 0, 0, 11, 12, 13, 14, 15, 16, 1143 17, 18, 92, 93, 94, 95, 0, 0, 0, 0, 1144 0, 0, 0, 0, 30, 0, 31, 32, 33, 0, 1145 35, 36, 4, 0, 0, 40, 41, 0, 5, 6, 1146 90, 91, 0, 96, 0, 9, 0, 50, 0, 51, 1147 0, 0, 0, 0, 0, 0, 0, 53, 200, 0, 1148 54, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1149 12, 13, 14, 15, 16, 17, 18, 92, 93, 94, 1150 95, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1151 0, 31, 32, 33, 0, 35, 36, 4, 0, 0, 1152 40, 41, 0, 5, 6, 207, 208, 0, 96, 0, 1153 9, 0, 50, 0, 51, 0, 0, 0, 0, 0, 1154 0, 0, 53, 203, 0, 54, 0, 0, 0, 0, 1155 0, 0, 0, 0, 11, 12, 13, 14, 15, 16, 1156 17, 18, 209, 210, 211, 212, 0, 0, 0, 0, 1157 0, 0, 0, 0, 30, 0, 31, 32, 33, 0, 1158 35, 36, 4, 0, 0, 40, 41, 0, 5, 6, 1159 90, 91, 0, 96, 0, 9, 0, 50, 0, 51, 1160 0, 0, 0, 0, 0, 0, 0, 53, 213, 0, 1161 54, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1162 12, 13, 14, 15, 16, 17, 18, 92, 93, 94, 1163 95, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1164 0, 31, 32, 33, 0, 35, 36, 4, 0, 0, 1165 40, 41, 0, 5, 6, 90, 91, 0, 96, 0, 1166 9, 0, 50, 0, 51, 0, 0, 0, 0, 0, 1167 0, 0, 53, 223, 0, 54, 0, 0, 0, 0, 1168 0, 0, 0, 0, 11, 12, 13, 14, 15, 16, 1169 17, 18, 92, 93, 94, 95, 0, 0, 0, 0, 1170 0, 0, 0, 0, 30, 0, 31, 32, 33, 0, 1171 35, 36, 4, 0, 0, 40, 41, 0, 5, 6, 1172 90, 91, 0, 96, 0, 9, 0, 50, 0, 51, 1173 0, 0, 0, 0, 0, 0, 0, 53, 229, 0, 1174 54, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1175 12, 13, 14, 15, 16, 17, 18, 92, 93, 94, 1176 95, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1177 0, 31, 32, 33, 0, 35, 36, 4, 0, 0, 1178 40, 41, 0, 5, 6, 90, 91, 0, 96, 0, 1179 9, 0, 50, 0, 51, 0, 0, 0, 0, 0, 1180 0, 0, 53, 0, 0, 54, 0, 0, 0, 0, 1181 0, 0, 0, 0, 11, 12, 13, 14, 15, 16, 1182 17, 18, 92, 93, 94, 95, 0, 0, 0, 0, 1183 0, 0, 0, 0, 30, 0, 31, 32, 33, 0, 1184 35, 36, 4, 0, 0, 40, 41, 0, 5, 6, 1185 90, 91, 0, 96, 0, 9, 0, 50, 0, 51, 1186 0, 0, 0, 0, 0, 0, 0, 99, 0, 0, 1187 54, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1188 12, 13, 14, 15, 16, 17, 18, 92, 93, 94, 1189 95, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1190 0, 31, 32, 33, 0, 35, 36, 4, 0, 0, 1191 40, 41, 0, 5, 6, 90, 91, 0, 96, 0, 1192 9, 0, 50, 0, 51, 0, 0, 0, 0, 0, 1193 0, 0, 112, 0, 0, 54, 0, 0, 0, 0, 1194 0, 0, 0, 0, 11, 12, 13, 14, 15, 16, 1195 17, 18, 92, 93, 94, 95, 0, 0, 0, 0, 1196 0, 0, 0, 0, 30, 0, 31, 32, 33, 0, 1197 35, 36, 4, 0, 0, 40, 41, 0, 5, 6, 1198 90, 91, 0, 96, 0, 9, 0, 50, 0, 51, 1199 0, 0, 0, 0, 0, 0, 0, 114, 0, 0, 1200 54, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1201 12, 13, 14, 15, 16, 17, 18, 92, 93, 94, 1202 95, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1203 0, 31, 32, 33, 0, 35, 36, 4, 0, 0, 1204 40, 41, 0, 5, 6, 90, 91, 0, 96, 0, 1205 9, 0, 50, 0, 51, 0, 0, 0, 0, 0, 1206 0, 0, 116, 0, 0, 54, 0, 0, 0, 0, 1207 0, 0, 0, 0, 11, 12, 13, 14, 15, 16, 1208 17, 18, 92, 93, 94, 95, 0, 0, 0, 0, 1209 0, 0, 0, 0, 30, 0, 31, 32, 33, 0, 1210 35, 36, 4, 0, 0, 40, 41, 0, 5, 6, 1211 138, 91, 0, 96, 0, 9, 0, 50, 0, 51, 1212 0, 0, 0, 0, 0, 0, 0, 118, 0, 0, 1213 54, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1214 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 1215 22, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1216 0, 31, 32, 33, 0, 35, 36, 4, 0, 0, 1217 40, 41, 0, 5, 6, 90, 91, 0, 96, 0, 1218 9, 0, 50, 0, 51, 0, 0, 0, 0, 0, 1219 0, 0, 53, 0, 0, 54, 0, 0, 0, 0, 1220 0, 0, 0, 0, 11, 12, 13, 14, 15, 16, 1221 17, 18, 92, 93, 94, 95, 0, 0, 0, 0, 1222 0, 0, 0, 0, 30, 0, 31, 32, 33, 0, 1223 35, 36, 4, 0, 0, 40, 41, 0, 5, 6, 1224 90, 91, 0, 96, 0, 9, 0, 50, 0, 51, 1225 0, 0, 0, 0, 0, 0, 0, 174, 0, 0, 1226 54, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1227 12, 13, 14, 15, 16, 17, 18, 92, 93, 94, 1228 95, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1229 0, 31, 32, 33, 0, 35, 36, 4, 0, 0, 1230 40, 41, 0, 5, 6, 90, 91, 0, 96, 0, 1231 9, 0, 50, 0, 51, 0, 0, 0, 0, 0, 1232 0, 0, 187, 0, 0, 54, 0, 0, 0, 0, 1233 0, 0, 0, 0, 322, 12, 13, 323, 324, 16, 1234 325, 326, 92, 93, 94, 95, 0, 0, 0, 0, 1235 0, 0, 0, 0, 30, 0, 31, 32, 33, 0, 1236 35, 36, 0, 0, 0, 40, 41, 0, 0, 0, 1237 0, 0, 0, 96, 0, 0, 0, 50, 0, 51, 1238 0, 0, 0, 0, 0, 0, 0, 53, 0, 0, 1239 54 1250 1240 }; 1251 1241 1252 1242 static const yytype_int16 yycheck[] = 1253 1243 { 1254 1, 1, 11, 7, 12, 68, 3, 4, 65, 11,1255 7, 369, 9, 10, 95, 19, 20, 21, 22, 66,1256 85, 253, 26, 24, 99, 7, 73, 99, 10, 94,1257 7, 263, 85, 10, 392, 99, 99, 7, 95, 94,1258 10, 94, 95, 94, 11, 100, 92, 47, 94, 100,1259 51, 9 4, 4, 94, 11, 7, 94, 100, 66, 100,1260 99, 11, 100, 99, 100, 66, 70, 19, 20, 21,1261 22, 9 9, 94, 77, 26, 94, 85, 29, 100, 65,1262 66, 100, 91, 99, 100, 94, 95, 65, 66, 86,1263 99, 88, 89, 90, 91, 47, 93, 99, 50, 96,1264 9 7, 11, 54, 99, 101, 102, 338, 11, 99, 91,1265 111, 63, 64, 114, 9 1, 99, 93, 118, 70, 101,1266 90, 91, 126, 93, 101, 77, 126, 94, 80, 297,1267 298, 101, 99, 100, 138, 85, 137, 94, 95, 99,1268 9 4, 11, 99, 99, 148, 95, 100, 99, 149, 99,1269 11, 103, 104, 105, 106, 107, 108, 109, 110, 94,1270 112, 165, 9 4, 99, 116, 100, 3, 171, 100, 92,1271 7, 94, 176, 10, 126, 85, 65, 129, 99, 100,1272 181, 85, 183, 135, 94, 95, 138, 99, 100, 99,1273 9 4, 95, 99, 100, 99, 99, 148, 99, 100, 151,1274 152, 153, 66, 155, 99, 157, 158, 159, 160, 161,1275 162, 163, 164, 165, 9 9, 100, 99, 100, 99, 171,1276 11, 9 1, 174, 65, 176, 95, 99, 179, 180, 99,1277 182, 65, 184, 94, 95, 187, 99, 100, 99, 99,1278 100, 3, 4, 99, 100, 7, 99, 9, 10, 253,1279 65, 88, 89, 90, 91, 95, 93, 12, 11, 94,1280 9 7, 99, 100, 99, 101, 3, 4, 219, 99, 7,1281 99, 9, 10, 48, 49, 99, 99, 99, 95, 95,1282 9 4, 65, 3, 4, 66, 285, 7, 94,9, 10,1283 66, 94, 244, 66, 85, 247, 65, 94, 66, 251,1284 94, 253, 100, 94, 95, 100, 307, 100, 99, 94,1285 100, 263, 100, 265, 266, 267, 68, 269, 99, 271,1286 272, 100, 100, 85, 86, 91, 88, 89, 90, 91,1287 100, 93, 85, 94, 96, 97, 337, 289, 100, 101,1288 100, 94, 95, 7, 296, 47, 99, 299, 86, 380,1289 88, 89, 90, 91, -1, 93, 94, 392, 96, 97,1290 -1, -1, 100, 101, 177, 86, -1, 88, 89, 90,1291 9 1, -1, 93, 94, -1, 96, 97, -1, -1, 100,1292 101, -1, 383, 0, 1, -1, 338, -1, -1, -1,1293 342, 8, 344, 345, -1, 347, -1, 14, 15, 16,1294 17, 3, 4, -1, 21, 7, -1, 9, 10, -1,1295 -1, 363, 364, -1, 31, -1, -1, 3, 4, -1,1244 1, 1, 11, 7, 65, 12, 68, 3, 4, 369, 1245 94, 7, 85, 9, 10, 19, 20, 21, 22, 11, 1246 93, 11, 26, 24, 93, 91, 7, 93, 66, 10, 1247 99, 7, 392, 94, 10, 73, 98, 85, 7, 65, 1248 66, 10, 93, 93, 253, 93, 94, 47, 99, 99, 1249 51, 98, 4, 3, 263, 7, 93, 7, 11, 66, 1250 10, 91, 99, 93, 98, 66, 70, 19, 20, 21, 1251 22, 98, 93, 77, 26, 98, 85, 29, 99, 98, 1252 93, 90, 93, 98, 93, 94, 99, 65, 99, 98, 1253 86, 87, 88, 89, 90, 47, 92, 94, 50, 95, 1254 96, 93, 54, 98, 100, 101, 98, 99, 98, 90, 1255 111, 63, 64, 114, 90, 11, 92, 118, 70, 100, 1256 89, 90, 126, 92, 100, 77, 126, 93, 80, 338, 1257 98, 100, 85, 99, 138, 98, 137, 87, 88, 89, 1258 90, 94, 92, 98, 148, 98, 96, 99, 149, 98, 1259 100, 103, 104, 105, 106, 107, 108, 109, 110, 93, 1260 112, 165, 93, 98, 116, 99, 66, 171, 99, 3, 1261 4, 98, 176, 7, 126, 9, 10, 129, 65, 66, 1262 181, 11, 183, 135, 98, 99, 138, 3, 4, 85, 1263 98, 7, 98, 9, 10, 65, 148, 93, 94, 151, 1264 152, 153, 98, 155, 65, 157, 158, 159, 160, 161, 1265 162, 163, 164, 165, 98, 99, 98, 11, 65, 171, 1266 11, 93, 174, 12, 176, 98, 99, 179, 180, 98, 1267 182, 98, 184, 98, 99, 187, 98, 99, 3, 4, 1268 98, 99, 7, 98, 9, 10, 98, 99, 98, 253, 1269 98, 85, 86, 87, 88, 89, 90, 98, 92, 11, 1270 93, 95, 96, 93, 94, 99, 100, 219, 98, 11, 1271 86, 87, 88, 89, 90, 11, 92, 93, 65, 95, 1272 96, 94, 3, 99, 100, 285, 7, 98, 99, 10, 1273 94, 11, 244, 66, 85, 247, 90, 93, 11, 251, 1274 94, 253, 93, 94, 98, 66, 307, 98, 98, 99, 1275 93, 263, 66, 265, 266, 267, 65, 269, 66, 271, 1276 272, 86, 87, 88, 89, 90, 93, 92, 93, 93, 1277 95, 96, 90, 85, 99, 100, 337, 289, 98, 99, 1278 99, 93, 94, 85, 296, 68, 98, 299, 99, 85, 1279 93, 93, 94, 98, 99, 99, 98, 93, 94, 98, 1280 99, 99, 98, 48, 49, 86, 87, 88, 89, 90, 1281 99, 92, 85, 93, 94, 96, 297, 298, 98, 100, 1282 93, 94, 383, 0, 1, 98, 338, 99, 99, 98, 1283 342, 8, 344, 345, 99, 347, 93, 14, 15, 16, 1284 17, 99, 3, 4, 21, 7, 7, 47, 9, 10, 1285 392, 363, 364, 380, 31, 177, -1, 3, 4, -1, 1296 1286 -1, 7, -1, 9, 10, -1, -1, -1, 45, 46, 1297 1287 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, … … 1299 1289 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 1300 1290 77, 78, 79, 80, 81, 82, 83, 84, -1, 86, 1301 -1, -1, 89, -1, 91, 11, -1, -1, 95, -1, 1302 -1, -1, 99, -1, 86, 102, 88, 89, 90, 91, 1303 -1, 93, 94, -1, 96, 97, -1, -1, 100, 101, 1304 86, -1, 88, 89, 90, 91, 92, 93, 94, -1, 1305 96, 97, 3, 4, -1, 101, 7, -1, 9, 10, 1306 -1, -1, -1, -1, -1, -1, -1, -1, 3, 4, 1307 -1, -1, 7, -1, 9, 10, -1, -1, -1, -1, 1308 -1, -1, -1, -1, 3, 4, -1, -1, 7, 85, 1309 9, 10, -1, -1, -1, -1, -1, -1, 94, 95, 1310 3, 4, -1, 99, 7, -1, 9, 10, -1, -1, 1311 -1, -1, -1, -1, 3, 4, -1, -1, 7, -1, 1312 9, 10, -1, -1, -1, -1, -1, -1, -1, -1, 1313 -1, -1, -1, -1, -1, 86, -1, 88, 89, 90, 1314 91, -1, 93, 94, -1, 96, 97, -1, -1, 100, 1315 101, 86, -1, 88, 89, 90, 91, -1, 93, 94, 1316 -1, 96, 97, -1, -1, 100, 101, 86, -1, 88, 1317 89, 90, 91, -1, 93, 94, -1, 96, 97, -1, 1318 11, 100, 101, 86, -1, 88, 89, 90, 91, -1, 1319 93, 94, -1, 96, 97, -1, -1, 86, 101, 88, 1320 89, 90, 91, -1, 93, -1, -1, 96, 97, 3, 1321 4, 100, 101, 7, -1, 9, 10, -1, -1, -1, 1291 -1, 88, -1, 90, -1, -1, -1, 94, -1, -1, 1292 -1, 98, -1, -1, 101, 86, 87, 88, 89, 90, 1293 -1, 92, 93, -1, 95, 96, -1, -1, 99, 100, 1294 86, 87, 88, 89, 90, 91, 92, 93, -1, 95, 1295 96, 3, 4, -1, 100, 7, -1, 9, 10, -1, 1296 -1, -1, -1, -1, -1, -1, 3, 4, -1, -1, 1297 7, -1, 9, 10, -1, -1, -1, -1, -1, -1, 1298 -1, 3, 4, -1, -1, 7, -1, 9, 10, -1, 1299 -1, -1, -1, -1, -1, -1, 3, 4, -1, -1, 1300 7, -1, 9, 10, -1, -1, -1, -1, -1, -1, 1301 -1, 3, 4, -1, -1, 7, -1, 9, 10, -1, 1302 -1, -1, -1, -1, -1, -1, 3, 4, -1, -1, 1303 7, -1, 9, 10, 86, 87, 88, 89, 90, -1, 1304 92, 93, -1, 95, 96, -1, -1, 99, 100, 86, 1305 87, 88, 89, 90, -1, 92, 93, -1, 95, 96, 1306 -1, -1, 99, 100, 86, 87, 88, 89, 90, -1, 1307 92, 93, -1, 95, 96, -1, -1, 99, 100, 86, 1308 87, 88, 89, 90, -1, 92, 93, -1, 95, 96, 1309 -1, -1, -1, 100, 86, 87, 88, 89, 90, -1, 1310 92, -1, -1, 95, 96, -1, -1, 99, 100, 86, 1311 87, 88, 89, 90, -1, 92, -1, -1, 95, 96, 1312 3, 4, 99, 100, 7, -1, 9, 10, -1, -1, 1322 1313 -1, -1, -1, -1, -1, 3, 4, -1, -1, 7, 1323 1314 -1, 9, 10, -1, -1, -1, -1, -1, -1, -1, 1315 3, 4, -1, -1, 7, -1, 9, 10, -1, -1, 1316 -1, -1, -1, -1, -1, 3, 4, -1, -1, 7, 1317 -1, 9, 10, -1, -1, -1, -1, -1, -1, -1, 1318 3, 4, -1, -1, 7, -1, 9, 10, -1, -1, 1319 -1, -1, -1, -1, -1, 3, 4, -1, -1, 7, 1320 -1, 9, 10, 86, 87, 88, 89, 90, -1, 92, 1321 -1, -1, 95, 96, -1, -1, 99, 100, 86, 87, 1322 88, 89, 90, -1, 92, 93, -1, 95, 96, -1, 1323 -1, -1, 100, 86, 87, 88, 89, 90, -1, 92, 1324 93, -1, 95, 96, -1, -1, -1, 100, 86, 87, 1325 88, 89, 90, -1, 92, 93, -1, 95, 96, -1, 1326 -1, -1, 100, 86, 87, 88, 89, 90, -1, 92, 1327 -1, -1, 95, 96, -1, -1, 99, 100, 86, 87, 1328 88, 89, 90, -1, 92, -1, -1, 95, 96, 3, 1329 4, 99, 100, 7, -1, 9, 10, -1, -1, -1, 1330 -1, -1, -1, -1, 3, 4, -1, -1, 7, -1, 1331 9, 10, -1, -1, -1, -1, -1, -1, -1, 3, 1332 4, -1, -1, 7, -1, 9, 10, -1, -1, -1, 1333 -1, -1, -1, -1, 3, 4, -1, -1, 7, -1, 1334 9, 10, -1, -1, -1, -1, -1, -1, -1, 3, 1335 4, -1, -1, 7, -1, 9, 10, -1, -1, -1, 1336 -1, -1, -1, -1, 3, 4, -1, -1, 7, -1, 1337 9, 10, 86, 87, 88, 89, 90, -1, 92, 93, 1338 -1, 95, 96, -1, -1, -1, 100, 86, 87, 88, 1339 89, 90, -1, 92, -1, -1, 95, 96, -1, -1, 1340 99, 100, 86, 87, 88, 89, 90, -1, 92, 93, 1341 -1, 95, 96, -1, -1, -1, 100, 86, 87, 88, 1342 89, 90, -1, 92, -1, -1, 95, 96, -1, -1, 1343 99, 100, 86, 87, 88, 89, 90, -1, 92, -1, 1344 -1, 95, 96, -1, -1, 99, 100, 86, 87, 88, 1345 89, 90, 91, 92, -1, -1, 95, 96, 3, 4, 1346 -1, 100, 7, -1, 9, 10, -1, -1, -1, -1, 1347 -1, -1, -1, 3, 4, -1, -1, 7, -1, 9, 1348 10, -1, -1, -1, -1, -1, -1, -1, 3, 4, 1349 -1, -1, 7, -1, 9, 10, -1, -1, -1, -1, 1350 -1, -1, -1, 3, 4, -1, -1, 7, -1, 9, 1351 10, -1, -1, -1, -1, -1, -1, -1, 3, 4, 1352 -1, -1, 7, -1, 9, 10, -1, -1, -1, -1, 1353 -1, -1, -1, 3, 4, -1, -1, 7, -1, 9, 1354 10, 86, 87, 88, 89, 90, -1, 92, -1, -1, 1355 95, 96, -1, -1, 99, 100, 86, 87, 88, 89, 1356 90, -1, 92, 93, -1, 95, 96, -1, -1, -1, 1357 100, 86, 87, 88, 89, 90, -1, 92, -1, -1, 1358 95, 96, -1, -1, 99, 100, 86, 87, 88, 89, 1359 90, -1, 92, 93, -1, 95, 96, -1, -1, -1, 1360 100, 86, 87, 88, 89, 90, -1, 92, -1, -1, 1361 95, 96, -1, -1, 99, 100, 86, 87, 88, 89, 1362 90, 91, 92, -1, -1, 95, 96, 3, 4, -1, 1363 100, 7, -1, 9, 10, -1, -1, -1, -1, -1, 1364 -1, -1, 3, 4, -1, -1, 7, -1, 9, 10, 1365 -1, -1, -1, -1, -1, -1, -1, 3, 4, -1, 1366 -1, 7, -1, 9, 10, -1, -1, -1, -1, -1, 1367 -1, -1, 3, 4, -1, -1, 7, -1, 9, 10, 1368 -1, -1, -1, -1, -1, -1, -1, 3, 4, -1, 1369 -1, 7, -1, 9, 10, -1, -1, -1, -1, -1, 1370 -1, -1, 3, 4, -1, -1, 7, -1, 9, 10, 1371 86, 87, 88, 89, 90, -1, 92, 93, -1, 95, 1372 96, -1, -1, -1, 100, 86, 87, 88, 89, 90, 1373 -1, 92, -1, -1, 95, 96, -1, -1, 99, 100, 1374 86, 87, 88, 89, 90, -1, 92, -1, -1, 95, 1375 96, -1, -1, 99, 100, 86, 87, 88, 89, 90, 1376 -1, 92, -1, -1, 95, 96, -1, -1, 99, 100, 1377 86, 87, 88, 89, 90, -1, 92, -1, -1, 95, 1378 96, -1, -1, 99, 100, 86, 87, 88, 89, 90, 1379 -1, 92, -1, -1, 95, 96, 3, 4, 99, 100, 1380 7, -1, 9, 10, -1, -1, -1, -1, -1, -1, 1324 1381 -1, 3, 4, -1, -1, 7, -1, 9, 10, -1, 1325 -1, -1, -1, -1, 85, 3, 4, -1, -1, 7, 1326 -1, 9, 10, 94, 95, -1, -1, -1, 99, 3, 1327 4, -1, -1, 7, -1, 9, 10, -1, -1, -1, 1328 -1, -1, -1, 3, 4, -1, -1, 7, -1, 9, 1329 10, -1, 86, -1, 88, 89, 90, 91, -1, 93, 1330 -1, -1, 96, 97, -1, -1, 100, 101, 86, -1, 1331 88, 89, 90, 91, -1, 93, -1, -1, 96, 97, 1332 -1, -1, 100, 101, 86, -1, 88, 89, 90, 91, 1333 -1, 93, 94, -1, 96, 97, -1, -1, 86, 101, 1334 88, 89, 90, 91, -1, 93, 94, -1, 96, 97, 1335 -1, -1, 86, 101, 88, 89, 90, 91, -1, 93, 1336 94, -1, 96, 97, -1, -1, 86, 101, 88, 89, 1337 90, 91, -1, 93, -1, -1, 96, 97, 3, 4, 1338 100, 101, 7, -1, 9, 10, -1, -1, -1, -1, 1339 -1, -1, -1, -1, 3, 4, -1, -1, 7, -1, 1340 9, 10, -1, -1, -1, -1, -1, -1, 3, 4, 1341 -1, -1, 7, -1, 9, 10, 14, 15, 16, 17, 1342 -1, -1, -1, 21, 3, 4, -1, -1, 7, -1, 1343 9, 10, -1, -1, -1, -1, -1, -1, 3, 4, 1344 -1, -1, 7, -1, 9, 10, -1, -1, -1, -1, 1345 -1, -1, -1, -1, -1, 53, 54, 55, 56, -1, 1346 -1, 86, -1, 88, 89, 90, 91, -1, 93, -1, 1347 -1, 96, 97, -1, -1, 100, 101, 86, -1, 88, 1348 89, 90, 91, -1, 93, 94, -1, 96, 97, -1, 1349 -1, 86, 101, 88, 89, 90, 91, -1, 93, -1, 1350 -1, 96, 97, -1, -1, 100, 101, 86, -1, 88, 1351 89, 90, 91, -1, 93, 94, -1, 96, 97, -1, 1352 -1, 86, 101, 88, 89, 90, 91, -1, 93, -1, 1353 -1, 96, 97, 3, 4, 100, 101, 7, -1, 9, 1354 10, -1, -1, -1, -1, -1, -1, -1, -1, 3, 1355 4, -1, -1, 7, -1, 9, 10, -1, -1, -1, 1356 -1, -1, -1, 3, 4, -1, -1, 7, -1, 9, 1357 10, -1, -1, -1, -1, -1, -1, -1, -1, 3, 1358 4, -1, -1, 7, -1, 9, 10, -1, -1, -1, 1359 -1, -1, -1, 3, 4, -1, -1, 7, -1, 9, 1360 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1361 -1, -1, -1, -1, -1, -1, 86, -1, 88, 89, 1362 90, 91, -1, 93, -1, -1, 96, 97, -1, -1, 1363 100, 101, 86, -1, 88, 89, 90, 91, 92, 93, 1364 -1, -1, 96, 97, -1, -1, 86, 101, 88, 89, 1365 90, 91, -1, 93, -1, -1, 96, 97, -1, -1, 1366 100, 101, 86, -1, 88, 89, 90, 91, -1, 93, 1367 94, -1, 96, 97, -1, -1, 86, 101, 88, 89, 1368 90, 91, -1, 93, -1, -1, 96, 97, 3, 4, 1369 100, 101, 7, -1, 9, 10, -1, -1, -1, -1, 1370 -1, -1, 3, 4, -1, -1, 7, -1, 9, 10, 1371 -1, -1, -1, -1, -1, -1, -1, -1, 3, 4, 1372 -1, -1, 7, -1, 9, 10, -1, -1, -1, -1, 1373 -1, -1, 3, 4, -1, -1, 7, -1, 9, 10, 1374 -1, -1, -1, -1, -1, -1, 3, 4, -1, -1, 1382 -1, 14, 15, 16, 17, -1, 3, 4, 21, -1, 1375 1383 7, -1, 9, 10, -1, -1, -1, -1, -1, -1, 1376 -1, -1, 3, 4, -1, -1, 7, -1, 9, 10, 1377 -1, 86, -1, 88, 89, 90, 91, -1, 93, 94, 1378 -1, 96, 97, -1, -1, 86, 101, 88, 89, 90, 1379 91, -1, 93, -1, -1, 96, 97, -1, -1, 100, 1380 101, 86, -1, 88, 89, 90, 91, 92, 93, -1, 1381 -1, 96, 97, -1, -1, 86, 101, 88, 89, 90, 1382 91, -1, 93, 94, -1, 96, 97, -1, -1, 86, 1383 101, 88, 89, 90, 91, -1, 93, -1, -1, 96, 1384 97, -1, -1, 100, 101, 86, -1, 88, 89, 90, 1385 91, -1, 93, -1, -1, 96, 97, 3, 4, 100, 1386 101, 7, -1, 9, 10, -1, -1, -1, -1, -1, 1387 -1, -1, -1, 3, 4, -1, -1, 7, -1, 9, 1388 10, -1, -1, -1, -1, -1, -1, -1, -1, 3, 1389 4, -1, -1, 7, -1, 9, 10, -1, -1, -1, 1390 -1, -1, -1, -1, -1, 3, 4, -1, -1, 7, 1391 -1, 9, 10, -1, -1, -1, -1, -1, -1, 3, 1392 4, -1, -1, 7, -1, 9, 10, -1, -1, -1, 1384 3, -1, -1, -1, 7, -1, -1, 10, -1, -1, 1393 1385 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1394 86, -1, 88, 89, 90, 91, -1, 93, -1, -1, 1395 96, 97, -1, -1, 100, 101, 86, -1, 88, 89, 1396 90, 91, -1, 93, -1, -1, 96, 97, -1, -1, 1397 100, 101, 86, -1, 88, 89, 90, 91, -1, 93, 1398 -1, -1, 96, 97, -1, -1, 100, 101, 86, -1, 1399 88, 89, 90, 91, 92, 93, -1, -1, 96, 97, 1400 -1, -1, 86, 101, 88, 89, 90, 91, -1, 93, 1401 -1, -1, 96, 97, 3, 4, -1, 101, 7, -1, 1402 9, 10, -1, -1, -1, -1, -1, -1, 3, -1, 1403 -1, -1, 7, -1, -1, 10, -1, -1, -1, -1, 1404 -1, -1, 3, -1, -1, -1, 7, -1, -1, 10, 1386 53, 54, 55, 56, -1, -1, -1, -1, -1, -1, 1387 -1, -1, -1, -1, -1, -1, -1, -1, -1, 86, 1388 87, 88, 89, 90, 91, 92, -1, -1, 95, 96, 1389 -1, -1, -1, 100, 86, 87, 88, 89, 90, -1, 1390 92, -1, -1, 95, 96, -1, -1, -1, 100, 86, 1391 87, 88, 89, 90, -1, 92, -1, -1, -1, 96, 1392 -1, -1, -1, 100, 87, 88, 89, 90, -1, 92, 1393 -1, -1, 8, 96, -1, -1, -1, 100, 14, 15, 1394 16, 17, -1, -1, -1, 21, -1, -1, -1, -1, 1405 1395 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1406 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1407 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1408 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1409 -1, -1, -1, -1, -1, -1, -1, 86, -1, 88, 1410 89, 90, 91, -1, 93, -1, -1, -1, 97, -1, 1411 -1, 86, 101, 88, 89, 90, 91, -1, 93, -1, 1412 -1, -1, 97, -1, -1, -1, 101, 88, 89, 90, 1413 91, -1, 93, -1, -1, 8, 97, -1, -1, -1, 1414 101, 14, 15, 16, 17, -1, -1, -1, 21, -1, 1415 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1416 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1417 -1, -1, 45, 46, 47, 48, 49, 50, 51, 52, 1418 53, 54, 55, 56, -1, -1, -1, -1, -1, -1, 1419 -1, -1, 65, -1, 67, 68, 69, -1, 71, 72, 1420 8, -1, -1, 76, 77, -1, 14, 15, 16, 17, 1421 -1, 84, -1, 21, -1, -1, 89, -1, 91, -1, 1422 -1, -1, -1, -1, -1, -1, 99, 100, -1, 102, 1423 -1, -1, -1, -1, -1, -1, -1, 45, 46, 47, 1424 48, 49, 50, 51, 52, 53, 54, 55, 56, -1, 1425 -1, -1, -1, -1, -1, -1, -1, 65, -1, 67, 1426 68, 69, -1, 71, 72, 8, -1, -1, 76, 77, 1427 -1, 14, 15, 16, 17, -1, 84, -1, 21, -1, 1428 -1, 89, -1, 91, -1, -1, -1, -1, -1, -1, 1429 -1, 99, 100, -1, 102, -1, -1, -1, -1, -1, 1430 -1, -1, 45, 46, 47, 48, 49, 50, 51, 52, 1431 53, 54, 55, 56, -1, -1, -1, -1, -1, -1, 1432 -1, -1, 65, -1, 67, 68, 69, -1, 71, 72, 1433 8, -1, -1, 76, 77, -1, 14, 15, 16, 17, 1434 -1, 84, -1, 21, -1, -1, 89, -1, 91, -1, 1435 -1, -1, -1, -1, -1, -1, 99, 100, -1, 102, 1436 -1, -1, -1, -1, -1, -1, -1, 45, 46, 47, 1437 48, 49, 50, 51, 52, 53, 54, 55, 56, -1, 1438 -1, -1, -1, -1, -1, -1, -1, 65, -1, 67, 1439 68, 69, -1, 71, 72, 8, -1, -1, 76, 77, 1440 -1, 14, 15, 16, 17, -1, 84, -1, 21, -1, 1441 -1, 89, -1, 91, -1, -1, -1, -1, -1, -1, 1442 -1, 99, 100, -1, 102, -1, -1, -1, -1, -1, 1443 -1, -1, 45, 46, 47, 48, 49, 50, 51, 52, 1444 53, 54, 55, 56, -1, -1, -1, -1, -1, -1, 1445 -1, -1, 65, -1, 67, 68, 69, -1, 71, 72, 1446 8, -1, -1, 76, 77, -1, 14, 15, 16, 17, 1447 -1, 84, -1, 21, -1, -1, 89, -1, 91, -1, 1448 -1, -1, -1, -1, -1, -1, 99, 100, -1, 102, 1449 -1, -1, -1, -1, -1, -1, -1, 45, 46, 47, 1450 48, 49, 50, 51, 52, 53, 54, 55, 56, -1, 1451 -1, -1, -1, -1, -1, -1, -1, 65, -1, 67, 1452 68, 69, -1, 71, 72, 8, -1, -1, 76, 77, 1453 -1, 14, 15, 16, 17, -1, 84, -1, 21, -1, 1454 -1, 89, -1, 91, -1, -1, -1, -1, -1, -1, 1455 -1, 99, 100, -1, 102, -1, -1, -1, -1, -1, 1456 -1, -1, 45, 46, 47, 48, 49, 50, 51, 52, 1457 53, 54, 55, 56, -1, -1, -1, -1, -1, -1, 1458 -1, -1, 65, -1, 67, 68, 69, -1, 71, 72, 1459 8, -1, -1, 76, 77, -1, 14, 15, 16, 17, 1460 -1, 84, -1, 21, -1, -1, 89, -1, 91, -1, 1461 -1, -1, -1, -1, -1, -1, 99, -1, -1, 102, 1462 -1, -1, -1, -1, -1, -1, -1, 45, 46, 47, 1463 48, 49, 50, 51, 52, 53, 54, 55, 56, -1, 1464 -1, -1, -1, -1, -1, -1, -1, 65, -1, 67, 1465 68, 69, -1, 71, 72, 8, -1, -1, 76, 77, 1466 -1, 14, 15, 16, 17, -1, 84, -1, 21, -1, 1467 -1, 89, -1, 91, -1, -1, -1, -1, -1, -1, 1468 -1, 99, -1, -1, 102, -1, -1, -1, -1, -1, 1469 -1, -1, 45, 46, 47, 48, 49, 50, 51, 52, 1470 53, 54, 55, 56, -1, -1, -1, -1, -1, -1, 1471 -1, -1, 65, -1, 67, 68, 69, -1, 71, 72, 1472 8, -1, -1, 76, 77, -1, 14, 15, 16, 17, 1473 -1, 84, -1, 21, -1, -1, 89, -1, 91, -1, 1474 -1, -1, -1, -1, -1, -1, 99, -1, -1, 102, 1475 -1, -1, -1, -1, -1, -1, -1, 45, 46, 47, 1476 48, 49, 50, 51, 52, 53, 54, 55, 56, -1, 1477 -1, -1, -1, -1, -1, -1, -1, 65, -1, 67, 1478 68, 69, -1, 71, 72, 8, -1, -1, 76, 77, 1479 -1, 14, 15, 16, 17, -1, 84, -1, 21, -1, 1480 -1, 89, -1, 91, -1, -1, -1, -1, -1, -1, 1481 -1, 99, -1, -1, 102, -1, -1, -1, -1, -1, 1482 -1, -1, 45, 46, 47, 48, 49, 50, 51, 52, 1483 53, 54, 55, 56, -1, -1, -1, -1, -1, -1, 1484 -1, -1, 65, -1, 67, 68, 69, -1, 71, 72, 1485 8, -1, -1, 76, 77, -1, 14, 15, 16, 17, 1486 -1, 84, -1, 21, -1, -1, 89, -1, 91, -1, 1487 -1, -1, -1, -1, -1, -1, 99, -1, -1, 102, 1488 -1, -1, -1, -1, -1, -1, -1, 45, 46, 47, 1489 48, 49, 50, 51, 52, 53, 54, 55, 56, -1, 1490 -1, -1, -1, -1, -1, -1, -1, 65, -1, 67, 1491 68, 69, -1, 71, 72, 8, -1, -1, 76, 77, 1492 -1, 14, 15, 16, 17, -1, 84, -1, 21, -1, 1493 -1, 89, -1, 91, -1, -1, -1, -1, -1, -1, 1494 -1, 99, -1, -1, 102, -1, -1, -1, -1, -1, 1495 -1, -1, 45, 46, 47, 48, 49, 50, 51, 52, 1496 53, 54, 55, 56, -1, -1, -1, -1, -1, -1, 1497 -1, -1, 65, -1, 67, 68, 69, -1, 71, 72, 1498 8, -1, -1, 76, 77, -1, 14, 15, 16, 17, 1499 -1, 84, -1, 21, -1, -1, 89, -1, 91, -1, 1500 -1, -1, -1, -1, -1, -1, 99, -1, -1, 102, 1501 -1, -1, -1, -1, -1, -1, -1, 45, 46, 47, 1502 48, 49, 50, 51, 52, 53, 54, 55, 56, -1, 1503 -1, -1, -1, -1, -1, -1, -1, 65, -1, 67, 1504 68, 69, -1, 71, 72, 8, -1, -1, 76, 77, 1505 -1, 14, 15, 16, 17, -1, 84, -1, 21, -1, 1506 -1, 89, -1, 91, -1, -1, -1, -1, -1, -1, 1507 -1, 99, -1, -1, 102, -1, -1, -1, -1, -1, 1508 -1, -1, 45, 46, 47, 48, 49, 50, 51, 52, 1509 53, 54, 55, 56, -1, -1, -1, -1, -1, -1, 1510 -1, -1, 65, -1, 67, 68, 69, -1, 71, 72, 1511 8, -1, -1, 76, 77, -1, 14, 15, 16, 17, 1512 -1, 84, -1, 21, -1, -1, 89, -1, 91, -1, 1513 -1, -1, -1, -1, -1, -1, 99, -1, -1, 102, 1514 -1, -1, -1, -1, -1, -1, -1, 45, 46, 47, 1515 48, 49, 50, 51, 52, 53, 54, 55, 56, -1, 1516 -1, -1, -1, -1, -1, -1, -1, 65, -1, 67, 1517 68, 69, -1, 71, 72, -1, -1, -1, 76, 77, 1518 -1, -1, -1, -1, -1, -1, 84, -1, -1, -1, 1519 -1, 89, -1, 91, -1, -1, -1, -1, -1, -1, 1520 -1, 99, -1, -1, 102 1396 -1, -1, -1, -1, -1, -1, -1, -1, -1, 45, 1397 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 1398 56, -1, -1, -1, -1, -1, -1, -1, -1, 65, 1399 -1, 67, 68, 69, -1, 71, 72, 8, -1, -1, 1400 76, 77, -1, 14, 15, 16, 17, -1, 84, -1, 1401 21, -1, 88, -1, 90, -1, -1, -1, -1, -1, 1402 -1, -1, 98, 99, -1, 101, -1, -1, -1, -1, 1403 -1, -1, -1, -1, 45, 46, 47, 48, 49, 50, 1404 51, 52, 53, 54, 55, 56, -1, -1, -1, -1, 1405 -1, -1, -1, -1, 65, -1, 67, 68, 69, -1, 1406 71, 72, 8, -1, -1, 76, 77, -1, 14, 15, 1407 16, 17, -1, 84, -1, 21, -1, 88, -1, 90, 1408 -1, -1, -1, -1, -1, -1, -1, 98, 99, -1, 1409 101, -1, -1, -1, -1, -1, -1, -1, -1, 45, 1410 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 1411 56, -1, -1, -1, -1, -1, -1, -1, -1, 65, 1412 -1, 67, 68, 69, -1, 71, 72, 8, -1, -1, 1413 76, 77, -1, 14, 15, 16, 17, -1, 84, -1, 1414 21, -1, 88, -1, 90, -1, -1, -1, -1, -1, 1415 -1, -1, 98, 99, -1, 101, -1, -1, -1, -1, 1416 -1, -1, -1, -1, 45, 46, 47, 48, 49, 50, 1417 51, 52, 53, 54, 55, 56, -1, -1, -1, -1, 1418 -1, -1, -1, -1, 65, -1, 67, 68, 69, -1, 1419 71, 72, 8, -1, -1, 76, 77, -1, 14, 15, 1420 16, 17, -1, 84, -1, 21, -1, 88, -1, 90, 1421 -1, -1, -1, -1, -1, -1, -1, 98, 99, -1, 1422 101, -1, -1, -1, -1, -1, -1, -1, -1, 45, 1423 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 1424 56, -1, -1, -1, -1, -1, -1, -1, -1, 65, 1425 -1, 67, 68, 69, -1, 71, 72, 8, -1, -1, 1426 76, 77, -1, 14, 15, 16, 17, -1, 84, -1, 1427 21, -1, 88, -1, 90, -1, -1, -1, -1, -1, 1428 -1, -1, 98, 99, -1, 101, -1, -1, -1, -1, 1429 -1, -1, -1, -1, 45, 46, 47, 48, 49, 50, 1430 51, 52, 53, 54, 55, 56, -1, -1, -1, -1, 1431 -1, -1, -1, -1, 65, -1, 67, 68, 69, -1, 1432 71, 72, 8, -1, -1, 76, 77, -1, 14, 15, 1433 16, 17, -1, 84, -1, 21, -1, 88, -1, 90, 1434 -1, -1, -1, -1, -1, -1, -1, 98, 99, -1, 1435 101, -1, -1, -1, -1, -1, -1, -1, -1, 45, 1436 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 1437 56, -1, -1, -1, -1, -1, -1, -1, -1, 65, 1438 -1, 67, 68, 69, -1, 71, 72, 8, -1, -1, 1439 76, 77, -1, 14, 15, 16, 17, -1, 84, -1, 1440 21, -1, 88, -1, 90, -1, -1, -1, -1, -1, 1441 -1, -1, 98, -1, -1, 101, -1, -1, -1, -1, 1442 -1, -1, -1, -1, 45, 46, 47, 48, 49, 50, 1443 51, 52, 53, 54, 55, 56, -1, -1, -1, -1, 1444 -1, -1, -1, -1, 65, -1, 67, 68, 69, -1, 1445 71, 72, 8, -1, -1, 76, 77, -1, 14, 15, 1446 16, 17, -1, 84, -1, 21, -1, 88, -1, 90, 1447 -1, -1, -1, -1, -1, -1, -1, 98, -1, -1, 1448 101, -1, -1, -1, -1, -1, -1, -1, -1, 45, 1449 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 1450 56, -1, -1, -1, -1, -1, -1, -1, -1, 65, 1451 -1, 67, 68, 69, -1, 71, 72, 8, -1, -1, 1452 76, 77, -1, 14, 15, 16, 17, -1, 84, -1, 1453 21, -1, 88, -1, 90, -1, -1, -1, -1, -1, 1454 -1, -1, 98, -1, -1, 101, -1, -1, -1, -1, 1455 -1, -1, -1, -1, 45, 46, 47, 48, 49, 50, 1456 51, 52, 53, 54, 55, 56, -1, -1, -1, -1, 1457 -1, -1, -1, -1, 65, -1, 67, 68, 69, -1, 1458 71, 72, 8, -1, -1, 76, 77, -1, 14, 15, 1459 16, 17, -1, 84, -1, 21, -1, 88, -1, 90, 1460 -1, -1, -1, -1, -1, -1, -1, 98, -1, -1, 1461 101, -1, -1, -1, -1, -1, -1, -1, -1, 45, 1462 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 1463 56, -1, -1, -1, -1, -1, -1, -1, -1, 65, 1464 -1, 67, 68, 69, -1, 71, 72, 8, -1, -1, 1465 76, 77, -1, 14, 15, 16, 17, -1, 84, -1, 1466 21, -1, 88, -1, 90, -1, -1, -1, -1, -1, 1467 -1, -1, 98, -1, -1, 101, -1, -1, -1, -1, 1468 -1, -1, -1, -1, 45, 46, 47, 48, 49, 50, 1469 51, 52, 53, 54, 55, 56, -1, -1, -1, -1, 1470 -1, -1, -1, -1, 65, -1, 67, 68, 69, -1, 1471 71, 72, 8, -1, -1, 76, 77, -1, 14, 15, 1472 16, 17, -1, 84, -1, 21, -1, 88, -1, 90, 1473 -1, -1, -1, -1, -1, -1, -1, 98, -1, -1, 1474 101, -1, -1, -1, -1, -1, -1, -1, -1, 45, 1475 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 1476 56, -1, -1, -1, -1, -1, -1, -1, -1, 65, 1477 -1, 67, 68, 69, -1, 71, 72, 8, -1, -1, 1478 76, 77, -1, 14, 15, 16, 17, -1, 84, -1, 1479 21, -1, 88, -1, 90, -1, -1, -1, -1, -1, 1480 -1, -1, 98, -1, -1, 101, -1, -1, -1, -1, 1481 -1, -1, -1, -1, 45, 46, 47, 48, 49, 50, 1482 51, 52, 53, 54, 55, 56, -1, -1, -1, -1, 1483 -1, -1, -1, -1, 65, -1, 67, 68, 69, -1, 1484 71, 72, 8, -1, -1, 76, 77, -1, 14, 15, 1485 16, 17, -1, 84, -1, 21, -1, 88, -1, 90, 1486 -1, -1, -1, -1, -1, -1, -1, 98, -1, -1, 1487 101, -1, -1, -1, -1, -1, -1, -1, -1, 45, 1488 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 1489 56, -1, -1, -1, -1, -1, -1, -1, -1, 65, 1490 -1, 67, 68, 69, -1, 71, 72, 8, -1, -1, 1491 76, 77, -1, 14, 15, 16, 17, -1, 84, -1, 1492 21, -1, 88, -1, 90, -1, -1, -1, -1, -1, 1493 -1, -1, 98, -1, -1, 101, -1, -1, -1, -1, 1494 -1, -1, -1, -1, 45, 46, 47, 48, 49, 50, 1495 51, 52, 53, 54, 55, 56, -1, -1, -1, -1, 1496 -1, -1, -1, -1, 65, -1, 67, 68, 69, -1, 1497 71, 72, -1, -1, -1, 76, 77, -1, -1, -1, 1498 -1, -1, -1, 84, -1, -1, -1, 88, -1, 90, 1499 -1, -1, -1, -1, -1, -1, -1, 98, -1, -1, 1500 101 1521 1501 }; 1522 1502 … … 1525 1505 static const yytype_uint8 yystos[] = 1526 1506 { 1527 0, 10 4, 0, 1, 8, 14, 15, 16, 17, 21,1507 0, 103, 0, 1, 8, 14, 15, 16, 17, 21, 1528 1508 31, 45, 46, 47, 48, 49, 50, 51, 52, 53, 1529 1509 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 1530 1510 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 1531 1511 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 1532 8 9, 91, 95, 99, 102, 105, 106, 107, 108, 109,1533 1 10, 111, 112, 114, 115, 117, 118, 119, 120, 121,1534 12 8, 129, 130, 131, 132, 133, 134, 135, 136, 137,1535 13 8, 139, 140, 141, 142, 143, 144, 145, 146, 95,1536 16, 17, 53, 54, 55, 56, 84, 11 2, 128, 99,1537 1 10, 112, 119, 99, 99, 99, 99, 99, 99, 99,1538 9 9, 99, 99, 110, 99, 110, 99, 110, 99, 110,1539 65, 66, 11 1, 65, 95, 110, 99, 112, 65, 99,1540 9 9, 66, 99, 99, 65, 99, 65, 99, 16, 112,1541 1 20, 121, 121, 112, 111, 111, 112, 95, 11, 99,1542 85, 9 4, 3, 4, 7, 9, 10, 86, 88, 89,1543 90, 91, 93, 96, 97, 101, 112, 112, 111, 12,1544 85, 9 4, 95, 127, 99, 110, 94, 110, 112, 99,1545 9 9, 99, 99, 99, 99, 112, 66, 99, 112, 122,1546 11 2, 112, 112, 112, 112, 112, 112, 100, 111, 112,1547 100, 111, 112, 100, 111, 95, 95, 16, 17, 53,1548 54, 55, 56, 100, 110, 128, 65, 66, 112, 113,1549 65, 11 2, 66, 100, 111, 92, 100, 102, 110, 100,1550 11 1, 112, 112, 112, 112, 112, 112, 112, 112, 112,1551 11 2, 112, 112, 110, 85, 100, 116, 94, 66, 110,1552 11 2, 91, 110, 127, 112, 112, 111, 112, 111, 112,1553 100, 112, 100, 94, 100, 94, 94, 94, 100, 94,1554 100, 94, 94, 100, 100, 100, 100, 100, 100, 100,1555 100, 100, 100, 100, 100, 94, 100, 100, 66, 94,1556 11 2, 65, 100, 100, 100, 92, 94, 112, 112, 94,1557 100, 112, 110, 112, 122, 100, 100, 94, 122, 112,1558 11 2, 112, 112, 112, 112, 16, 17, 53, 54, 55,1559 56, 12 8, 45, 48, 49, 51, 52, 112, 100, 66,1560 66, 73, 11 2, 116, 116, 112, 92, 91, 94, 111,1561 9 4, 100, 94, 100, 94, 94, 100, 94, 100, 100,1562 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,1563 100, 100, 92, 94, 91, 111, 122, 100, 68, 99,1564 12 3, 124, 126, 112, 112, 112, 112, 112, 112, 92,1565 9 4, 124, 125, 99, 100, 100, 100, 100, 100, 100,1566 9 2, 126, 94, 100, 111, 125, 1001512 88, 90, 94, 98, 101, 104, 105, 106, 107, 108, 1513 109, 110, 111, 113, 114, 116, 117, 118, 119, 120, 1514 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 1515 137, 138, 139, 140, 141, 142, 143, 144, 145, 94, 1516 16, 17, 53, 54, 55, 56, 84, 111, 127, 98, 1517 109, 111, 118, 98, 98, 98, 98, 98, 98, 98, 1518 98, 98, 98, 109, 98, 109, 98, 109, 98, 109, 1519 65, 66, 110, 65, 94, 109, 98, 111, 65, 98, 1520 98, 66, 98, 98, 65, 98, 65, 98, 16, 111, 1521 119, 120, 120, 111, 110, 110, 111, 94, 11, 98, 1522 85, 93, 3, 4, 7, 9, 10, 86, 87, 88, 1523 89, 90, 92, 95, 96, 100, 111, 111, 110, 12, 1524 85, 93, 94, 126, 98, 109, 93, 109, 111, 98, 1525 98, 98, 98, 98, 98, 111, 66, 98, 111, 121, 1526 111, 111, 111, 111, 111, 111, 111, 99, 110, 111, 1527 99, 110, 111, 99, 110, 94, 94, 16, 17, 53, 1528 54, 55, 56, 99, 109, 127, 65, 66, 111, 112, 1529 65, 111, 66, 99, 110, 91, 99, 101, 109, 99, 1530 110, 111, 111, 111, 111, 111, 111, 111, 111, 111, 1531 111, 111, 111, 109, 85, 99, 115, 93, 66, 109, 1532 111, 90, 109, 126, 111, 111, 110, 111, 110, 111, 1533 99, 111, 99, 93, 99, 93, 93, 93, 99, 93, 1534 99, 93, 93, 99, 99, 99, 99, 99, 99, 99, 1535 99, 99, 99, 99, 99, 93, 99, 99, 66, 93, 1536 111, 65, 99, 99, 99, 91, 93, 111, 111, 93, 1537 99, 111, 109, 111, 121, 99, 99, 93, 121, 111, 1538 111, 111, 111, 111, 111, 16, 17, 53, 54, 55, 1539 56, 127, 45, 48, 49, 51, 52, 111, 99, 66, 1540 66, 73, 111, 115, 115, 111, 91, 90, 93, 110, 1541 93, 99, 93, 99, 93, 93, 99, 93, 99, 99, 1542 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 1543 99, 99, 91, 93, 90, 110, 121, 99, 68, 98, 1544 122, 123, 125, 111, 111, 111, 111, 111, 111, 91, 1545 93, 123, 124, 98, 99, 99, 99, 99, 99, 99, 1546 91, 125, 93, 99, 110, 124, 99 1567 1547 }; 1568 1548 … … 3186 3166 /* Line 1464 of yacc.c */ 3187 3167 #line 803 "grammar.y" 3188 { 3168 { /* also for *,% */ 3189 3169 if(iiExprArith2(&(yyval.lv),&(yyvsp[(1) - (3)].lv),(yyvsp[(2) - (3)].i),&(yyvsp[(3) - (3)].lv))) YYERROR; 3190 3170 ;} … … 3204 3184 /* Line 1464 of yacc.c */ 3205 3185 #line 811 "grammar.y" 3206 { 3186 { /* also for > */ 3207 3187 if(iiExprArith2(&(yyval.lv),&(yyvsp[(1) - (3)].lv),(yyvsp[(2) - (3)].i),&(yyvsp[(3) - (3)].lv))) YYERROR; 3208 3188 ;} … … 3213 3193 /* Line 1464 of yacc.c */ 3214 3194 #line 815 "grammar.y" 3215 { 3195 { /* also for |*/ 3216 3196 if(iiExprArith2(&(yyval.lv),&(yyvsp[(1) - (3)].lv),(yyvsp[(2) - (3)].i),&(yyvsp[(3) - (3)].lv))) YYERROR; 3217 3197 ;} … … 4283 4263 4284 4264 /* Line 1464 of yacc.c */ 4285 #line 42 84 "grammar.cc"4265 #line 4264 "grammar.cc" 4286 4266 default: break; 4287 4267 } -
Singular/grammar.y
r1af34f r9a03c2d 290 290 %type <i> mat_cmd 291 291 292 %type <i> '=' '<' ' >' '+' '-' COLONCOLON292 %type <i> '=' '<' '+' '-' COLONCOLON 293 293 %type <i> '/' '[' ']' '^' ',' ';' 294 294 … … 801 801 } 802 802 | expr '/' expr 803 { 803 { /* also for *,% */ 804 804 if(iiExprArith2(&$$,&$1,$<i>2,&$3)) YYERROR; 805 805 } … … 809 809 } 810 810 | expr '<' expr 811 { 811 { /* also for > */ 812 812 if(iiExprArith2(&$$,&$1,$<i>2,&$3)) YYERROR; 813 813 } 814 814 | expr '&' expr 815 { 815 { /* also for |*/ 816 816 if(iiExprArith2(&$$,&$1,$<i>2,&$3)) YYERROR; 817 817 } -
Singular/iparith.cc
r1af34f r9a03c2d 5634 5634 mp_Monomials((matrix)res->data, rank, pVar((poly)v->Data()),(matrix)w->Data(),currRing); 5635 5635 return FALSE; 5636 } 5637 static BOOLEAN jjELIMIN_ALG(leftv res, leftv u, leftv v, leftv w) 5638 { 5639 ideal I=(ideal)u->Data(); 5640 GbVariant alg=syGetAlgorithm((char*)w->Data(),currRing,I); 5641 res->data=(char *)idElimination(I,(poly)v->Data(),NULL,alg); 5642 //setFlag(res,FLAG_STD); 5643 return v->next!=NULL; //do not allow next like in eliminate(I,a(1..4)) 5636 5644 } 5637 5645 static BOOLEAN jjELIMIN_HILB(leftv res, leftv u, leftv v, leftv w) -
Singular/links/asciiLink.cc
r1af34f r9a03c2d 426 426 { 427 427 #define MAX_LIBS 256 428 (*list_of_libs)=(char**)om alloc0(MAX_LIBS*sizeof(char**));428 (*list_of_libs)=(char**)omAlloc0(MAX_LIBS*sizeof(char**)); 429 429 (*list_of_libs)[0]=name; 430 430 (*list_of_libs)[MAX_LIBS-1]=(char*)1; -
Singular/misc_ip.cc
r1af34f r9a03c2d 74 74 75 75 #ifdef HAVE_NTL 76 #include <NTL/version.h>77 #include <NTL/tools.h>76 #include <NTL/version.h> 77 #include <NTL/tools.h> 78 78 #ifdef NTL_CLIENT 79 79 NTL_CLIENT -
Singular/table.h
r1af34f r9a03c2d 759 759 ,{D(jjELIMIN_HILB), ELIMINATION_CMD,IDEAL_CMD, IDEAL_CMD, POLY_CMD, INTVEC_CMD, NO_PLURAL |ALLOW_RING} 760 760 ,{D(jjELIMIN_HILB), ELIMINATION_CMD,MODUL_CMD, MODUL_CMD, POLY_CMD, INTVEC_CMD, NO_PLURAL |ALLOW_RING} 761 ,{D(jjELIMIN_ALG), ELIMINATION_CMD,IDEAL_CMD, IDEAL_CMD, POLY_CMD, STRING_CMD, ALLOW_PLURAL |ALLOW_RING} 762 ,{D(jjELIMIN_ALG), ELIMINATION_CMD,MODUL_CMD, MODUL_CMD, POLY_CMD, STRING_CMD, ALLOW_PLURAL |ALLOW_RING} 761 763 ,{D(jjFIND3), FIND_CMD, INT_CMD, STRING_CMD, STRING_CMD, INT_CMD, ALLOW_PLURAL |ALLOW_RING} 762 764 ,{D(jjFRES3), FRES_CMD, RESOLUTION_CMD, IDEAL_CMD, INT_CMD, STRING_CMD, NO_PLURAL |NO_RING} -
Singular/tesths.cc
r1af34f r9a03c2d 36 36 37 37 #include <unistd.h> 38 #ifdef HAVE_NTL 39 #include <NTL/config.h> 40 #endif 38 41 39 42 … … 67 70 siInit(argv[0]); 68 71 init_signals(); 72 #ifdef HAVE_NTL 73 #if NTL_MAJOR_VERSION>=10 74 #ifdef NTL_THREAD_BOOST 75 SetNumThreads(feOptValue(FE_OPT_CPUS)); 76 #endif 77 #endif 78 #endif 69 79 70 80 // parse command line options -
Tst/Long/eliminate_2.res.gz.uu
r1af34f r9a03c2d 1 1 begin 640 eliminate_2.res.gz 2 M'XL("*5:.TP``V5L:6UI;F%T95\R+G)E<P#564MOW#@2ON=7"(,]2)#:$:OX 3 MC&$?%GN9;+"7["T(!FV[9[J!C!VX93OVKU_65WK9;J>=K"<S(Z!%JDC6FT56 4 M]?O__NOG_Q1%88Z+=S__L_BIVW8'GS8G/QT6N??+YGS3E=5A<?&YVUR<EY\O 5 M+[KJ\)5`B^/C8O5I\_OF?-FM?J&#\]7-P;9;=J_>]PCIN!C[?%!<;LY_*]X? 6 M,;4M-^67YK:Y:U;-KTW77#77S4VS;$Z:T^:L65?-V>?#<:4]+C9GJ^6GXNW1 7 M"','^57\2O4-+4PS@CW`7ZCNJ%[>&PD8N:7ZBNJ3>R,1(W=47U-]>F\D861% 8 M]=D<;%JEW=4WRPEHE/)MW5W5RY,)3DKWKKZZKD].)S@KU55]>C8!K2*I;^N[ 9 M>E7/2/;BUEU]55_/>5&!;^IE?5*?UF>CTDR85&^RA&^/UA>_7_Q6OLW*G2:E 10 MX^+U:]7MNZ-M=U:^G08IB[DY[ZY7I\5Z<_3Z]7KSZ:1\UYC9C"RS:1;<+'Q# 11 MODG-(J6&;$/YMS`Q#Y$QC8^4.\2V<<F[/"=ZTYB68]LL`K%OF&/,\UL7&S(^ 12 MS\UMTTY4:##_OX]&9\MR?+F]ZZZN;Y8G68'K3>;J`[^ACZ8TIMJ6ILVO5&VI 13 MC+D3\L]7V^VV='CG;Y;1TK"\9)AD`>7ADJ7'5EYY36D%G<U3;.FX6F04LM!S 14 M]<&X-_QQD2%>E@5!%61%I&J1P3(2920)AA3!E0SEII49\N0!AP$PT@HGQGB\ 15 MP1]9O)57E\FOUR[W/"B4)C/7=X!>&)0O!YR^Q1O8@A76300H`I04!,8H4^XY 16 MROV>.P%G_`\!_>S<9"6C\:!*X)C`,?$@H?2QAD''8M21O,$?>3\B]TD1!6&? 17 MHJB$H#QN08D'+K<#;FX3!F!"SN8#$.IBJ"L;4LWI!_GZA99TKDVJ0790!WNE 18 M!)-R,/@0JZ[7:U]R!#?*$PQGVQ;O"$\1+BP48!E++0,$J:V#)SE,]02OPF(X 19 MC8V8`]06-G'P"0=/=D#M@-JQK'46C#H1+#=9HVB<-A&-!P(0<0&*<E$G1-%0 20 MWH[BR:T@]2#C31S-YF%.CRWA0=);R.0MEHF^Y,L+Q]YC<L!&$QH]#GB:3SHU 21 M0%>AE:D!3AY(=P[AC9UJ`7&@%%2.X(7#$&AN0L![VP4X3(BVZ@<@7DAQ7)#W 22 M?(3SY-98[%&^AVV&-K9I&LI?DR='6"0:TR,*2CZ2\!]'EW_JF>%Z@G2([2C" 23 M$_S-Q8?:PCZRSWU@GQ']>N\3LM7A'(A\'J%E,K@8VLS,#>,2C,ZPED6\='`) 24 M%Q`[`0]8%=3R47=TP+8(25!%[+5HW&!%:3"`O1;A0!$1)B+"1`]X@-D15"+0 25 MQ23P!/=/AO`6/`E<)I:9R<ZU*U!LHV1#;Z=D%8"(F[S&WP2**5CUCR3"2!M! 26 M)`K_J0_[XX&PQXJ")<U6>UVMZC&M:?MSH#6*E_0\880%TR((Y@;G2.N\0OT# 27 M'\.8GE->T81^?4@#_L@*B6FOVP&/K>Y]N@%/'^LS:E?-)@1?/4:RP\6!@D9D 28 M\2EF()*MQNGW9>M%@SRAFE;$@;ED!Q)I!PG`5;-P36/@F\:H$0SB@C%Z%.0V 29 M:FO=M^U8P?M=FQS"AT%JG@GH'[*`J?M-^E4N]SKQ__4\(R(]_XDY3B!"8$=$ 30 MQ)^(F](0)Q`AL-DB-EMJ]2H']T]DM,%F1-Q)B#L)OI80F1,B6=*#-^E-,/&P 31 MZ[%7]:9JXN-M:(:S[/'P#FT+YEC-/@;_;9WNUADE1(<>S&:?P1Y8=<`]^PR[ 32 M4(C`#W?RCCGWHD.:A:/MPYEN)YGG/=EV?Z1CS@CM.>!?CM#LJ-[JU<H-%X=6 33 M#YN`U":HHP;2*!`8[AMXWT[7$WO^]7"%4GB2*YWB4QC9DDPBO)Q^7C0<_)`G 34 MY5L_;O>X*]N`/"`B/\!EP.$FXF`WAZ/#(7-R=DR_'"Y-XV4?EWB/7`$YA$,. 35 MX9+>0KPF37Z6VOGV_G5&,H"O*AF(=\(?G2#?\621O]4?ME#BMRXA6XW=4.T> 36 MV\6?_3'[6?-836,'`,U*!$R/1);)@U#[',^T.9E&2HWCAUM-J0>*FCA+PHQ1 37 MU#L8YR+C,L@X%QDY%L/#&'@L3C&+H\6"76F1RZ)Z8N&LUM%WJ?!'Z7ZAQ867 38 M?*:21W]KEJI'W]D1>`6LUW>QE<E?6.RT((6:"O8X(;LF9%B4M%(%:R!B,"(& 39 M:_&*83WKA](&3`I4C-2$PW!<,-(V?L9M_KN?EU?P[-&RDS3P/((/DWU6(FLH 40 M+T8]"MD207<$W9&%KI'5$<HHA-L<(5L8;`#MHR;`R!]93UNI/_7,,4H;N_94 41 MT,K2"T31Z?D#-2U*0MGC*5UR2=`$(1X0\OW!)M`Q[ML/O?H>`;@FX20;XM4N 42 M#?_]3OZUL:5!16*HR2)-#+.4LR_,(HL<*[):6Q4]NID>H>6^@JH^V?XU=&)< 43 M:;!OAOIS7XU&`=)HGHV,RB2MN$,VY,I#U7C8O?*&%ASFH`!(2-B''1C^?)F- 44 MAR4_>'YC/XJ$6E9!B<DD+91#%%0%!D$UU`SGPQ1J_)\OT-<>$Z3*(9+ARM#_ 45 M,8'P9NR/=$`32]D"W[(BR9]`PQ>U4]=,79JZ/'7MU'53UT_=,'7CU$UCER=J 46 M/%'CB1KW?T3-_)GM8^G8S65@_VC&J\^7%V=7IUUQ>KGI5I>;B_,WL8VF.%TO 47 M-^<SH#$YGXBOY,^\U657;#-TM9V/YPTV_O/&TW^(9`_P9[#\O7N5^:T.__'J 48 )?]29B;PW'@`` 2 M'XL("':"E5H"`V5L:6UI;F%T95\R+G)E<P#564MOW$82ONM7$,$>2)"2657] 3 MM"`=%GN)U\C%>PN"8#2:9`9P)$-#299^_79]S==(8TNRO=YX@&$W^U'OJNXJ 4 MOOO/OW[^I2@*.BW>_OS/XJ=NVQV]WYS]=%RDWN^;BTU75L?%Y8=N<WE1?KBZ 5 M[*KC`QTM3D^+U?O-7YN+1;?ZG8\N5K='VV[1';SK`?)I,?;EJ+C:7/Q9O#L1 6 M;EMIRH_-77/?K)H_FJZY;FZ:VV;1G#7+YKQ95\WYA^-QISDM-N>KQ?OBS<DX 7 M9H_2H_B#ZUL^I&8<=AC^R'7']6)GQF/FCNMKKL]V9@)F[KF^X7JY,Q,QL^+Z 8 M?#Y,;<;=U;>+:9`RYKNZNZX79],X9[SW]?5-?;:<QB5C7=7+\VG09"#U77U? 9 MK^H9RI[=NJNOZYLY+9GAVWI1G]7+^GP4&OE)])0X?'.ROOSK\L_R31+NM"B> 10 M%J]>9=F^/=EVY^6;:9(3FYN+[F:U+-:;DU>OUIOW9^7;AF8K$L_4'$ISZ!IV 11 M36P.8VS8-)S^AQ32%!,U+G#JL)C&1F?3FN"HH59"VQQZ%M>(A)#6MS8T3"ZM 12 M36W33EAX4/^_3T9C2WQ\O+OOKF]N%V=)@.M-HBK1__I7LJ_Y-RJ)JFU);7K$ 13 M:LME2!V?_J[:;K>EQ3.]B\Z6)/K0:=8-G*9+T9X8?:0]I5%P)BTQI97J,('0 14 MC2YU4]_I!J]`O*X-G$8/MSH3=";JWAA`CTZEIM45^DL3%A,@H54:B!R>H(P- 15 MGIE*FQ"OUS;U'#"4E,CJ.P!O,SUD`=.U>`*:-THT!0P%#,4\!,(X8>XI2OV> 16 M.AU.\!\.]*M3D\2+Q@$K@V(&Q2P#A]K''@$>@UG+^@1][-P(W,4,R"OY'%0D 17 M#.%)"TPR4+D=8$L;,0'E25(<!B$N@;B2"K,BW<!?O]%P7FMBEJ!8B$-<Q@25 18 MBB>\J%;7Z[4K)8":3!,49]H6SP`;42H,!&`$6XU@"%P;"QNR6.H8]H3-,!H3 19 ML`:@#71B81,6-FP!V@*T%=UK#0BUREAJDD31V-P$-`X`@,1Z",J&O""HA)(W 20 MJ@VW"M0!C:,PJLU!G0[.X(#2&?#D#+:IO/3-*<7.8;&'BRF.'@8LS<6\U$-6 21 MOM6E'D;N.7L.XPD?-1BQP.0S']XIA=[S7(48[W7G83`^F*J?`'L^AG%#\O8` 22 MXTDM&?BH[$";@0UMG*;2VV3)`1H)1#T@G]$'5OK#:/*?^LU@?0*U#^W(@GP> 23 MFK(/L?FGT#[W!_V,X-=/_GS2.HP#D<\AM$P*5T733-U0+D/I`FT9Q$L+D[`> 24 ML1/C'KM\UGS('NWA%CXJJ`!?"V0'+6J#"?A:@`$%1)B`"!,<QCW4CJ`2`"Y$ 25 M'8\P_TB,I\*)H#**KHQF+ET=A1M%XWL]19,'$'%C?QY$8(S>9/N(RHRV`4B" 26 MTA_[L#\>".U3ZHX^SG:[O#N+AUIJ^W.@I0R7\WDB"`O4(@BF!N=(:UT>=0]L 27 M#'/YG'(9C._W^SC`#Y)'0GS2[`#'5#NO=H#3Q_H$VE:S!=Y5CX'L,7&`X!%8 28 MJ#Y#@S75N'R7MYXU\..K:4<8B(MF0!'WH,!XEBQ,DPBV29250(@+1/DH2&W( 29 MK;$O\UB%^T5.#N;]P+54#_7P<&G\FDCR#"/^JM\S(M+S?R'%"40(>$1`_`FX 30 M*0UQ`A$"SA;@;+'-5SF8?V3*#9P1<2<B[D386D1DCHAD,1^\,=\$HPQ>#U_- 31 M=U0*C]V0AK/L\?0>:2OD,+M2QL%^6YN]=88)T:$?%JI>IM4!]NS55_O#57#5 32 M4]89=Z)#G(6C[<.5UG^Y:27=_2\-\_D'_+=#-#NJM_EJ98>+0YL/&X^DQF=# 33 M]9RC@!>8KY?XI&[\S.ST+5:/5SPX/G8N$/G^%_U(EF82_MO)YYN&@^_RB^G6 34 MC]L][LK&(P\(R`]P&;"XB5CHS>+HL,B<K!G3+XM+TWC9QR7>(5=`#F&10]C8 35 M9Z4Y:7*SU,ZUN]<9S0`^;P;6[UNA:.W7:S*Q_%)[V$*(+]W"IAJ[OMH_MX\^ 36 M\WW\.>>Q.8T=!GA6(A!^Q+(N'IAZRO"H3<DT4FH</]+FE'K`F!-G39@QBTJ' 37 MX%P47`8%YZ(@QQ)8F`".P2EF<+08D*LM<EG430R,U5C^(A%^+]D?YN+"MU7G 38 M4/+H;\U:]>@[<=\MDK.'JR*)TALVVUR*0DT%/L[(KAD9%L=<HX(V$#$$$4-R 39 MV4KB5/-0-4*E`"5(3<0/QX4@;9,0JQ](P+O"(URP&);'L&$VSTIDB=-FU*.0 40 M+3%DQY`=&\@:61VCC,*XS3&RA4$'D#YJ`H+\4?)IJ_6GP4E1VMCG4SY7EFSU 41 M8TA:A82RQZ=D*25#$HQXP,CW!YU`QKAO/[3J'00P3<9)-L2K?1+^\4[^-9F2 42 M4)$8:K)($_TLY>P+L\@BQXILKJVJ'.U,CC*KH&:;;/\>,B%;$OQFJ#_WU6@4 43 M("GGV<BH*.9:.WA#KCQ4C0?OU2>D8+$&!4!&PCYXH/__\TP.FOS5$KV6WY3% 44 M7%=!C8EBKI2#%Y0%!DYSK*%'L<;]O2V;O)8Y4-#PTY<)Q#<RW],"*93J`R_9 45 M$?7[S_#&[=2EJ<M35Z:NF;IVZKJIZZ=NF+IQ[,J$329L,F&3_AO4S*#%/.9. 46 M[)P'<8]6''RXNCR_7G;%\FK3K:XVEQ>O0QNH6*X7FXO9(%%**,*!?LQ;777% 47 F-HVNMO/YY&'CES>9OB&R.<+'8/V\>YWHK8[_<?!?1B>#+#<>```` 49 48 ` 50 49 end -
Tst/Long/eliminate_2.stat
r1af34f r9a03c2d 1 1 >> tst_memory_0 :: 1 278958245:3113-2010071219:3-1-1:ix86-Linux:mamawutz:314580 1292524760:3120- 13145 :3-1-2:ix86-Linux:mamawutz:3151882 1 >> tst_memory_1 :: 1 278958245:3113-2010071219:3-1-1:ix86-Linux:mamawutz:1318736 1292524760:3120- 13145 :3-1-2:ix86-Linux:mamawutz:13187723 1 >> tst_memory_2 :: 1 278958245:3113-2010071219:3-1-1:ix86-Linux:mamawutz:4586388 1292524760:3120- 13145 :3-1-2:ix86-Linux:mamawutz:45998084 1 >> tst_timer_1 :: 1 278958245:3113-2010071219:3-1-1:ix86-Linux:mamawutz:882 1292524760:3120- 13145 :3-1-2:ix86-Linux:mamawutz:8981 1 >> tst_memory_0 :: 1519747702:4110, 64 bit:4.1.1:x86_64-Linux:nepomuck:244032 2 1 >> tst_memory_1 :: 1519747702:4110, 64 bit:4.1.1:x86_64-Linux:nepomuck:4456448 3 1 >> tst_memory_2 :: 1519747702:4110, 64 bit:4.1.1:x86_64-Linux:nepomuck:6868992 4 1 >> tst_timer_1 :: 1519747702:4110, 64 bit:4.1.1:x86_64-Linux:nepomuck:313 -
Tst/Long/eliminate_6.res.gz.uu
r1af34f r9a03c2d 1 1 begin 640 eliminate_6.res.gz 2 M'XL(" 'Q?.TP``V5L:6UI;F%T95\V+G)E<P#5FDMO&T<61O?^%8U@%N20,KKJ3 MO JIC2(L@FP"#V61V06!X;"-FX$B"J,`B?_U4G1(E3O2R'$M(N*A^W'ITG_J^4 M 6]TM_?B?[W_X]S`,Z6CXUP_?#=^<K\]??ES]]YM70]U[O3I>G<_FKX:3T_/55 M R?'L].SD?/[J13L['!T-[S^N?EL=OSE__]I?'K__]')]_N;\Q8^7'>:CX6I?6 M 7@YGJ^-?AK,/R0XECZ,L9Y^6%\O-<CM?OCM]=551CX;3DX^;X30=#A=Y,_QS7 M IG%AF]C*(I>+C6W+PF4QI7I.MC&_;FB[AKDVW&QK0XN-+W*JO6RGA:5-WN9%8 M LHN\U;UFOFLFK9FV=J&;A>0+W\;"I(Z3MXL4M1?9[K6+73L]'&JD-FLC;;VU9 M 3./&M[;(K;'57G)L\E[3LFMJ=<C64IQK*^EBVJ1QD:8ZF&UU$=.%;GVOY70T10 M K-Z]?_-Q^/6P`EJ>YN6I+$]U>6I7==*XJ[,Z_'#RV\DOLU^7GZZ[2&EOTF:K11 M Y:;=TT_9[-O\<[*9SM>IS*26TSJ/[3"G]<SJ)L^\EC*+6FJV@_6LS->SE.;K12 M =?99RNW`6Q&MF&JMJ$3J?M96M+.YGIU).R?2BE9=:B^YCMA".LYKM]HJ:.VO13 M EJVI.KNM@HVM:''35M6L[;:NK84]S0_J6:>MMVN?9MX&\7:IT1I';NVB#1^M14 M \VCA*)QL7936>6DW4QBAM'BI\8.]@_5L:GU-K=JD+7:P.Y+=T<A.:Q3[]65L15 M +>I^ZVJ"X#A2`G!42CB./3I!.5$*I5&".1$%<\I$,U%P)W@G@">()R$JT6XM16 M "0-TZ*E29\-E:+N--<=<D')!2GT;B1T0K0/4G74[#=ADTE&UXU;NZ!"_W.-^17 M ]^NO025IUV4]S34;U\PD)V8Y,<W)B3I1)^I$F>;$/*=@?.8X1=<ET4*4&4Z%18 M *+.:F-;$/"6F,C%/B8E*?::F-GH>$?4HE$;IE*U.3B-EID3YN"(GHIEH)MI]19 M D8GF'J5_82:R4(EIRW7:.$5=IBTK/6DW&%65JLH5*7:#989EAF6&989EAF6&20 M989EAF6&9 7:B012[Y"`:1/%*QBP9EKGTF;[\]>H'#_WZM=\X)]Q;!7`@N:JK21 M [H+JEMOO-TX4C68TFI%81H+9B!I1(^I$G:@3)4ED+_?>.'40449$US?>2J*(22 M *".BC(@R(LJ(*",BP>Z"W06["_*1,2A[BB1'8G?![H+=!;L+=A?L+MA=L+OT23 M ]'J97XEB=Q&B9%A!,()4!*D(W`1N`C>!F_0,*RA&4(R@&$$Q`CX!GX!/P">X24 M 3W"?X#X!G`!.`">`D\)%%/HG24JA_XG^)Z(3T8GHU)<(5@?<I[A/1[*9CJ5O25 M IFL]U:-Q_@=QM4$>U.67_IC=KN&I7`W3CI`3]Y2YI]SN2:1NN6?NZC910(V<26 M (N04(:<(.452>3)1$"5_2,L?;4/X3CGT!9TH"43PD>`CP4>"CX0$(B00(8'<27 M )@1N#!\)/A)\)/A(\)'B(P69@DQ!IB!3D"G(%&0*,DT]BI1R?]!`2B!3D"G(28 M %&0*,@69@DS[DTI_2`&9@DQ!IB!3?*3X2,D_2OY1\H^2?Q0#J?<G'*(82#&029 M MN>4EOH4#VDTC;<MW8--<9&2?I3THV#3AJUM"",Y17(*/86>0<^@9]`SZ!GT30 M +/7G+*+0,^@9](Q%S%C$C$7,6,2,1<Q(WL;J9:*?X34NYLDLN3_0C71P\R=Z31 M \!Q)K&OWME364]B#"F8.'J]@?Z2.B>)\Q?F*\Q7G*\Y7G'^?CJ]%3!2&"L-[32 M )7RE8+U-N\\A7J'D%0-D!C+3_OY!%&0&,NMO*/WM!&2&]0WK&]8WK&]8WT!F33 M (#.0&<@,9`8R`YF!S$!FY3(Q&-0,:E98^PSI&?`,>`8\`YX!SY&>P\YAY[!S34 M V#GL''8..X>=P\YAY[!SV'EEQPM7<,`[6']\=<E](WVC>ZNAYW*O#;G(K^+X35 M !WY/D'F:^2H9J6_2Z$K1E:*KQR\I],"CV9<N*?3/4JPLQ<I2K"S%RE+\_VL*36 M 4=*9DLX432GI[%Y#/LMBTDJBO`08+P'&2X#Q$F`0,RUW^!&W]N\%I#`CA1DI37 M S'AX,8@9Q`QB!K'[_'C3C)_KPD0IE$:)D<;^,8,H+P'.2X#S$N`\O#BIWTG]38 M 3NK_HPF[^5I)%*4YW!QN#C>'F\/-M4?I`;TY>G/TYNC-T9NC-T=OCMZ\?V<A39 M CSEYS,EC#CU';X[>'+TY>G/TYNC-T9NC-T=OSO+I+)_.\NDLGP&]0&^!WJ+J40 M #?,%&`.,`<8`8X`QP!A@##`&&`/Y!?(+Y!?(+Y!?(+_XO&>9>*[4]9?(D6OQ41 M !Q?TFUED_Y&4Z-2_[>$VW&!,HS&-QC0:T_BUL\B7K>IW99&;J_I=N:1_MB2*42 M &PPW&&XPW&!PVZWH1.'V-"OZD^621V<1^H>;P\WA]O@L0O_D8"<'.]P<;C[U43 M S\&W99%6]NCG)P^B<`NX!=P";M?)HY7T#[>`6\`MX!9P"[@%W`+5!:H+5!>H44 M +E!=H+I@[0JX!=P";M&_=I.#HW_I[I^Z<6O@UL"M@5NC]`_A](#J`M4%J@O<45 M &K@U<&O!K06W%MQ:H%>@5U!=074%U1545U!=074%MY9\=UJMG3U3COM[9NVU46 M 1,UP9`BT]H7/2?V/*GAT]\;R9YZ3>F[[\\])_:\ZN/S1STD/O;/T=Y"6PXC>47 M F>'HGY7!61F<E<%9&7;/243QZ)<^)SUOAKM4XM]3\O<-]%?ZC/1U!I('!FI_48 M CZCI4\K7&S(_U[VE9QKHQ>G9R;O?WYX/;\]6Y^_/5B?'WX[#VP]O5L=[9^H349 K:$TU+U[_E'X^'*_^4K[W[PM)7O+/$.W?&WY?S]+\U3]>_`^")4,7-R$`````2 M'XL(".7+EEH"`V5L:6UI;F%T95\V+G)E<P#EFEUO&[D5AN_S*P:+7DB5%`QY 3 MOC@)[(NB-PL4O=G>+19!F@0;+;*V86FQEGY]R8=1K*YC)TX3H45UP?DX)&?F 4 MX?L><L;^X1]__?[OPS"D\^%OW_]E^&Z[V3Y]M_[G=\^'NO=B?;'>SN;/A\NK 5 M[?KR8G9U?;F=/W_2S@[GY\.;=^M?UQ<OMV]>^-.+-[\_W6Q?;I_\\+[#?#Y\ 6 MV)>GP_7ZXN?A^FVR,\GC*,O9[\N;Y6ZYGR]?7SW_4%'/AZO+=[OA*IT--WDW 7 M_'FF<6.[V,LBEYN=[<O"93&E>D[V,;]M:(>&N3;<[6M#BYTO<JJ][*>%I5W> 8 MYT6RF[S7HV9^:":MF;9VH;N%Y!O?Q\*D7B?O%REJ+[(_:A>'=GHVU$AMUJZT 9 M]]8RC3O?VR*WQE9[R;'+1TW+H:G52[:6XMQ;23?3+HV+--6+V5X7,=WHWH]: 10 M3N?#^O6;E^^&7\XJH.557E[)\DJ75_:A3AH/==9G;R]_O?QY]LOR]]LN4CH: 11 MM-EZN6O/M-F^?O:CFXD]RS\EF^E\D\I,:CEM\M@.<]K,K&[RS&LILZBE9EMM 12 M9F6^F:4TWVRRSU)N!]Z*:,54:T7E4O>SMJ*=S?7L3-HYD5:TZE)[R?6*+:3C 13 MO':KK8+6_FK9FJJSVRK8V(H6-VU5S=INZ]I:V--\5<\Z;;W=^S3S=A%OMQJM 14 M<>36+MKEHW4>+1R%DZV+TCHO[6$*5R@M7FI\=72PF4VMKZE5F[3%5H<C.1R- 15 M[+1&<5Q?QM:B[K>N)@B.(R4`1Z6$X]BC$Y03I5`:)9@343"G3#03!7>"=P)X 16 M@G@2HA+MT9)P@0X]5>ILN`UMC['AF!M2;DBI;R.Q%=%Z@;JS::<!FTPZJG;< 17 MR@,=XN_W>-[C^AM023IT64]SS\8],\B)44X,<W*B3M2).E&&.3'.*;@^8YRB 18 MZY)H(<H(IT*444T,:V*<$D.9&*?$0*4^4E.[>AX1]2B41NF4K4Y.(V6F1/FX 19 M(B>BF6@FVGV1B>8>I7]A)+)0B6'+==@X15V&+2L]:3<8596JRATI=H-EAF6& 20 M989EAF6&989EAF6&989E=J)!%+OD(!I$\4K&+!F6N?21?O_KU5>?^O5[OW-. 21 M>+8*8"6YJJON@NHCC]\?G"@:S6@T([&,!+,1-:)&U(DZ42=*DLA>'GQPZB"B 22 MC(AN'[R51!%11D09$65$E!%11D2"W06["W87Y"-C4/8428[$[H+=!;L+=A?L 23 M+MA=L+M@=^GI]7U^)8K=18B2807!"%(1I")P$[@)W`1NTC.LH!A!,8)B!,4( 24 M^`1\`CX!G^`^P7V"^P1P`C@!G`!."C=1Z)\D*87^)_J?B$Y$)Z)3GR*8'7"? 25 MXCX=R68ZEKZ9;O54C\;Y'\35+K+Z5C]&MVMX*O,C1?-,F6?*/%-NSR12MSPS 26 M3_4Q44"-G"+D%"&G"#E%4OEFHB!*_I"6/]J&\+URZ!,Z41*(X"/!1X*/!!\) 27 M"41(($("^9@0>#!\)/A(\)'@(\%'BH\49`HR!9F"3$&F(%.0*<@T]2A2RGVA 28 M@91`IB!3D"G(%&0*,@69]I5*7Z2`3$&F(%.0*3Y2?*3D'R7_*/E'R3^*@=3[ 29 M"H<H!E(,I&V=TE*?XB&-IO&VI7NP*2Y2TH^2?A1LVK"U#6$DITA.H:?0,^@9 30 M]`QZ!CV#GJ6^SB(*/8.>0<^8Q(Q)S)C$C$G,F,2,Y&W,7B;Z&5[C9E8G^-U- 31 M!W=_HJM3)+'QWE364]@G%<P8/%[!_D@=$\7YBO,5YRO.5YRO./\A'=^*F"@, 32 M%88/2OB#@O5CVCV%>(625PR0&<A,^_L'49`9R*R_H?2W$Y`9UC>L;UC?L+YA 33 M?0.9@<Q`9B`SD!G(#&0&,@.9E?>)P:!F4+/"W&=(SX!GP#/@&?`,>([T''8. 34 M.X>=P\YAY[!SV#GL''8..X>=P\XK.UZX@@/>P?KRU27WC?2-'LV&GLN#-N0F 35 M3Y(0OG[F:>:K9*2^2:,K15>*KAX_I=`#2[,OG5+HGZE8F8J5J5B9BI6I^-_G 36 M%**D,R6=*9I2TMF#ACS)9-)*HKP$&"\!QDN`\1)@$#,M]_@1M_;O!:0P(X49 37 M*<Q8O!C$#&(&,8/80WZ\:\;/=6&B%$JCQ$AC_YA!E)<`YR7`>0EP%B].ZG=2 38 MOY/Z_VC";KY6$D5I#C>'F\/-X>9P<^U1>D!OCMX<O3EZ<_3FZ,W1FZ,W[]]9 39 MR&-.'G/RF$//T9NC-T=OCMX<O3EZ<_3FZ,W1FS-].M.G,WTZTV=`+]!;H+>H 40 M>L-\`<8`8X`QP!A@##`&&`.,`<9`?H'\`OD%\@OD%\@O/F\M$Z=*7?\5.7(C 41 M_LD)_6X6.5Z2$IWZMSW<AAN,832&T1A&8QB_=A;YLEG]OBQR=U:_+Y?TSY9$ 42 M<8/A!L,-AAL,;H<9G2C<OLV,_LURR:.S"/W#S>'F<'M\%J%_<K"3@QUN#C>? 43 MRKU9I)7ED<F#*-P";@&W@-MM\F@E_<,MX!9P"[@%W`)N`;=`=8'J`M4%J@M4 44 M%Z@NF+L";@&W@%OTK]WDX.A?NONG;MP:N#5P:^#6*/U#.#V@ND!U@>H"MP9N 45 M#=Q:<&O!K06W%N@5Z!545U!=074%U1545U!=P:TEWY]6:V<GRG'_FUE[(U$S 46 M'!D"K7WA.JG_406/'MY8_I-UDGVE=5+_J\[T1>ND3[VS]'>0EL/&!S,<_3,S 47 M.#.#,S,X,\-AG404CW[I.NFT&>[_<J%RZL](7_5K\D-_/JFI?27EZUTRG^K9 48 MTHDN].3J^O+U;Z^VPZOK]?;-]?KRXMDXO'K[<GUQ=*:N0&NJ>?+BQ_33V?CA 49 @[^5'_\20Y"G_$M'^R>&WS2S-G__IR;\`%4UFV3TA```` 50 50 ` <