Changeset ad711e6 in git
- Timestamp:
- Apr 9, 2009, 12:24:10 PM (14 years ago)
- Branches:
- (u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'a800fe4b3e9d37a38c5a10cc0ae9dfa0c15a4ee6')
- Children:
- d4154095eaa4bca4de062c4a2eb0fc274b3d1734
- Parents:
- f2b1ce61cdfede9548e35b96cfaf871abe893ba9
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/finvar.lib
rf2b1ce6 rad711e6 1 1 /////////////////////////////////////////////////////////////////////////////// 2 version="$Id: finvar.lib,v 1.8 0 2009-01-07 16:11:36 SingularExp $"2 version="$Id: finvar.lib,v 1.81 2009-04-09 10:24:10 seelisch Exp $" 3 3 category="Invariant theory"; 4 4 info=" 5 5 LIBRARY: finvar.lib Invariant Rings of Finite Groups 6 AUTHOR: Agnes E. Heydtmann, email: agnes@math.uni-sb.de;7 Simon A. King, email: king@mathematik.uni-jena.de6 AUTHOR: Agnes E. Heydtmann, contact via Wolfram Decker: decker@math.uni-sb.de 7 Simon A. King, email: simon.king@uni-jena.de 8 8 OVERVIEW: 9 9 A library for computing polynomial invariants of finite matrix groups and … … 7173 7173 common factors should always be canceled when the expansion is simple 7174 7174 (the root of the extension field occurs not among the coefficients) 7175 RETURN: primary and secondary invariants (both of type <matrix>) generating 7176 the invariant ring with respect to the matrix group generated by the 7177 matrices in the input, and irreducible secondary invariants if we are 7178 in the non-modular case. 7175 RETURN: primary and secondary invariants for any matrix representation of a 7176 finite group action 7179 7177 DISPLAY: information about the various stages of the program if the third flag 7180 7178 does not equal 0 … … 7391 7389 expansion is simple (the root of the extension field does not occur 7392 7390 among the coefficients) 7393 RETURN: primary and secondary invariants (both of type <matrix>) generating 7394 the invariant ring with respect to the matrix group generated by the 7395 matrices in the input, and irreducible secondary invariants if we are 7396 in the non-modular case. 7391 RETURN: primary and secondary invariants for any matrix representation of a 7392 finite group action 7397 7393 DISPLAY: information about the various stages of the program if the third flag 7398 7394 does not equal 0
Note: See TracChangeset
for help on using the changeset viewer.