Changeset b66fdf in git


Ignore:
Timestamp:
Apr 3, 2006, 3:14:05 PM (18 years ago)
Author:
Motsak Oleksandr <motsak@…>
Branches:
(u'spielwiese', '873fc1222e995d7cb33f79d8f1792ce418c8c72c')
Children:
61c541313602e9288afac56c71f3228283e313c4
Parents:
a7ec94356a9de1892b8bcd8a9119b7341484813b
Message:
minor upgrade: cosmetic changes.


git-svn-id: file:///usr/local/Singular/svn/trunk@9053 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/perron.lib

    ra7ec94 rb66fdf  
    11///////////////////////////////////////////////////////////////////////////////
    2 version="$Id: perron.lib,v 1.1 2006-03-13 14:31:44 motsak Exp $";
     2version="$Id: perron.lib,v 1.2 2006-04-03 13:14:05 motsak Exp $";
    33category="Noncommutative";
    44info="
    5 LIBRARY:  perron.lib     
     5LIBRARY:  perron.lib         computation of algebraic dependences
    66AUTHORS:  Oleksandr Motsak,        motsak@mathematik.uni-kl.de.
    77
     
    1717proc perron( ideal L, list # )
    1818"USAGE:     perron( L [, D] )
    19 RETURN:     a commutative ring, containing an exported ideal with polynomial relations with the name Relations.
    20 PURPOSE:     computes relations between pairwise commuting polynomials of L[, up to a given degree bound D]
    21 NOTE:     The perron relation is know to exit and be minimal only if size(L) = (1+nvars(basering))!
    22 EXAMPLE:    example sa_reduce; shows an example
     19RETURN:     a commutative ring, containing an exported ideal `Relations` with found polynomial relations.
     20PURPOSE:    computes relations between pairwise commuting polynomials of L[, up to a given degree bound D]
     21NOTE:       the implementation was partially inspired by the Perron's theorem.
     22EXAMPLE:    example perron; shows an example
    2323"
    2424{
     
    4040    intvec W; // weights
    4141   
    42     for ( i = size(L); i > 0 ; i-- )
     42    for ( i = N; i > 0; i-- )
    4343    {
    4444        W[i] = deg(L[i]);
    4545    }
    46    
    4746
    4847////////////////////////////////////////////////////////////////////////
     
    126125    // we are in COMMUTATIVERING now:   
    127126   
    128     ideal PBWBasis = PBW_basis_byMaxDeg( D ); // All monomials of degree(!) <= D.
     127    ideal PBWBasis = PBW_maxDeg( D ); // All monomials of degree(!) <= D.
    129128    // TODO: it would be better to compute weighted monomials of weight <= W[1] \cdot ... W[N].
    130129   
     
    141140//    Images;
    142141   
    143     def T = KER( Images ); // Compute relations in NC ring
     142    def T = linearMapKernel( Images ); // Compute relations in NC ring
    144143   
    145144//    T;
     
    150149    if( (typeof(T) != "module") and (typeof(T) != "int" ) )
    151150    {
    152         ERROR( "Wrong output from the 'KER' function!" );
     151        ERROR( "Wrong output from the 'linearMapKernel' function!" );
    153152    }
    154153   
     
    157156        if( T != 0 )
    158157        {
    159             ERROR( "Wrong output from the 'KER' function!" );
     158            ERROR( "Wrong output from the 'linearMapKernel' function!" );
    160159        }
    161160    }       
     
    175174       
    176175        setring COMMUTATIVERING;
    177         ideal result = LinearCombinations( PBWBasis, KER );
     176        ideal result = linearCombinations( PBWBasis, KER );
    178177       
    179178        kill KER;
     
    225224D[1,2]=-z; D[1,3]=2*x; D[2,3]=-2*y;
    226225ncalgebra(1,D); // this algebra is U(sl_2)
    227 ideal L = x^p, y^p, z^p-z, 4*x*y+z^2-2*z; // the [p]-Center
     226ideal L = x^p, y^p, z^p-z, 4*x*y+z^2-2*z; // the center
    228227def R = perron( L, p );
    229228setring R;
    230229R;
    231 Relations; // it was exported from perron to be in a returned ring.
     230Relations; // it was exported from perron to be in the returned ring.
     231kill R;
     232// perron can be also used in a commutative case, for example:
     233ring r=0,(x,y,z),dp;
     234ideal J = xy+z2, z2+y2, x2y2-2xy3+y4;
     235def R = perron(J);
     236setring R;
     237Relations;
    232238}
    233239
Note: See TracChangeset for help on using the changeset viewer.