Changeset ad711e6 in git


Ignore:
Timestamp:
Apr 9, 2009, 12:24:10 PM (14 years ago)
Author:
Frank Seelisch <seelisch@…>
Branches:
(u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'a800fe4b3e9d37a38c5a10cc0ae9dfa0c15a4ee6')
Children:
d4154095eaa4bca4de062c4a2eb0fc274b3d1734
Parents:
f2b1ce61cdfede9548e35b96cfaf871abe893ba9
Message:
changes requested by King, Decker


git-svn-id: file:///usr/local/Singular/svn/trunk@11660 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/finvar.lib

    rf2b1ce6 rad711e6  
    11///////////////////////////////////////////////////////////////////////////////
    2 version="$Id: finvar.lib,v 1.80 2009-01-07 16:11:36 Singular Exp $"
     2version="$Id: finvar.lib,v 1.81 2009-04-09 10:24:10 seelisch Exp $"
    33category="Invariant theory";
    44info="
    55LIBRARY:  finvar.lib    Invariant Rings of Finite Groups
    6 AUTHOR: Agnes E. Heydtmann, email: agnes@math.uni-sb.de;
    7         Simon A. King, email: king@mathematik.uni-jena.de
     6AUTHOR: Agnes E. Heydtmann, contact via Wolfram Decker: decker@math.uni-sb.de
     7        Simon A. King, email: simon.king@uni-jena.de
    88OVERVIEW:
    99 A library for computing polynomial invariants of finite matrix groups and
     
    71737173         common factors should always be canceled when the expansion is simple
    71747174         (the root of the extension field occurs not among the coefficients)
    7175 RETURN:  primary and secondary invariants (both of type <matrix>) generating
    7176          the invariant ring with respect to the matrix group generated by the
    7177          matrices in the input, and irreducible secondary invariants if we are
    7178          in the non-modular case.
     7175RETURN:  primary and secondary invariants for any matrix representation of a
     7176         finite group action
    71797177DISPLAY: information about the various stages of the program if the third flag
    71807178         does not equal 0
     
    73917389         expansion is simple (the root of the extension field does not occur
    73927390         among the coefficients)
    7393 RETURN:  primary and secondary invariants (both of type <matrix>) generating
    7394          the invariant ring with respect to the matrix group generated by the
    7395          matrices in the input, and irreducible secondary invariants if we are
    7396          in the non-modular case.
     7391RETURN:  primary and secondary invariants for any matrix representation of a
     7392         finite group action
    73977393DISPLAY: information about the various stages of the program if the third flag
    73987394         does not equal 0
Note: See TracChangeset for help on using the changeset viewer.